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Many observed phenomena may be studied as problems of axisymmetric finite
deformation of thin elastic shells of revolution. Under favorable conditions, the finite
deformation experienced by the shell is, except for layer phenomena, essentially
inextensional bending. A typical example is the polar dimpling of a complete spherical
shell under an axisymmetric pressure distribution which varies along the meridional
direction. This paper develops an asymptotic solution for this problem to illustrate a
technique for more general situations. The asymptotic solution exhibits the following
novel features:

(1) two adjacent regions of the shell experience two different types of inexensional
bending deformation,

(2) incompatibilities between the inextensional bending solutions at the boundary of
these two regions, i.e., the dimple base, are removed by layer solutions,

(3) this interior boundary varies with the shell stiffness and external load and is
determined in the solution process, and

(4) the leading term approximate solution for the interior boundary location is
obtained very simply from the inextensional bending solutions without any reference
to the more complicated layer solutions.

1. Introduction

Many observed phenomena may be studied as problems in axisymmetric
finite deformation of thin elastic shells of revolution. Under favorable
conditions, the finite deformation experienced by the shell is, except for
layer phenomena, essentially inextensional bending. The polar dimpling of
a complete spherical shell under an axisymmetric pressure distribution
which varies along the meridional direction is a typical example. This type
of deformation is known to be relevant to the Collapsing Spherical Bladder
Problem in the study of propellant storage devices with efficient fuel
expulsion characteristics [3, 11].
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The main purpose of this paper is to describe a technique for construct-
ing a simple approximate characterization of the dimpling and related
types of finite axisymmetric deformation of thin dome-like shells of revolu-
tion under suitable axisymmetric loads. We do this by way of a specific
problem involving a homogeneous, isotropic, complete spherical shell of
constant thickness subject to a smooth axisymmetric normal load distribu-
tion which is inward near the poles and outward near the equator. If the
shell is sufficiently thin, we expect polar dimpling to be an admissable
mode of deformation' and an asymptotic solution of the relevant
boundary value problem to be appropriate. While it is not difficult to see
that the leading term of the outer expansion solution satisfies the equations
for the finite inextensional bending theory of shells, a novel feature of our
method consists of using two different types of inextensional bending
solution for two adjacent regions within a hemisphere of the shell. The role
of the inner expansion solution is to connect up the two pieces of the outer
solution, smoothing out the discontinuities in the composite outer solution
across the boundary of these two adjacent regions, i.e. the dimple base.
The procedure is the counterpart of that used in [9] where two different
types of nonlinear membrane solution in two different portions of a
rotating shell were connected up by a transition layer (or inner expansion)
solution across the boundary of the two regions. The actual location of the
dimple base depends on the external load as well as the stretching and
bending stiffness of the shell and is in principle determined as a part of the
matching (of the inner and outer expansion) process. However, a good first
approximation of the exact dimple radius can be obtained very simply
from the inextensional bending solution itself without any reference to the
more complicated inner solution (which contributes to the composite
asymptotic expansion only in a small neighborhood of the dimple base
where there is a significant coupling of stretching and bending shell
actions).

Accurate numerical solutions of the relevant boundary value problem
for the axisymmetric deformation of spherical shells confirm the adequacy
of the inextensional bending solution constructed by the above technique
as an approximation of the exact solution in favorable ranges of load and
geometrical parameters. The numerical solutions were obtained by a
general computer code developed by Ascher et al. [1] for nonlinear two
point boundary value problems based on a spline-collocation method. The
computer code allows the users to prescribe acceptable error tolerances for

10ther modes of finite axisymmetric deformation and, for sufficiently large load magni-
tude, axisymmetric or asymmetric buckling are also possible. We are not concerned with the
actual mode of deformation for the prescribed loading in this report, but confine ourselves to
a simple accurate solution for the polar dimpling mode.
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the unknown functions in the differential equations and their derivatives
and provides error estimates for the numerical solutions obtained.

Applications of the solution procedure described in this note to the
Collapsing Spherical Bladder and other problems will be reported
elsewhere [11].

2. Formulation

Consider a homogeneous, isotropic, spherical shell of constant thickness
h and middle surface radius a subject only to an axisymmetric normal
distributed surface load p,(§) where £ is the angle between the meridional
tangent at a point of the midsurface of the undeformed shell and the base
plane. The finite deformation elastostatics of such a shell has been shown
to be governed by the following pair of coupled nonlinear second order
(integro-) differential equations for the meridional angle change ¢ of the
deformed middle surface (with 8 = £ — ¢ being the meridional angle of
the deformed middle surface) and a stress function ¥ [6, 8]:

29+ cotg ¥ — (col £ — 1) ¥] - Shig(cos B —cos ) =
= %[V(rV)’ + (1 + ») cot &(rV) — ghll—g(rzp,,)’ — v Z;:é(rzpli)}
(1)
% ¢ + cot £ ¢ + ;%%ﬁ;(sinﬁ — sin §) — Si;é(cos B — cos g)}
+ Ssllrrllg = %(rV} (2)

for 0 < £ < &, where primes indicate differentiation with respect to ¢ and
where

. 3 .
Py = —p,sinf, rV= —f a®p, cos (3 sin ¢ d¢,

1 Eh?

r = asin §, A=—, D=—"—"—
Eh 12(1 — »?)

€)

In the above equations, E is the constant Young’s modulus of the material
and » is Poisson’s ratio.
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In terms of ¢ (or B = ¢ — ¢) and ¥, we have the following expressions
for the transverse shear resultant Q, the inplane stress resultant N, and N,,
the stress couples M, and M,, and the radial and axial midsurface
displacement components # and w (see Fig. 1):

_ (V) cos B — ¥sin B
Q= asinE ’ @
14 b4 1 i
D1,

M, = %[wp’ - 51n£(SinB — sin g)], 6)

=A[sin{ ¥ — ycos BY + r’py — vsin B(rV)], @)
sin 8

sin £

=f {a(smB—sm&)+A

X [cos B ¥ + sin B(rV) — »sin § ¥’ — Vrsz}} dé. (8)
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The (integro-) differential equations (1, 2) supplemented by four suitable
auxiliary conditions to be specified later determine ¢ and ¥. The stress and
deformation measures of the shell as given by (4—8) will be known once we
have ¢ and ¥. For the purpose of an asymptotic analysis, we introduce
appropriate dimensionless dependent and independent variables and write
the governing equations in dimensionless form. Let p; be a representative
magnitude of the inward portion of p,(§). We write

Dy = Dis rV = p,a*P, Py = PPy
pa DA h?
\If: .az , = iaA 2;, 84=-_=—_—"_.
Py mep Eh a  12(1 — »¥)a?

)

In terms of the above variables and parameters, we have the following two
dimensionless differential equations for ¢ and i,

1
r” 4 i 2 — —_ =
pl¥” + cot &y + (v — cot® §)Y] siné(cos B — cos §)
(10)
, 1 . 2 ,
= ,u|yP +{(1+v)cotéP — Sing(sm SpH) - vcos%pH},
8—4 ¢” + coté o + COS'B(sin,B — sin &) — 4 {cos B — cos £)
B sin? ¢ sin §
sin 8 _ cos B P (11)
sin £ sin §
and the auxiliary equations
£= Pcos B — ¥sinf
p;a sin & ’
Ny PsinB+¥cosp N,
_E = —g- = / i
Pia Slnf s pia ‘J/ + sin g pH5
%=u[sin£x{/——vcos,B¢+sin2§pH—vsinBP1, (12)
w £ . . sin 8
;—f [51n,8——sm$+using

X[cos By + sin B P — Vsinéx,l/-vsinzipH]}dg.
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The expressions for M, and M, are essentially unaffected by the introduc-
tion of (9).

For thin shells, ¢* = O(h*/a?) is small compared to unity. If p; is not
large (say by a factor A/a) compared to the classical buckling pressure
p. = Eh*/a* of the linear theory, p = O(p;i/p.a) is also small compared
to unity. If at the same time p, is not too small so that ¢*/u = O(p 4 /p;a)
remains small compared to unity , e.g. €> < p < 1, then the structure of the
governing differential equations suggests the possibility that, except for
layer phenomena, an inextensional bending solution (corresponding to the
limiting case 4 = 0) dominates throughout the shell. The proper form of
the inextensional bending solution depends on the external load function
p(¢). In this paper, we consider a particularly simple normal surface load
distribution which facilitates a polar dimpling mode of deformation and
thereby allows us to bring out the essence of an elementary method for a
simple approximate description of the dimple type deformation in terms of
an appropriate inextensional bending solution.

3. Polar dimpling
Consider a normal surface load distribution of the form
pa(§) = p; — posin § = p(1 — dsin §) (13)

where p, >p; > 0 and 6 = p,/p; > 1. Since p, is positive inward, this
particular normal pressure distribution is directed toward the center of the
sphere at the two poles £ = 0 and ¢ = #, gradually weakens as we move
toward the equator and eventually changes into an outward pressure which
has its peak value at the equator, £ = # /2. Corresponding to (13), we have
from (3) and (9)

P = —fg(l — §sin §) cos B sin £ d§,
0
py = —sin B(1 — & sin &) (14)
With p,(§) symmetric about the equator, we only have to consider the
hemisphere 0 < £ < w/2 with Q = ¢ = 0 at { = 7 /2 assuming the dimple

base to be above the equator. In view of (12), these conditions are
equivalent to

§=§: o=y =0 (15)
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keeping in mind 8 = § — ¢. Eq. (15) provides two boundary conditions for
the fourth order system (10, 11). Two more auxiliary conditions come from
the symmetry requirements, ¢ = 0 and u = 0, at the pole § = 0 which may
be written as

£=0. 9=y =0 (16)

since the stress measures N; and N, are expected to be bounded.

For p < 1, we expect, to a good first approximation, the solution of the
two point boundary value problem defined by (10), (11), (15) and (16) (see
also (14) and (9)) to be effectively the same as that for the limiting case
g = 0 except possibly for layer phenomena. Setting p = 0, the differential
equation (10) reduces to a transcendental equation

cos B, = cos ¢ (17)

where a subscript 0 has been used to indicate the fact that B, is only an
approximate solution for the problem. Eq. (17) is satisfied by B{" = £ or
BP = — & (We have ruled out other solutions as they are physically
unrealizable.) Rather than choosing either one of the two acceptable
solutions to hold for the entire hemisphere, we follow the procedure used
for a related problem in shallow shells [10] and consider the possibility of
using both solutions, each for a different portion of the shell. More
specifically, we consider a solution of the form

BP =& 0<E<E,

BV = ¢, §<é< /2 (18)

Bo(§) =

for some transition point &, in (0, 7 /2) with the corresponding i, obtained
from (11):

1

Y = —cot £P, = zcos ¢ sin 5(1 - 2TSSin 5), 0<§<¢

Yo(§) = 21 28 -
Y = cot ¢P, = 2<:os$sm 5(1 ——é—sm 5) £ <E< >
(19)

In other words, a dimple develops in a region centered at the apex while
the rest of the hemisphere experiences no change in the meridional slope.

For 4 = 0 (so that the shell is inextensible) and therefore p = 0, the
solution (18) and (19) satisfies the two differential equations (10) and (11)
as well as the four auxiliary conditions (15) and (16). But both 8, (or ¢,)
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and v, are discontinuous at the yet unspecified transition point &, resulting
in unbounded hoop stress resultant and stress couples. We can eliminate
the discontinuity in y, by choosing the unknown parameter £ so that

Y& = ¥§)(E) or
cos &, sin S,(l - 23—Ssin 5,) =0 (20)

where £ is physically restricted to the interval (0, 7 /2). To satisfy (20) with
£ =0 or #/2 would mean one or the other of the two inextensional
bending solutions prevails throughout the shell. Therefore, we make vy,
continuous by taking £, to be the solution of

2D

. 3
sin §, = 25"
Eq. (21) determines a unique £, inside the interval (0, 7 /2) only if 3/2 < &
=p,/p; < . As p,/p; decreases toward 3/2, the size of the dimple
increases with the dimple base approaching the equator. For a complete
sphere deforming symmetrically about the equator, too large a dimple in
both hemispheres is of course physically impossible. Rather than pursuing
a discussion of the actual physical constraints on the size of the dimple or
the possibility of a dimple at only one of the two poles, we turn now to the
discontinuity in 8,.

A discontinuity in S, is acceptable if the shell has no bending stiffness so
that D = 0. For shells with a small bending stiffness factor, we anticipate
that such a discontinuity may be removed by a layer type solution in the
neighborhood of &. A small bending stiffness factor is also expected to give
rise to a small correction to the location of the transition point &,

When p # 0 (however small) as it is usually the case, the solution
(18-21) no longer satisfies (10) while the discontinuity in ¢, at § = &
persists. The satisfaction of the two governing differential equations can be
accomplished by a regular perturbation series solution in powers of u for ¢
and . In fact, it is not difficult to see that the inextensional bending
solution is the leading term of this (outer asymptotic) expansion of the
solution of the boundary value problem. We may therefore focus our
attention on the elimination of the discontinuity in our composite inexten-
sional bending solution (18, 19). This will be done in Section 4 by an ad
hoc method similar to the one used in [10] for shallow spherical caps. The
analysis of [10], limited to the u = O(e) range, will be extended here to
cover a much wider and more realistic range of load and geometric
parameter values.
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4. A composite asymptotic solution

For 0 <pu<1and 0 <e*/p < 1, we expect the inextensional bending
solution of Section 3 to be a good approximation for the solution of the
boundary value problem defined by (10), (11), (14), (15) and (16) outside
the transition layer, a narrow region in the neighborhood of the transition
point £,. Inside the narrow transition layer, an inner asymptotic expansion
of the solution is appropriate. As in [10], we limit ourselves here to a brief
discussion of the leading term of a composite expansion of the solution in
the form

& ~ do(&) + fo(»)s ¥~ o(§) + age(y) o (22)

where the stretched variable y is defined in terms of a small parameter A by

§—¢
Y= (23)
The small parameter A and the multiplicative factor « in the expansion for
Y in (22) are to be specified below. We note that « was set equal to A in
[10] since only the p = O(e) case was discussed there. Here, we allow for
the range p < ¢ as well, e.g. p = O(¢?). With p = p,a/Eh = O(e’p;/p.), the
complementary range u >> e implies p_ < p;e; in other words, p; is orders of
magnitude larger than the classical buckling load. While the pressure
distribution is not uniform throughout the shell in our case, we neverthe-
less do not anticipate the range w > ¢ to be of much interest from a
practical viewpoint.

To determine a and A, we substitute (22) into (10) and (11) and omit
terms of order p to get

‘l;\a[g0+}\cot§g0+(y—cot2£))\ ] illlg(cosﬁ—cosg)=0,

(24)
e | , 2 cos B
fo+Acoté fy+ ————(sin B — sin §) — (cos B — cos §)
ap. sin
in .
+s:ir:1£g0= (xsins[P cos B — Ygsin B] (25)

2A systematic treatment of the inner expansion and the matching process for different
ranges of parameter values will be reported elsewhere by D. F. Parker and the present author
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where B~ § — ¢4(§) — fo(¥) = Bo(§) — fo(»). With § specified by (21), the
net contribution from the terms inside the brackets on the right-side of (25)
is O(\):

P cos B — ypsin B = ¢, Pysin f[ 1 + OA) ]

3¢,y .
=5 COS & sin fo[ 1 + O(A) ] (26)

where P, is P with 8 = 8, and where

o = -1, y <90,
! 1, y>0.

To retain the highest derivative term in both (24) and (25) we take
pa/A* = e*/par* =1 or

(27)

A=¢g a=e/p. (28)

Since &* = O(h?/a*), we omit all O(e) terms in (24) and (25) to get

g5 —[cot &(cos fy — 1) + ¢, sinfy] = 0, (29)
fo+ &(;%—gﬁlgo = z—ic,y cos ¢, sin f, (30)

for the determination of f, and g,. When ¢ < 1 and 12 < 1, the above pair
of equations reduces to the transition layer equations for a spherical cap
obtained in [10] for the u = O(e) case.

For the stress distributions of the shell to be continuous across the
transition point &, we must have

¢(§t+) = ¢(€1_)9 ¢(§t+) = ¢(£t_)’

¢/(§t+) = q&'(gt—), ‘[’/(gt"') = ‘[/(gt_)' (31)
From the structure of the differential equations (29) and (30) we have
go(—y) = go(»),  fo(=») = =f(») (32)

so that the continuity of ¢ at & is satisfied automatically (since i, is
continuous at £) while the continuity of ¢ requires

fo(0+) = &. (33)
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Correspondingly, the continuity of ' at £ requires
: B8 e sing | = -2 2 (12
g0 +) = . [ 3 €Os ¢ sin $,J { 28 (1 (34)

while the continuity of ¢’ is satisfied identically to terms of order €. A more
thorough discussion of the continuity conditions can be found in [10].

Outside the transition layer, we expect the contribution from the f, and
8, to be insignificant. Therefore, we stipulate

Jim fo(y) = lim go(y) =0 (35)

which, along with (32), also imply f, and g, vanishing at — 0.

The two differential equations (29) and (30) and the four auxiliary
conditions (33), (34) and (35) determine f, and g, for 0 <y < oo provided
that p is of order & at most, which is the range of interest in practice as
pointed out earlier in this section. (The p > ¢ case requires a different
treatment of (25) leading to a different set of A and « [4].. The right-side of
(30) and (34) should be omitted if p < ¢.) The conditions (32) give f, and
go for —oo <y < 0. Thus, a solution of the boundary value problem for
0 <y < oo makes the polar dimpling a possible type of deformation under
the prescribed normal load distribution.

Just as (22) gives only the leading term of an asymptotic solution for ¢
and ¢, the location of the transition point £ between the two distinctly
different types of inextensional bending deformation as determined by (21)
is also only the leading term of an asymptotic expansion of the actual
location. For sufficiently thin shells, the dependence of the transition
location on the shell stiffness is expected to be a higher order effect. A
discussion of the higher order correction terms for & will appear in [4]; the
special case p = O(e) has been considered briefly in [10].

5. Numerical solutions

While the analysis of Section 4 suggests the possibility of obtaining a
uniformly valid asymptotic solution of our shell problem for small values
of i and &*/y, we do not actually solve the boundary value problem for f,
and g, in 0 <y < oo (or the corresponding problem for the leading term
inner solution with the attendant matching). With a simple geometrical
interpretation for its deformation pattern and an elementary description of
its stress distributions, the inextensional bending solution of Section 3
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often by itself provides an accurate and informative approximation of the
exact solution outside a narrow transition region. In Fig. 2, we see how
well B, approximates 8 for u = ¢ = 0.01 and for several values of § =
Po/p;- Fig. 3 shows distributions of 3 for several combinations of u and e
when they are not of the same order of magnitude. All numerical solutions
in this report were obtained by a general computer code developed by
Ascher et al. [1] for general two point boundary value problems with an
estimated error no greater than 10~°. Even without the numerical solutiors,
it is not difficult to infer from S, the general features of the solution within
the narrow transition layer which smoothly connects up the two portions
of B,. Also, an exact solution for the layer equations in terms of elemen-
tary or special functions is not possible except for special cases. If numeri-
cal methods are contemplated, it would be just as easy (or easier) to obtain
a numerical solution of the original problem.
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In addition to being an informative approximate solution of the prob-
lem, the simple inextensional bending solution also serves another im-
portant function as an initial guess for an exact solution by iterative
methods such as the one used in [1]. Without such an educated initial
guess, the numerical solution often converges extemely slowly or not at all
in sensitive ranges of parameter values; it may also converge to a different
solution not appropriate for the dimpling phenomenon.

How well does the inextensional bending solution approximate the
dimpling type behaviour depends on the values of y and e. An example
illustrating how 8 approaches S, as both parameters decrease is shown in
Fig. 4.

Numerical results for direct and bending stresses have also been ob-
tained for different ranges of parameter values but will not be presented
here as the physical problem itself was constructed only to illustrate our
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method. However, a discussion of the relative magnitude of the direct and
bending stresses within and outside of the transition layer will be of
interest.

6. Direct and bending stresses

For a typical magnitude of the direct and bending stresses of the shell,
op = N/h and 6, = = 6 M /h? consider

o =52 = O( B y) = of &2 Vo go]) (36)

o = 22 = o Blyt) = o et + 14 ) (37)

a
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Outside the transition layer, g, and f; are negligible so that

w2 =of i) - ol %) 9

For p; not large compared to the classical buckling load p_ of a spherical
shell under uniform external pressure, the bending stresses are always at
least as important as the direct stresses and dominate the latter whenever
14 i < D [

Inside the transition layer, the layer solutions f, and g, are important
(since we are only concerned with the range u < O(e) here) so that

Eh D;as
O.p = O(_L—ZS_), Ogp = O(h_p) (39)

Recall from (9) that . = p,a/ Eh and &* = O(h/a), we get from (39)

2.2
%o _of 225 = o(1). (40)
%5 Eh*u

Therefore, direct and bending stresses are always of comparable magni-
tude independent of the relative size of u and & (as long as g is not large
compared to &).

From the above analysis, we see that the maximum stress experienced by
the shell in a dimple mode occurs inside the transition layer when p; is not
large compared to the classical buckling pressure EA*/ a® (or when p is not
large compared to &%) and is O(Ehf,/ ae) in this range of p,. Since f; is O(),
the peak stress level in the dimpled shell is O(EV (%/a) ). We have thus
determined the order of magnitude of the maximum stress level without
solving for the transition layer solution explicitly. The stress level outside
the transition layer is of course O(Fh/a) which is greater than or equal to
pia/h for p < O(e?) but smaller than the peak stress level by an order .

7. Concluding remarks

In the preceding pages, we have sketched an elementary method for
constructing a simple approximate characterization of the dimple mode
deformation for dome type thin elastic shells of revolution. Our results
have extended those obtained in [10] in two directions, to nonshallow
shells on the one hand and to a wider range of load and geometric
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parameter values on the other hand. Whenever the dimple base is sharply
defined (i.e., the transition layer is narrow), this inextensional bending
description gives an accurate and informative solution of the elasto-static
shell problem with the particularly desirable feature that the dimple radius
is determined by the inextensional bending solution alone. This attractive
feature of the method, made possible by the stiffening effect of the
outward portion of the applied load distribution near the equator, is to be
contrasted with the procedures used in [2, 5] for spherical shells with a
point load at the apex which require a knowledge of one or more complex
layer solutions. Without the stiffening effect of the outward pressure as in
the case 8 < 1 (see (13)), the dimple base location would depend on a
proper balance between the bending and stretching shell actions in re-
sponse to the inward loading similar to the situation in [2] and [5].

To the extent that our main concern here is an approximate inexten-
sional bending description of the dimple mode deformation, we have been
able to avoid a thorough investigation of the transition layer problem.
While our brief discussion of the gross features of the composite asymp-
totic solution in the spirit of [7] offers some assurance of a correct leading
term outer solution and an approximate dimple base location in the range
O(?) < 1 < O(e) < 1, some of the more subtle aspects of the dimpling
phenomenon cannot be delineated without a detailed analysis of the inner
solution and the attendant matching process. What is the nature of the
correct inner solution in the range &£ <« p < 1 for which a corresponding
situation in [7] suggests the presence of a secondary layer? How does the
first order correction for the dimple radius depend on & and p? (It should
be evident from Fig. 3, particularly the location of § for the u = 10~% and
e = 1072 case, that this dependence may be rather complicated.) While we
expect the shell to undergo only infinitesimally small deformation for a
very small inward load magnitude, e.g., p < O(¢%) < 1, how does the effect
of p on the dimple radius, which is negligible for ¢? < u < 1, become more
and more significant as y decreases below &, moving £ toward the apex
and thereby reducing the dimple size? These and other important questions
will be the subjects of a thorough transition layer analysis of the dimpling
phenomenon to be reported in [4].

Finally, we would like to point out that the useful inextensional bending
description of the dimple mode deformation can be easily obtained by the
method of Section 3 for other axisymmetric load distributions and other
dome type shells of revolution encountered in engineering problems.
Results for the case of a spherical shell stiffened by a uniform internal
pressure and subject to a localized uniform external pressure distributed
axisymmetrically over a region centered at a pole and to a point force at a
pole will be reported in [11].
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