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During this weekend our department held a retreat at some mysteriour place. The topic of the
retreat is “Integrable system”, which is divided into several diverse talks. The talk I contributed to is
on the integrable system on the moduli space of vector bundles over Riemann surfaces, or the so-called
“Hitchin system”. And my talk is mainly based on Hitchin’s beautiful paper [Hit87]. In this notes I only
pointed out the basic ideas of Hitchin’s approach.

1 Moduli space of stable vector bundles over Riemann surfaces

Let’s first recall some classical stuff: moduli space of holomorphic vector bundles over Riemann surfaces,
and we take the gauge-theoretic approach.

So let V →M be a smooth vector bundle over a Riemann surface M of certain genus g. The space of
holomorphic structures on V is isomorphic to the space of Cauchy-Riemann operators

A =
{
d′′A : Ω0(M,V)→ Ω0,1(M,V)

}
. (1.1)

Definition 1.1 A holomorphic vector bundle (V, d′′A) is stable if any proper holomorphic subbundle W ⊂ V
satisfies

degW
rankW

<
degV
rankV

. (1.2)

Denote byAs ⊂ A be the subspace of stable holomorphic structures. The stability can be generalized to
G-principal bundles for semi-simple complex Lie group G and works for G = GL(m,C). However, we
only consider here the latter case, i.e., the case of vector bundles. The dimension of the moduli spaceN
is given by Riemann-Roch:

dimCN = m2(g − 1) + 1. (1.3)

The gauge group G is the space of complex automorphisms of V. G acts onA by conjugation, i.e.

g∗d′′A := g−1
◦ d′′A ◦ g. (1.4)

On the other hand,A is an affine space modelled on the vector space

Ω0,1 (M,EndV) . (1.5)

Hence at each A ∈ A, its tangent space at A is isomorphic to the above space. Its dual, the cotangent
space is hence isomorphic to

Ω0 (M,EndV ⊗ KM) (1.6)

where KM →M is the canonical bundle. The pairing is given by

Ω0,1 (M,EndV) × Ω0 (M,EndV ⊗ KM) → C
(α , β) 7→

∫
M α ∧ β

(1.7)
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The gauge transformations hence induces an action on T∗A. This is a cotangent bundle hence have
a canonical symplectic form ωA.

Proposition 1.2 The gauge transformation is Hamiltonian. A moment map is given by

µ(A,Φ) = d′′AΦ ∈ Ω0,1(M, adP ⊗ KM) ' (g(P))∗ . (1.8)

Proof. The symplectic structure is given by

ωA : Ω0,1(M, adP) × Ω0(M, adP ⊗ KM) → C
(Ψ , Φ) 7→

∫
M〈Ψ,Φ〉.

(1.9)

Where 〈, 〉 is given by (e.g.) the Killing form. Since the gauge transformation has no effect on Φ, for each
ψ ∈ g, we have

ιXψωA(Φ) =

∫
M
〈d′′Aψ,Φ〉. (1.10)

On the other hand, the derivative of the function µ = d′′AΦ on the Φ along the Φ-direction is equal d′′AΦ.
Pairing with ψ gives the same(or up to a sign) quantitiy. qed.

We will see that the gauge group action is indeed Hamiltonian. A moment map is very simple, i.e.

µ(A,Φ) = d′′AΦ ∈ Ω0,1(M,EndV ⊗ K) '
(
Ω0(M,EndV)

)∗
' (g(V))∗ . (1.11)

If we restrict to the subspace of stable vector bundlesAs ⊂ A, then the quotientAs/G is a complex
manifoldN , as well as T∗N . Actually, T∗N is the Marsden-Weinstein quotient of the Hamiltonian action
on T∗As.

Hence T∗N inherits a symplectic structure.

2 Integrable Hamiltonian system

Definition 2.1 Let (M, ω) be a 2n-dimensional holomorphic symplectic manifold. A completely integrable system
is n holomorphic functions f1, . . . , fn such that fi Poisson commute and d f1 ∧ · · · ∧ d fn is generically nonzero. It
is called algebraically completely integrable, if a generic fibre of the map p = ( f1, . . . , fn) is an open subset of an
n-torus and the vector fields X fi are linear.

Recall that we have the natural symmetric functions ai, i = 1, . . . ,m on g = gl(m,C). By symmetric I
mean ad-invariant. They are defined by

det(x − A) = xm + a1(A)xm−1 + . . . + am(A), A ∈ gl(m,C). (2.1)

In particular, a1(A) = −tr(A) and am(A) = (−1)m det A. The function fi will be defined on T∗As and then
pass to the quotient T∗N . In fact, at each (d′′A,Φ) ∈ T∗As, Φ ∈ Ω0(M,EndV ⊗ KM), and apply ai on Φ, one
obtains

ai(Φ) ∈ Ω0
(
M,Ki

M

)
. (2.2)

Hence we get a map

p̃ =
(

f̃1, . . . , f̃m
)

: T∗As → ⊕
m
i=1Ω

0(M,Ki
M). (2.3)
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Actually, T∗As = As×Ω0(M,EndV⊗KM) and p̃ only depends on the fibre direction. This implies that
all the components ai actually Poisson commute in T∗As. On the other hand, the gauge transformation
only acts on the base direction hence p̃ descends to the symplectic quotient T∗N :

p = ( f1, . . . , fm) : T∗N → ⊕m
i=1H0(M,Ki

M). (2.4)

So these functions actually Poisson commute in the quotient.
Also,

h0(M,KM) = g, h0(M,Ki
M) = (2i − 1)(g − 1), i > 1. (2.5)

So the right hand side of (2.4) is equal to dimN = N.

3 Generic fibre of the map p, the spectral curve

For a generic choice of ai ∈ H0(M,Ki
M), we want to study the preimage of (ai)m

i=1 under p. Indeed, if we
pull-back everying over M to the total space of KM. We have a tautological section of π∗KM, denoted by
λ. Then ai defines a section of (π∗KM)n by

s = λm + λm−1a1 + · · · + am. (3.1)

If we vary ai, this gives a linear system inside (π∗KM)n. We can argu that this linear system is base-point-
free, and hence by Bertini’s theorem a generic divisor in this linear system is a smooth curve inside the
surface KM. Then for generic ai, this curve is given by the vanishing locus of (3.1), which is denoted by
S. We can compute the genus of S by adjunction formula:

Suppose (d′′A,Φ) ∈ p−1
(
(ai)m

i=1

)
. Then we see that

det(x −Φ) = xn + xn−1a1 + · · · + an. (3.2)

Hence det(λ − Φ)|S = 0. Hitchin argus that λ is an eigenvalue of Φ and hence generically its associated
eigenspace is a line bundle L ⊂ π∗V. To argu that this indeed gives us a line bundle over S(even that
there exist points on S where the eigenvalue has higher dimensional eigenspace), one sees that locally
the line gives an analytic function from S into P(V). Hence as (d′′A,Φ) varies inside the fibre p−1

(
{ai}

m
i=1

)
,

the associated L varies in the Jacobian of S.
Conversely, if we fix the spectral curve S and give an arbitrary line bundle L, we can construct a

vector bundle over M, basically by pushing forward L on to M. Also, Φ naturally arises. However, the
pair (V,Φ) may not be necessarily stable. The stable pairs corresponds to an open subset of the Jacobian.

We want to say that the system is algebraically completely integrable. That means, the associated
vector fields are linear inside the torus(the Jacobian). It is equivalent to say that the vector fields extends
holomorphically to the Jacobian.

We can use Grothendieck-Riemann-Roch for the covering S→M to compute the degree of L. Indeed,

degL = −m(m − 1)(g − 1) − degV∗. (3.3)

4 Other classical groups

We have similar integrable systems for G = SO(2m;C),SO(2m + 1;C),Sp(m;C).
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