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Summary

The stress strain relations of Flligge, Lurje and Byrne for lines
of curvature coordinates are inverted to give strains in terms of stres-
ges. It is then shown that these inverted relations may be written par-
ticularly simply in terms of strain measures which contain explicitly
an angular displacement component « turning about the normal to the

middle surface, thereby furnishing an explicit example of a system of

stress strain relations involving eight strain measures Eik and Kjk
. . . T I 3 N -
and a strain potential J(Nll, Nips eees Moy L22) which had eariler

been proposed by one of the authors.. The strain potential W =W  for
the Fliigge-Lurje-Byrne relations in lines of curvature coordinates is
then used to derive a simplified version of a system of FLB relations

for general orthogonal coordinates.

Introduction

Using the principle of virtual stress in a form which is appropriste
for a two-dimensional theory of shells we have earlier (Reissner 1962)
established a system of strain displacement relations which for general

orthogonal coordinates is of the form
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With these strain displacement relations we have postulated a systenm

of stress strain relations of the form

. 3W _ W y =
v 3 scae o = 9 sersee
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. =2 . =B
go0000y Yy ) Py """'"‘
21 amgl 22 8M22

vwhere the strain potential W is a suitable function of the ten arguments

Miuv Mppe Mops Tops 00 0y Myyy My, My, M.

The system of strain displacement relations (1) differs from the custome
ary forms of such relations through the occurrence of the (sixth) dis-
placement variable w, The system of stress strain relations (2) differs
from the customary form of such relations by way of the fact that in

M

N and the couples M individually,

N12' 21
are related to certain measures of strain.

them the resultants

12 Toyu?

It is one of the purposes of the present note to show that the
relations (1) and (2) are compatible with more customary forms of such
relations, and in particular with the stress displacement relations for
lines-of-curvature coordinates established by Fliigge (1932), Lurje (1940)
and Byrne (19L4). In the process of establishing this compatibility,
earlier results (Knowles and Reissner 1960) concerning an inverted form
of these lines-of-curvature stress displacement relations are significant=
ly simplified.

Having a system of stress strain relations of the form (2) for an

isotrovic medium, for lines of curvature coordinates, we deduce the
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corresponding relations for arbitrary orthogonal coordinates upon writing
the strain potential W in terms of certain invariants of the trans-

formation laws for N M and the curvature measures l/Ri . We

.y M.
also invert this systig,andJ:hereby confirm earlier results obtiined by
different procedures for stress resultants and couples in terms of strain
measures, {Knowles and Reissner 1958; Wan 1965),

The reason for choosing the relations given by Fliigge, Lurje and
Byrne for en analysis in conjunction with equations (1) and (2) is that
these relations can be thought of, relatively simply, as a completely
rational consequence of a three-dimensional formulation of shell theory

for a limiting-type transversely isotropic medium (Reissner 1966).

Stress strain relstions for Lines-of-curvature coordinates

We designate stress resultants, stress couples and strain components
referred to lines of curvature coordinates by stars. Furthermore, we de-
signate strain comnonents minus the terms with w by tildes and the
principal radii of curvature by Rl and R,. With these conventions

2
the Fligge-Lurje-Byrne stress strain relations are

] % L3 i i
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* ¥ 3 n# LY ]
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. _ v A . o e
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where

E Eh 1 1
c=-Fh, D=, osi- (5)
1-v 12(1-v7) 2 1
» * * L . .
and where N22, “22! N21, le are defined correspondingly.

In order to attempt writing the system (3) and (4) in the form (2),
it is necessary to solve (3) so as to have strains in terms of stress

resultants and couples, Fouations (3) and the corresponding equations for

* * . .
N;z, M;e' N2l’ MEl consist of two separate systems of four equations
R e R %
each, one system for Cll‘ 522, Kll, K22 and the other for

L% 3 ¥ 3 Q¥ 3 2" 3
€100 Fo1r 320 Koyt

ward, The solution of the second system is complicated by the fact that

The solution of the first system is straightfor-

the four equations are not independent but are such that, identically

L 3 #*
N A
oo = lgl - flg (68)
12 21 R2 Rl

At the same time the four unknowns in them are also not independent but

satisfy the compatibility equation

% ] ’G\:/*
£
N e 12 21
12 " Ko1 T R, T R (6v)

2
(ph} * * . _ph * * (6¢c)
{1+ . } (1, = Myy) = S5y (0, + N,0)
Solution of the four equations for E;l, 222, J:Il, };2 leads
to
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with corresponding expressions for 222 and K2°'
. . um v e e .
Solution of the four equations for €109 Epye Kios K2l,sub3ect
to the observation of (6), leads to two relations of the form
L Y Qv 14y * »
Y 2 et ey =Ems Mt Yl
* _ e e 12 21 (9)
T I K K o= (==
12 21 Rl R2
12(1+v) { » » 1+v 1 1 » -
= Mo, o+ M.} - (= + =) {u, + 1.}
Eh3 12 21 2EhA2 Rl R2 12 21
where
(pn)®
ph
by =1+ e (10)

Equations (7) to (1lo) agree with previously given inversion formulas for
the system (3) (Knowles and Reissner 1960).
* o

. - A _oo.
Evidently, equations (7) for 511 =€, and K11 = €1y as they stand

are of the form (2), with a suitable function w*, At the same time,
equations (9) are not of such form. We now show that equations (9) can
be transformed in such a way as to become equivalent to the appropriate
portions of (2). In doing this, the displacement variable w, which does

’\4. b ik a7

not occur 1n 12, 521, K12. Kgl

s appears as a natural consequence of the
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transformation procedure,

Equations {(9) mav be written, with two arbitrary functions 2 and

A, in the form

2% 3
121 _ _1+v * R
or [ = Zime, {rrl2 + 11211 +2 (11)
€21
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12 6(1+v) [, * * 1+v 1 1 *
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Use of the compatibility equations (fb,c) expresses A in terms of Q,

2 (24v) * * 1,1 1
A ‘F’""&EhA2 {ng + Ngl} +5 (F+2) 2 (13)

Introduction of (13) into (12) and observation of the consequences of

(11) leaves us with the much simplified relations

o ¥ /R
12 _ 12w [Ti2] 1 (11)
e 3 * -
M
ko1 Eh Yoy /R,

. s sas v #*
Upon comparing the definitions of ¢ and €1p® etc., we see that

12
the stress strain relations (11) and (14) assume the desired form if we

set
Q= (15)

With (15) and (1) we may write equations (11) and (1k4) as

4g2




€ - »

12 ) le + NQl (16)
- 2il-vicA2

£21

and
‘ Id
12 1 12
=

o {1-v)D u* (a7
21 21

The correctness of equations (16) and (17) may be verified by establishing
that their substitution on the right of the last two of equations (3)
reduces these relations to identities.

It may be noted that eauations (16) and (17) agree with stress
strain relations which have recently been stipulated in a different con-
text (Reissner 1663), upon omitting the small additive term (ph)2/2h
in the definition of A2.

It is now a simple matter to construct the function w* which upon
s;bstitution in (2) leads to the stress strain relations (17), (16),(T)
and (4), Rather than doing this, we shall first deduce a simpler system
of stress strain relations from (17), (16) and (7) which is consistent,

in a specific sense, with the relations of Fliigge, Lurije and Byrne,

Modification of stress strain relations (17), (16) and (7)

Considering that the stress strain relations (3) may be taken as a
consenuence of a three-dimensional analysis, in which terms involving
powers of h higher than the third are disregarded, we ask for a simpli=-
fied version of (1T7), (16) and (7) such that upon inversion of this sim-
plified system there follows a set of relations for stress resultants and
couples in terms of strain components which coincides with the system
(3) insofar as all terms linear and cubic in h are concerned. We obtain

such a simplified system upon expanding

2 2
1 (ph) 1 (ph)
Sm iz ] e 4 L ae ——= ] - + sees (18)
& 12(1-v) ’ b2 2
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and upon retaining terms in the expanded equations (7) and (17) as fol-

lows
* 1 * * ph2 »
= - o? LLALEN. 5
£11 = Fn (g = Voo = oMy *15%; i,
* 12 * " P *
= —— 1 - v - — 4N
“11. 7.3 fiy - oo - g ! (19)
(ph)?
* * 1+v ph *
= = - +
€12 7 ®21 T TEn [ -7 ] frpp + 71
. * * . . .
Corresponding equations hold for €,, and «,,, vhile (17) is written
in the equivalent form
o 12(1+v) " e 12(1+v) y*
12 3 12 °? 21 3 21 (20)

Eh Eh

The function W' implied by (19) and (20) is

2 2
* 1 ph” *2 _ph *2 * %
W (R Myt (- D) Mpp - 29 My By
2.2
1+v oh L
R L N, )%}
(21)
L * M‘l - T* l*
v Ay Mo -y )
5 *2 *2 * % *2 *2
— {n e . 2+ (1 :
+ —3 { 17 FMon = 2v My Mo, (Lky) (M5 4 Mel)}

Tquation (21) is meaningful as it stands provided the shell possesses
the limiting kind of transverse isotropy associated with the derivation

of the stress strain relations (3) and (4). In contemplating simplifica-
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tions of (21) the most natural procedure would be to omit all terms of
Lol
order (h/RL)Ne, or incorporate additional such terms. In this way we
may, through use of equation (Gc), in particular modifv the term
.2

2 * 2
)8
Yoo + My )

X

»*
: T,
or to 2L12L21

in (21) to (M;2 M

In considering other possible simplifications one notes that the
terms of order NM/hR in (21) are the same terms which are the differen-
ce in w* between a first and second approximation as formulated by
Trefftz (1935) for an isotropic medium. This difference, for a transverse=
ly isotropic medium, was subsequently shown (Reissner 1952) to contain
additional terms of the same order, depending on transverse normal strain
deformations, except in the limiting case of transverse isotropy which

forms the basis of the stress strain relations (3).

Strain potential for general orthogonal coordinates

. * *
Given that Nll’ Mll etc, are resultants and couples with respect to

the special orthogonal coordinate system of lines of curvature, and

N etc.,, the corresponding resultants and counles with reference

11? Mll'
toc an orthopgonal system intersecting the lines of curvature at an angle

¢, we have the transformation relations

* 2 . 2 T .
Nll = Nll cos“¢ + N22 sin“¢ + (ng + N2l) cos¢ sine
N =N sin2¢ + N cosz¢ -~ (N,. + N__) cos¢ siné
22 = ' 22 127 21 (22)
L] 2 . 2 .
ng = N12 cos ¢ = H2151n ¢ + (N22 - Nll) cos¢ sind
* 2 .2 .
N21 N2l cos“ ¢ - N12 sin“¢ + (N22 - Nll) cosé sing
. *
and analogous relstions for Mll’ etc.
At the same time the curvature radii R and R are re-

Rll’ 12 22

lated to Rl and R2 through




_ cosg¢ sin2¢ N 2cos¢ sing

s +
By fa Roz Ri2
2 . 2 s
1l _cos ¢, sin ¢ _ 2cos¢ singd (23)
R R R R
2 22 11 12
2 . 2 . .
0 = cos ¢=sin ¢ i cos¢ sSin¢g = cos¢ s8in¢
R R R

12 22 11
Introduction of (22), of the corresponding equations for Miqs etce,
and of the first two of equations (23), with ¢ determined by means of
the third of equations (23), will transform W' as given by (21) into
the corresponding function W which is to be used in (2) in conjunction
with the components of strain of equation (1) In carrying out the trans-
formation of W. into W we teke advantage of various invariants as-

sociated with the transformation laws (22) and (23)., The invariants are

ﬁi_ . _l;., (¥§;._ ﬁl_)Z o =
11 22 22 11 Ryp
N N N+
Rll * R22 * 1; oF (Rl - R ) (W, + W)+ R2 (M) = Mpp)
11 22 12 22 11 12
and
1 1
(== = =) (N, M., =N M._)+
Ryp  Fiq 22 22 11 11
Ml +M +M
1722 Mooy
+ (N +N_) + (M, +N,,) ——.
12 21 " 11 22 Ryp
Therewith
_a 2 2 1+v 2
Vo= oo {Nll + Ny = 20Ny Ny + =5 (N12 + Nzl) }
S S {M2 w2l oo +(1+) (0F, }}
3 ™ 22 11 Y2 12 21
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From (24) follows that the stress strain relations which generalize
equations (19) and (20) to arbitrary orthogonal surface coordinates

are;

M +M

i 1 1 101
€, === (N, =N (= -==) M }
11 i U e 'ee T FE w TR
h 1 1 24y Jey i ey e oy
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with corresponding formulas for €opr Kop and Koy
Ve may invert (25) so as to obtain formulas giving stress resul-

tants and couples in terms of strain, up to terms of order h3, by

first substituting approximations for Nll’ Nl2' N21' N22 following from

Ehall = Hll - vH22, etc,, 1n 11 and Kin* This gives
M €, .+¢
BTk Ve t (- ey - 52
22 11 12
M [ £
22 . ey, - ALo22 (26a)
D 12 R '
12
with corresmonding expressions fer M?l and M22 « Introduction of (26a)

. . ” .
into equations (25) for Ell and €l2 then gives for Nll’ ete,,

ﬁ%i T eyt Vet % { §i; B ﬁ%;) - ;ii) ) Ei;[l;v Fae - ;ff)
+ 52 (e - %? B ;;Il ‘12 ~ (-Ri—l ' ;;2)621}}
H%g =35 (ep¥ey) v 150 (ﬁig ) ﬁfI) "2 - ;if) (26v)
i _ﬁi_z[%‘z et %H 7 (eop - %—2)
e - i)

with corresponding expressions for N21 and N22.

Fquations (26) may finally be written in terms of w-free strain

components 211’ :ll’ etc,, by suitebly rearranging terms in (26) and
. . " "
using, the relation 2w = 512- 621 as
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11y, v: + ( 11 )m l+v ~ 3=v
D 11 22 R22 Rll 11 2R12 12 2R12 21
(27a)
M12 1-v {? Y. ( 1 1 )2 } 1+v A 3=v Y
—_ = =Y . —— AT Sy
D 2 12 21 R22 Byq 12 2R12 11 LRlz 22
n N
v oL, LD (e - Lok f, 1 [1+v(}: ez
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C 11 22 C R22 Rll 11 Rll R12 2 12 Rl2
[
3=v 11 1+v 1 1ev | v
+ == (K, - =) - €., - (z=—+ ) ]}
r o L)
2 21 Rio LRll 12 Rll LR22 21
o v {2p)
12 1-v v n D l-y , 1 1\, 12
—S = 2 (€, ey ) 4 ] (77— - ==« , - ) -
C 2 12 21 C 59 Rll 12 Rll
n,
S B 2
R12 2 11 R12
¢
3=v v 12 14y 1 1=y (v
422l (K, - o) - S g a (= + So=)E }
2 22 R12 2Rll 11 R22 2Rll 22

Equations (27) agree, upon suitable change of notation, with analogous
formulas obtained previously (Knowles and Reissner, 1958, Wan 1965) by
different procedures. We observe that while the formulas for Mii change

when €., and k.. are replaced by g.. and K., , this is not the
17 1] 14 1]

o o [l

case for equations giving Nii .
:
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