DONALDSON'S RESULTS ON SYMPLECTIC HYPERSURFACES AND LEFSCHETZ PENCILS

GUANGBO XU

Contents

1. Statement of the theorems 1
2. Proof of Theroem 1.1 2
3. The transversality theorem 6
4. Asymptotic behavior of s_{k} 8
References 9

1. Statement of the theorems

We consider compact symplectic manifolds. The symplectic form ω represents a de Rham cohomology class $[\omega] \in H^{2}(V, \mathbb{R})$.

Theorem 1.1. [1, Theorem 1] Let (V, ω) be a compact symplectic manifold of dimension $2 n$ and suppose the cohomology class of ω is integral. Then for sufficiently large integer k, the Poincaré dual of $k[\omega]$ can be realized as a symplectic submanifold $W \subset V$.

If V is Kähler, then there exists a positive line bundle L with Chern class [ω]. Then for k large, a generic holomorphic section $s \in H^{0}\left(L^{k}\right)$ has a smooth vanishing locus which is a submanifold and is Poincaré dual to $k[\omega]$.

In [2] this theorem was enhanced to the following form. To state the enhancement, we need to introduce the notion of topological Lefschetz pencils.

Definition 1.2. A topological Lefschetz pencil on V consists of the following data,
(1) a codimension-4 submanifold $A \subset V$,
(2) a finite set of points $\left\{b_{\lambda}\right\} \subset V \backslash V$,
(3) a smooth map $f: V \backslash A \rightarrow S^{2}$ whose restriction to $V \backslash A \cup\left\{b_{\lambda}\right\}$ is a submersion, and $f\left(b_{\lambda}\right) \neq f\left(b_{\mu}\right)$ for $\lambda \neq \mu$.
This data is required to conform to the following standard local models.

[^0]At a point $a \in A$, there are compatible local complex coordinates such that A is given by $z_{1}=z_{2}=0$ and on the complement of A in a neighborhood of a, f is given by

$$
\left(z_{1}, \ldots, z_{n}\right) \mapsto z_{1} / z_{2} \in \mathbb{P}^{1}
$$

At a point b_{λ} there are compatible local complex coordinates in which f is represented by the nondegenerate quadratic form

$$
\left(z_{1}, \ldots, z_{n}\right) \mapsto f\left(b_{\lambda}\right)+z_{1}^{2}+\cdots+z_{n}^{2}
$$

Theorem 1.3. [2, Theorem 2] In the same situation, for sufficiently large integer k, there is a topological Lefschetz pencil on V whose fibres are symplectic subvarieties, homologous to k times the Poincaré dual of $[\omega]$.

The integrable case is also easy to understand. Take $L \rightarrow V$ whose Chern class is $[\omega]$. Then for k large, take a generic pair of holomorphic sections $s_{0}, s_{1} \in H^{0}\left(L^{k}\right)$. The meromorphic function $f=s_{0} / s_{1}: V \rightarrow \mathbb{P}^{1}$ gives a Lefschetz fibration, where the b_{λ} 's are critical points of f. Equivalently, view $V \subset \mathbb{P}^{N}$ via the Kodaira embedding, then a generic pencil of hyperplane intersections gives a Lefschetz fibration.

In this note, we give a brief account of Donaldson's proofs of these two theorems.

2. Proof of Theroem 1.1

2.1. The idea. Let \mathbb{C}^{n} have the standard metric and symplectic form ω. Let G be the Grassmannian of oriented real $2 n-2$-planes in \mathbb{C}^{n} and $G^{+} \subset G$ the open subset of symplectic $2 n-2$-planes Π, i.e., those for which the restriction of ω^{n-1} is positive relative to the orientation. G^{+}only depends on the symplectic form ω. We also have a volume form Ω_{Π} on each such subspaces. We can define the "Kähler angle" $\theta: G \rightarrow[0, \pi]$ by

$$
\begin{equation*}
\theta(\Pi)=\cos ^{-1}\left(\frac{1}{(n-1)!} \frac{\left.\omega^{n-1}\right|_{\Pi}}{\Omega_{\Pi}}\right) . \tag{2.1}
\end{equation*}
$$

The complex subspaces are those with $\theta(\Pi)=0$ and θ measures the amount by which a subspace fails to be complex-linear, and $G^{+}=\theta^{-1}[0, \pi / 2)$.

Now suppose Π is given by the kernel of a real linear map $A: \mathbb{C}^{n} \rightarrow \mathbb{C}, A=a^{\prime}+a^{\prime \prime}$ (which induces a natural orientation). We see
(1) A has real rank 2 unless $\overline{a^{\prime \prime}}=e^{i \alpha} a^{\prime}$ for some α;
(2) If A has rank 2 and $\Pi=\operatorname{ker} A$, then

$$
\tan \theta(\Pi)=\frac{2 \sqrt{\left|a^{\prime}\right|^{2}\left|a^{\prime \prime}\right|^{2}-\left|\left\langle a^{\prime}, \overline{\overline{a^{\prime \prime}}}\right\rangle\right|^{2}}}{\left|a^{\prime}\right|^{2}-\left|a^{\prime \prime}\right|^{2}}
$$

Therefore we see
Lemma 2.1. If $\left|a^{\prime \prime}\right|<\left|a^{\prime}\right|$, then $\operatorname{ker}\left(a^{\prime}+a^{\prime \prime}\right) \subset \mathbb{C}^{n}$ is symplectic.
Then we will prove

Theorem 2.2. Let $L \rightarrow V$ be a complex line bundle and $c_{1}(L)=[\omega]$. Then there exists $C>0$ such that for all large k, there is a smooth section $s \in \Gamma\left(L^{k}\right)$ such that

$$
\begin{equation*}
|\bar{\partial} s|<\frac{C}{\sqrt{k}}|\partial s| \tag{2.2}
\end{equation*}
$$

on the vanishing locus of s.
Together with Lemma 2.1, this theorem implies Theorem 1.1.
We briefly describe Donaldson's construction of the section s. For large k, chooing finitely many points $p_{1}, \ldots, p_{M_{k}}$ on V such that balls centered at p_{i} of radius $O\left(k^{-1 / 2}\right)$ cover V. For each i there is a section σ_{i} of L^{k} supported in B_{i}, which is constructed using the concrete coordinates around p_{i}. Then by some very complicated analytical argument, Donaldson proved that a delicate choice of a linear combination $s_{\underline{w}}=\sum w_{i} \sigma_{i}$ satisfies the transversality condition of Theorem 2.2.
2.2. Local theory. We first construct the sections σ_{i}, which is purely local.
2.2.1. Symplectic structure. Consider the standard symplectic form

$$
\begin{equation*}
\omega_{0}=\frac{\boldsymbol{i}}{2} \sum_{\alpha=1}^{n} d z_{\alpha} d \bar{z}_{\alpha} \tag{2.3}
\end{equation*}
$$

which is equal to $\boldsymbol{i} d A$ with

$$
\begin{equation*}
A=\frac{1}{4} \sum_{\alpha=1}^{n}\left(z_{\alpha} d \bar{z}_{\alpha}-\bar{z}_{\alpha} d z_{\alpha}\right) \tag{2.4}
\end{equation*}
$$

Therefore, ω_{0} is the curvature form of a $U(1)$-connection on the trivial line bundle with connection matrix A. This gives a $\bar{\partial}$-operator which reads

$$
\begin{equation*}
\bar{\partial}_{A} f=\bar{\partial} f+A^{0,1} f \tag{2.5}
\end{equation*}
$$

We see

$$
\begin{equation*}
\bar{\partial}_{A} e^{-|z|^{2} / 4}=0, \partial_{A} e^{-|z|^{2} / 4}=\frac{1}{2}\left(\sum_{\alpha} \bar{z}_{\alpha} d z_{\alpha}\right) e^{-|z|^{2} / 4} \tag{2.6}
\end{equation*}
$$

We see the trivial bundle ξ has a holomorphic section $e^{-|z|^{2} / 4}$ which decays exponentially. For $k \geq 1$, the bundle ξ^{k} has connection form $k A$ and holomorphic section $e^{-k|z|^{2} / 4}$.

Now consider (V, ω) with

- a fixed compatible almost complex structure J;
- a line bundle $L \rightarrow V$ with $U(1)$-connection having curvature $-\boldsymbol{i} \omega$;

Let g be the metric $\omega(\cdot, J \cdot)$ and $g_{k}=k g$.

For any $p \in V$, there is a Darboux chart $\chi=\chi_{p}: B^{2 n} \rightarrow V$ such that $\chi_{p}(0)=p$ and $\chi_{p}^{*} \omega=\omega_{0}$. Since V is compact, we may assume that all derivatives of χ_{p} are uniformly bounded. We also assume that χ_{p} is complex linear at 0 , so there is $C>0$ such taht

$$
\begin{equation*}
\left|\chi^{*} J-J_{0}\right| \leq C|z|,\left|\nabla\left(\chi^{*} J-J_{0}\right)\right| \leq C . \tag{2.7}
\end{equation*}
$$

Given k, we compose χ with the dilation map

$$
\begin{equation*}
\tilde{\chi}=\chi \circ \delta_{1 / \sqrt{k}}: \sqrt{k} B^{2 n} \rightarrow V \tag{2.8}
\end{equation*}
$$

Therefore we can assume

$$
\begin{equation*}
\left|\widetilde{\chi}^{*} J-J_{0}\right| \leq \frac{C}{\sqrt{k}}|z|,\left|\nabla\left(\widetilde{\chi}^{*} J-J_{0}\right)\right| \leq \frac{C}{\sqrt{k}} \tag{2.9}
\end{equation*}
$$

with C taken uniformly.
On the other hand, since $\widetilde{\chi}^{*}(-\boldsymbol{i} k \omega)$, the pull-back of the curvature of L^{k} is the standard form $-\boldsymbol{i} \omega_{0}$ on \mathbb{C}^{n}. So we may take lift $\widetilde{\chi}$ to a map

$$
\begin{equation*}
\tilde{\chi}: \sqrt{k} B^{2 n} \times \mathbb{C} \rightarrow L \tag{2.10}
\end{equation*}
$$

which preserves the connection. We have a locally defined section σ.
Let d_{k} be the distance function of g_{k} and define

$$
e_{k}(p, q)=\left\{\begin{array}{cc}
e^{-d_{k}(p, q)^{2} / 5}, & d_{k}(p, q) \leq k^{1 / 4} \tag{2.11}\\
0, & d_{k}(p, q)>k^{1 / 4}
\end{array}\right.
$$

(e_{k} is supported in a $O\left(k^{-1 / 2}\right)$-neighborhood of the diagonal).
Proposition 2.3. For each $p \in V$ and sufficiently large k, there is a smooth section σ_{p} of L^{k} over V such that for
(1) For fixed $R,\left|\sigma_{p}(q)\right| \geq C^{-1}$ if $d_{k}(p, q) \leq R$.
(2) $\left|\sigma_{p}(q)\right| \leq e_{k}(p, q)$.
(3) $\left|\nabla_{V} \sigma_{p}\right| \leq C\left(1+d_{k}(p, q)\right) e_{k}(p, q)$.
(4) $\left|\bar{\partial}_{L} \sigma_{p}(q)\right| \leq \frac{C}{\sqrt{k}} d_{k}(p, q)^{2} e_{k}(p, q)$.
(5) $\left|\nabla_{V} \bar{\partial}_{L} \sigma_{p}(q)\right| \leq \frac{C}{\sqrt{k}}\left(d_{k}(p, q)+d_{k}(p, q)^{3}\right) e_{k}(p, q)$.

Here $\bar{\partial}_{L}$ is the $\bar{\partial}$-operator on L (and L^{k}), ∇_{V} is the covariant derivative induced from the Levi-Civita connection on V and the connection on L^{k}.

Proof. Choose a cut-off function $\beta_{k}: \mathbb{C}^{n} \rightarrow[0,1]$ by rescaling a standard cut-off function β with

$$
\begin{equation*}
\beta_{k}(z)=\beta\left(\frac{z}{k^{1 / 6}}\right) . \tag{2.12}
\end{equation*}
$$

Then we define

$$
\begin{equation*}
\sigma_{p}=\widetilde{\chi}\left(\beta_{k} \sigma\right) \in \Gamma\left(L^{k}\right) \tag{2.13}
\end{equation*}
$$

Since $\widetilde{\chi}$ shrinks with a factor $k^{-1 / 2}, \sigma_{p}$ is supported in a ball of radius $O\left(k^{-1 / 3}\right)$ centered at p. Then we can prove everything by explicit calculation.

2.3. A very dense open cover.

Lemma 2.4. There is a constant $C>0$ such that for all k, we can cover V by g_{k}-unit balls with centers $p_{1}, \ldots, p_{M_{k}}$ such that

$$
\begin{equation*}
\sum_{i=1}^{M_{k}} d_{k}\left(p_{i}, q\right)^{r} e_{k}\left(p_{i}, q\right) \leq C, \forall q \in V, r=0,1,2,3 \tag{2.14}
\end{equation*}
$$

Proof. If $\Lambda \subset \mathbb{C}^{n}$ is a lattice in \mathbb{C}^{n}, then for any $a, r>0$ and $w \in \mathbb{C}^{n}$,

$$
\begin{equation*}
\sup _{w} \sum_{\mu \in \Lambda}|\mu-w|^{r} e^{-a|\mu-w|^{2}}<\infty \tag{2.15}
\end{equation*}
$$

Choose a finite cover $\phi_{s}: O_{s} \rightarrow V, s=1, \ldots, S$ with O_{s} bounded in \mathbb{C}^{n} such that

$$
\begin{equation*}
\frac{1}{2}|x-y| \leq d\left(\phi_{s}(x), \phi_{s}(y)\right) \leq 2|x-y| \tag{2.16}
\end{equation*}
$$

Choose slightly smaller $O_{s}^{\prime} \subset \subset O_{s}$ such that O_{s}^{\prime} also cover V.
Let Λ_{k} be the lattice $\alpha\left(\mathbb{Z}^{n} \oplus i \mathbb{Z}^{n}\right)$ with

$$
\begin{equation*}
\alpha=\frac{\sqrt{\frac{n}{2}}}{2 \sqrt{k}} . \tag{2.17}
\end{equation*}
$$

Let Λ_{s} be the image under ϕ_{s} of $O_{s} \cap \Lambda_{k}$. Then when k is large, the ball of radius $k^{-1 / 2}$ centered at points of Λ_{s} cover $\phi_{s}\left(O_{s}^{\prime}\right)$. Take p_{i} be the union of those lattice points. Then to bound the quantity, we need to bound the individual ones

$$
\begin{equation*}
R_{s}(q)=\sum_{p \in \Lambda_{s}} d_{k}(p, q)^{r} e_{k}(p, q) \tag{2.18}
\end{equation*}
$$

Since e_{k} vanishes if $d_{k}(p, q)>k^{1 / 4}$, so we only need to consider the case when q lies in $\phi_{s}\left(O_{s}\right)$. Then

$$
\begin{equation*}
R_{s}(q) \leq \sum_{\lambda \in \Lambda_{k}} 2^{r} k^{r / 2}|z-\lambda|^{r} e^{-k|z-\lambda|^{2} / 20}=\sum_{\mu \in \Lambda_{0}} 2^{r}|w-\mu|^{r} e^{-|\mu-w|^{2} / 20} \tag{2.19}
\end{equation*}
$$

So for each k, we fix the choice of $p_{1}, \ldots, p_{M_{k}}$ and denote $\sigma_{i}=\sigma_{p_{i}}$. Let $B_{i} \subset V$ be the g_{k}-unit ball centered at p_{i}.
2.4. A nice linear combination. Our desired section will be a linear combination of those σ_{i}. For complex numbers $\underline{w}=\left(w_{1}, \ldots, w_{M_{k}}\right)$, take

$$
\begin{equation*}
s=s_{\underline{w}}=\sum_{i=1}^{M_{k}} w_{i} \sigma_{i} . \tag{2.20}
\end{equation*}
$$

We always consider coefficients w_{i} with $\left|w_{i}\right| \leq 1$.
Lemma 2.5. For any $\underline{w}, s=s_{\underline{w}}$ satisfies

$$
\begin{equation*}
|s| \leq C,\left|\bar{\partial}_{L} s\right| \leq \frac{C}{\sqrt{k}},\left|\nabla_{V} \bar{\partial}_{L} s\right| \leq \frac{C}{\sqrt{k}} \tag{2.21}
\end{equation*}
$$

Proof. By Proposition 2.3 and Lemma 2.4, we have

$$
\begin{equation*}
|s(q)| \leq \sum_{i=1}^{M_{k}}\left|\sigma_{i}(q)\right| \leq \sum_{i=1}^{M_{k}} e_{k}\left(p_{i}, q\right) \leq C . \tag{2.22}
\end{equation*}
$$

Other items of Proposition 2.3 together with Lemma 2.4 imply the other two estimates.

Proposition 2.6. There is an $\epsilon>0$ such that for all large k, we can choose \underline{w} such that s satisfies the transversality condition

$$
\begin{equation*}
\left|\partial_{L} s\right|>\epsilon \tag{2.23}
\end{equation*}
$$

on the zero locus of s.
Lemma 2.5 and Proposition 2.6 imply Theorem 2.2.
2.5. Proof of Proposition 2.6. Since B_{i} is of radius $O\left(k^{-1 / 2}\right), \widetilde{\chi}_{i}^{-1}\left(B_{i}\right)$ is contained in a bounded region, say $\Delta=\frac{11}{10} B^{2 n}$. Take Δ^{+}be the polydisk of radius $\frac{22}{10}$. Over Δ^{+}we have the section σ_{i} trivializting L^{k}. The following lemma, which can be proved by straightforward calculation, shows that we only need to check the transversality condition on each chart.

Lemma 2.7. Let $s=s_{\underline{w}}$ is a section of L^{k} with $\left|w_{i}\right| \leq 1$ and $f_{i}: \Delta^{+} \rightarrow \mathbb{C}$ is the corresponding function. Then
(1) $\left\|f_{i}\right\|_{C^{1}\left(\Delta^{+}\right)} \leq C$;
(2) $\left\|\bar{\partial} f_{i}\right\|_{C^{1}\left(\Delta^{+}\right)} \leq \frac{C}{\sqrt{k}}$;
(3) If $\left|\partial f_{i}\right|>\epsilon$ on $f_{i}^{-1}(0) \cap \Delta$, then for k large, $\left|\partial_{L} s\right| \geq C^{-1} \epsilon$ on $s^{-1}(0) \cap B_{i}$.

Since the number M_{k} grows with k, we subdivide the points p_{i} into finitely many groups.

Lemma 2.8. Given $D>0$, there is $N(D)>0$ independent of k such that for all k with $p_{1}, \ldots, p_{M_{k}}$ given by \ldots, there is a partition

$$
\begin{equation*}
I=\left\{1, \ldots, M_{k}\right\}=I_{1} \cup I_{2} \cup \cdots \cup I_{N} \tag{2.24}
\end{equation*}
$$

such that for $\alpha \in\{1, \ldots, N\}$,

$$
\begin{equation*}
d\left(p_{i}, p_{j}\right) \geq D, \forall p_{i}, p_{j} \in I_{\alpha} . \tag{2.25}
\end{equation*}
$$

Fix $D>0$. Denote

$$
\begin{equation*}
V_{\alpha}=\bigcup_{i \in I_{\beta}, \beta \leq \alpha} B_{i}, \emptyset=V_{0} \subset V_{1} \subset \cdots \subset V_{N}=V \tag{2.26}
\end{equation*}
$$

The construction of the coefficient vector \underline{w} (and hence the section s) is done inductively. We start with an arbitrary \underline{w}. Then we modify those w_{i} with $i \in I_{1}$ such that the controlled transversality condition holds on V_{1}. Suppose we have chosen \underline{w}_{α} such that the controlled transversality holds on V_{α}, then we modify those w_{i} with $i \in I_{\alpha+1}$ to obtain $\underline{w}_{\alpha+1}$, such that $s_{\alpha+1}$ satisfies the controlled transversality over $V_{\alpha+1}$. The induction finishes in finite steps.

Definition 2.9. Let $U \subset \mathbb{C}^{n}$ be an open subset and $f: U \rightarrow \mathbb{C}$ be a smooth function. For $\eta>0$ and $w \in \mathbb{C}$ we say that f is η-transverse to w over U if

$$
\begin{equation*}
|f(z)-w| \leq \eta \Longrightarrow|\partial f(z)| \geq \eta \tag{2.27}
\end{equation*}
$$

We say a section $s \in \Gamma\left(L^{k}\right)$ is η-transverse over B_{i} if $f_{i}=s / \sigma_{i}$ is η-transverse to 0 over the corresponding set Δ.

3. The transversality theorem

For $\delta \in(0,1), p>0$, introduce

$$
\begin{equation*}
Q_{p}(\delta)=\frac{1}{(-\log \delta)^{p}} \tag{3.1}
\end{equation*}
$$

The burden of proving Proposition 2.6 is given to the following theorem.
Theorem 3.1. For $\sigma>0$, let \mathcal{H}_{σ} denote the set of functions f on Δ^{+}such that
(1) $\|f\|_{C^{0}\left(\Delta^{+}\right)} \leq 1$,
(2) $\|\bar{\partial} f\|_{C^{1}\left(\Delta^{+}\right)} \leq \sigma$.

Then there is an integer p depending only on n such that for any $\delta \in(0,1 / 2)$, if $\sigma<Q_{p}(\delta) \delta$, then for any $f \in \mathcal{H}_{\sigma}$, there is $w \in \mathbb{C}$ with $|w| \leq \delta$ such that f is $Q_{p}(\delta) \delta$ transverse to w over Δ. Moreover, w can be chosen in any preferred half-plane in \mathbb{C}.

Now we start the induction argument.

Lemma 3.2. Let $s=s_{\underline{w}}$, and for any α, let \underline{w}^{\prime} be another coefficient vector which agrees with \underline{w} except for coefficients belonging to I_{α}. Suppose $\left|w_{j}^{\prime}-w_{j}\right| \leq \delta$ for some δ. Then
(1) For any $i,\left\|f_{i}^{\prime}-f_{i}\right\|_{C^{1}\left(\Delta^{+}\right)} \leq C \delta$.
(2) For $i \in I_{\alpha},\left\|f_{i}^{\prime}-f_{i}-\left(w_{i}^{\prime}-w_{i}\right)\right\|_{C^{1}\left(\Delta^{+}\right)} \leq C \delta \exp \left(-D^{2} / 5\right)$.

Proposition 3.3. There are constants $\rho<1$ and p such that if
(1) $s^{\alpha-1}=s_{\underline{w}^{\alpha-1}} \in \Gamma\left(L^{k}\right)$ is $\eta_{\alpha-1}$-transverse over $V_{\alpha-1}$ with $\eta_{\alpha-1} \leq \rho$;
(2) $\frac{1}{\sqrt{k}} \leq Q_{p}\left(\eta_{\alpha-1}\right) \eta_{\alpha-1}$;
(3) $\exp \left(-D^{2} / 5\right) \leq Q_{p}\left(\eta_{\alpha-1}\right)$,
then there is another section $s^{\alpha}=s_{\underline{w}^{\alpha}}$ which is η_{α}-transverse over V_{α} where $\eta_{\alpha}=$ $Q_{p}\left(\eta_{\alpha-1}\right) \eta_{\alpha-1}$.

Proof. Consider some $i \in I_{\alpha}$. Suppose we choose w_{i}^{α} in such a way that

$$
\begin{equation*}
\left|w_{i}^{\alpha}-w_{i}^{\alpha-1}\right| \leq \delta_{\alpha} . \tag{3.2}
\end{equation*}
$$

Then by the (1) of Lemma 3.2, s^{α} is $\eta_{\alpha-1}-C \delta_{\alpha}$-transverse over V_{α}. Therefore choosing δ_{α} properly, we have s^{α} still $\eta_{\alpha-1} / 2$-transverse over $V_{\alpha-1}$. On the other hand, if $s^{\alpha-1}=$ $f_{i} \sigma_{i}$ for $i \in I_{\alpha}$, then by Lemma 2.7.

$$
\begin{equation*}
\left\|\bar{\partial} f_{i}\right\|_{C^{1}\left(\Delta^{+}\right)} \leq \frac{C}{\sqrt{k}} \tag{3.3}
\end{equation*}
$$

Hence $f_{i} \in \mathcal{H}_{\sigma}$ for $\sigma=\frac{C}{\sqrt{k}}$. We can modify p properly to absorb the constant C. Then choose k big enough such that

$$
\begin{equation*}
\frac{1}{\sqrt{k}} \leq \delta_{\alpha} Q_{p}\left(\delta_{\alpha}\right) \tag{3.4}
\end{equation*}
$$

then by Theorem 3.1, there exists v_{i} with $\left|v_{i}\right| \leq \delta_{\alpha}$ and f_{i} is $Q_{p}\left(\delta_{\alpha}\right) \delta_{\alpha}$-transverse to v_{i} over the unit ball. In other words, $f_{i}-v_{i}$ is $Q_{p}\left(\delta_{\alpha}\right) \delta_{\alpha}$-transverse to 0 . We define

$$
\begin{equation*}
w_{j}^{\alpha}=w_{j}^{\alpha-1}, \forall j \neq i, w_{i}^{\alpha}=w_{i}^{\alpha-1}-v_{i} . \tag{3.5}
\end{equation*}
$$

By choosing an appropriate half-plane, we may still have $\left|w_{i}^{\alpha}\right| \leq 1$.
Now we define \underline{w}^{α} by

$$
\begin{equation*}
w_{j}^{\alpha}=w_{j}^{\alpha-1}, j \notin I_{\alpha}, w_{j}^{\alpha}=w_{j}^{\alpha-1}-v_{j}, j \in I_{\alpha} . \tag{3.6}
\end{equation*}
$$

By (2) of Lemma 3.2, the extra term is given by $C \delta_{\alpha} \exp \left(-D^{2} / 5\right)$. So if

$$
\begin{equation*}
C \delta_{\alpha} \exp \left(-D^{2} / 5\right) \leq \frac{1}{2} Q_{p}\left(\delta_{\alpha}\right) \delta_{\alpha} \tag{3.7}
\end{equation*}
$$

then s^{α} will be
Eventually we have s^{α} is $\widetilde{\eta}_{\alpha}$-transverse with $\widetilde{\eta}_{\alpha}=\frac{1}{2} Q_{p}\left(\delta_{\alpha}\right) \delta_{\alpha}$. Lastly, if

$$
\begin{equation*}
\frac{1}{2} Q_{p}\left(\delta_{\alpha}\right) \delta_{\alpha} \geq Q_{p}\left(\eta_{\alpha-1}\right) \eta_{\alpha-1}=\eta_{\alpha} \tag{3.8}
\end{equation*}
$$

then s^{α} is η_{α}-transverse. Otherwise, modify the value of p and δ_{α} such that the above becomes an equality.

One can prove that for suitably chosen D and hence the partition, an induction argument can be carried out to produce an ϵ-transverse section over V.

4. Asymptotic Behavior of s_{k}

In fact, in the proof we can see the submanifold W_{k} becomes extremely complicated as k grows, which will eventually fill out all of V. Indeed as currents, $\frac{k}{W} k$ converges to the symplectic form.

Proposition 4.1. [1, Proposition 40] There is a constant $C>0$ such that for any test form $\psi \in \Omega^{2 n-2}(V)$,

$$
\begin{equation*}
\left|\int_{W_{k}} \psi-k \int_{V} \omega \wedge \psi\right| \leq C \sqrt{k}\|d \psi\|_{L^{\infty}(V)} \tag{4.1}
\end{equation*}
$$

Let $s \in \Gamma\left(L^{k}\right)$ cut out W_{k}. Consider the 1-form $A=s^{-1} \nabla s$ on the complement of W_{k}, which has integrable singularity. Hence A can be viewed as a current. Indeed, we have

$$
\begin{equation*}
d A=W_{k}-k \omega \tag{4.2}
\end{equation*}
$$

Therefore it suffices to prove that $\int_{V}|A| d \mu \leq C \sqrt{k}$.
If we consider it within a g_{k}-unit ball, i.e., radius $O(1 / \sqrt{k})$ balls, identified with $B^{2 n}$ via $\widetilde{\chi}$, then the number of balls is roughly $O\left(k^{n}\right)$ while the pull-back to the unit ball will enlarge the volume form by k^{n}. The pull-back will also bring in a factor to ∇s. In a small scale we see that ∇s is uniformly bounded, so it suffices to control the integral of $|s|^{-1}$ in any g_{k}-unit ball.

Proposition 4.2. Given $\rho>0$ let \mathcal{K}_{ρ} be the space of complex-valued functions f on $2 B^{2 n}$ with $\|\bar{\partial} f\|_{C^{1}} \leq \rho / 2,\|f\|_{C^{0}} \leq 1$ and $|f| \leq \rho \Longrightarrow|\partial f| \geq \rho$. Then there is $C(\rho)>0$ such that for all $f \in \mathcal{K}_{\rho}$,

$$
\begin{equation*}
\int_{B^{2 n}} \frac{1}{|f|} d \mu \leq C(\rho) \tag{4.3}
\end{equation*}
$$

Proof. Divide $B^{2 n}$ into two parts I_{1} and I_{2} by whether $|f| \leq \rho$ or $|f| \geq \rho . I_{2}$ is easy to control. On the other hand, we have the "co-area" formula:

$$
\begin{equation*}
I_{1}=\int_{|f| \leq \rho} \frac{1}{|f|} d \mu=\int_{|\sigma| \leq \rho}|\sigma|^{-1}\left(\int_{f^{-1}(\sigma)}\left|J_{f}\right|^{-1} d \nu\right) d \sigma \tag{4.4}
\end{equation*}
$$

We have

$$
\begin{equation*}
J_{f}=\sqrt{\left(|\partial f|^{2}+|\bar{\partial} f|^{2}\right)^{2}-4|\langle\overline{\partial f}, \bar{\partial} f\rangle|^{2}} \geq \frac{3 \rho^{2}}{4} \tag{4.5}
\end{equation*}
$$

Therefore it suffices to give a uniform bound on the volume of each $f^{-1}(\sigma)$. If $f^{-1}(\sigma)$ doesn's have uniformly bounded volume, then choose a sequence f_{i}, σ_{i}. By elliptic regularity, f_{i} converges in C^{1} to f and σ_{i} converges to σ with $|\sigma| \leq \rho$. However, $Z_{\sigma_{i}}\left(f_{i}\right)$ converges to $Z_{\sigma}(f)$ in the C^{1}-sense so the volume should converge.

References

[1] Simon Donaldson, Symplectic submanifolds and almost-complex geometry, Journal of Differential Geometry 44 (1996), 666-705.
[2] _ Lefschetz pencils on symplectic manifolds, Journal of Differential Geometry 53 (1999), 205-236.

Department of Mathematics, University of California, Irvine, Irvine, CA 92697 USA E-mail address: guangbox@math.uci.edu

[^0]: Date: March 5, 2015.

