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1. Statement of the theorems

We consider compact symplectic manifolds. The symplectic form ω represents a de

Rham cohomology class [ω] ∈ H2(V,R).

Theorem 1.1. [1, Theorem 1] Let (V, ω) be a compact symplectic manifold of dimension

2n and suppose the cohomology class of ω is integral. Then for sufficiently large integer

k, the Poincaré dual of k[ω] can be realized as a symplectic submanifold W ⊂ V .

If V is Kähler, then there exists a positive line bundle L with Chern class [ω]. Then

for k large, a generic holomorphic section s ∈ H0(Lk) has a smooth vanishing locus

which is a submanifold and is Poincaré dual to k[ω].

In [2] this theorem was enhanced to the following form. To state the enhancement,

we need to introduce the notion of topological Lefschetz pencils.

Definition 1.2. A topological Lefschetz pencil on V consists of the following data,

(1) a codimension-4 submanifold A ⊂ V ,

(2) a finite set of points {bλ} ⊂ V \ V ,

(3) a smooth map f : V \A→ S2 whose restriction to V \A∪{bλ} is a submersion,

and f(bλ) 6= f(bµ) for λ 6= µ.

This data is required to conform to the following standard local models.
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At a point a ∈ A, there are compatible local complex coordinates such that A is

given by z1 = z2 = 0 and on the complement of A in a neighborhood of a, f is given by

(z1, . . . , zn) 7→ z1/z2 ∈ P1.

At a point bλ there are compatible local complex coordinates in which f is represented

by the nondegenerate quadratic form

(z1, . . . , zn) 7→ f(bλ) + z2
1 + · · ·+ z2

n.

Theorem 1.3. [2, Theorem 2] In the same situation, for sufficiently large integer k,

there is a topological Lefschetz pencil on V whose fibres are symplectic subvarieties,

homologous to k times the Poincaré dual of [ω].

The integrable case is also easy to understand. Take L → V whose Chern class is

[ω]. Then for k large, take a generic pair of holomorphic sections s0, s1 ∈ H0(Lk). The

meromorphic function f = s0/s1 : V → P1 gives a Lefschetz fibration , where the bλ’s

are critical points of f . Equivalently, view V ⊂ PN via the Kodaira embedding, then a

generic pencil of hyperplane intersections gives a Lefschetz fibration.

In this note, we give a brief account of Donaldson’s proofs of these two theorems.

2. Proof of Theroem 1.1

2.1. The idea. Let Cn have the standard metric and symplectic form ω. Let G be

the Grassmannian of oriented real 2n− 2-planes in Cn and G+ ⊂ G the open subset of

symplectic 2n−2-planes Π, i.e., those for which the restriction of ωn−1 is positive relative

to the orientation. G+ only depends on the symplectic form ω. We also have a volume

form ΩΠ on each such subspaces. We can define the “Kähler angle” θ : G→ [0, π] by

θ(Π) = cos−1

(
1

(n− 1)!

ωn−1|Π
ΩΠ

)
. (2.1)

The complex subspaces are those with θ(Π) = 0 and θ measures the amount by which

a subspace fails to be complex-linear, and G+ = θ−1[0, π/2).

Now suppose Π is given by the kernel of a real linear map A : Cn → C, A = a′ + a′′

(which induces a natural orientation). We see

(1) A has real rank 2 unless a′′ = eiαa′ for some α;

(2) If A has rank 2 and Π = kerA, then

tan θ(Π) =
2
√
|a′|2|a′′|2 − |〈a′, a′′〉|2
|a′|2 − |a′′|2

Therefore we see

Lemma 2.1. If |a′′| < |a′|, then ker(a′ + a′′) ⊂ Cn is symplectic.

Then we will prove
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Theorem 2.2. Let L→ V be a complex line bundle and c1(L) = [ω]. Then there exists

C > 0 such that for all large k, there is a smooth section s ∈ Γ(Lk) such that

|∂s| < C√
k
|∂s| (2.2)

on the vanishing locus of s.

Together with Lemma 2.1, this theorem implies Theorem 1.1.

We briefly describe Donaldson’s construction of the section s. For large k, chooing

finitely many points p1, . . . , pMk
on V such that balls centered at pi of radius O(k−1/2)

cover V . For each i there is a section σi of Lk supported in Bi, which is constructed

using the concrete coordinates around pi. Then by some very complicated analytical

argument, Donaldson proved that a delicate choice of a linear combination sw =
∑
wiσi

satisfies the transversality condition of Theorem 2.2.

2.2. Local theory. We first construct the sections σi, which is purely local.

2.2.1. Symplectic structure. Consider the standard symplectic form

ω0 =
i

2

n∑
α=1

dzαdzα (2.3)

which is equal to idA with

A =
1

4

n∑
α=1

(
zαdzα − zαdzα

)
(2.4)

Therefore, ω0 is the curvature form of a U(1)-connection on the trivial line bundle with

connection matrix A. This gives a ∂-operator which reads

∂Af = ∂f + A0,1f. (2.5)

We see

∂Ae
−|z|2/4 = 0, ∂Ae

−|z|2/4 =
1

2

(∑
α

zαdzα

)
e−|z|

2/4. (2.6)

We see the trivial bundle ξ has a holomorphic section e−|z|
2/4 which decays exponentially.

For k ≥ 1, the bundle ξk has connection form kA and holomorphic section e−k|z|
2/4.

Now consider (V, ω) with

• a fixed compatible almost complex structure J ;

• a line bundle L→ V with U(1)-connection having curvature −iω;

Let g be the metric ω(·, J ·) and gk = kg.
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For any p ∈ V , there is a Darboux chart χ = χp : B2n → V such that χp(0) = p and

χ∗pω = ω0. Since V is compact, we may assume that all derivatives of χp are uniformly

bounded. We also assume that χp is complex linear at 0, so there is C > 0 such taht

|χ∗J − J0| ≤ C|z|, |∇(χ∗J − J0)| ≤ C. (2.7)

Given k, we compose χ with the dilation map

χ̃ = χ ◦ δ1/
√
k :
√
kB2n → V. (2.8)

Therefore we can assume

|χ̃∗J − J0| ≤
C√
k
|z|, |∇(χ̃∗J − J0)| ≤ C√

k
(2.9)

with C taken uniformly.

On the other hand, since χ̃∗(−ikω), the pull-back of the curvature of Lk is the

standard form −iω0 on Cn. So we may take lift χ̃ to a map

χ̃ :
√
kB2n × C→ L (2.10)

which preserves the connection. We have a locally defined section σ.

Let dk be the distance function of gk and define

ek(p, q) =

 e−dk(p,q)2/5, dk(p, q) ≤ k1/4;

0, dk(p, q) > k1/4.
(2.11)

(ek is supported in a O(k−1/2)-neighborhood of the diagonal).

Proposition 2.3. For each p ∈ V and sufficiently large k, there is a smooth section σp
of Lk over V such that for

(1) For fixed R, |σp(q)| ≥ C−1 if dk(p, q) ≤ R.

(2) |σp(q)| ≤ ek(p, q).

(3) |∇V σp| ≤ C(1 + dk(p, q))ek(p, q).

(4) |∂Lσp(q)| ≤ C√
k
dk(p, q)

2ek(p, q).

(5) |∇V ∂Lσp(q)| ≤ C√
k
(dk(p, q) + dk(p, q)

3)ek(p, q).

Here ∂L is the ∂-operator on L (and Lk), ∇V is the covariant derivative induced from

the Levi-Civita connection on V and the connection on Lk.

Proof. Choose a cut-off function βk : Cn → [0, 1] by rescaling a standard cut-off function

β with

βk(z) = β
( z

k1/6

)
. (2.12)

Then we define

σp = χ̃(βkσ) ∈ Γ(Lk). (2.13)
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Since χ̃ shrinks with a factor k−1/2, σp is supported in a ball of radius O(k−1/3) centered

at p. Then we can prove everything by explicit calculation. �

2.3. A very dense open cover.

Lemma 2.4. There is a constant C > 0 such that for all k, we can cover V by gk-unit

balls with centers p1, . . . , pMk
such that

Mk∑
i=1

dk(pi, q)
rek(pi, q) ≤ C, ∀q ∈ V, r = 0, 1, 2, 3. (2.14)

Proof. If Λ ⊂ Cn is a lattice in Cn, then for any a, r > 0 and w ∈ Cn,

sup
w

∑
µ∈Λ

|µ− w|re−a|µ−w|2 <∞. (2.15)

Choose a finite cover φs : Os → V , s = 1, . . . , S with Os bounded in Cn such that

1

2
|x− y| ≤ d(φs(x), φs(y)) ≤ 2|x− y|. (2.16)

Choose slightly smaller O′s ⊂⊂ Os such that O′s also cover V .

Let Λk be the lattice α(Zn ⊕ iZn) with

α =

√
n
2

2
√
k
. (2.17)

Let Λs be the image under φs of Os∩Λk. Then when k is large, the ball of radius k−1/2

centered at points of Λs cover φs(O
′
s). Take pi be the union of those lattice points.

Then to bound the quantity, we need to bound the individual ones

Rs(q) =
∑
p∈Λs

dk(p, q)
rek(p, q). (2.18)

Since ek vanishes if dk(p, q) > k1/4, so we only need to consider the case when q lies in

φs(Os). Then

Rs(q) ≤
∑
λ∈Λk

2rkr/2|z − λ|re−k|z−λ|2/20 =
∑
µ∈Λ0

2r|w − µ|re−|µ−w|2/20. (2.19)

�

So for each k, we fix the choice of p1, . . . , pMk
and denote σi = σpi . Let Bi ⊂ V be

the gk-unit ball centered at pi.
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2.4. A nice linear combination. Our desired section will be a linear combination of

those σi. For complex numbers w = (w1, . . . , wMk
), take

s = sw =

Mk∑
i=1

wiσi. (2.20)

We always consider coefficients wi with |wi| ≤ 1.

Lemma 2.5. For any w, s = sw satisfies

|s| ≤ C, |∂Ls| ≤
C√
k
, |∇V ∂Ls| ≤

C√
k
. (2.21)

Proof. By Proposition 2.3 and Lemma 2.4, we have

|s(q)| ≤
Mk∑
i=1

|σi(q)| ≤
Mk∑
i=1

ek(pi, q) ≤ C. (2.22)

Other items of Proposition 2.3 together with Lemma 2.4 imply the other two estimates.

�

Proposition 2.6. There is an ε > 0 such that for all large k, we can choose w such

that s satisfies the transversality condition

|∂Ls| > ε (2.23)

on the zero locus of s.

Lemma 2.5 and Proposition 2.6 imply Theorem 2.2.

2.5. Proof of Proposition 2.6. Since Bi is of radius O(k−1/2), χ̃−1
i (Bi) is contained

in a bounded region, say ∆ = 11
10
B2n. Take ∆+ be the polydisk of radius 22

10
. Over

∆+ we have the section σi trivializting Lk. The following lemma, which can be proved

by straightforward calculation, shows that we only need to check the transversality

condition on each chart.

Lemma 2.7. Let s = sw is a section of Lk with |wi| ≤ 1 and fi : ∆+ → C is the

corresponding function. Then

(1) ‖fi‖C1(∆+) ≤ C;

(2) ‖∂fi‖C1(∆+) ≤ C√
k
;

(3) If |∂fi| > ε on f−1
i (0) ∩∆, then for k large, |∂Ls| ≥ C−1ε on s−1(0) ∩Bi.

Since the number Mk grows with k, we subdivide the points pi into finitely many

groups.
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Lemma 2.8. Given D > 0, there is N(D) > 0 independent of k such that for all k

with p1, . . . , pMk
given by ..., there is a partition

I = {1, . . . ,Mk} = I1 ∪ I2 ∪ · · · ∪ IN (2.24)

such that for α ∈ {1, . . . , N},

d(pi, pj) ≥ D, ∀pi, pj ∈ Iα. (2.25)

Fix D > 0. Denote

Vα =
⋃

i∈Iβ , β≤α

Bi, ∅ = V0 ⊂ V1 ⊂ · · · ⊂ VN = V. (2.26)

The construction of the coefficient vector w (and hence the section s) is done induc-

tively. We start with an arbitrary w. Then we modify those wi with i ∈ I1 such that

the controlled transversality condition holds on V1. Suppose we have chosen wα such

that the controlled transversality holds on Vα, then we modify those wi with i ∈ Iα+1

to obtain wα+1, such that sα+1 satisfies the controlled transversality over Vα+1. The

induction finishes in finite steps.

Definition 2.9. Let U ⊂ Cn be an open subset and f : U → C be a smooth function.

For η > 0 and w ∈ C we say that f is η-transverse to w over U if

|f(z)− w| ≤ η =⇒ |∂f(z)| ≥ η. (2.27)

We say a section s ∈ Γ(Lk) is η-transverse over Bi if fi = s/σi is η-transverse to 0 over

the corresponding set ∆.

3. The transversality theorem

For δ ∈ (0, 1), p > 0, introduce

Qp(δ) =
1(

− log δ
)p . (3.1)

The burden of proving Proposition 2.6 is given to the following theorem.

Theorem 3.1. For σ > 0, let Hσ denote the set of functions f on ∆+ such that

(1) ‖f‖C0(∆+) ≤ 1,

(2) ‖∂f‖C1(∆+) ≤ σ.

Then there is an integer p depending only on n such that for any δ ∈ (0, 1/2), if

σ < Qp(δ)δ, then for any f ∈ Hσ, there is w ∈ C with |w| ≤ δ such that f is Qp(δ)δ-

transverse to w over ∆. Moreover, w can be chosen in any preferred half-plane in

C.

Now we start the induction argument.
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Lemma 3.2. Let s = sw, and for any α, let w′ be another coefficient vector which

agrees with w except for coefficients belonging to Iα. Suppose |w′j −wj| ≤ δ for some δ.

Then

(1) For any i, ‖f ′i − fi‖C1(∆+) ≤ Cδ.

(2) For i ∈ Iα, ‖f ′i − fi − (w′i − wi)‖C1(∆+) ≤ Cδ exp(−D2/5).

Proposition 3.3. There are constants ρ < 1 and p such that if

(1) sα−1 = swα−1 ∈ Γ(Lk) is ηα−1-transverse over Vα−1 with ηα−1 ≤ ρ;

(2) 1√
k
≤ Qp(ηα−1)ηα−1;

(3) exp(−D2/5) ≤ Qp(ηα−1),

then there is another section sα = swα which is ηα-transverse over Vα where ηα =

Qp(ηα−1)ηα−1.

Proof. Consider some i ∈ Iα. Suppose we choose wαi in such a way that

|wαi − wα−1
i | ≤ δα. (3.2)

Then by the (1) of Lemma 3.2, sα is ηα−1−Cδα-transverse over Vα. Therefore choosing

δα properly, we have sα still ηα−1/2-transverse over Vα−1. On the other hand, if sα−1 =

fiσi for i ∈ Iα, then by Lemma 2.7,

‖∂fi‖C1(∆+) ≤
C√
k
. (3.3)

Hence fi ∈ Hσ for σ = C√
k
. We can modify p properly to absorb the constant C. Then

choose k big enough such that

1√
k
≤ δαQp(δα), (3.4)

then by Theorem 3.1, there exists vi with |vi| ≤ δα and fi is Qp(δα)δα-transverse to vi
over the unit ball. In other words, fi − vi is Qp(δα)δα-transverse to 0. We define

wαj = wα−1
j , ∀j 6= i, wαi = wα−1

i − vi. (3.5)

By choosing an appropriate half-plane, we may still have |wαi | ≤ 1.

Now we define wα by

wαj = wα−1
j , j /∈ Iα, wαj = wα−1

j − vj, j ∈ Iα. (3.6)

By (2) of Lemma 3.2, the extra term is given by Cδα exp(−D2/5). So if

Cδα exp(−D2/5) ≤ 1

2
Qp(δα)δα, (3.7)

then sα will be

Eventually we have sα is η̃α-transverse with η̃α = 1
2
Qp(δα)δα. Lastly, if

1

2
Qp(δα)δα ≥ Qp(ηα−1)ηα−1 = ηα (3.8)
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then sα is ηα-transverse. Otherwise, modify the value of p and δα such that the above

becomes an equality. �

One can prove that for suitably chosen D and hence the partition, an induction

argument can be carried out to produce an ε-transverse section over V .

4. Asymptotic behavior of sk

In fact, in the proof we can see the submanifold Wk becomes extremely complicated

as k grows, which will eventually fill out all of V . Indeed as currents, k
W k

converges to

the symplectic form.

Proposition 4.1. [1, Proposition 40] There is a constant C > 0 such that for any test

form ψ ∈ Ω2n−2(V ), ∣∣∣∣∫
Wk

ψ − k
∫
V

ω ∧ ψ
∣∣∣∣ ≤ C

√
k
∥∥dψ∥∥

L∞(V )
. (4.1)

Let s ∈ Γ(Lk) cut out Wk. Consider the 1-form A = s−1∇s on the complement of

Wk, which has integrable singularity. Hence A can be viewed as a current. Indeed, we

have

dA = Wk − kω. (4.2)

Therefore it suffices to prove that
∫
V
|A|dµ ≤ C

√
k.

If we consider it within a gk-unit ball, i.e., radius O(1/
√
k) balls, identified with B2n

via χ̃, then the number of balls is roughly O(kn) while the pull-back to the unit ball

will enlarge the volume form by kn. The pull-back will also bring in a factor to ∇s. In

a small scale we see that ∇s is uniformly bounded, so it suffices to control the integral

of |s|−1 in any gk-unit ball.

Proposition 4.2. Given ρ > 0 let Kρ be the space of complex-valued functions f on

2B2n with ‖∂f‖C1 ≤ ρ/2, ‖f‖C0 ≤ 1 and |f | ≤ ρ =⇒ |∂f | ≥ ρ. Then there is

C(ρ) > 0 such that for all f ∈ Kρ,∫
B2n

1

|f |
dµ ≤ C(ρ). (4.3)

Proof. Divide B2n into two parts I1 and I2 by whether |f | ≤ ρ or |f | ≥ ρ. I2 is easy to

control. On the other hand, we have the “co-area” formula:

I1 =

∫
|f |≤ρ

1

|f |
dµ =

∫
|σ|≤ρ
|σ|−1

(∫
f−1(σ)

|Jf |−1dν
)
dσ. (4.4)

We have

Jf =

√(
|∂f |2 + |∂f |2

)2 − 4|〈∂f, ∂f〉|2 ≥ 3ρ2

4
. (4.5)
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Therefore it suffices to give a uniform bound on the volume of each f−1(σ). If f−1(σ)

doesn’s have uniformly bounded volume, then choose a sequence fi, σi. By elliptic

regularity, fi converges in C1 to f and σi converges to σ with |σ| ≤ ρ. However, Zσi(fi)

converges to Zσ(f) in the C1-sense so the volume should converge.

�
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