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ABSTRACT

A finite deformation and infinitesimal strain formulation of the problem of
axial extension and torsion of helicoidal shells is deduced from a general nonlinear
shell theory for infinitesimal strain problems. A consistent application of the
infinitesimal strain assumption further simplifies the relevant boundarv value
problem effectively to a linear problem; only the unknown stretch and twist
parameters appear nonlinearly. The effects of finite deformauons are clearly shown
by examining the perturbation solutions for slightly pretwisted strips and (shallow)
shells with a small pitch. In the presence of the core of the helicoid, the Poincaré-
Lighthill perturbation technique is needed to avoid the spurious singularity
associated with the regular perturbation solution.
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I. INTRODUCTION

Many widely used solid structures, such as turbine blades and coil springs
with thin cross-sections, are special cases of helicoidal shells. A study of their
structural integrity in the elastic range may be formulated as boundary value
problems in shell theory. Among the problems fundamental to the understanding of
the elastostatics of these structures is the problem of a helicoidal shell acted upon by
equal and opposite axial forces and torques (Figure 1). This paper presents an
analysis of this fundamental problem within the framework of an infinitesimal
strain-finite deflection shell theory. The Saint Venant solution for this problem
obtained by our analysis reduce to the known result for shells with a small pitch
(3].

In circular cylindrical coordinates (r,6,2) , the middle surface of a helicoidal
shell is described by z = af where the constant 27a is the pitch of the right
helicoid. The special case of axial extension and torsion of pretwisted elastic strips
has been investigated previously by way of a linear shell theory in {2, 4, 6,7]. The

principal qualitatve conclusions obtained were:

(H While the stress and strain distributions in the shell are rotationally
symmetric, the displacement field is multi-valued in the polar angle 8 of the form

u, = u(ry , ug=yrab , u, = kab (1.1)

where u, , ug and u, are the radial, circumferential and axial displacement
component of the middle surface of the shell, respectively, and & and y are two
parameters corresponding to the axial strain and the angle of twist for a flat strip.

(2) The elastostatic problem may be reduced to a two point boundary value
problem involving a second order (linear) ODE for the only unknown function u(r)
with k and y appearing as forcing terms.

3 The membrane and inextensional bending actions of the shell are uncoupled

in a well-defined way.

C)) There is no edge effect due to edge bending along the helical (r = constant)
edges of the shell.
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(b)

(a)

1. Helicoidal shells under axial forces and torques: (a) a ring
shell sector; (b) a pretwisted strip.
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The analysis for pretwisted strips was extended to a larger class of problems
which includes the axial extension and torsion of helicoidal springs with wide
rectangular cross-sections [6]. For a shell with small pitch-to-width ratio,
a/ry (where rq is the radial distance from the axis of the shell to its outer helical
edge), the latter problem was investigated earlier by a nonlinear shallow shell theory
in [3].

The present paper considers the more general problem of rotanonally
symmetric stress state of helicoidal shells within the framework of a finite
deflection-infinitesimal strain theory for shells with arbitrary pitch-to-width ratios.
We will adopt also a semi-inverse procedure, used successfully in the earlier work,
in the sense that the loading is assumed to be such that the swess and strain
distributions in the shell will be independent of 8. Among the several nonlinear
shell theories available in the literatures, we chose to follow the approach of [5] to
make apparent the meaning of the parameters which appear in our semi-inverse
procedure.

The requirement of rotationally symmertric strain distributions restricts the
possible displacement fields and gives rise to a set of nonlinear strain displacement
relations allowing for the rotationally symmetric stretching, rwisting, bending and
shearing actions of the shell. The subsequent analysis will be concerned
exclusively with the stretching and twisting actions and the strain displacement
relations are simplified by the restriction of small strain. For this class of problems,
we show that the strain displacement relations must be linear in the radial
displacement component u . The resulting boundary value problem has a
governing differential equation which is linear in the only unknown functon u;
nonlinearity appears only in the forcing terms. In that case, the analysis of the
relevant boundary value problem can be carried out exactly as that for a linear
theory. Upon casting the present finite deformation problem in an appropriate
form, the solution for the radial displacement, stress resultants and stress couples,
can be obtained directly from the linear analysis of [6] without another set of
independent calculations. The leading term perturbation solutions for the exwreme
cases of small and large pitch-to-width ratio are identical to the results of [3] and to
the corresponding results for a shallow hyperbolic paraboloidal shell based on
Marguerre's nonlinear shallow shell theory, respectively. While the principal
qualitative conclusions for a linear theory carry over to our quasilinear theory, the
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latter gives additional information concerning certain critical values of the applied
forces and torques when the deformation is no longer infinitesimal.

II. ANALYSIS OF STRAINS

Let & and & be general orthogonal surface coordinates, and 7(&1,62)
and n(&,,&;) be the position vector and the unit normal of the midsurtace of the
shell before deformation. After deformation, 7 changes to p(&1,&z) with a new
unitnormal V. Interms of 7 and p the expressions for midsurface strain and
curvature change measures of an infinitesimal strain, large deformation shell theory

proposed in [5] are

_1[p-P _1(pp _P.p
870 e 1) - B2 o I (2.1)
2
PV _ 1 PV _ 1
Ky = - & Ky = = 5h
! a? Ri 2 ol Ry

L 22)
"Vt oLV

T A
where primes and dots indicate differentiation with respect to £ and &,
respectively, oy = [F'] , @z = 171 and Rjj are radii of curvature of the
undeformed midsurface.

To specialize these general expressions to the case of a helicoidal shel,
‘wetake & = r and € = 6. With z = @af,wehave oy = 1, 0 =
@+r)2 = o, 1/R; = 1/Rp = 0 and 1/Ryz = a/a? = 1/R. The
position vector 7 of the undeformed middle surface of a helicoidal shell is given by

r=ri +abi, , i, = cos Biy + sinBi, (2.3)

where i, ix, Iy and i; are unit vectors in directions indicated by the subscripts.

Analogous to these, we write the position vector p of the deformed midsurface as

b’ = Up(r, G)fp+ U,(r, 9)1’Z , fp = cos nfx+ sinnfy (2.4)
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>

where 1 = 1n(r,0) . Observe that d(’fp)/a’n = —sin r}zf,p!—cosnz'iv = iy

We are interested here in the class of deformation given by
Up = Ulr) , Uy = W(r) +c,0 n= 0@+ @b (2.5)

where ¢, and ¢y are two unknown constants. The associated strain and

curvature change measures are

272
92U + 2 _1}

= 12 n2ps2 N2 _ =1
& = Hwr+ @y ryr-1] eg—z[ —

(2.6)

_ 609U+ W
14 (04

% = 509 U +20 U] L[~ 92UXcxt' ~ goW ) + 9oU'W ]

a

¢2 2
Xp = (GoW' = ;") 27)
1. ¢0¢ Cz¢0(U')2 _a
! P00U2 (5 — 4 oW + T 2

Note that they are all independent of 6.
For stretching and twisting shell actions, we take W = ¢ = 0. In that

casewe have v = &, = kg = 0. Upon setting
U=r+ulr)y , c,=a(l+k) , ¢ =1+wa, (2.8)

the remaining strain measures become

€o = i{%(l +%}+(V1a+% y2a2)(1+ 4P + %2(1 +é—k)}
2.9

& =u, ‘r=2—-‘£{k+wa+kwa)
a2
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where we have omitted u’= & compared to unity in the expression for 7 to be
consistent with the assumption of infinitesimal strains. Note that 7 does not

dependon u.

HI. A QUASILINEAR THEORY FOR FINITE STRETCHING AND
TWISTING

The expression for £g in (2.9) is quadratic in (u/r) . We solve this
equation for u/r to get

u _ _pa|Lr20%eo- ka1 + k/2)/2}/r2]? .
’ (1 + yay?

Given that ka?(1 + k/2)/a? and war?(1 + wa/2)/a? are necessarily of the
order of the hoop strain &y, only the positive square root is acceptable in the above
expression for u/r. (This is so even for yva+1 << 1.) Otherwise, we have

& = u notsmall compared to unity which violates the assumption of infinitesimal
strains. It follows that we have ufr = 0(gg) and 1+ ufr = 1. In that case, the
strain displacement relations given by (2.9) can be further simplified to

- -2l 1 ka (), 1
& = u', & = azl’+ wa{l +2 q/a)+ " (1 *5 k” (3.2a,b)
7= 280+ ya+kyd . (3.2¢)
x

The strain measures are related to the stress resultants and couples of the

shell by a system of stress strain relations. We will take them int he form
& = AN~ vNg) ., €5 = A(Ng— VN,)) (3.3)

Mg = Mg, = %D(l -V (3.4)

where in terms of Young's modulus E , Poisson's ratio v, and the shell thickness
h,wehave A = 1/Eh and D = Eh*/12(1 - v)? . Equations (3.4) and the
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expression for T in (3.2) can be combined to give

D(1-v)

= k+wa+kya) (3.5)

Mr6=M6'=

where the unknown function u does not appear explicitly. Without the nonlinear
term, the expression (3.5) is exactly the same as what we found for a linear theory
[4,6].

The stress resultants and couples, together with the external radial surface
load intensity p, , and edge loads are subject to the conditions of force and moment
equilibrium. Within the framework of a small strain theory we have, as a
consequence of equilibrium and strain displacement relations, the following virtual
work equation for the nonvanishing stress, strain and displacement measures:

fro (N,6€, + Ngbeg+ M, g6 7) Cxdr
(3.6)

0
= J pou adr+ Pélkal + Td{wal + NoS{u(ry)] — N;6{u(r)] .

i

[n(3.6) P and T are the resultant force and torque at a radial (6 = constant)
edge, and Ng and N; are the applied radial edge resultant at the helical edges,
r = rg and r = r;,respectively. Note that the constraint of no transverse shear
deformaton normally inroduces fictitious corner forces. Their effects should be
included in the virtual work expression (3.6). However. the contribution of these
etfects to the final results is of the same order as that from terms neglected in the
approximations already made. Therefore, it is consistent not to include the effects
of corner forces in (3.6). -

From (3.2), (3.5) and (3.6), we get as conditions of local and overail
equilibrium, one differental equation

(aN,) - L Ng+ap, =0 (3.7
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two boundary conditions at the two helical edges
Ni(ro) = Ng , Ny(ri) = N; (3.8)

and two integrated conditions at the radial edges

o
f {g(l +B) Ng+ D(1=v) 24 (1 + ya) (k + t;/a+ky/a)}dr =P
a
ri (3.9)

ro ’
[@(uwwgwa—v)iﬂ}a+k><k+wa+kwa)}dr=T‘ (3-10)

Other conditions at the helical edges can also be prescribed. For example, we may

prescribe the displacement component u instead.
The expressions for & and &g in equations (3.2) may be combined with
(3.3) to give N, and Ng in terms of the unknown function i« :

AN, = u’+-‘é’l;-[1;-+ wa(l+%wa)+k;%z(l+%k)} (3.11)
ANg = vu'+§z{i‘;+ wa(1+%y/a)+krizz(l+é—kﬂ : (3.12)

Upon substituting these expressions into (3.7), we get a second order differential

equation for u:

"+ —L—y + XaE=r2
at+r2 (@2 + r2)?

(3.13)

(1+ v)azrk(l +—é—k)+ war{l + —:12— wa)[(l +V)rt - 2va?]
= - Ap, .
(a2 + r2p

Equation (3.13) and (3.8), expressed in terms of u by (3.11), define a two-point
boundary value problem for u . It determines u up to two unknown parameters &
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and y. These two parameters are thenrelated to P and T by the two integral
relations (3.9) and (3.10).

Equation (3.13) is the only differendal equation to be solved for the problem
of finite stretching and twisting given that w/r is of the order of the midsurface
strains; it is Jinear in the unknown u . The effect of finite deformation appears only
through the nonlinear terms involving the parameters k and y. With these
nonlinear terms omitted from the right-hand side of the equation, we recover the
governing differential equation for small deformation as obtained in {2] and
elsewhere. It is also significant that the parameters & and y do not appear in the
coefficients on the left side of the differential equation.

IV. A STRESS FUNCTION FORMULATION

We consider here a shell free of surface loads so that p, = 0 and the two
helical edges are free of edge tractions so that N; = Np = 0. The two radial
edges of the shell 6 = + 6y are subject to equal and opposite resultant axial forces
and torques. With the condition at the two helical edges prescribed in terms of Ny,
the corresponding two-point boundary value problem for an infinitesimal deflection
theory has been reformulated in [6] for the stress variable N, . Given the form of
the boundary value problem for the quasilinear theory, we will also use a similar
stress function formulation to take advantage of the results already obtained in [6].

We begin by using the equilibrium equation (3.7) with pr =0 to write

Ng = Z(aN,) . (4.1)

The strain measures given in terms of a single unknown function u satisfy the

compatibility equation
(l}ee)'—s, = wa(1+-2Lwa- %k(l+;—k) . (4.2)

Upon expressing & and &g in terms of N, by way of the stress strain relations,
we get

& = AN, - v&(@N)] , g = A[%(aN,) - VN, . (4.3)
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Introduction of these expressions into the compatibility equation (4.2) gives us a
second order differential equation for N, :

_2a2=3r2 5 (=viat ‘/’0{1+%‘V0)r2—a2k(1+%—k)

r r = . 44
r(@+r?) @2+ r2y? A@?+r?)? “4
The boundary conditions at the helical edges are now simply (3.8) with
No = N," = 0:
Ny(ri) = Ny(ro) = 0 . (4.5)

Having determined N, by (4.4) and (4.5), we get Ng from (4.1), while M,q is
known from (3.5). We then use the second equation of (3.2) to determine 1 .
Finally, the parameters k& and y arerelatedto P and T by way of (3.9) and
(3.10).

To obtain the solution of the boundary value problem for N, and the
corresponding overall load-deformation relations, we introduce the following
dimensionless quantities:

s=rfrp , si=rifro , A=rola , it = hirg

(4.6)
= - TMo o _u
(npng) ANN,Ng) , m Di-v) , u o

In terms of these quantities, the differential equation (4.4) becomes

2-32%12 . (1-vA? _ wroA%s?A+ L yro)— kaY1+1 &)

sA+A%2) 7 (1 +A%? T (1 + A2s2)2

nr—

4.7)

where dots now indicate differentiation with respect to s, and the boundary
conditions (4.5) become
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The auxiliary equations (4.1), (3.5) and (3.2b) may be written as

ng = 1+4%2 n+n , m= —-———-——kl‘* wro(l + ) (4.9a,b)
A%s 1+ A%52
o ,L;L?-sz)zlr 1+ WA K1 +%k)lzs +yr A+ L yro) 4253
u = n, + n, — -
1452 1+ A%2 (1 +A252)2

(4.10)

and the two integral relations (3.10) and (3.11) may be written as

1

PA _ (1+k) mnrds

fo . A2
4.11)

1
. UZA + yro) [kA + wrg(1 + k)] ds
6(1 + V) (1+ k252)3/2
1
TA _ _&:mf Y1+ 557 nds
,-2 /12
0 pi
(4.12)
1
. HHL + K kA + wro(l + k)] ds
6(1+v) (1+ 1232)3/2 ’

i

The boundary value problem defined by (4.7) and (4.8) is linear and differs
from the corresponding boundary value problem for infinitesimal deformation in {6]
only in the appearance of nonlinear terms in the parameters & and v. We may
therefore write the solution of the finite deformation problem as

n, = k(l + % k)n,k + WroA +% u/ro)n,v, (4.13)

where n,; and npy are the same as those for the linear theory. Since these
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quantities have aiready been obtained in [6], we do not have to solve the present

finite deformation problem anew. In particular, the stiffness relations (4.11) and
(4.12) can be written as

é—’rdo- =(1+ k)[k(l 4-%—1:)Crﬁ§c + v/r({)m%- y/ro)CF’f’V]

(4.14a)
p? gt
VTESY (A + yro)[kA + yro(1 + k)][mfs_ZL.
- M M
:’er%- = {1+ y/ro)[k(l +%—k)CTk + tyrg(/l +-2L V”O)CTVJ
(4.14b)
(1 +k)[kA 1 + k)] [—L—]!
kA vl Rl
where
1 1 /1 2
cﬁ_%f Mok g5 oM 1| ZZTO g
s; Y1+ 4%52 v 2] 14a%2
s -
(4.14c¢)
CM -

1
1 Moy 1 As2ngy M
=l 2 _gs=L] ATk 4=
Fy ZISI v1+xzsz 2£i1+k252 Tk

(with ng + k(l + % Ic)ng,‘ + yroAd + —;— wro)ngw) are the stiffness coefficients
associated with the linear membrane shell action obtained in [6].

For a shell with a large pitch-to-width ratio so that A2 << 1 ,a
perturbation solution in powers of A2 for the quasilinear theory of finite stretching
and twisting is appropriate. We consider here only the special case of a pretwisted
strip with s; = — 1. (Here, r; = — rg corresponds to the image point of ry
with respect to the z-axis.) Upon setting

(nls:2),me(s: B D) = 2, (mri5)mgi(s), Hl)) AT 5.1
i=0 :
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we get from the results of (6] for 4 << 1 the following leading term solution of
the membrane resultants and radial displacement:

n~——k(1+1&"lz{—1+s2 wrd A+ L y/ro)/lz -1+ 54
~ 1 1
ng k(l ) k)+ y/ro(zl *3 y/ro)s2 (5.2)
~ L L ys3
k(1+2§){ Vs}+wr0(l+ y/ro){ 3 vs }
and from the expression for m in (4.9b) for the twisting stress couple
m~kA+yro(l+k) . (5.3)

For A << I,k iseffectively the axial strain of the strip. Consistent with
the infinitesimal strain approximation already made in our formulation, we should
set 1 +ck = 1 forany O(1) quantity c¢. Also, we have

ny = O(lznek) s Mpy = O(lzngw) ;

therefore, n, isof order A2 compared to ng. Finally, the twisting stress o
induced by my is negligibly small relative to the direct hoop stress ¢y induced by

neg , 1.c

Otk . ___h Mk _
Gak = I(1+ Vg ngx = VMM

so that to leading order, we should consistently omit the kA termin m.
Altogether, these observations allow us to simplify (5.2) and (5.3) to get the
following leading term solution for the stress resultants, twisting couple and radial
displacement:

n~0 , ng~k+ y/ro<l+%w()r)s2
5.4)
~ T~— -1 1 3
m~wyry , U~—vks 3 vwrg(l+2 y/ro)s
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Correspondingly the leading term overall load-deformation relations for A? << 1
consistent with the simplified leading term resultants and couples in (5.4) are

_A...-. .1. -1—

21r0 k+ 3 wr0(2.+ 3 wro) (5.32)
TA .1 1 1 _____.“2

ng 3 kA + y/ro)+5 y/ro(/l + !Vro)(l+2 v/ro)+6(1 v yro . (5.5b)

We see from (5.5) that the shell stiffness comes mainly from its membrane action;
bending is important only in the torque-twist relation and only when
A+ wrol << u? and !A + % wroi << u?.

The leading term solution (5.4) and (5.5) for A2 << 1 is identical to the
exact solution of Marguerre's shallow shell equations for axial extension and
torsion of pretwisted rectangular plates (with midsurface equation z = fxy). This
exact solution is given by w = yxy and F = [12ky2+ wQ2pB + W’)y“]/24A
where w is the transverse midplane displacement of the plate, F the dual stress
functionand frgp = A. Observe that there is a reciprocal relation inherent in the
overall load-deformation relations in the sense that the expressions for P and T
may be written as

Pp==— , T=2"— (5.6a,b)

where

II = %0 {k2 +% kyro(A + yro)
(5.6¢)

L{(yropa? 32+ Loyrgy + L2
+ 5[(wr0) AC+ (yrg) l+4(wr0)] + 5L+ V) }

with 02IT/3koy = 92I1/3wadk . The following conclusions may be drawn from
the overall load-deformation relations (5.5):

(1)  For the limiting case of a flat strip with 4 = 0, we have
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n,=0 , ng= k+%‘(wr0)252 ,
(5.7
m= wyrg , u=-— v/cs——%v(y/ro):s3
and
PA Ly TA 1,1 u?
£A - L4 it - +A .. L i 2 i
5 = Kte o 22~ 3 ke gaTm v - 58
Unlike the linear case, the twisting and stretching actions of the shell remain
coupled for a flat strip undergoing finite deformations.
(2) If the deformation due to the applied forces and torques is such that
wro = — A, then the overall Joad-deformation relations become
PA _ 4 AL TA _ __HKH*
T 22 61V (59)

The expression for T in this case implies the somewhat unexpected resuits that the
shell cannot be flattened by axial forces atone!

L d

3) If on the other hand, the deformation is such that yro = —24 , then (5.8)
becomes

PA _ TA _ _&[ p? ]
2o k 2}% 3 k + . (5.10)

We have then another somewhat unexpected result. If the shell is deformed into its
image shape by axial torques alone, then there would be no axial displacement
associated with the deformation. In fact, there would be no membrane shell action

atallin the sense that ng = n, = u = 0.

(40 If P =0,thenwehave k = — yr, A+l ro}/3 and therewith
V. 7V

TA . 2. _H*
2r§ wro s QA + yro) (A+ yry) + T

(5.1
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r bl
= wal L 1 (u/A)*
= A (wa)[45(1+wa)(1+2wa)+ 6l v)
For an initially flat strip (1 = 0), we have
IA . wroir—z—(wro)zwu u?_ >
2z~ s 6(1 + ) (5.12)

sothat T is a monotone increasing function of y . For strips with an initial
pretwist, a plotof T vs v is given in Figure (2) for different values of the
thickness parameter i = h/rg. For a fixed value of u, and A < u,we see that
T continues to be a monotone increasing function of y forall v. Infact, a
straightforward calculation shows that T has no stationary value for

(u/A)? > 4(1 + v)/15 and two stationary values for smaller values of (/A)
attained at

< 0. (5.13)

There are in principle three different possible (negative) values of y corresponding
to the same value of the end torque T . The corresponding graph for the strain
energy of the shell (Figure 3) with two stationary points at

ot <t

for (/A% < (1 + v)/15 suggests the possibility of a snap-through at some
critical value of T (< 0) for a given value of (/A )2 << 1.

(5 If T = 0, we canin principle solve (5.5b) to get ¥ = wik) and use itto
eliminate ¥ from (5.5a) to get P = P(k). For u2/]A + wrol << 1, we have
the linear stiffness relation PA/2r; ~ 4k/9 in the absence of axial torques.

VI. HELICOIDAL RING SHELLS WITH A SMALL PITCH

A helicoidal ring shell with 0 < s; < 1 is said to be shallow if its pitch 1s
small so that (As;)* = (r;/a)* >> 1. For a shallow helicoidal ring shell. a
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perturbation solution in powers of €2 = A~2 for the finite stretching and twisting
problem is appropriate. Upon setting

o

(i 2),n,(5:0),n(s; D)) ~ 3, {1(9),7,,(5), Hgj(s) €2, (6.1)
j=0

we get from the results of [6] for (r;/a)> >> 1 the following leading term solution

n~ kde +%k5)[Akg + Bos~2 + L5214 2ens)}
+ wero(l +—21~_l£/_5_r_g)[Awo + Byos—2 + .é_ Cns}

ng ~ ke +-:12-k£)[Ako — Bros—2 +211—s‘2(1 - 2ens)]
(6.2)
+ y/srg(l +%M)[AWO_BWO‘S_2 +-2L(1 + €ns)]

E,~k5{s+%kg){Ako(l - V)s — Byo(l + v)s-1 +21¥—5‘1{(3 +V)+2(1+v) Cns)}}

# e +4 yerol[Ayo (1= Vs = Byot + Vst + L s((1 - vytns - 1)

where

(6.3)

and where k¢ = k£ and y; = ye remain finite 2as € — O in order for the
expressions in (2.8) to be meaningful. Also, from the expression for m in (4.9b),

we have the following leading term solution for the twisting couple

m ~ s72[Ke(1 + Welp) + Wero€] . (6.4)

With uy = [wa+ur‘1(1 + wa)]re = [wgro +ur (1 + \I/e"o)]r19 giving
the circumferential displacement component and u/r of the order of the
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circumferential strain, we have for € << 1, ug/r = 0(ya6) = 0(yo6) also of
the order of magnitude of the circumferential strain so that 1 + c(yerg) = 1 for
any 0(1) quantity c. The underlined terms in (6.2) and (6.4) should therefore be
omitted in order to be consistent with the approximation inherent in the present
formulation of the problem. Also, we have

ngy = 0(Wero) . my = 0(yeroes?) (6.5)
so that

Oy __h v _
Ody ~ 2(1+V)ry Moy Ote) - (6.6)

To the leading order, we should consistently omit the y,roe termin m also.

Altogether, the above two observations allow us to simplify (6.2) by
omitting all underlined terms (which are nonlinear in ;) in the expressions for
nr,ng and u (with the resulting expression labelled (6.2". They also allow us to
simplify (6.4) to

kg2 . (6.4")

Correspondingly, the leading term overall load-deformation relations for

€2 << 1, consistent with these simplified leading resuitants and couple. are

1—s27 2] SO
M"‘{kg i H '+—Lk€(£+kf)(g+l.k£)il_ﬂ¥_} |

2ro 2 2401 +wv) 16 2N ‘
. (6.7a)
1+s2
+£ Yerole + ke)(l +% w_gg)(ins{l + - S‘ cnsi‘i}
TA 1—k5(5+1—k£)(1 + Wero) fnsif 1 + L+s2 ens;
(6.7b)

1 N 23;8nsi2 2
+ g wero)(1 - s7) 1~ —
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where the underlined o terms are of order of the hoop strain and are to be
deleted. Again, the shell stiffness comes almost exclusively from membrane shell

action; but in contrast to A2 << 1, bending is now only important in the force-
= 0(u?) .

The leading term solution (6.2), (6.4") and (6.7) for (g/s;)? << 1 is
identical to the exact solution of Marguerre's shallow shell equations for the
problem of bending and twisting of helicoidal ring shells (see {3]). Itis not difficult
to see that there is a reciprocity relation inherent in (6.7) in the sense that the
expressions for P and T in (4.11) may be written as

extension relation and only when |€ + kgll £+ % ke

ol oIl
P =— = =
ake ! T a',l/g (6.8)
where
A= Eﬁz_(e2+ke+l-k2) + 2p? 11
ro 16 R 3(1 + vy
: Y L+s2
+5k£(e+ ikg)wgroens,- 1+ .2 tns; (6.9)

e L (o1 - ss){l -(Z—Sfi)z}

1 -2
i
with 92 ﬁ/ak@ Ve = 9% farz) Wk, . The following conclusions may now be
drawn from (6.7)

(D) For the limiting case € = 0, the overall load-deformation relations (6.7)
reduce to

PA - {l—s‘? B2 g 1_2;&!&2
2rg € 52 24(1+v) 32 ¢ 1-s2

(6.10a)

1+s2
1 ns: i tns:
+41Vsro ns{1+1“s.2 ns,}
3
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2r2 52

2silns \?
+T]'é-(wgro)(1 —-512){1 _.( 1-" ns. )} ‘

- s?
i

1 +52
IA . é—kzens [1 +I—si— ens,J

(6.10b)

Unlike the linear case analyzed in [6], the twisting and stretching actions of the shell
remain coupled for ring plate sector undergoing finite deformations.

2) If the deformation due to the applied forces and torques is such that
ke = —€,then (6.7) becomes

1 —s2 2
PA i H
€752 24(1+ ) (6.112)
I

2 ro

1+s2
g:A- LIc;_-eens, 1+ —1—-—1— ins;
r2

(6.11b)

25itns2 \?
L - 2
*ie (vero)(1 sf{l ( o ) } .

The expression for P in this case implies that the shell cannot be flattened by axial
torques alone.

3) If, on the other hand, the deformation is such that k. = —2¢ , then we
have

1-s2 2 2
PA . _ E{ oF H + i_(wero)ens{l + L+ S‘z L’ns,}\ (6.12a)

2rg s 24(1+v) 1- s |
TA _ L )|y _(2sifnsi
2 L (vero)(1 sl){l (1_32) . (6.12b)

If the shell is deformed into its mirror image shape by axial forces alone, then there
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would be no circumferential displacement associated with the deformation. In fact,
there would be no membrane action at all given that we have ng = n, = u = 0 for

this case.

(4) If T = 0, then we have

: 1 +sl,2 .
ke{£+Lk5)€ns; ¥ ] - 52 s
1 Vero ~ — 2 ‘
4 - s‘? I _(2s,»é’ns,-)2
I —s2
(6.13)
= - ké{s +12=k£)g(s,-)
and therewith
DA k- srii oy * (€ + ke T ke s (6.142)
3
where
Lns:\2 1+52
fls)) = 146—{1 —(?"Lsf,}) }— g(S.-)enSs[l r— 3ns,} (6.14b)
i i

with g(si) defined in (6.13). This result was previously obtained and discussed in
[3]. We merely note an additional observation on this stiffness relaton as €
increases from zero. For £ = 0, P is a monotone increasing function of k¢ as
f(si) was found to be nonnegative in [3]. As € increases from zero but remains
less than g, this monotone increasing property persists. However, for € > u
and k¢ < O, there are in principle three possible values of kg, which requires the
same axial force P to maintain. However, the strain energy of the shell for the
three different equilibrium configurations suggests the possibility of a snap-through
at some critical value of P > 0.

(5) If P = 0, we can solve the first equation (6.7) for k¢ in terms of Y.
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We can then eliminate ke from (6.7b)to get T = T(yy) . For p?/le+ kd <<
Ie + %—k¢l , we have to obtain a good first approximation for the following linear

stiffness relation:

2528ns; \?
TA - { ) B it i
22 Vero —1-{161 sl){l (1_&2) }

in the absence of axial forces.

7. OTHER PERTURBATION SOLUTIONS

Instead of a parametric series solution in the width-to-pitch ratio A4, we
could have sought a perturbation solution in terms of the parameter

T’: A’ = ro . 7
V1+12 AaZ+r? 7.n

Note that we have 11 < 1 forall a > 0 whether or not we have a >> rg .
Perturbation series of the form (5.1) with A replaced by 7 (first suggested in [4])
are applicable for all (nonnegative) 4.

For a highly pretwisted strip (with a/rg << 1) which spans the range
—rg € r € ro radially, a perturbation solutionin £ = 1/4 = a/rg similar to that
of section (6) is no longer appropriate. A leading term solution for that type of
parametric series would correspond to neglecting a? terms in (4.4) leaving us with

k) - (1.2)

l\)l'——-

o3 = L 1 -1
ng+ T ng = 2 %m(l + 5 u/ero) o ke(l +

The leading term approximation for the dimensionless radial resultant AN, has a
singularity at s = 0, the center of the pretwisted strip. Yet we do not expectany
singular behavior throughout the strip for a > 0. The singularity of the ODE

(7.2) is in fact spuriously introduced by a perturbation solution process which is
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inappropriate for this type of problem. The appropriate perturbation scheme [1]
requires that we seek the primary unknown n = AN, and the auxiliary stress and
displacement variables as functions of a new independent variable x and the
parameter £. The solution scheme requires that we take n and the independent
variable s as functions of x and the parameter € = a/rg and expand both in
powers of £:

n(s;g) = Z nix)e2 , s = 2 si(x)e2i . (7.3)
i=0 i=0

The details of this Poincaré-Lighthill type perturbation solution have already been
worked out for the linear theory in [4] and will not be repeated here. We note only
that for a shell-theoretic solution to be useful, we need h/rg << a/rg ; otherwise
the stress distribution near the central axis of the helicoidal shell should be
calculated by the three-dimensional theory of elasticity.
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