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1. Outline

First I will recall the Morse inequality and Morse-Smale-Witten complex, and in-
troduce the Morse-Bott case. Then I recall Arnold conjecture and Floer’s Lagrangian
intersection homology, which generalize the Morse homology. Then I start to talk
about Frauenfelder’s moment Floer homology. This homology can be used to prove
Arnold conjecture for certain symplectic quotients.

2. Morse inequality andMorse homology

Definition 2.1. We say that two submanifold N0,N1 ⊂ M intersect transversely if for
any p ∈ N0 ∩N1,

TpN0 + TpN1 = TpM.
We say that N0 and N1 intersect cleanly, which is weaker than transverse, if N0 ∩N1 is
a smooth submanifold of Ni, and for any p ∈ N0 ∩N1,

Tp(N0 ∩N1) = TpN0 ∩ TpN1.

Definition 2.2. A smooth function f : M → R is Morse if d f intersects with the zero
section of T∗M transversely. It is Morse-Bott if they intersect cleanly.

By Poincaré-Hopf, we know that the minimal number of zeroes of transverse sections
is bounded below from the Euler characteristic. But we have a much stronger estimate,
which is the Morse inequality: usingZ2-coefficient, or any field coefficient, denote by
Pt(M) the Poincaré polynomial of M, i.e.

Pt(M) =
∑

i

tidimHi(M,Z2);

and Mt( f ), the Morse polynomial, i.e.,

Mt( f ) =
∑

i

timi( f ).

Then
Mt( f ) − Pt(M) = (1 + t)R(t)
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for some polynomial R with nonnegative integer coefficients. In particular, set t = 1,
we see

#Crit f ≥

∑
i

βi(M;Z2). (2.1)

We can see this fact by looking at Morse homology. In the Morse case, we can assign
an integer to each critical point, which is called the Morse index. Take a Riemannian
metric, then we can talk about the gradient of f , ∇ f , hence the negative gradient flow,
which is a 1-parameter family of diffeomorphisms φt : M→M, t ∈ R defined by

d
dt
φt(x) + ∇ f (φt(x)) = 0.

Then for each p ∈ Criti
f , we define the unstable submanifold

Wu(p) =
{
x ∈M | lim

t→−∞
φt(x) = p

}
.

Ws(p) =
{
x ∈M | lim

t→+∞
φt(x) = p

}
.

They are submanifolds of dimension λ(p) and n − λ(p) respectively.
The Morse-Smale condition on the pair ( f , g) means that for any p, q ∈ Crit f , Wu(p)

and Ws(q) intersect transversely. Then in particular, if λ(p) = λ(q) + 1, then the space

M(p, q)

of trajectories of negative gradient flows is a finite set.
We define the differential complex

CM( f )i(M;Z2) :=
⊕

p∈Criti
f

Z2 < p > (2.2)

with differentials

∂ < p >=
∑

q ∈ Crit f ,
λ(q) = λ(p) − 1

(−1)#M(p,q) < q > .

We can prove that ∂2 = 0 and the cohomology of the complex is called the Morse
homology of (M, f ). We can prove that this is independent of the Morse-Smale pair
( f , g) and is isomorphic to the usual homology of M.

3. Arnold conjecture and Lagrangian intersection Floer homology

Let me say more on Morse theory. We know that T∗M is a symplectic manifold, with
the standard symplectic structure

ω =
∑

i

dpi ∧ dqi.

Then a 1-form α, which is a section of T∗M and hence a submanifold, is Lagrangian if
and only if α is closed. If α = d f , then consider the pull-backed function f : T∗M→ R
and its Hamiltonian vector field with respect to the standard, symplectic structure. It
is

X f = −
∂ f
∂pi

∂
∂qi
.
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The time-1 map φ1
f of the flow of X f maps the zero section L0 to the Lagrangian L f

defined by d f . And p ∈M is a critical point of f if and only if (p, 0) ∈ L0∩. Then Morse
inequality can be viewed as giving a lower bound of #

(
L0 ∩ φ1

f (L1)
)
.

Arnold conjectured that this should hold for general symplectic manifold. Suppose
L ⊂ M is a Lagrangian and Ht : M → R be a time-dependent Hamiltonian. Then the
flow φt

H is defined by
d
dt
φt

H(x) = XHt(φ
t
H(x)).

Arnold conjecture says that #(L ∩ φ1
H(L)) ≥

∑
i βi(L) with some coefficient.

The main breakthrough is due to Floer. Consider the space of arcs joining L0 and L1,
i.e.,

Ω = {z : [0, 1]→M | z(0) ∈ L0, z(1) ∈ L1} .

This can be viewd as an infinite dimensional manifold, whose tangent space at z ∈ Ω

is
TzΩ = Γ([0, 1], z∗TM).

We can define a 1-form on Ω by

α(ξ) =

∫ 1

0
ω(ż(t), ξ(t))dt.

It is easy to check that α is closed. Hence we may find a primitive function a, at least
on the universal cover of Ω, such that α = da.

Then the critical point of a, or the zero of α, corresponds to constant arcs, i.e., points
in L1 ∩ L2. Similar to the Morse-Smale-Witten complex, L0 ∩ L1 generates the chain
complex over some fieldK

CF(L0,L1;K) =
⊕

p∈L0∩L1

K{p}.

The differential is defined using the trajectories of the Morse flow of the function a.

3.1. Holomorphic strips. Choose an ω-compatible almost complex structure J, i.e.,
ω(·, J·) defines a Riemannian metric, then this gives a metric on Ω. Then the dual of α
is the gradient of a

∇a = J(z(t))ż(t).
The equation of the negative gradient flow line is

∂su(s, t) + J∂tu(s, t) = 0, (s, t) ∈ R × [0, 1], u(s, 0) ∈ L0, u(s, 1) ∈ L1. (3.1)

If the energy is finite, then we can show that

lim
s→±∞

u(s, t) = x± ∈ L0 ∩ L1

and we say that u is a holomorphic strip connecting x− and x+. Moreover, we can assign
an integer, called the Conley-Zehnder index of x±, which plays the role as Morse indices.
With certain assumptions, we can show that the moduli space of holomorphic strips
connecting x±,

M̃(x−, x+)

is locally a smooth manifold of dimension λ(x+)−λ(x−), where λ is the Conley-Zehnder
index. This moduli space is usually non-compact, but in the simplest case which Floer
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assumed, we can rule out all bubbling phenomenon by topological restrictions, and
the only noncompactness comes from the breaking of strips, as in the case of Morse-
Smale-Witten complex. Moreover, if we use Z2-coefficients, then we don’t care about
orientations. Hence the space of holomorphic strips of relative index 1,

M1(x−, x+) := M̃1(x−, x+)
/
R

consists of finitely many isolated strips. And we define the differential to be

∂x− :=
∑

x+∈L0∩L1

(−1)#M1(x−,x+)x+. (3.2)

There is no notorious bubbling of holomorphic disks, under Floer’s assumption.
Hence we can prove that∂2 = 0, which relies on a gluing theorem. Then (CF(L0,L1;Z2), ∂)
is a differential complex whose cohomology group is called the Floer homology group

HF(L0,L1;Z2).

Floer originally did this for (L, φ1
H(L)). He show that for two different choice of

Hamiltonians, this homology groups are canonically isomorphic. Moreover, a neigh-
borhood of L is symplectomorphic to T∗L, and a small time-dependent Hamiltonian
will give φ1

H(L) the same as a section of T∗L given by a Morse function on L. Then the
Floer homology is isomorphic to the Morse homology of L. Then the Arnold conjecture
follows immediately.

3.2. General case. In general Lagrangian intersection cannot be defined due to the
so-called obstruction. See Fukaya-Oh-Ohta-Ono’s book.

4. Moment Floer homology I: basic setting

The motivation is that, the original symplectic manifold usually will be topologically
simpler than the symplectic quotient. Hence we can define homology group on the
larger space which reduces to that in the symplectic quotient.

4.1. Assumptions. Let (M, ω) be a symplectic manifold. An effective action

ψ : G ↪→ Diff(M)

induces Lie algebra (anti)homomorphism

L : g→ Γ(TM).

This action is called Hamiltonian, if there exists a moment map

µ : M→ g∗

which is G-invariant, i.e.
〈µ(gx), ξ〉 = 〈µ(x),Ad−1

g ξ〉

and
d〈µ, ξ〉 = ιXξω.

Hypothesis 4.1. The moment map µ : M → g∗ is proper, 0 ∈ g∗ is a regular value of µ
and G acts on µ−1(0) freely.
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This is a usual assumption on symplectic quotient, which implies that the Marsden-
Weinstein quotient M := µ−1(0)/G is a smooth manifold of dimension

dimRM − 2dimRG.

Let L0,L1 be two Lagrangian submanifolds.

Hypothesis 4.2. there exists R j : M→M, j = 0, 1 such that

R∗jω = −ω, R2
j = id, L j = FixR j.

We assume that the G-action is compatible with R j, in the sense that

R jψ(g)R j ∈ ψ(G).

Then this gives an involution S j : G → G. Then the induces involution on g has ±1
eigenspace decomposition. Denote

gL j =
{
ξ ∈ g | S jξ = ξ

}
, g⊥L j

=
{
ξ ∈ g | S jξ = −ξ

}
.

Also we have the subgroup

GL j :=
{
g ∈ G | gL j = L j

}
.

Proposition 4.3. With the above assumptions, if µ−1(0)∩ L j , ∅, then µ−1(0) and L j intersect
cleanly and

L j := µ−1(0) ∩ L j/GL j

is a Lagrangian submanifold of M.

Proof. We first prove that µ−1(0)∩L j cleanly. First, we prove that for any p ∈ L j∩µ−1(0),
dµ(TpL j) = g⊥L j

. Actualy, for any ξ ∈ gL j , Xξ is tangent to L j, hence for v ∈ TpLJ,

〈dµ(v), ξ〉 = ω(Xξ, v) = 0

since L j is Lagrangian. This show that dµ(TpL j) ⊂ g⊥L j
. On the other hand, if ξ ∈ g⊥L j

such
that 〈ξ, dµ(v)〉 = 0 for all v ∈ TpL j, then we prove that ξ = 0. Indeed, for w ∈ TpM, we
write w = w+ + w−, with (R j)∗w± = ±w±. Hence

〈ξ, dµ(w)〉 = ω(Xξ,w−) = −ω(Xξ,−(R j)∗w−) = −ω(Xξ,w−) = −〈ξ, dµ(w)〉.

Since 0 is regular value of µ, this implies that ξ = 0. It is acturally holds for all moment
value close to 0. Hence it is easy to see that µ(p) ⊂ g⊥L j

for p ∈ L j close to L j ∩ µ−1(0).
Then consider a small neighborhood U ⊂ g⊥L j

. Then µ−1(U) is a smooth submanifold.
Then µ−1(0) and L j ∩ µ−1(U) intersect transversely in µ−1(U). Hence they intersect
cleanly in M.

Then we have the natural surjective map

(L j ∩ µ
−1(0))/GL j → G(L j ∩ µ

−1(0))/G.

It is injective basically because G acts on µ−1(0) freely. �

Hypothesis 4.4 (Morse-Bott). L0 and L1 intersect cleanly in µ−1(0)/G.

Hypothesis 4.5. We assume π2(M) = 0, π1(M) = 0, π1(L j) = 0, π0(L j) = 0.
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The first two imply that M couldn’t be compact. Hence we assume the convexity at
infinity of M, which is a usual assumption when dealing with noncompact symplectic
manifolds. As the author pointed out, this condition can be replaced by (M,L j) being
symplectic aspherical.

Hypothesis 4.6. Convexity at infinity.

5. Moment Floer homology II: moduli space of connecting orbits

Define the path space

P =
{
(x, η) ∈ C∞([0, 1],M × g) | x( j) ∈ L j, η( j) ∈ g⊥L j

, j ∈ {0, 1}
}
.

Proposition 5.1. The topological hypothesis implies that,P is connected and simply-connected.

Define the gauge group

H =
{
g ∈ C∞([0, 1],G) | g( j) ∈ GL j ,

(
g−1∂tg

)
( j) ∈ g⊥L j

, j ∈ {0, 1}
}
. (5.1)

It may be disconnected and letH0 be its identity component.
Then it acts on P by

g∗(x, η) =
(
g(t)x(t), Adgη − ∂tgg−1

)
. (5.2)

Choose a base path x0 : [0, 1] → M with x0( j) ∈ L j we define the action functional
Aµ : P → R by

Aµ(x, η) = −

∫
[0,1]×[0,1]

x∗ω +

∫ 1

0
〈µ(x(t)), η(t)〉dt. (5.3)

The critical points ofAµ are all paths (x, η) such that

ẋ(t) +Xη(x(t)) = 0, µ(x) ≡ 0. (5.4)

Proposition 5.2. We have natural identification

CritAµ/H ' L0 ∩ L1.

Proof. The map is given by [x, η] 7→ π(x(0)). �

Take an almost complex structures J compatible with ω, which is also G-invariant,
and a biinvariant metric on the Lie algebra g, we can write down the equation for
negative gradient flow lines  ∂su + J(∂tu +XΨ) = 0,

∂sΨ + µ(x) = 0
(5.5)

with boundary condition

u(s, j) ∈ L j, Ψ(s, j) ∈ g⊥L j
. (5.6)

The second boundary condition is natural becaues µ(L j) ⊂ g⊥L j
.
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5.1. Energy. The energy for solutions (u,Ψ) is defined to be

E(u,Φ,Ψ) :=
1
2

∫
Θ

|∂su|
2 + |∂tu +XΨ(u)|2 + |FA|

2 +
∣∣∣µ(u)

∣∣∣2 dsdt (5.7)

where
FA = FΨdt = (∂sΨ)dsdt ∈ Ω2(Θ, g).

For a connecting orbit with finite energy, we can prove that as s→ ±∞, (u(s, t),Ψ(s, t))
approaches to (x±, η±) ∈ CritAµ. Then we define the evaluation map

ev± : (u,Ψ) 7→ [x±, η±] ∈ π0(CritAµ).

In fact, π0(CritAµ) has a action byH/H0, whose quotient is π0

(
L0 ∩ L1

)
.

For c± ∈ π0(CritAµ), define M̃(c−, c+) the space of connecting orbits with ev±(u,Ψ) =

c±, and
M(c−, c+) := M̃(c−, c+)/H0.

Modulo the transversality arguments, we can show that the above moduli is a
smooth manifold. It is standard to prove the compactness theorem, which is similar to
Morse trajectories and has no bubbling by our topological assumption. And a gluing
theorem.

So far we can only assume the clean intersection between L0 and L1.

6. Moment Floer homology III: definition of the homology group

6.1. Novikov ring. Because of our topological restriction, the path space P is already
simply-connected. Hence the actional functional and the Conley-Zehnder index can
be globally defined for (x, η) ∈ CritAµ, by choosing a base (x0, η0). For any h ∈ H ,
define

E(h) = E(h(x0, η0), (x0, η0)), λCZ(h) = dimM(h(x0, η0), (x0, η0)).
Define

Γ =
H

kerλCZ ∩ kerE
(6.1)

and the Novikov ring over Z2,

Λγ :=

∑
γ

aγγ | γ ∈ Γ, aγ ∈ Z2, ∀κ ∈ R, #{γ : aγ , 0,E(γ) ≤ κ} < ∞

 . (6.2)

This ring is graded by the function λCZ.

6.2. Moment Floer homology in the transverse case. Assume that L0 and L1 intersect
transversely. Then define

CF :=
critAµ

kerλCZ ∩ kerE
. (6.3)

Γ acts on CF freely with quotient isomorphic to L0 ∩ L1.
Define

CFk(L0,L1, µ) =

ξ =
∑

c∈CF, λCZ(c)=k

ξcc

∣∣∣∣∣∣∣ ξc ∈ Z2, #{c : ξc , 0, E(c) ≤ κ} < ∞,∀κ ∈ R

 .
(6.4)
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Then CF∗ is a graded ΛΓ-module: we see∑
γ

aγγ

 ∗
∑

c

ξcc

 =
∑

c

∑
γc′=c

(aγξc′)c. (6.5)

Then, define the boundary operator ∂F : CFk(L0,L1, µ)→ CFk−1(L0,L1, µ), by

∂F(c) =
∑

c′∈Ck−1

(−1)#M(c,c′)c′. (6.6)

This satisfies the finiteness property basically by compactness theorem.
The momen Floer homology group is just defined as the cohomology:

HFk(L0,L1, µ) :=
ker(∂F|CFk)
im(∂F|CFk+1)

. (6.7)

6.3. An example. Consider M = C, L0 = L1 = R, G = S1 = U(1). Let the moment map
be

µ(z) =
1
2i

(
|z|2 − 1

)
. (6.8)

Then µ−1(0) is the unit circle and the quotient is a single point. Hence everything is
transverse. Now π0(H) is represented by gk = ekπit, t ∈ [0, 1] and elements in CF are
represented by (gk(t),−kπit). And it is easy to compute

λCZ(gk) = k,EH (gk) = πk. (6.9)

The Novikov ring is just the ring of Z2-Laurent series.
Then consider (u,Ψ) solves the equation, i.e.,

∂su + i(∂tu +XΨ) = 0, ∂sΨ + µ(u) = 0

which is equivalent to

∂su1 − ∂tu2 + u1Ψ = 0, ∂su2 + ∂tu1 + u2Ψ = 0, 2∂sΨ + |u|2 = 1.

By the complex conjugation, solutions to the above equation with boundary condi-
tion can be extended to the punctured disk, and the if the winding around the outside
circle is k1, around the origin is k2, then the solution belongs to the moduli

M̃(gk1 , gk2).

By residue formular(roughly), k2−k1 comes from the poles inside the disk. Then we see
poles away from ∂Θ contribute in pairs. And we can prove that for each distribution
of poles, there exists a unique solution. Hence we see the index 1 moduli is identified
with ∂Θ. By R-translation, this means the boundary operator is zero.

7. Moment Floer homology IV: computation

7.1. Morse-Bott homology. Let C = ∪Ci be the critical submanifold of a Morse-Bott
function f . Then each Ci has a Morse index. Now usually we have to use another
(co)homology theory on C, maybe singular, de Rham, or Morse. The moduli of trajec-
tories between Ci will give a double complex.
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For example(Morse homology on C), choose Morse-Smale pair (h, g) on C. Then the
double complex is generated by critical points of h, and the degree for p ∈ Crith|Ci is
given by

degp := index f (Ci) + index(h|Ci).
Then the boundary operator is defined by counting flow lines with cascades. To

prove that this homology coincides with the usual homology, one need to pass to a
spectral sequence.

7.2. Moment Morse homology. In this case we let L0 = L1 which is the Morse-Bott
case. Frauenfelder defined the moment Morse homology, by counting Morse flow on
L with cascades, by which we mean connecting orbits connecting different component
ofH(µ−1(0) ∩ L). This is in analog with the Morse-Bott homology approach.

To prove that this is isomorphic to the moment Floer homology, we choose a
generic Hamiltonian such that L0 and φ1

H
(L1) intersect transversely, and use Piunikhin-

Salamon-Schwarz’s spiked discs, to produce a chain isomorphism between the two
chain complexes.

While, on the other hand, because we have the antisymplectic involution, which
means cascades always appear in pairs. Since we are using Z2-coefficient, this means
cascades don’t contribute to the boundary operator of the moment Morse homology.
Then this homology reduces to the Morse homology on L.

Theorem 7.1. We have natural isomorphism

HF∗
(
L0,L1, µ; ΛΓ

)
' H∗

(
L;Z2

)
⊗Z2 ΛΓ.

Corollary 7.2. If L is the fixed point set of an antisymplectic involution and Ht is a generic
G-invariant Hamiltonian flow, the

#
(
L ∩ φ1

H
(L0)

)
≥

∑
i

βi(L0;Z2).


