DONALDSON'S RESULTS ON SYMPLECTIC HYPERSURFACES AND LEFSCHETZ PENCILS

GUANGBO XU

Contents

1.	Statement of the theorems	1
2.	Proof of Theroem 1.1	2
3.	The transversality theorem	6
4.	Asymptotic behavior of s_k	8
Re	ferences	9

1. STATEMENT OF THE THEOREMS

We consider compact symplectic manifolds. The symplectic form ω represents a de Rham cohomology class $[\omega] \in H^2(V, \mathbb{R})$.

Theorem 1.1. [1, Theorem 1] Let (V, ω) be a compact symplectic manifold of dimension 2n and suppose the cohomology class of ω is integral. Then for sufficiently large integer k, the Poincaré dual of $k[\omega]$ can be realized as a symplectic submanifold $W \subset V$.

If V is Kähler, then there exists a positive line bundle L with Chern class $[\omega]$. Then for k large, a generic holomorphic section $s \in H^0(L^k)$ has a smooth vanishing locus which is a submanifold and is Poincaré dual to $k[\omega]$.

In [2] this theorem was enhanced to the following form. To state the enhancement, we need to introduce the notion of *topological Lefschetz pencils*.

Definition 1.2. A topological Lefschetz pencil on V consists of the following data,

- (1) a codimension-4 submanifold $A \subset V$,
- (2) a finite set of points $\{b_{\lambda}\} \subset V \setminus V$,
- (3) a smooth map $f: V \setminus A \to S^2$ whose restriction to $V \setminus A \cup \{b_{\lambda}\}$ is a submersion, and $f(b_{\lambda}) \neq f(b_{\mu})$ for $\lambda \neq \mu$.

This data is required to conform to the following standard local models.

Date: March 5, 2015.

At a point $a \in A$, there are compatible local complex coordinates such that A is given by $z_1 = z_2 = 0$ and on the complement of A in a neighborhood of a, f is given by

$$(z_1,\ldots,z_n)\mapsto z_1/z_2\in\mathbb{P}^1.$$

At a point b_{λ} there are compatible local complex coordinates in which f is represented by the nondegenerate quadratic form

$$(z_1,\ldots,z_n)\mapsto f(b_\lambda)+z_1^2+\cdots+z_n^2.$$

Theorem 1.3. [2, Theorem 2] In the same situation, for sufficiently large integer k, there is a topological Lefschetz pencil on V whose fibres are symplectic subvarieties, homologous to k times the Poincaré dual of $[\omega]$.

The integrable case is also easy to understand. Take $L \to V$ whose Chern class is $[\omega]$. Then for k large, take a generic pair of holomorphic sections $s_0, s_1 \in H^0(L^k)$. The meromorphic function $f = s_0/s_1 : V \to \mathbb{P}^1$ gives a Lefschetz fibration , where the b_{λ} 's are critical points of f. Equivalently, view $V \subset \mathbb{P}^N$ via the Kodaira embedding, then a generic pencil of hyperplane intersections gives a Lefschetz fibration.

In this note, we give a brief account of Donaldson's proofs of these two theorems.

2. Proof of Theroem 1.1

2.1. The idea. Let \mathbb{C}^n have the standard metric and symplectic form ω . Let G be the Grassmannian of oriented real 2n - 2-planes in \mathbb{C}^n and $G^+ \subset G$ the open subset of symplectic 2n-2-planes Π , i.e., those for which the restriction of ω^{n-1} is positive relative to the orientation. G^+ only depends on the symplectic form ω . We also have a volume form Ω_{Π} on each such subspaces. We can define the "Kähler angle" $\theta: G \to [0, \pi]$ by

$$\theta(\Pi) = \cos^{-1}\left(\frac{1}{(n-1)!}\frac{\omega^{n-1}|_{\Pi}}{\Omega_{\Pi}}\right).$$
(2.1)

The complex subspaces are those with $\theta(\Pi) = 0$ and θ measures the amount by which a subspace fails to be complex-linear, and $G^+ = \theta^{-1}[0, \pi/2)$.

Now suppose Π is given by the kernel of a real linear map $A : \mathbb{C}^n \to \mathbb{C}, A = a' + a''$ (which induces a natural orientation). We see

- (1) A has real rank 2 unless $\overline{a''} = e^{i\alpha}a'$ for some α ;
- (2) If A has rank 2 and $\Pi = \ker A$, then

$$\tan \theta(\Pi) = \frac{2\sqrt{|a'|^2 |a''|^2 - |\langle a', \overline{a''}\rangle|^2}}{|a'|^2 - |a''|^2}$$

Therefore we see

Lemma 2.1. If |a''| < |a'|, then $\ker(a' + a'') \subset \mathbb{C}^n$ is symplectic.

Then we will prove

Theorem 2.2. Let $L \to V$ be a complex line bundle and $c_1(L) = [\omega]$. Then there exists C > 0 such that for all large k, there is a smooth section $s \in \Gamma(L^k)$ such that

$$|\overline{\partial}s| < \frac{C}{\sqrt{k}} |\partial s| \tag{2.2}$$

on the vanishing locus of s.

Together with Lemma 2.1, this theorem implies Theorem 1.1.

We briefly describe Donaldson's construction of the section s. For large k, chooing finitely many points p_1, \ldots, p_{M_k} on V such that balls centered at p_i of radius $O(k^{-1/2})$ cover V. For each *i* there is a section σ_i of L^k supported in B_i , which is constructed using the concrete coordinates around p_i . Then by some very complicated analytical argument, Donaldson proved that a delicate choice of a linear combination $s_{\underline{w}} = \sum w_i \sigma_i$ satisfies the transversality condition of Theorem 2.2.

2.2. Local theory. We first construct the sections σ_i , which is purely local.

2.2.1. Symplectic structure. Consider the standard symplectic form

$$\omega_0 = \frac{i}{2} \sum_{\alpha=1}^n dz_\alpha d\overline{z}_\alpha \tag{2.3}$$

which is equal to i dA with

$$A = \frac{1}{4} \sum_{\alpha=1}^{n} \left(z_{\alpha} d\overline{z}_{\alpha} - \overline{z}_{\alpha} dz_{\alpha} \right)$$
(2.4)

Therefore, ω_0 is the curvature form of a U(1)-connection on the trivial line bundle with connection matrix A. This gives a $\overline{\partial}$ -operator which reads

$$\overline{\partial}_A f = \overline{\partial} f + A^{0,1} f. \tag{2.5}$$

We see

$$\overline{\partial}_A e^{-|z|^2/4} = 0, \ \partial_A e^{-|z|^2/4} = \frac{1}{2} \Big(\sum_{\alpha} \overline{z}_{\alpha} dz_{\alpha} \Big) e^{-|z|^2/4}.$$
(2.6)

We see the trivial bundle ξ has a holomorphic section $e^{-|z|^2/4}$ which decays exponentially. For $k \ge 1$, the bundle ξ^k has connection form kA and holomorphic section $e^{-k|z|^2/4}$.

Now consider (V, ω) with

- a fixed compatible almost complex structure J;
- a line bundle $L \to V$ with U(1)-connection having curvature $-i\omega$;

Let g be the metric $\omega(\cdot, J \cdot)$ and $g_k = kg$.

For any $p \in V$, there is a Darboux chart $\chi = \chi_p : B^{2n} \to V$ such that $\chi_p(0) = p$ and $\chi_p^* \omega = \omega_0$. Since V is compact, we may assume that all derivatives of χ_p are uniformly bounded. We also assume that χ_p is complex linear at 0, so there is C > 0 such that

$$|\chi^* J - J_0| \le C |z|, \ |\nabla(\chi^* J - J_0)| \le C.$$
 (2.7)

Given k, we compose χ with the dilation map

$$\widetilde{\chi} = \chi \circ \delta_{1/\sqrt{k}} : \sqrt{k} B^{2n} \to V.$$
(2.8)

Therefore we can assume

$$|\widetilde{\chi}^* J - J_0| \le \frac{C}{\sqrt{k}} |z|, \ |\nabla(\widetilde{\chi}^* J - J_0)| \le \frac{C}{\sqrt{k}}$$
(2.9)

with C taken uniformly.

On the other hand, since $\tilde{\chi}^*(-ik\omega)$, the pull-back of the curvature of L^k is the standard form $-i\omega_0$ on \mathbb{C}^n . So we may take lift $\tilde{\chi}$ to a map

$$\widetilde{\chi}: \sqrt{k}B^{2n} \times \mathbb{C} \to L \tag{2.10}$$

which preserves the connection. We have a locally defined section σ .

Let d_k be the distance function of g_k and define

$$e_k(p,q) = \begin{cases} e^{-d_k(p,q)^2/5}, & d_k(p,q) \le k^{1/4}; \\ 0, & d_k(p,q) > k^{1/4}. \end{cases}$$
(2.11)

 $(e_k \text{ is supported in a } O(k^{-1/2})\text{-neighborhood of the diagonal}).$

Proposition 2.3. For each $p \in V$ and sufficiently large k, there is a smooth section σ_p of L^k over V such that for

- (1) For fixed R, $|\sigma_p(q)| \ge C^{-1}$ if $d_k(p,q) \le R$.
- (2) $|\sigma_p(q)| \le e_k(p,q).$
- (3) $|\nabla_V \sigma_p| \leq C(1+d_k(p,q))e_k(p,q).$
- (4) $|\overline{\partial}_L \sigma_p(q)| \leq \frac{C}{\sqrt{k}} d_k(p,q)^2 e_k(p,q).$
- (5) $|\nabla_V \overline{\partial}_L \sigma_p(q)| \leq \frac{C}{\sqrt{k}} (d_k(p,q) + d_k(p,q)^3) e_k(p,q).$

Here $\overline{\partial}_L$ is the $\overline{\partial}$ -operator on L (and L^k), ∇_V is the covariant derivative induced from the Levi-Civita connection on V and the connection on L^k .

Proof. Choose a cut-off function $\beta_k : \mathbb{C}^n \to [0, 1]$ by rescaling a standard cut-off function β with

$$\beta_k(z) = \beta\left(\frac{z}{k^{1/6}}\right). \tag{2.12}$$

Then we define

$$\sigma_p = \widetilde{\chi}(\beta_k \sigma) \in \Gamma(L^k).$$
(2.13)

Since $\tilde{\chi}$ shrinks with a factor $k^{-1/2}$, σ_p is supported in a ball of radius $O(k^{-1/3})$ centered at p. Then we can prove everything by explicit calculation.

2.3. A very dense open cover.

Lemma 2.4. There is a constant C > 0 such that for all k, we can cover V by g_k -unit balls with centers p_1, \ldots, p_{M_k} such that

$$\sum_{i=1}^{M_k} d_k(p_i, q)^r e_k(p_i, q) \le C, \ \forall q \in V, \ r = 0, 1, 2, 3.$$
(2.14)

Proof. If $\Lambda \subset \mathbb{C}^n$ is a lattice in \mathbb{C}^n , then for any a, r > 0 and $w \in \mathbb{C}^n$,

$$\sup_{w} \sum_{\mu \in \Lambda} |\mu - w|^{r} e^{-a|\mu - w|^{2}} < \infty.$$
(2.15)

Choose a finite cover $\phi_s: O_s \to V, s = 1, \dots, S$ with O_s bounded in \mathbb{C}^n such that

$$\frac{1}{2}|x-y| \le d(\phi_s(x), \phi_s(y)) \le 2|x-y|.$$
(2.16)

Choose slightly smaller $O'_s \subset \subset O_s$ such that O'_s also cover V.

Let Λ_k be the lattice $\alpha(\mathbb{Z}^n \oplus i\mathbb{Z}^n)$ with

$$\alpha = \frac{\sqrt{\frac{n}{2}}}{2\sqrt{k}}.$$
(2.17)

Let Λ_s be the image under ϕ_s of $O_s \cap \Lambda_k$. Then when k is large, the ball of radius $k^{-1/2}$ centered at points of Λ_s cover $\phi_s(O'_s)$. Take p_i be the union of those lattice points. Then to bound the quantity, we need to bound the individual ones

$$R_{s}(q) = \sum_{p \in \Lambda_{s}} d_{k}(p,q)^{r} e_{k}(p,q).$$
(2.18)

Since e_k vanishes if $d_k(p,q) > k^{1/4}$, so we only need to consider the case when q lies in $\phi_s(O_s)$. Then

$$R_s(q) \le \sum_{\lambda \in \Lambda_k} 2^r k^{r/2} |z - \lambda|^r e^{-k|z - \lambda|^2/20} = \sum_{\mu \in \Lambda_0} 2^r |w - \mu|^r e^{-|\mu - w|^2/20}.$$
 (2.19)

So for each k, we fix the choice of p_1, \ldots, p_{M_k} and denote $\sigma_i = \sigma_{p_i}$. Let $B_i \subset V$ be the g_k -unit ball centered at p_i .

2.4. A nice linear combination. Our desired section will be a linear combination of those σ_i . For complex numbers $\underline{w} = (w_1, \ldots, w_{M_k})$, take

$$s = s_{\underline{w}} = \sum_{i=1}^{M_k} w_i \sigma_i. \tag{2.20}$$

We always consider coefficients w_i with $|w_i| \leq 1$.

Lemma 2.5. For any \underline{w} , $s = s_{\underline{w}}$ satisfies

$$|s| \le C, \ |\overline{\partial}_L s| \le \frac{C}{\sqrt{k}}, \ |\nabla_V \overline{\partial}_L s| \le \frac{C}{\sqrt{k}}.$$
 (2.21)

Proof. By Proposition 2.3 and Lemma 2.4, we have

$$|s(q)| \le \sum_{i=1}^{M_k} |\sigma_i(q)| \le \sum_{i=1}^{M_k} e_k(p_i, q) \le C.$$
(2.22)

Other items of Proposition 2.3 together with Lemma 2.4 imply the other two estimates. \Box

Proposition 2.6. There is an $\epsilon > 0$ such that for all large k, we can choose \underline{w} such that s satisfies the transversality condition

$$|\partial_L s| > \epsilon \tag{2.23}$$

on the zero locus of s.

Lemma 2.5 and Proposition 2.6 imply Theorem 2.2.

2.5. **Proof of Proposition 2.6.** Since B_i is of radius $O(k^{-1/2})$, $\tilde{\chi}_i^{-1}(B_i)$ is contained in a bounded region, say $\Delta = \frac{11}{10}B^{2n}$. Take Δ^+ be the polydisk of radius $\frac{22}{10}$. Over Δ^+ we have the section σ_i trivializing L^k . The following lemma, which can be proved by straightforward calculation, shows that we only need to check the transversality condition on each chart.

Lemma 2.7. Let $s = s_{\underline{w}}$ is a section of L^k with $|w_i| \leq 1$ and $f_i : \Delta^+ \to \mathbb{C}$ is the corresponding function. Then

(1) $||f_i||_{C^1(\Delta^+)} \leq C;$ (2) $||\overline{\partial}f_i||_{C^1(\Delta^+)} \leq \frac{C}{\sqrt{k}};$ (3) If $|\partial f_i| > \epsilon$ on $f_i^{-1}(0) \cap \Delta$, then for k large, $|\partial_L s| \geq C^{-1}\epsilon$ on $s^{-1}(0) \cap B_i.$

Since the number M_k grows with k, we subdivide the points p_i into finitely many groups.

Lemma 2.8. Given D > 0, there is N(D) > 0 independent of k such that for all k with p_1, \ldots, p_{M_k} given by ..., there is a partition

$$I = \{1, \dots, M_k\} = I_1 \cup I_2 \cup \dots \cup I_N$$
(2.24)

such that for $\alpha \in \{1, \ldots, N\}$,

$$d(p_i, p_j) \ge D, \ \forall p_i, p_j \in I_\alpha.$$
(2.25)

Fix D > 0. Denote

$$V_{\alpha} = \bigcup_{i \in I_{\beta}, \ \beta \le \alpha} B_i, \ \emptyset = V_0 \subset V_1 \subset \dots \subset V_N = V.$$
(2.26)

The construction of the coefficient vector \underline{w} (and hence the section s) is done inductively. We start with an arbitrary \underline{w} . Then we modify those w_i with $i \in I_1$ such that the controlled transversality condition holds on V_1 . Suppose we have chosen \underline{w}_{α} such that the controlled transversality holds on V_{α} , then we modify those w_i with $i \in I_{\alpha+1}$ to obtain $\underline{w}_{\alpha+1}$, such that $s_{\alpha+1}$ satisfies the controlled transversality over $V_{\alpha+1}$. The induction finishes in finite steps.

Definition 2.9. Let $U \subset \mathbb{C}^n$ be an open subset and $f: U \to \mathbb{C}$ be a smooth function. For $\eta > 0$ and $w \in \mathbb{C}$ we say that f is η -transverse to w over U if

$$|f(z) - w| \le \eta \implies |\partial f(z)| \ge \eta.$$
(2.27)

We say a section $s \in \Gamma(L^k)$ is η -transverse over B_i if $f_i = s/\sigma_i$ is η -transverse to 0 over the corresponding set Δ .

3. The transversality theorem

For $\delta \in (0, 1)$, p > 0, introduce

$$Q_p(\delta) = \frac{1}{\left(-\log\delta\right)^p}.$$
(3.1)

The burden of proving Proposition 2.6 is given to the following theorem.

Theorem 3.1. For $\sigma > 0$, let \mathcal{H}_{σ} denote the set of functions f on Δ^+ such that

- (1) $||f||_{C^0(\Delta^+)} \le 1$,
- (2) $\|\overline{\partial}f\|_{C^1(\Delta^+)} \leq \sigma.$

Then there is an integer p depending only on n such that for any $\delta \in (0, 1/2)$, if $\sigma < Q_p(\delta)\delta$, then for any $f \in \mathcal{H}_{\sigma}$, there is $w \in \mathbb{C}$ with $|w| \leq \delta$ such that f is $Q_p(\delta)\delta$ -transverse to w over Δ . Moreover, w can be chosen in any preferred half-plane in \mathbb{C} .

Now we start the induction argument.

Lemma 3.2. Let $s = s_{\underline{w}}$, and for any α , let \underline{w}' be another coefficient vector which agrees with \underline{w} except for coefficients belonging to I_{α} . Suppose $|w'_j - w_j| \leq \delta$ for some δ . Then

(1) For any *i*,
$$||f'_i - f_i||_{C^1(\Delta^+)} \le C\delta$$
.

(2) For $i \in I_{\alpha}$, $||f'_i - f_i - (w'_i - w_i)||_{C^1(\Delta^+)} \le C\delta \exp(-D^2/5)$.

Proposition 3.3. There are constants $\rho < 1$ and p such that if

(1) $s^{\alpha-1} = s_{w^{\alpha-1}} \in \Gamma(L^k)$ is $\eta_{\alpha-1}$ -transverse over $V_{\alpha-1}$ with $\eta_{\alpha-1} \leq \rho$;

(2)
$$\frac{1}{\sqrt{k}} \leq Q_p(\eta_{\alpha-1})\eta_{\alpha-1};$$

(2) $Q_p(\eta_{\alpha-1})\eta_{\alpha-1};$

(3)
$$\exp(-D^2/5) \le Q_p(\eta_{\alpha-1})$$

then there is another section $s^{\alpha} = s_{\underline{w}^{\alpha}}$ which is η_{α} -transverse over V_{α} where $\eta_{\alpha} = Q_p(\eta_{\alpha-1})\eta_{\alpha-1}$.

Proof. Consider some $i \in I_{\alpha}$. Suppose we choose w_i^{α} in such a way that

$$|w_i^{\alpha} - w_i^{\alpha - 1}| \le \delta_{\alpha}. \tag{3.2}$$

Then by the (1) of Lemma 3.2, s^{α} is $\eta_{\alpha-1} - C\delta_{\alpha}$ -transverse over V_{α} . Therefore choosing δ_{α} properly, we have s^{α} still $\eta_{\alpha-1}/2$ -transverse over $V_{\alpha-1}$. On the other hand, if $s^{\alpha-1} = f_i \sigma_i$ for $i \in I_{\alpha}$, then by Lemma 2.7,

$$\|\overline{\partial}f_i\|_{C^1(\Delta^+)} \le \frac{C}{\sqrt{k}}.$$
(3.3)

Hence $f_i \in \mathcal{H}_{\sigma}$ for $\sigma = \frac{C}{\sqrt{k}}$. We can modify p properly to absorb the constant C. Then choose k big enough such that

$$\frac{1}{\sqrt{k}} \le \delta_{\alpha} Q_p(\delta_{\alpha}),\tag{3.4}$$

then by Theorem 3.1, there exists v_i with $|v_i| \leq \delta_{\alpha}$ and f_i is $Q_p(\delta_{\alpha})\delta_{\alpha}$ -transverse to v_i over the unit ball. In other words, $f_i - v_i$ is $Q_p(\delta_{\alpha})\delta_{\alpha}$ -transverse to 0. We define

$$w_j^{\alpha} = w_j^{\alpha-1}, \ \forall j \neq i, \ w_i^{\alpha} = w_i^{\alpha-1} - v_i.$$
 (3.5)

By choosing an appropriate half-plane, we may still have $|w_i^{\alpha}| \leq 1$.

Now we define \underline{w}^{α} by

$$w_j^{\alpha} = w_j^{\alpha-1}, \ j \notin I_{\alpha}, \ w_j^{\alpha} = w_j^{\alpha-1} - v_j, \ j \in I_{\alpha}.$$
 (3.6)

By (2) of Lemma 3.2, the extra term is given by $C\delta_{\alpha} \exp(-D^2/5)$. So if

$$C\delta_{\alpha} \exp(-D^2/5) \le \frac{1}{2}Q_p(\delta_{\alpha})\delta_{\alpha},$$
(3.7)

then s^{α} will be

Eventually we have s^{α} is $\tilde{\eta}_{\alpha}$ -transverse with $\tilde{\eta}_{\alpha} = \frac{1}{2}Q_p(\delta_{\alpha})\delta_{\alpha}$. Lastly, if

$$\frac{1}{2}Q_p(\delta_\alpha)\delta_\alpha \ge Q_p(\eta_{\alpha-1})\eta_{\alpha-1} = \eta_\alpha \tag{3.8}$$

then s^{α} is η_{α} -transverse. Otherwise, modify the value of p and δ_{α} such that the above becomes an equality.

One can prove that for suitably chosen D and hence the partition, an induction argument can be carried out to produce an ϵ -transverse section over V.

4. Asymptotic behavior of s_k

In fact, in the proof we can see the submanifold W_k becomes extremely complicated as k grows, which will eventually fill out all of V. Indeed as currents, $\frac{k}{W_k}$ converges to the symplectic form.

Proposition 4.1. [1, Proposition 40] There is a constant C > 0 such that for any test form $\psi \in \Omega^{2n-2}(V)$,

$$\left| \int_{W_k} \psi - k \int_V \omega \wedge \psi \right| \le C \sqrt{k} \left\| d\psi \right\|_{L^{\infty}(V)}.$$
(4.1)

Let $s \in \Gamma(L^k)$ cut out W_k . Consider the 1-form $A = s^{-1} \nabla s$ on the complement of W_k , which has integrable singularity. Hence A can be viewed as a current. Indeed, we have

$$dA = W_k - k\omega. \tag{4.2}$$

Therefore it suffices to prove that $\int_{V} |A| d\mu \leq C\sqrt{k}$.

If we consider it within a g_k -unit ball, i.e., radius $O(1/\sqrt{k})$ balls, identified with B^{2n} via $\tilde{\chi}$, then the number of balls is roughly $O(k^n)$ while the pull-back to the unit ball will enlarge the volume form by k^n . The pull-back will also bring in a factor to ∇s . In a small scale we see that ∇s is uniformly bounded, so it suffices to control the integral of $|s|^{-1}$ in any g_k -unit ball.

Proposition 4.2. Given $\rho > 0$ let \mathcal{K}_{ρ} be the space of complex-valued functions f on $2B^{2n}$ with $\|\overline{\partial}f\|_{C^1} \leq \rho/2$, $\|f\|_{C^0} \leq 1$ and $|f| \leq \rho \implies |\partial f| \geq \rho$. Then there is $C(\rho) > 0$ such that for all $f \in \mathcal{K}_{\rho}$,

$$\int_{B^{2n}} \frac{1}{|f|} d\mu \le C(\rho). \tag{4.3}$$

Proof. Divide B^{2n} into two parts I_1 and I_2 by whether $|f| \leq \rho$ or $|f| \geq \rho$. I_2 is easy to control. On the other hand, we have the "co-area" formula:

$$I_1 = \int_{|f| \le \rho} \frac{1}{|f|} d\mu = \int_{|\sigma| \le \rho} |\sigma|^{-1} \Big(\int_{f^{-1}(\sigma)} |J_f|^{-1} d\nu \Big) d\sigma.$$
(4.4)

We have

$$J_f = \sqrt{\left(|\partial f|^2 + |\overline{\partial} f|^2\right)^2 - 4|\langle \overline{\partial} \overline{f}, \overline{\partial} f\rangle|^2} \ge \frac{3\rho^2}{4}.$$
(4.5)

Therefore it suffices to give a uniform bound on the volume of each $f^{-1}(\sigma)$. If $f^{-1}(\sigma)$ doesn's have uniformly bounded volume, then choose a sequence f_i , σ_i . By elliptic regularity, f_i converges in C^1 to f and σ_i converges to σ with $|\sigma| \leq \rho$. However, $Z_{\sigma_i}(f_i)$ converges to $Z_{\sigma}(f)$ in the C^1 -sense so the volume should converge.

References

- Simon Donaldson, Symplectic submanifolds and almost-complex geometry, Journal of Differential Geometry 44 (1996), 666–705.
- [2] _____, Lefschetz pencils on symplectic manifolds, Journal of Differential Geometry 53 (1999), 205–236.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, IRVINE, IRVINE, CA 92697 USA *E-mail address:* guangbox@math.uci.edu