DONALDSON’S RESULTS ON SYMPLECTIC HYPERSURFACES
AND LEFSCHETZ PENCILS
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1. STATEMENT OF THE THEOREMS

We consider compact symplectic manifolds. The symplectic form w represents a de
Rham cohomology class [w] € H*(V,R).

Theorem 1.1. [I, Theorem 1] Let (V,w) be a compact symplectic manifold of dimension
2n and suppose the cohomology class of w is integral. Then for sufficiently large integer
k, the Poincaré dual of klw| can be realized as a symplectic submanifold W C V.

If V' is Kéhler, then there exists a positive line bundle L with Chern class [w]. Then
for k large, a generic holomorphic section s € H°(L*) has a smooth vanishing locus
which is a submanifold and is Poincaré dual to k[w].

In [2] this theorem was enhanced to the following form. To state the enhancement,

we need to introduce the notion of topological Lefschetz pencils.

Definition 1.2. A topological Lefschetz pencil on V' consists of the following data,

(1) a codimension-4 submanifold A C V,

(2) a finite set of points {by} C V' \ V,

(3) a smooth map f: V' \ A — 5% whose restriction to V'\ AU{b,} is a submersion,
and f(by) # £(b,) for A # .

This data is required to conform to the following standard local models.
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At a point a € A, there are compatible local complex coordinates such that A is

given by z; = 2o = 0 and on the complement of A in a neighborhood of a, f is given by
(21, ..., 20) > 21/2p € P,

At a point by, there are compatible local complex coordinates in which f is represented

by the nondegenerate quadratic form
(21, v zn) > f(bA) + 27 4+ 2.

Theorem 1.3. [2, Theorem 2| In the same situation, for sufficiently large integer k,
there 1s a topological Lefschetz pencil on V' whose fibres are symplectic subvarieties,

homologous to k times the Poincaré dual of [w].

The integrable case is also easy to understand. Take L — V whose Chern class is
[w]. Then for k large, take a generic pair of holomorphic sections sg, s; € H°(L*). The
meromorphic function f = so/s; : V — P! gives a Lefschetz fibration , where the by’s
are critical points of f. Equivalently, view V' C PV via the Kodaira embedding, then a
generic pencil of hyperplane intersections gives a Lefschetz fibration.

In this note, we give a brief account of Donaldson’s proofs of these two theorems.

2. PROOF OF THEROEM [L.1]

2.1. The idea. Let C" have the standard metric and symplectic form w. Let G be
the Grassmannian of oriented real 2n — 2-planes in C" and G C G the open subset of
symplectic 2n—2-planes I, i.e., those for which the restriction of w™~! is positive relative
to the orientation. G only depends on the symplectic form w. We also have a volume
form Qp on each such subspaces. We can define the “Kéahler angle” 6 : G — [0, 7] by

O(TT) = cos~! <<n_1 1)!“’7;23“) | (2.1)

The complex subspaces are those with §(IT) = 0 and 6 measures the amount by which

a subspace fails to be complex-linear, and G+ = §71[0, 7/2).
Now suppose I is given by the kernel of a real linear map A : C* — C, A =d' + da”
(which induces a natural orientation). We see
(1) A has real rank 2 unless a” = e*®a’ for some «;
(2) If A has rank 2 and II = kerA, then

2y/|a’2la”]2 — {a', a") 2
tan 0(I1) = ZE

|a/* = la

Therefore we see
Lemma 2.1. If |a"| < |d'|, then ker(a' + a") C C" is symplectic.

Then we will prove



Theorem 2.2. Let L — V be a complex line bundle and ¢;(L) = [w]. Then there ezists
C > 0 such that for all large k, there is a smooth section s € I'(L¥) such that

“
Vi

0s| < |0s| (2.2)

on the vanishing locus of s.

Together with Lemma [2.T] this theorem implies Theorem [L.1]

We briefly describe Donaldson’s construction of the section s. For large k, chooing
finitely many points pi, ..., pa, on V such that balls centered at p; of radius O(k~1/2)
cover V. For each i there is a section o; of L¥ supported in B;, which is constructed
using the concrete coordinates around p;. Then by some very complicated analytical
argument, Donaldson proved that a delicate choice of a linear combination s,, = Y w;0;
satisfies the transversality condition of Theorem [2.2]

2.2. Local theory. We first construct the sections o;, which is purely local.

2.2.1. Symplectic structure. Consider the standard symplectic form

i« _
wo =5 ; dzodZ, (2.3)
which is equal to tdA with
1 & L
A= 1 Z (zadza - zadza) (2.4)

a=1

Therefore, wy is the curvature form of a U(1)-connection on the trivial line bundle with
connection matrix A. This gives a O-operator which reads

gAf zgf—l—AO’lf. (2.5)
We see

_ 1
Dae P =0, 00 = (S 7z ) e (2:6)

We see the trivial bundle € has a holomorphic section e~#1*/4 which decays exponentially.
For k > 1, the bundle £* has connection form kA and holomorphic section eFlI?/4,

Now consider (V,w) with

e a fixed compatible almost complex structure J;

e a line bundle L — V with U(1)-connection having curvature —iw;

Let g be the metric w(-, J-) and g, = kg.



For any p € V, there is a Darboux chart y = x,, : B** — V such that x,(0) = p and
Xpw = wp. Since V' is compact, we may assume that all derivatives of y;, are uniformly
bounded. We also assume that x, is complex linear at 0, so there is C' > 0 such taht

IX*J — Jo| < Clz|, IV(X*J — Jo)| < C. (2.7)
Given k, we compose y with the dilation map
X=x00,5: VEB" = V. (2.8)
Therefore we can assume

— C —~
X7 = Bl < lel, V(T = o)l <

N (2.9)

Sl

with C' taken uniformly.
On the other hand, since Y*(—%kw), the pull-back of the curvature of L* is the
standard form —iwy on C". So we may take lift ¥ to a map

X:VEkB™ xC — L (2.10)

which preserves the connection. We have a locally defined section o.

Let d;. be the distance function of g; and define

e~ WP/ dy(p,q) < kMY

(2.11)
Oa dk (p7 q) > k1/4’

ek(pa Q) =

(ex is supported in a O(k~1/2)-neighborhood of the diagonal).

Proposition 2.3. For each p € V' and sufficiently large k, there is a smooth section o,
of LF over V such that for

(1) For fized R, |o,(q)] > C~1 if di(p,q) < R.

)
(2) |op(a)| < exlp, q)-
(3) |_Vv‘7p| < C(1+di(p, q))er(p, q)-
(4) 10L0p(a)] < Fzdi(p, a)*ex(p, q).

(5) [VvOroy()] < S (di(p, @) + di(p, 0)*)ex(p, ).
Here 0y, is the O-operator on L (and L¥), Vv is the covariant derivative induced from

the Levi-Civita connection on V' and the connection on LF.

Proof. Choose a cut-off function 3 : C* — [0, 1] by rescaling a standard cut-off function
£ with

Br(z) = B(#) (2.12)
Then we define

o, = X(Bro) € T(LF). (2.13)



1/2

Since  shrinks with a factor k=%, o, is supported in a ball of radius O(k™'/3) centered

at p. Then we can prove everything by explicit calculation. O

2.3. A very dense open cover.

Lemma 2.4. There is a constant C' > 0 such that for all k, we can cover V' by gp-unit
balls with centers pi,...,pu, such that

de Dirq ek pza ) < Ca vq € Vva r= 07 17273' (214)

Proof. If A C C" is a lattice in C", then for any a,r > 0 and w € C",

sup Z | — w| e P < oo, (2.15)

w nEA

Choose a finite cover ¢, : Oy, — V', s =1,...,5 with O, bounded in C" such that

Sl = ] < dlgu(2). 6,(9)) < 2l — ] (2.16)

Choose slightly smaller O, CC O such that O also cover V.
Let Ay be the lattice a(Z" @ iZ™) with

Vs
= (2.17)

Let A, be the image under ¢, of O; N Aj. Then when k is large, the ball of radius k~1/2
centered at points of Ay cover ¢4(0,). Take p; be the union of those lattice points.

Then to bound the quantity, we need to bound the individual ones

= di(p,9)"ex(p, q)- (2.18)

PEAS

Since e, vanishes if di(p, q) > k'/*, so we only need to consider the case when ¢ lies in
¢s(0;s). Then

R Z 2rkr/2|z )\|r —k|z—)\? /20 _ Z 27‘|w /L| |u—w\2/20‘ (219)
AEAL BEAo
O

So for each k, we fix the choice of py,...,py, and denote o; = 0,,. Let B; C V be
the gp-unit ball centered at p;.



2.4. A nice linear combination. Our desired section will be a linear combination of

those ;. For complex numbers w = (wy, ..., wyy, ), take
My,
S =8y = Zwiai. (2.20)
i=1

We always consider coefficients w; with |w;| < 1.

Lemma 2.5. For any w, s = s,, satisfies

— C o
‘S‘ < Ca |8L5’ < = ]VVé?Ls\ <

vk

Proof. By Proposition 2.3] and Lemma [2.4] we have

C
7 (2.21)

@)l <Y ln(@l < 3 ealpia) < C. (222)

Other items of Proposition 2.3 together with Lemma [2.4] imply the other two estimates.
0J

Proposition 2.6. There is an € > 0 such that for all large k, we can choose w such
that s satisfies the transversality condition

|0rs| > € (2.23)
on the zero locus of s.

Lemma 2.5 and Proposition [2.6] imply Theorem [2.2]

2.5. Proof of Proposition Since B; is of radius O(k~%/2), x;'(B;) is contained

? )

in a bounded region, say A = %BQ". Take AT be the polydisk of radius %. Over
A* we have the section o; trivializting L*. The following lemma, which can be proved
by straightforward calculation, shows that we only need to check the transversality

condition on each chart.

Lemma 2.7. Let s = s, is a section of L* with |w;| < 1 and f; : At — C is the

corresponding function. Then

1) Iillovan < C
(2) 9filleraty < %;
(3) If |0fi| > € on f;1(0) N A, then for k large, |0rs| > C~te on s71(0) N B;.

Since the number M; grows with k, we subdivide the points p; into finitely many

groups.



Lemma 2.8. Given D > 0, there is N(D) > 0 independent of k such that for all k

with p1,...,pum, given by ..., there is a partition
I={1,.... My}=LULU---Uly (2.24)

such that for a € {1,..., N},

d(pi,p;) > D, Vpi,pj € Lo (2.25)
Fix D > 0. Denote
Vo= |J Bil=V,cWic.-cWw=V (2.26)
icl, B<a

The construction of the coefficient vector w (and hence the section s) is done induc-
tively. We start with an arbitrary w. Then we modify those w; with ¢ € I} such that
the controlled transversality condition holds on V;. Suppose we have chosen w, such
that the controlled transversality holds on V,, then we modify those w; with ¢ € I,
to obtain w,, such that s,;; satisfies the controlled transversality over V,,;. The

induction finishes in finite steps.

Definition 2.9. Let U C C" be an open subset and f : U — C be a smooth function.
For n > 0 and w € C we say that f is n-transverse to w over U if

[f(2) —w[ <n = [0f(2)| = . (2.27)

We say a section s € F(Lk) is n-transverse over B; if f; = s/0; is n-transverse to 0 over
the corresponding set A.

3. THE TRANSVERSALITY THEOREM

For § € (0,1), p > 0, introduce
1
0) = ——s. 3.1
Q) = o5 1)

The burden of proving Proposition [2.6|is given to the following theorem.

Theorem 3.1. For o > 0, let H, denote the set of functions f on AT such that

(D) [ flleoary <1,

(2) l[0fllcran) <o
Then there is an integer p depending only on n such that for any 6 € (0,1/2), if
o < Qp(9)6, then for any f € H,, there is w € C with |w| < 6 such that f is Q,(5)0-

transverse to w over A. Moreover, w can be chosen in any preferred half-plane in

C.

Now we start the induction argument.



Lemma 3.2. Let s = s, and for any «, let w' be another coefficient vector which
agrees with w except for coefficients belonging to I,. Suppose |w} —w;| < & for some d.
Then

(1) For any i, || f{ — fillcravy < C6.

(2) Forie I, |fl — fi — (W, — w;)||cr(a+) < Coexp(—D?/5).

Proposition 3.3. There are constants p < 1 and p such that if
(1) s*71 = sya-1 € T(L¥) is n,_1-transverse over Vo_1 with n,—1 < p;
(2> \/LE S Qp(ﬁa—l)ﬁa—l;'
(3) exp(=D?/5) < Qp(na-1),
then there is another section s = syo which is 1n,-transverse over V, where 1, =

Qp(Ma—1)Na-1-
Proof. Consider some ¢ € [,. Suppose we choose w' in such a way that

W — wd | < 6, (3.2)

]

Then by the (1) of Lemma 3.2, s is 7,1 — C'd,-transverse over V,,. Therefore choosing
5« properly, we have s® still n,_; /2-transverse over V,,_;. On the other hand, if s*~! =

fio; for i € I,,, then by Lemma [2.7]

19fillcraty (3.3)

< C
=75
Hence f; € H, for o = \% We can modify p properly to absorb the constant C'. Then
choose k big enough such that

% < 5.0,(04). (3.4)
then by Theorem , there exists v; with |v;] < 6, and f; is Q,(d4)0a-transverse to v;
over the unit ball. In other words, f; — v; is Q),(04)da-transverse to 0. We define

wd =wi™h Vi A wf =i =y (3.5)

By choosing an appropriate half-plane, we may still have |w$| < 1.
Now we define w® by

_ a=1 a __ a1
wi =wiT, & Ly, wi = wj

By (2) of Lemma , the extra term is given by Cd, exp(—D?/5). So if

—v;, j € L. (3.6)

5, exp(—D?/5) < %Qp(aa)aa, (3.7)

then s® will be

Eventually we have s* is 7j,-transverse with 7, = 5Q,(0a)da. Lastly, if

%Qp((sa)éa Z Qp(”a—l)ﬁa—l = MNa (38)



then s® is n,-transverse. Otherwise, modify the value of p and J,, such that the above

becomes an equality. 0

One can prove that for suitably chosen D and hence the partition, an induction

argument can be carried out to produce an e-transverse section over V.

4. ASYMPTOTIC BEHAVIOR OF Sy

In fact, in the proof we can see the submanifold W) becomes extremely complicated

k

as k grows, which will eventually fill out all of V. Indeed as currents, 7, converges to

the symplectic form.

Proposition 4.1. [I, Proposition 40] There is a constant C' > 0 such that for any test
form ¢ € Q*2(V),

% — k:/vw/\w‘ < OVE|| AW | o - (4.1)

‘Wk

Let s € I'(L*) cut out Wj. Consider the 1-form A = s7!Vs on the complement of
W, which has integrable singularity. Hence A can be viewed as a current. Indeed, we

have
dA =W, — kw. (4.2)

Therefore it suffices to prove that [, |Aldy < CVk.

If we consider it within a gy-unit ball, i.e., radius O(1/vk) balls, identified with B>
via Y, then the number of balls is roughly O(k™) while the pull-back to the unit ball
will enlarge the volume form by k™. The pull-back will also bring in a factor to Vs. In
a small scale we see that Vs is uniformly bounded, so it suffices to control the integral
B

of |s|~! in any g-unit ball.

Proposition 4.2. Given p > 0 let K, be the space of complex-valued functions f on
2B%" with ||0f|lcv < p/2, [[fllco < 1 and |f| < p = |0f| > p. Then there is
C(p) > 0 such that for all f € K,

1
/an mdu < C(p). (4.3)

Proof. Divide B*" into two parts I; and I by whether |f| < p or |f| > p. I, is easy to
control. On the other hand, we have the “co-area” formula:

1
L :/ —d,u:/ lo| ™! / |J¢| " dv ) do. (4.4)
i< 1] lo1<p ( F-1(0) )

2
7= (017 + BsR) —@r.ank > - (45)

We have




Therefore it suffices to give a uniform bound on the volume of each f~'(c). If f~1(0)
doesn’s have uniformly bounded volume, then choose a sequence f;, ;. By elliptic
regularity, f; converges in C! to f and o; converges to o with |o| < p. However, Z,.(f;)
converges to Z,(f) in the Cl-sense so the volume should converge.

O
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