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PERTURBATION SOLUTIONS FOR THE
SECOND-BEST LAND USE PROBLEM

FREDERIC Y.M. WAN

ABSTRACT. A perturbation solution is obtained for the
second-best land use problem in residential land economics for
cities with a fixed boundary and with an absentee landlord.
When the transportation cost increases linearly with traffic
density and is a relatively small fraction of the total household
income, the perturbation solution shows that the cost-benefit
criterion based on market land price allocates more land for
roads throughout the city than the second-best allocation and
results in a lower (common) utility for the households. The
perturbation method also allows us to make other explicit
comparisons between the two types of urban land allocation.
A spline-collocation solution for the same boundary value
problems validates the accuracy of the perturbation solution
for a small transportation cost and provides numerical results
to a prescribed accuracy for other cases. The perturbation
and numerical methods used in this paper apply also to the
public ownership case and for a city with a free boundary
determined by a prescribed agricultural rent.

1. Introduction. The pioneering work of R.M. Solow and W.S.
Vickery [9] and R.M. Solow [7,8] showed that a conventional cost-
benefit analysis based on the market value of urban land (called
the market allocation) may be misleading as far as the allocation of
residential land for roads and housing is concerned. When the social
costs of traffic congestion are not priced by some sort of congestion
tolls. the market land price does not reflect the true social value of the
land. Hence, the market allocation is expected to lead to an excessive
amount of land for roads. This qualitative conclusion was substantiated
quantitatively “on the average” in [8] using only an equilibrium model.
Such an approach does not give a direct pointwise comparison between
the market rent and the shadow rent of the optimal configuration.
Actual solutions for optimal allocation models must be investigated
to obtain the direction of the bias of a cost-benefit analysis based on
market rent without social costs of congestion.
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A number of papers (see [5, 6] and references therein) pertaining
to the general problem of optimal land use appeared in the literature
after the publication of [9, 7, 8]. On residential land models with a
fixed homogeneous population, two kinds of problems were considered
in these papers. One is the comparison between the (socially) optimal
allocation and the market allocation with the latter characterized by
more roads until market benefit from additional land for roads is equal
to the market rent for the land [6]. The study of optimal versus market
allocation is quite complete since explicit solutions for both types of
allocations are possible for typical utility functions and congestion cost
functions.

The other class of problems is the comparison between the market
allocation and the so-called “second best solution” which is the optimal
allocation in the absence of congestion tolls. Because of political or
technical difficulties, it is usually impossible to levy congestion tolls
which correctly reflect the social costs of traffic congestion. In fact,
there are very few city roads where congestion tolls are levied and
there is no city where congestion tolls are adopted in the whole city.

Except for results by numerical simulations [1], a direct comparison of
the second-best and market allocation has not been carried out “because
the second-best solution is too complicated” (see [5, p. 484]). Some
progress has been made in the form of a modified problem where the
relative magnitude of the market rent and market benefit is deduced for
a small change in the second-best road width. This modified problem
was analyzed qualitatively in [5, 6] and is essentially a more general
version of the approach used in [9].

In this paper, a perturbation method of solution will be developed
for the determination of the difficult second-best solution and actual
second-best allocations will be obtained for some typical situations.
The solution scheme is based on the observation that the total trans-
portation cost is only a small fraction of the total income of any house-
hold. Various unknown quantities (such as the distributions of road
width, population, and transportation cost over the urban geography)
may be expanded as perturbation series in powers of a small parameter
et, which is (some power of) a typical magnitude of this fraction. With
these perturbation series, the relevant nonlinear boundary value prob-
lem (BVP) for a fourth order system of ordinary differential equations
with an integral constraint, which determines the second-best alloca-
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tion, is reduced to a sequence of linear problems for the coefficients of
the various expansions. The solutions of these simple linear problems
are obtained successively in terms of elementary functions.

The approximate analytical solution will be validated by the general
BVP solver COLSYS [2] which is based on a spline-collocation solution
scheme. In order to use COLSYS, we undertake an unorthodox refor-
mulation of the boundary value problem with an integral constraint as
a standard boundary value problem (without the integral constraint).
This standard nonlinear boundary value problem is then solved numeri-
cally by the general boundary value problem solver COLSYS developed
by U. Ascher et al. [2]. All numerical results for this paper were ob-
tained using double precision (14 hexadecimal digits) with a prescribed
relative error tolerance of 107° (and usually with a much smaller actual
estimated error) for all solution components.

To gain some preliminary insight into the second best allocation, we
will work with a restricted urban land use model of the type used in [7,
8, 10] and with a specific class of utility functions and transportation
cost functions. It will be evident that the same methods of solution
can be used for the more general model formulated in [5, 6] and other
classes of utility and transportation cost functions. We will also confine
ourselves herein to closed cities with a prescribed city limit and an
absentee landlord. Results for models with a free boundary and public
ownership will be reported elsewhere.

Perturbation and asymptotic methods of solution have been used pre-
viously in [10] for equilibrium models of the household behavior with
the road width prescribed in advance. The perturbation solution for the
second-best model differs qualitatively and in a mathematically signifi-
cant way from the equilibrium solution. The appropriate perturbation
series for the second-best problem is in powers of a small parameter ¢,
while the series for the equilibrium model with a prescribed fraction of
land for housing analyzed in [10] is in a higher power of ¢;.

For a sufficiently small value of &¢, a two-term perturbation solu-
tion provides an adequate approximation of the second-best allocation
in typical settings. Such a solution shows that the fraction of land
for roads is, to a good approzimation, a simple monotone increasing
function of the radial distance from the city center. The following com-
parisons between the market allocation and the second-best allocation
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found from simple perturbation solutions should be of interest:

(i) The market allocation always assigns more land for roads at any
location than the second-best allocation and therewith less housing
space per household.

(i) The transportation cost for any household away from the
edge of the CBD is higher and the consumption of commodities is
correspondingly lower in the second-best world.

(iii) The unit land rent at the edge of the CBD is lower in the second-
best world and the common utility for all households is therefore higher.

Other properties of the second-best allocation can also be easily de-
duced from the simple perturbation solution.

The second-best city and the market city being compared are of the
same size. We do not insist that this is an appropriate comparison; but
whatever the appropriate comparison may be, perturbation solutions
similar to that obtained in section (6) and the Appendix readily provide
us with important information such as those listed above. In fact, the
perturbation solution for the market allocation is more informative and
useful in this regard than the known exact solution.

Numerical simulations have been used for urban land use problems in
8, 1] but not for the second-best problem. The particular numerical
method we use differs significantly from all those previously employed
i that it gives the solution of the problem to a specified level of
accuracy (e.g., a relative error of 107° for all locations in the city)
or, in exceptional cases, indicates that the desired accuracy cannot be
attained with the available machine time and CPU capacity. In this
sense, we have in effect an exact solution of our problem which can be
used to confirm all the conclusions based on the perturbation solution
and to study similar problems when ¢; is not so small compared to
unity for which the perturbation method is not practical.

2. Consumer’s optimum and locational equilibrium. In the
conventional urban economic model for land use problems, the abstract
citv is taken to be circular with a circular Central Business District
+CBD) of radius R; and an annular residential area extending from
X = R; to X = R, where X is the radial distance from the city
center. To facilitate later comparison with the results of [5, 6], the
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city is divided into pie-shaped sectors. For one of these sectors with a
sectoral angle of 6 radians (6 < 27), the residential area is inhabited
by Ny identical households travelling only to and from the CBD. Each
household has the same annual income y to be used for housing, for
consumption goods and for transportation. We may take the unit price
of the composite consumption goods to be unity. When saving is not
an option, a household at distance X from the city center has as its
budget equation

(2.1) ctrs+t=y

where ¢(X) and s(X) are the amount of consumption goods and res-
idential land for that household per annum, respectively, and where
r(X) and t(X) are the per annum unit land rent and total transporta-
tion cost for the household, respectively. Upon introducing a dimen-
sionless after-transportation income function w(X), the budget equa-
tion (2.1) may be written as

t —_—
(2.2) c+rs—y<1— ;) = yw(X),
with
(2.3) t=y(l-w).

FLach household in the model city treated herein has the same utility
function

(24)  Ule,s)=U(E/&), £=¢"797, 0<o<],

where £, is a parameter having the same units as £ so that /& is
dimensionless (e.g., & is the value of £ at the edge of CBD). U(-) is
assumed to be monotone increasing and strictly concave. Note that the
class of utility function (2.4) includes the logarithmic-additive utility
used in [7, 8, 10] (with U(-) = In(-)) and the Cobb-Douglas type
utility functions used in [5, 6]. We have not allowed U to depend on
X explicitly but we expect it to depend on X indirectly through ¢ and
s which will be seen to vary with the household location.

Frach household chooses ¢ and s to maximize U subject to the budget
constraint (2.1) (or (2.2)). The first order necessary conditions for a
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maximum U yield the stationary point (¢,3) given in terms of ¢ and r
by

(25) e=(10-0o){y—t)=(1-0)yw, r§=o(y —t) = oyw.

Evidently, o is the fraction of household income after travel cost spent
on housing. The corresponding stationary value of the utility function
is

(2.6) U=(538)=U"(1-0)"y—t)/&r).

The monotone increasing and strictly concave properties of U ensure
that the stationary value U is a maximum.

In locational equilibrium, U must be independent of X. In particular,
U at an arbitrary location X must be the same as U at the edge of the
CBD:

(2.7) U(o”(1=0)" " (y=1)/&r7) = U(0” (1=0)' "7 (y—t;) /&r7) = T,

where t; = t(R;) and 7; = r(R;). We assume henceforth that trans-
portation is free within the CBD so that ¢; = 0. Since U(-) is monotone
increasing, it follows from (2.7) that

(2.8) (y—t)/r =y/r{ or r=rw*tl a+l=1/0.

With (2.8), the consumer’s behavior is completely determined once
the per annum transportation cost ¢(X) and the fraction of land b(X)
within an incremental annular sector at X allocated for housing are
known. The latter determines the unknown parameter r;.

3. Transportation costs. In an annular sector of the residential
area extending from X to X +dX, a fraction b(X) of the land is used for
housing and the remaining land area (= [1 —b(X)]#X dX) is for roads.
The total per annum transportation cost ¢(X) of a household at location
X is taken to be the sum of a distance cost t4(X) with t4(R;) = 0
(since travel within the CBD is assumed free) and a congestion cost
t.(X) which depends on the traffic density (= N/8X (1 —b)). We take
t in the form [7, 8, 10]

HX) = ta(X) + to(X)

(3.1) =/:{T+ao{wiv_%ﬂ}k]d%
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where N(X) is the number of households located outside the ring X,
7(X) = dtg/dz is the known fixed unit distance travel cost within the
residential area (per household per annum), and k and ag are prescribed
positive constants. We will work with the differentiated form of (3.1):

t NX) " dw
(3.2) Zl_)_(—_‘T_FaO{_—_HX[l—b(X)]} =Y 5

Since N(X) is also an unknown, we need another condition to
determine w and N. This condition comes from a conservation law for
space: the amount of space occupied by the households in the annular
sector (of area X dX) must equal the total amount of space in the
sector allocated for housing so that —sdN = b8X dX. We may write
this relation as

dN 6Xb(X)  Ori(a+1)

(3:3) dX ~ (X))

Xbw® = —n(X)

where n(X) is the population density in the incremental sector at X.

For the two first order differential equations (3.2) and (3.3), we have
the initial conditions

(3.4) w(R;) =1,
(3.5) N(R;) = No,

expressing the fact that households located at the edge of the CBD
payv no travel expenses and that all households are located outside
the CBD. For a given distribution of the fraction of land for housing
b(X). the initial value problem defined by (3.2), (3.3), (3.4) and (3.5)
determines w(X) and N(X) up to the unknown parameter r;. Finally,
the condition that there is no household located outside the city limit

(3.6) N(Ro) =0,

determines 7; (and therewith the common household utility U from
(2.6) and (2.7)). Note that we have

(3.7)  0<bX)<1l, 0<wX)<1, 0<N(X)<N,
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from the definition of the three quantities.

In order to have the simplest setting for the description of the
perturbation method of solution, we will confine ourselves here to
closed cities with a prescribed outer boundary Ry and with an absentee
landlord to whom all rents are paid. For such cities, Ry and y are known
constants with the latter being the same wage earned by all households.

4. A prescribed distribution of land allocation. To motivate
the perturbation method of solution for the second-best allocation, we
consider first the two-point boundary value problem for a prescribed b,
a constant 7(= 79), and k = 1 (in (3.1)). For this case, the first order
ODE (3.2) may be used to eliminate N(X) from (3.3). The resulting
second order ODE is written in the dimensionless form

(4.1) [ple)w) - v,e(1 - )a(z)w® = —eny,

with the help of the dimensionless quantities

X Ry ribiOR?

4.2 = — = —, .= —Zy ; = b f
< ) * Ri, R R; v O'yNO b (R)

_:c(l—b) _.’Eb /_d( )
(43) p(l‘) - 1— bi ) q(.’E) - bi ) ( ) - d.CL‘ )

T()R@‘ Ri aoN()

(1.4 = L=n)=—| .
e eEns =y [eRm —bi)]

In terms of w(x), the boundary conditions (3.4)-(3.6) can be written
as

(4.5) w(l) =1,
(4.6) w'(1) = ¢,
(4.7) w'(R) = —en,

the latter two with the help of (3.2) (with k = 1 and 7 = 79). For
a prescribed b, two of these boundary conditions supplement (4.1) for
a unique determination of w(z;v,,€) with v, as a parameter. The
remaining condition specifies v,.. An exact solution in terms of Bessel
functions is possible for & = 1 (0 = 1/2) and a constant b (= b;).
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However, few cities would require its inhabitants to spend half (or more)
of its annual income on housing; we need to consider the case a > 1.

The quantity en is of the order of magnitude of the fraction of the
household annual income for the distance component of the household
transportation cost. The quantity (1 —mn) is the corresponding fraction
for the congestion component. Hence, ¢ = (1 — n) + £7 is a measure
of the fraction of the household annual income for transportation; it is
normally small compared to unity so that 0 < € <« 1. This observation
suggests that we seek a perturbation solution of (4.1), (4.5)—(4.7) in
the form

o0 o0
(4.8) w(z) = Zwk(m)sk, v = Zvns"‘
k=0 n=0

(As we shall see, the corresponding series for the second-best allocation
will have to be in powers of !/2 instead.) Since (4.1) and (4.5)—(4.7)
must be satisfied identically in &, the expansions (4.8) give rise to a
sequence of linear BVP for {wy(z)} and {v,}.

The 0(1) problem.

Al

=0,

(4.9) [P(ﬂf)wo] /

wo(l) =1, wy(1) =0, wo(R) =0.

The solution of the IVP defined by the first three equations of (4.9) is
wo(z) = 1.

This solution also satisfies w (R) = 0 fortuitously.

The 0(¢) problem.

[pw])" = vo(1 — n)qug — np',

4.10) ,
( wi(1) =0, wi(l) = -1, wi(R) = —-n.

Having wo(z) from the 0(1) problem, the right-hand side of (4.10) is
known except for the constant vy. We may integrate (4.10) to obtain

wiz) = (1 -n 2B =L, qo(m>=/1’q(z)dz,
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with the help of w}(1) = —1 and p(1) = 1. The condition w}(R) = —p
requires
1

a0(R)’

From the expression for w(z) and the condition w; (1) = 0, we obtain

Vo =

wi(z) = (1 = 1)[vQo(z) — Po(z)] — n(z — 1),

Qula) = [ ’ ‘;j(f)) i R = | ’ ;‘f—)

The 0(¢?) problem.

with

(pwy) = (1 — n)gqlvrw§ + voawy ™ wy],

(4.11) wy(1) =0,  wh(1)=0, w)(R)=0.

The solution of the problem is
pwy = (1 = n)[vigo(z) + voqr (z)],
a1(z) = a/ a(2)wr(2) dz,
1

vo QI(R; _v(.)'lql(R),

(R
wo () = ( 77)[le0( ) +v0Q1(x)],

The solution of higher order terms as well as numerical results for
specific choices of b(z) can be found in [10]. (Note that we will use the
same notation for b(z) and b(X).)

v = -

Also treated in [10] is the more interesting free boundary problem
when Rp is not fixed but the city expands until r(Rg) = r4 where 74
is the known unit agricultural land rent. In terms of w, we have

’I‘AbiGR?

at+l __ —
(4.12) v [w(R)]*F! = v, Vg = i
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The unknown R depends on ¢ and should be expanded as
i —

(4.13) R=1 Ry
k=0

The value of w at £ = R depends on ¢ parametrically because of its
appearance in the ODE and boundary conditions and also indirectly
through R(e) : w(z = R;e) = w(R(e);e). The perturbation series for
w(R(=);¢€) is

, L dw 1 ,d*w
(4l1] w(R(e),E) —’UJ|€=() +€E E=0+§E d—52 o .y
with
(4.15) B

w|€=0 = U)O(RO),

dw ow OwdR . = =

A o [—6-5— + ﬁg‘;]e—o = w1(Ro) + Riwo(Ro),

d*u ~ [9*w N 0w @+62—w dR\* 8_wd2_R

d=2 | _, | Oe? OROe de = OR? \ de OR de? | __,

— — g 1—2 s — —
=2 [wz(Ro) + Riywi(Ro) + §R1w0/(Ro) + R2w6(R0):| ,

etc. The actual use of these series for the solution of the free boundary
problem can be found in [10] (though there are several typographical
errors in the expressions in (4.15) listed there).

In most investigations, o is taken to be 1/4 which is roughly the
fraction of income that households spend on housing. If o is interpreted
strictly as the fraction of income after travel cost spent on ground rent,
then o + 1 is typically larger than 10. For o+ 1 > 1, ev, may not be
small even if € is and perturbation solution of the type (4.8) may no
longer be appropriate. On the other hand, with @ > 1, a matched
asvimptotic expansion solution with 1/a as the small parameter is
possible and has been obtained in [10].

5. Maximum common household utility. Instead of prescribing
the road width distribution, 1 — b, as was done in [7, 8, 10], we
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consider here, as in [5, 6], the problem of using b(X) as a policy
(or control) variable to maximize the common household utility U =
U(o°(1—a)1=9)y/&yr?). The uniform annual income of each household
is known for the absentee landlord case; therefore, the dependence of
U on b(X) is only through r; in this case. Since this dependence is
specified by the conditions (3.2)-(3.6) for a city with a fixed outer
boundary, these conditions assume the role of equality constraints in
the optimization problem®. (Of course, there are also the inequality
constraints of (3.7) on w, N and b, which are automatically satisfied for
all cases analyzed in this article.) The first order necessary conditions
for an interior maximum U subject to these constraints are [4]

, dp  ala+1)8r; -1
. o e T Xy =
(5.1) - + bw* 1P =0,
(5.2) #(Ro) =0,
. av ako[ N 1F
15:3) ﬁ*;ﬁ[m] =0,
(a+ 1)97‘, ak ¢ N k
5.4 ~ 7 XV A A [ =
(5.4) y YTy T ex(1—0) 0
(5.5)
(1 =g\, o _ l1-0o Ro ..
0’(1-0) yU-<0 (1 00) y> =/ n(a+1)9waa\I,dz’
&ory oty R y

where U (8) = dU(B)/dB and where ¢ and —o¥ are the Lagrange
multiplier (or costate variables) associated with the constraints (3.2)
and (3.3). The economic content of these necessary conditions (and of
those for a more general “second-best allocation” problem which allows
for more policy variables and inequality constraints) has already been
discussed in [6].

For a fixed size city with a prescribed outer boundary Ry, the coupled
fourth order system of four differential equations (3.2), (3.3), (5.1)
and (5.3) and the algebraic equation (5.4), supplemented by the four
boundary conditions (3.4), (3.5), (3.6) and (5.2), define a two-point
boundary value problem for the five unknown functions w, N, ¥, ¢ and
b with r; as an unknown parameter. The integral condition (5.3) then
determines r;. In the subsequent developments (particularly for the
purpose of a perturbation series solution of the problem), we need a
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dimensionless form of this nonlinear boundary value problem. For this
dimensionless form, we introduce the following dimensionless variables
in addition to (4.2) and (4.3):

N
(5.6) 7(X) = 10T (), U= Y = Ny,
No
. Rif No\*_ %
(57) ef“n:TOR Eﬁ, 1oy =2 ( 0) =5,
y Y y \OR: Y
(5 K) _ riHRf
. ) = )
: oyNo
with =f ™1 = (£4 + t.)/y, giving the order of magnitude of the fraction
of income for travel costs. We write the fourth order boundary value
problem and the integrated condition in terms of these new variables:
u k
(59) w' = -Ef“{nT(wH(l —ﬂ)[m] }
(510) w(l) =1,
(511) u' = —vxbw®,
(512) u(l) =1,
(5 13) u(R) =1,
(5 11 ¢ = —avrbpw® 1,
(515 o(R) =0,
! ko U k
5 160 /I:——k+1/l_ PR ,
(516, y €t ( 77) U .’L‘(l _ b)
k
(517) vz(1 — b)w®p — eF (1 — n)ko v =0,
’ z(1-b)
- R
(5 1%) @ =/ zb(z)w*y dz,
1
where () =d( )/dz and
~ O,rr(l_J‘)l-—ay_.<o.a(1_o,)1—ay>
(519) V) = - U =
o o’ €ors
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The following three expressions for x(¥) correspond to utility functions
used in existing literature (see [6]):

(5.20) w(@) =1 if U(z) =In(2),
2
15.21) w(v) = ﬁ/ﬁ%ﬁ_} if U()=2* and o=1/2,
'5.22)
. 1—o (¥ \ [(e+1)8Ry]" _
u(@) =071 -0) <€—0> [—W] if U(z) ==

In all cases, u is a dimensionless quantity for the definition of &,
previously given in (2.4).

It should be observe that, for a fixed @, the form of the two-point
boundary value problem (5.9)-(5.17) does not change for different
utility functions of the form (2.4). However, this observation is of
little practical value unless we can obtain the solution of the boundary
value problem explicitly in terms of elementary or special functions
as the solution depends on © which varies with U according to (5.18)
and (5.19). In general, it is not possible to obtain such an explicit
solution, and a numerical solution of the problem is necessary. While
an efficient numerical solution scheme will be developed for the problem
in a later section of this paper, it is of considerable interest to note that
a perturbation solution of the problem suggests itself once a certain
small parameter of the problem is identified. It will be seen in the
next section that the first few terms of the perturbation solution for
the various unknowns are (essentially) polynomials in the dimensionless
distance variable z and that they provide an adequate approximation of
the exact solution. A suitably truncated perturbation solution clearly
delineates the structure of the solution of the optimization problem and
provides a good initial guess for the BVP solver COLSYS used in our
numerical solution scheme developed in section (7).

6. Perturbation solution. The solution of the nonlinear boundary
value problem (4.9)—(4.18) depends on the value of ¢; parametrically.
For an interpretation of €;, we see from (3.1) that the total transporta-
tion cost per annum t for each household consists of a distance cost
component and a congestion cost component. With Ry — R; = 0(R;)
for cases of interest, these two cost components are of the order of mag-
nitude of t; = 7o R; and . = aR;(Ny/0R;)*, respectively. On the other



SECOND-BEST LAND USE PROBLEM 129

hand, the two equations in (5.7) defining ¢; and 1 may be combined to
yield

(6.1) ettt =i+ et (1-n) = fu/y + Ee/y = O(t/y).

The quantity 6f+1 is therefore of the order of magnitude of the fraction
of the household income allocated for transportation costs; this fraction
is typically very small compared to unity, 0 < Ef“ < 1. We will take
advantage of this observation for a simple but accurate approximate
solution for our problem.

The algebraic equation (5.17), rearranged in the form

_ k1/(k+1)
(6.2) 2(1-b) = & {%u—] :
or
A e [(1 = m)kpuk] /Y

may be used to eliminate b(z;e,) from (5.9), (5.11), (5.14) and (5.16).
The form of the resulting four coupled first order differential equations
for w, u, ¢ and v together with the boundary conditions (5.10), (5.12),
(5.13) and (5.15) indicates that parametric expansions for the four
unknown functions of  and the unknown constant ¥ in powers of ¢,
are appropriate, i.e.,

64)  {w,%,6,9,5} = Y {0n(2), &n(x), pm(2), Y (2), T}
m=0

Correspondingly, equation (6.3) suggests that we take an expansion for
b(z;¢e¢) in the form

65 blzie) =1 (Z)61(2) + Ba(@)ee + Ba(z)ed + ...

Upon substituting (6.4) and (6.5) into (5.9)—(5.18) and requiring the
resulting equations to be satisfied identically in ;, we get a sequence of
linear boundary value problems for the determination of the coefficients
of the various expansions. For illustration, we list here the first
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two problems of this sequence and their solution for ¥ = 1 and a
logarithmic-additive utility function U(:) = In(-):

The 0(1) problem.

wy = 0, wo(1) =1,
6.6) g + vozw§ = 0, ao(1) =1, iig(R) =0,
‘n.t

by + Otvozwowu b=, ¢o(R) =0,
and

R
((i.T) Vo / xwou')g dr = 1.
J1

The solution of this problem is
(6.8)
Wo(z) =po(r) =1, T =2/(R*-1),
i(z) = (R® = 2°)/(R* = 1), ¢o(z) = a(R* —?)/(R* - 1).

The 0(¢¢) problem.

ﬁl = [w] 1/2a

VoPoWe

(1_T/)Bl _Ov 12)1(1):0,

i) + owf [ (1—)—) + 1%%) - 51} =0, (1) = u1(R) =0,
)
(6.9) i+ (1-n)5 =0,

<b11+011_’0$¢01713_1 [g_;"'(a—l) o _:| = 0’ ¢1(R):0a
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and
R _
(6.10) U1 / YWy dr = 60/ TPoW§ [é - ﬂ - ag_ljl dzx.
1 1 z o Wo

With g, tg, %0, 0 and ¥y known from (5.8), the solution of this
problem is found to be

6.11)
ﬁl(w)=g—§%, %=%"(2R3—3R2+1),
Bi(x) =~z ~ 1), w1=2%{§:1—§x},
ﬁl(a:)zaOT%{(xs—l)——(4R3 3R2~1)R2_1+3R2(x—1)}
61(2) = ata(o) - mao] | 587 1) - Sr0 - )] B2
1),

where o = [T (1 — 1)]'/2.

We see from (6.8) and (6.11) that w,u,¢ and 9 are all polynomials
in x, at least for the first two terms in their respective perturbation
expansion. On the other hand, we have

b =1 -2 208 2B o)

=1_et[<32;x2) ] + ot

so that to order e, the road width fraction (1 — b) is a simple rational
function of x. The corresponding two-term perturbation solution
for the market allocation, denoted by b, (z;e:), is obtained in the
Appendix of this paper (see equation (A.15)). The ratio

(6.12)

1-b
1—by,

(6.13) c 71+ 0(er)]
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To order e, the cost-benefit criterion based on market land price
(A.1) allocates more land for roads than the second-best allocation.

Note that with (6.11), we can obtain B;(z) without solving another
boundary value problem since

(6.14) Ba(z) = 561 () {—:— + = - :— -— - a-;— .

The two-term perturbation solution for the net income fraction after
transportation cost is

(6.15) w(z;er) =1 — &y {(:1; -1 52((};2;_776] +0(ed).

The corresponding solution for the market allocation, denoted by
wm (z;€¢), is given by (A.13). The ratio

1_
(6.16) w2 Lo e)]
117’).

indicates that

The transportation cost for a household at a given location is smaller
in a market city (since there is more land for roads) giving it a larger
after transportation income for housing and consumption goods.

The second-best unit land rent at the edge of the CBD is

i yNo©
" (a+1)R?’

T _ 1 3 2 2 3 2
with

QyNO
(o + 1)6(R§ — RY)’

To =
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From (A.14), we have

(ri/ro)—1 _ a?+a
(6.18) (rm/ro) =1 \ o> +a+1/4 [t +0G)

where 7,, is the value for r; of the market allocation. To the extent
that the common household utility increases as r; decreases, we have:

The second-best land allocation gives a larger individual utility.

Evidently, better and cheaper housing more than makes up for the
higher transportation cost of the second-best allocation.

The comparison between a second-best allocation and the correspond-
ing market allocation for a close city with fixed boundaries may not be
an appropriate comparison. But whatever the appropriate comparison
may be, a two-term perturbation solution (in ;) more readily provides
significant information similar to what has been listed above. Even
when the exact solution is available in terms of elementary functions
(as in the case of the market allocation), the perturbation solution is
still more useful and informative. While we have limited ourselves here
to a perturbation solution for the case k = 1 in the transportation cost
function and algorithmic-additive utility function, it is clear that the
same technique can be applied to k > 1 and other utility functions as
well.

When applicable, the perturbation solutions show a significant qual-
itative difference between second-best solutions and equilibrium solu-
tions on the effect of the two different components of the transportation.
When ¢4 and £, are of comparable magnitude, their contributions to the
equilibrium solution for a prescribed road width are equally important.
On the other hand, the contribution of the congestion cost component
is at least an order of magnitude more significant than the contribution
of the distance cost component in the second-best solution. For k =1,
we see from (6.9) that the distance cost still has no effect on the first
order correction term of the perturbation solution. In fact, upon using
(6.3) to eliminate b from (5.9), we get

] (o3
(6.19) w' = —eftin — g1 —n)[M

k/(k+1)
ko(1 - n)]
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The following conclusion is evident from (6.19):

The contribution of the distance travel cost term in the second-best
allocation 1s smaller by 0(cF) than the contribution of the congestion
cost of transportation.

In the course of obtaining the perturbation solution for the second-
best allocation, we have ignored the inequality constraints (3.7). When
a truncated perturbation solution violates one or more of these con-
straints, an accurate numerical solution by the method of section (7)
can be obtained to see whether the inequality constraints are in fact
binding. It turns out that the constraints (3.7) are automatically sat-
isfied by the two-term perturbation solution (as well as the accurate
numerical solution) in all cases considered in this paper.

7. Numerical solutions by COLSYS. We can validate the accu-
racy of our two-term perturbation solution for the range of parameter
values of interest by obtaining an accurate numerical solution by the
general BVP solver COLSYS [2]. For this purpose, we undertake a
somewhat unorthodox reformulation of the boundary value problem
with an integral constraint (5.9)-(5.18). In this new formulation, we
think of ¥ as a function of z and introduce a new differential equation

(7.1) ' =0,

to recover the fact that o is really independent of . Next, we introduce
another differential equation

(7.2) A = zbypw®,

for a new auxiliary function A(z). In terms of A(z), the integral
constraint (5.18) is equivalent to the boundary conditions

(7.3) A(1)=0 and
(7.4) 5(R)A(R) — u(5(R)) = 0.

The six first order differential equations (5.9), (5.11), (5.14), (5.16),
(7.1) and (7.2), the algebraic equation (5.17), and the six boundary con-
ditions (5.10), (5.12), (5.13), (5.15), (7.3) and (7.4) define a two-point
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boundary value problem. This boundary value problem is equivalent
to the original fourth order problem with an integral constraint.

The new boundary value problem for the sixth order system deter-
mines the seven unknowns w, u, b, 7, ¢, and A and may be discretized
and solved by a number of unknown methods. A computer code COL-
SYS. developed by U. Ascher et al. [2] for solving general boundary
value problems involving ordinary differential equations has been used
to obtain solutions of this problem for different utility functions, con-
gestion cost functions and input parameters. In all cases, solution com-
ponents obtained meet a prescribed relative error tolerance of 10~%; the
actual estimated errors are usually much smaller. Approximate pertur-
bation (and matched asymptotic solution not included here) have been
used as initial guesses to speed up the convergence of the iterative so-
lution scheme whenever appropriate. The method of continuation has
also been used to achieve the same results outside the range of validity
of the perturbation and asymptotic solutions. While COLSYS itself
allows for automatic mesh selections with more mesh points in regions
of abrupt changes, the knowledge gained from the matched asymptotic
solution concerning the locations of these abrupt changes often reduces
the number of iterations needed to meet the prescribed error tolerance
and thereby the computing cost.

TABLE 1. Accuracy of two-term perturbation solutions.
(k=1,y=10% Nop=10°, R; =1, Ro =5, 6 = 27, 70 = 0)

Case w(Ry) b(R;) mx107% U
(M Exact 0.78885 0.46318  8.7897  2.8442
o =0.5 Perturbation 0.79399 0.45977  8.3012 3.0116
ap = 0.02 % Error 0.65% —-0.74% -5.5% 5.9%
(11) Exact 0.86281 0.23415  5.4969 4.7681
7 =0.25 Perturbation 0.88106 0.24076 4.7618 4.8040
ap =0.02 % Error 2.1% 2.8% -13.4% 0.75%
(111) Exact 0.96074 0.69245 3.8295 4.8585

o =0.25 Perturbation 0.96239 0.69261 3.7730 4.8622
ap = 0.002 % Error 0.17%  0.02% -1.5% 0.08%
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In Table 1, we show some typical results obtained by the perturbation
method and by COLSYS to illustrate the accuracy of the perturbation
solution for small £;. Altogether, results for three different cases are
presented with k =1, y = 10*, Ny = 10°, R; =1, Ry = 5, § = 27 and
7o = 0 (so that 74 = 0) in all cases. In Case (I), we have U(-) = (-)2,
o =1/2and ap = 0.02 so that €7 = 1/(107). Case (II) differs from Case
(1) only in U() = In(") and o = 1/4 so that we have again &} = 1/(107);
it 1s the first problem analyzed in [8, 10]. Case (III) is the same as Case
(I1) except ag = 0.002 so that e? = 1/(1007); the smaller value of q is
chosen to demonstrate how the accuracy of the perturbation solution
improves with decreasing ;. The table gives for each case the exact
values to five significant figures obtained by COLSYS (and confirmed
by the conventional shooting method) and the approximate values from
the two-term perturbation solutions for (i) the fraction of income after
transportation cost for households at the edge of the city w(Rp), (ii)
the fraction of land allocated for housing at the edge of the CBD?,
b(Ri) = b;, (iii) the land rent per unit area at the edge of the CBD,
r, and (iv) the common utility for all households in the second-best
world.

The substantial difference among the percentage errors in the pertur-
bation solutions for w(R;), b(R;) and r; in each case is not unexpected
given the different order of magnitude of the terms neglected in the
expansions for these quantities as observed in [10]. It was also shown
in [10] that a matched asymptotic expansion solution should be used
for o < 1. On the other hand, the percentage error for U is signifi-
cantly affected by the functional U(-). For example, the surprisingly
low percentage error for U in Case II (given the high percentage error
for r;) is due to the fact that U(:) = In(.).

The results for w(R;), b(R;) and r; are typical for the perturbation
solutions of all other quantities at various locations. In general,
the terms neglected in the two-term perturbation solutions for u, P
and ¢ are 0(e?/o) relative to the terms retained. This order of
magnitude error estimates are usful guides to the appropriate use of the
perturbation solutions. For example, the perturbation method is not
useful for Case (IV): 0 = 0.2, y =1, Ny = 10°, R; = 50, Ry = 118.2,
6 =2 and ap = 107° with ¢} = 0.5 and €?/0 = 1.0. (The market
allocation for this case was investigated in [5].) To see whether the
conclusion on second-best versus market allocation also holds for this
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FIGURE 1. Distributions of fraction of land for housing.

case, we give in Table 2 both types of results for this case as well as for
Cases (I)—(III) obtained by COLSYS accurate to at least five significant
figures.

In all four cases, we see from the numerical results that, compared to
the market allocation, the second-best allocation leads to

(i) a lower rent per unit land area at all locations and therefore
a larger common household utility (for the class of utility functions
considered),

(i) less land for roads, giving more housing space for each household,

(iii) a lower (commodity) consumption for each household, except
those at the edge of the CBD,
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FIGURE 2. Total traffic through an arc of distance X from the city center.

(iv) a higher residential density near the CBD and a lower density
near the city limit,

(v) less total rent and a higher total transportation cost in the first
three cases and conversely for Case (IV).

In addition to the information given in Tables (1) and (2), the actual
numerical solution of the second-best allocation problem also provides
s with the distribution of various quantities of interest, such as the
road width fraction, etc., throughout the city. As expected, the unit
land rent and the after transportation cost income fraction decrease
more rapidly with distance from the CBD for higher unit congestion
costs (or more precisely, for higher values of €;) while its profile becomes
more concave.
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What is not expected is that the distribution of the fraction of land
for housing b(z) changes from concave downward in Cases I and II
to concave upward (or convex to the origin) in Case IV which has
a relatively higher congestion cost. The same is true for N(x), the
distribution of households living outside the ring of radius X. We show
in Figures 1 and 2 the profiles of b(z) and u(z) = N/Ny for Case
IV and the corresponding profiles for lower unit congestion costs to
demonstrate this unexpected qualitative feature (with & = &, in these
figures). However, the effect of distance cost of transportation is likely
to be significant and should be included for the true picture in this case
since £2 /o = 1.0.

Figure 1 also shows that the road width fraction at the edge of
the CBD, 1 — b(z = 1), first increases with e;, reaching a maximum
between e = 0.25 and e; = 0.30, and then decreases (very slowly)
with €, after that. It seems that more roads are needed at and near
the edge of the CBD to offset the increase in unit congestion cost for
the (smaller number of) travellers living away from the CBD when the
transportation cost is still relatively low. On the other hand, more
housing space is needed to slow down the increase in unit land rent
near the CBD due to housing demand of the large population there
when the unit congestion cost is sufficiently high.

APPENDIX

Land allocation by a cost-benefit criterion. Suppose instead
of the maximum common utility policy of Section (4), land allocation
for roads and housing is made by a cost-benefit criterion based on
the market land price. According to this criterion, the land policy
variable b is determined by the condition that the marginal benefit
from more land for roads (leading to a reduction of the congestion
cost of transportation) equals the marginal cost of land rent lost from
residential use priced at the market rent [5, 6):

N k+1
(Al) ak[m:l =Tr= riwaH.

In terms of the dimensionless quantities introduced in (5.6)~(5.8), the
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condition (A1) becomes

(A2) x(lu_ 5 - gct_w(a+l)/(k+l)7
where

5 1/(k+1)
) =|mra=)

Upon using (A2) to eliminate u from (5.9), we obtain
(A4) w' = =gy (1 — )CFukEFD/ D) _ kit

Rather remarkably, the housing land fraction b does not appear in this
first order equation. It has been eliminated along with u because u and
b appear in (5.9) only in that combination which appears on the left
side of (A2). Hence, the separable first order ODE (A4) along with the
initial condition w(1) = 1 determines w(z;et).

Next, we use (A2) to express u in terms of ¢ = x(1 — b) and the
known function w(z;e¢):

(A5) u= geTw(a“)/(k“),
t

which is in turn used to eliminate v from (5.11), taken in the form
(A6) o = Blpw® — tzw® = —kCFH a4+ 1)(1 = n)(z - £r)w®,

to get

(A7) [erw( VD) = —ef(F(a + 1)(1 = n)(c — fr)w®.

The boundary condition u(R) = 0 (see (5.13)) and (A5) imply

(AB) {r(R;es) = 0;

it serves as an auxiliary condition for (A7). An exact solution of the

“terminal value” problem (A7) and (A8) for {r is also immediate since
(AT) is a first order linear differential equation.
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In what follows, we limit ourselves to the case k¥ = 1. We have for
this case

(A9) flr(z;e) =xz(1—b)

efla+1)(1 -

" g(@ien QuETI (256, () / €9(&ee, Ow(&ser, ()] d€

where
(A1) glasen ) = exp{ Cel-mat1) / {w(e;et,c)}“dg}.

The remaining unknown parameter o (or equivalently () is determined
by the boundary condition u(1) = 1. In view of (A5) and (A9) (as well
as w(l;es) =1 and g(1;&;) = 1), this condition implies

R
(A1) (@t 1)1 - )¢ / 29(2; 20, Ow(; 0, O))* do = 1.

Finally, we have from (A9),

eel(a+ 1

(A12) b(ziee)=1~ xgw(a+l)/2

/ £9(6 20, Ow(€; 0, O] de.

For =y <« 1, we see from (Al2) that a fraction of land allocated
to roads (1 — b) is to a first approximation 0(e;) of the total land
available outside the CBD. This is consistent with the expectation
that the amount of land allocated for roads is a decreasing function
of the congestion cost. More quantitative results can be obtained for
€¢ < | by discarding terms of order 7 or smaller in (A9), (A12), etc.
However, they are more simply obtained by seeking a perturbation
solution for the various initial (or terminal) value problems as in Section
(6). We omit the calculation and simply give the following results for
comparison with the second-best solution of Section (6):

2(1-1n)

A ey =1- b1 )20 m
(A13) w(z;e,) =1 y-l 5‘[ (RP-1)(a+1)

(=1 + o),

yNot

—)? = TO’U(St,O’ R T])

(A14) Ty = (a+1
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_ 2yNo
ALS) = L F DR - R
(A16)
3
= teaftem a0 (22) () 0onen)
+0(ed),
ALT) blzie) =1- ¢ {RQ;HCQ (a;};)(_l I)")} +0(2).

While we have limited ourselves to the case k = 1 and a fixed city
boundary, it is evident that the same technique can be used to obtain
approximate solutions for other values of k and/or an unknown outer
city limit which is determined as part of the solution process by the
agricultural rent beyond.

ENDNOTES

1. To keep our description of the solution procedures as simple as possible, we will
use the more restrictive formulation of [7, 8, 10] instead of the more general one
in [6]. Also, it is more convenient to treat r; as the primary unknown parameter.
In other words, we think of U as a function of r; rather than r; as a function of U
as in (5, 6].

2. The B2 term is included in the perturbation solution for b since the perturbation
expansion is effective for z(1 —b).
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