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1 Historic remarks

The classical Riemann-Roch theorem states that for a compact Riemann surface S

and a holomorphic line bundle L over S, the difference of the dimensions of the

space of holomorphic sections of L and the space of holomorphic differentials with

coefficients in L is a topological invariant, i.e.

(1) h0(S,L) − h1(S,L) = 1 − g(S) + degL.

In 1954, Hirzebruch generalized this classical results to higher dimension. If M

is a compact complex manifold and E→M is a holomorphic vector bundle over M,

then Hirzebruch shows that

(2) χ(M,E) = 〈Td(TM) ∪ ch(E), [M]〉.

After that, Grothendieck extended this formula into relative case, which states a

relation for a “proper morphism between varieties”.

Atiyah and Hirzebruch then found a differentiable analogue of Grothendieck’s

formula. Their original approach was purely topological, using K-theory. I will

give another approach which is in a differential-geometric flavor, and uses mainly

de Rham theory. Before state it we need some preparation.

2 Chern-Weil theory

From now on everything is smooth. If E→ M is a real or complex vector bundle, a

connection on E is a linear differential operator ∇E : Γ(E) → Ω1(M,E) such that the

Lebniz rule holds:
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∇
E( f s) = d f ⊗ s + f∇Es.(3)

It extends to an operator ∇E : Ω∗(M,E)→ Ω∗+1(M,E) such that

∇
E(ω ∧ η) = dω ∧ η + (−1)|ω|ω ∧ ∇Eη,(4)

where ω ∈ Ω(M) and η ∈ Ω(M,E). The curvature form of the connection ∇E, is

RE := ∇E
◦ ∇

E
∈ Ω2(M,E).(5)

The Chern-Weil theory, roughly speaking, is to express characteristic classes

of the bundle E in terms of the connection form. More precisely, if we have a

polynomial f in k variables in so(n) which is invariant under the adjoint action of

SO(n), then we define the characteristic form associated to f to be

(6) f (RE, . . . ,RE) ∈ Ω∗(M).

Chern-Weil theory asserts that:

1. f (RE, . . . ,RE) is a closed form;

2. the cohomology class [ f (RE, . . . ,RE)] in de Rham cohomology is independent

of the choice of the connection.

Historically, the first is due to Chern and the second is due to Weil.

For example, we have

• For a complex vector bundle E, the Chern character form is

ch(E,∇E) = Tr
(
exp

(
−

RE

2πi

))
;(7)

• for a complex vector bundle E, the Todd form is

Td(E,∇E) = det
(

RE/2πi
eRE/2πi − 1

)
;(8)

• for a real vector bundle E, the Â-form is

Â(E,∇E) = det1/2

(
RE/4πi

sinh(RE/4πi)

)
.(9)
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Note that in the last example,

(10) det
(

X/2
sinh(X/2)

)
is an analytic function of entries of X for X ∈ so(n), and the zero order term of its

Taylor expansion is 1. So it has a unique analytic square root for X small such that

the zero order term is also 1. Since entries of RE is nilpotent, the Â-form we defined

is a polynomial of entries of RE.

2.1 Superconnections

It will be convenient if we go to the “super” category. A super vector space is

just a bigraded vector space V = V+
⊕ V−. Equivalently, there is a endomorphism

τ : V → V such that τ2 = 1 and the decomposition is the decomposition with respect

to τ. And EndV is also bigraded, where (EndE)± is the subspace of endomorphisms

which commute (resp. anticommute) with τ. The supertrace of A ∈ End(E) is

defined to be the trace of τA. Example: the Grassman algebra ΛV = ΛevenV⊕ΛoddV.

If V, W are both bigraded, then V ⊗W is also bigraded.

A super vector bundle is just a bigraded vector bundle E = E+
⊕ E−. Then

the space of sections are also bigraded. Two important examples are Λ(T∗M) ⊗ E

and Λ(T∗M) ⊗ EndE and the supertrace over a supervector space can be naturally

generalized to

(11) Str : Ω(M) ⊗ End(E) = Ω(M,E)→ Ω(M).

To introduce the notion of superconnections, we first look at connections, if E

is ungraded, which means E− = 0, then a connection on E is an operator mapping

Ω(M,E)± to Ω(M,E)∓. To generalized, a superconnection of a super vector bundle E

is a first order differential operator

(12) A : Ω(M,E)± → Ω(M,E)∓

which satisfies the Leibniz rule:

A(ω ∧ s) = dω ∧ s + (−1)degωAs.(13)

The curvature form is defined to be

FA = A2
∈ Ω+(M,EndE).
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A connection∇E can be locally written as d+ωwhereω ∈ Ω1(M,EndE). Similarly,

a superconnection A can be locally written as d + ω where ω ∈ Ω(M,EndE)−, which

might not be homogeneous of degree 1.

We have a generalization of the Chern character for superconnections. If E is

a complex supervector bundle and A is superconnection, F = A2, then the Chern

character form is defined to be

(14) ch(E,A) = Str
(
exp

(
−

F
2πi

))
.

Also, the cohomology class of this form does not depend on the superconnection

we choose. In particular, its class coincides with that defined by a usual connection.

And we see that actually

(15) ch(E) = ch(E+) − ch(E−) ∈ H∗dR(M).

If you know K-theory, you know that Chern character is a homomorphism from

K(M) to H∗(M).

It is easy to show that

(16) ch(E1 ⊗ E2,∇
E1 ⊗ 1 + 1 ⊗ ∇E2) = ch(E1,∇

E1) ∧ ch(E2,∇
E2),

(17) Â(E1 ⊕ E2,∇
E1 ⊕ ∇

E2) = Â(E1,∇
E1) ∧ Â(E2,∇

E2),

on the level of differential forms!

2.2 Statement of Atiyah-Hirzebruch’s theorem

If i : Y ↪→ X is an embedding between two closed compact oriented differentiable

manifolds, such that dimX − dimY = n = 2l, and the normal bundle NY over Y is

spin (i.e. w2(NY) = 0 ∈ H2(Y,Z2)). Then for any complex vector bundle µ over Y,

there is a “direct image” i!µ which is a complex super vector bundle over X, such

that

∫
Y

Â(TY) ∧ ch(µ) = (−1)n/2
∫

X
Â(TX) ∧ ch(i!µ).(18)

Note that both sides are topological invariants.
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3 Thom form

How to prove this? Since X is closed, the integral on the right side does not depend

on the superconnection on i!µ. We will construct a family of superconnections

AT such that the Chern character form has exponential decay outside a tubular

neighborhood of Y in X, and the integral can be localized into this neighborhood.

Since NY is diffeomorphic to such a neighborhood, we first integrate along the fibre

of the normal bundle. Namely,

(19)
∫

X
Â(TX,∇TX) ∧ ch(i!µ,AT) =

(∫
Nε

+

∫
X−Nε

)
Â(TX,∇TX) ∧ ch(i!µ,AT).

Because this value is independent of T > 0, we let T → ∞, and we will see that the

second term goes to zero while the first converges to a current Ψ ∧ δY. The spin

condition of the relative bundle NY is essential in constructing the family of Chern

characters.

Let’s recall the notion of Thom isomorphism in de Rham cohomology.

If E → M is an oriented vector bundle, then we have the integration along the

fibre

(20)
∫

E/M
: Ωcv(E)→ Ω(M),

which is an isomorphism in the level of cohomology. Its inverse is to pull back a

class on M to E then wedge the Thom form.

A Thom form Φ ∈ Ωcv(E) is a closed differential form such that
∫

E/M
Φ = 1.

In application, we will not restrict ourselves to forms with vertical compact

support, but also consider those rapidly decreasing along the fibre, which are also

integrable along the fibre.

3.1 Clifford algebra

To define the direct image i!µ and construct the superconnection we want, I need

to talk about Clifford algebra. If V is a Euclidean space of dimension n = 2l, the

Clifford algebra C(V) is the algebra generated by elements in V with the relations

vw + wv = −2 < v,w >. If we choose an orthonormal basis ei, then C(V) is generated

by ei with the relations eie j + e jei = −2δi j. Clifford algebra is what Dirac needed to

find the square root of the Laplacian ∆ = −
∑
∂2/∂x2

i . So if D =
∑

ai∂/∂xi and D2 = ∆,

we see that exactly aia j + a jai = −2δi j.
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In fact C(V) is isomorphic to the Grassman algebra ΛV as vector spaces, which

is given by

(21) ei1ei2 · · · eik 7→ ei1 ∧ ei2 ∧ . . . ∧ eik .

but not as algebras: the product is “quantized”. And C(V) = C+(V) ⊕ C−(V).

The subspace of C(V) corresponding to Λ2V, C2(V) is isomorphic to the Lie algebra

so(V). And on the level of Lie groups, it gives double cover Spin(V)→ SO(V), where

Spin(V) ⊂ C(V) and the multiplication for the group is the Clifford multiplication.

For dimension 3, this is the universal cover of SO(V).

There is a representation of Spin(V) which does not come from a representation

of SO(V), S = S+
⊕ S−, which is called the spinor representation. Also C(V) acts on S

and c(v)S± = S∓ . Indeed, EndS = C(V) ⊗C as super algebras. And since S is a super

vector space, we can take the supertrace on it, it is actually

(22) Str(c(ei1) . . . c(eik)) = 0, k < n,

(23) Str(c(e1) . . . c(en)) = (−2i)n/2.

3.2 Spinor bundle

If E → M is a real vector bundle which is spin, of rank n = 2l, then the principal

bundle of oriented orthogonal frames SO(E) has a nontrivial double cover Spin(E)

which is a Spin(n) principal bundle. Then we have the associated spinor bundle

S(E), by the spinor representation. If∇E is a connection on E, which is equivalent to a

connection 1-formω ∈ Ω1(SO(E), so(n)), since the Lie algebra of SO(n) and Spin(n) are

isomorphic, we have the pull back of ω onto Spin(E), and the associated connection

∇
S(E) on S(E). If E has an Euclidean metric, then S(E) has the associated Hermitian

metric and if ∇E is compatible with the metric, then ∇S(E) is also compatible with the

associated metric. And ∇S(E) satisfies another important condition:

(24) [∇S(E)
X , c(s)] = c(∇E

Xs),

where X is any vector field and s is a section of E.

Also, if RE =
∑

i< j dxi ∧ dx jRE
ij, where RE

ij ∈ so(Ep), then

(25) RS(E) =
1
4

∑
i< j,k,l

dxi ∧ dx j(RE
ijek, el)c(ek)c(el) ∈ End(S(Ep)).
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Denote π : E→ M, we will consider the pull back bundle π∗(S(E)) over the total

space E. We know that C(V) acts on the spinors, so at each point x ∈ E, c(x) is a linear

transformation on π∗(S(E))x. We consider the following family of superconnections

(26) AT = π∗∇S(E) + T
√

−1c(x)

and compute its Chern character forms.

First

(27) FT = π∗RS(E) + T
√

−1(dxi + x jω ji)c(ei) + T2
‖x‖2.

Its Chern character can be computed using Mathai-Quillen’s methods.

3.3 Algebraic computations

Suppose Ω ∈ so(n) and γ1, . . . , γn is the degree 1 generators of the Grassman alge-

bra Λ(Rn) which is an oriented basis of Rn, and write γ = (γ1, . . . , γn)t. Then the

coefficient of γ1 ∧ . . . ∧ γn in

exp
(1
2
γtΩγ

)
is denoted by

(28) T
(
exp(

1
2
γtΩγ)

)
= Pf(Ω).

Note that the definition of Pfaffian depends on the orientation of Rn.

Indeed, we have

(29) exp(
1
2
γtΩγ) =

∑
I⊂{1,...,n}

Pf(ΩI)γI.

And since both sides are analytic in entries of Ω, it extends to Ω with entries in any

commutative algebra.

We also want to compute the Berezin integral of

exp
(1
2
γtΩγ + Jtγ

)
, where J consists of degree 1 elements of a supercommutative algebra.

In application, the super algebra will be the algebra of differential forms.

Actually,

(30) T(exp(
1
2
γtΩγ + Jtγ)) =

∑
I⊂{1,...,n}

Pf(ΩI)εI,I′(−1)
|I′|
2 JI′ .
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Now we want to compute an analogue of the above results. If we regard γi not

in the Grassman algebra but in the Clifford algebra and the multiplication is the

Clifford multiplication, then the coefficient of γ1 . . . γn is also well-defined.

(31) T(exp(
1
2
γtΩγ)) = det1/2

(sinh Ω

Ω

)
Pf(Ω).

And

(32) T(exp(
1
2
γtΩγ + Jtγ)) = det1/2

(sinh Ω

Ω

) ∑
I⊂{1,...,n}

Pf(ΩI)εI,I′(−1)
|I′|
2 JI′ .

3.4 Go back to the Chern character

If we set Ωkl = 1
2 (REek, el), where ek is a local oriented orthonormal basis of E, and

Jk = T
√
−1(dxk + xlωkl) where ω is the connection matrix with respect to the basis ek,

then by the above computation

(33)

Str(exp(−F)) = e−T2
‖x‖2π∗Â−1(E,∇E) ∧

∑
I

Pf(RE
I )εI,I′(−1)

|I′|
2 (dxk + xlωlk)I′(−2

√

−1)n/2.

We claim that besides the π∗Â−1(E,∇E), the other terms is (−1)n/2 of a Thom form.

So in summary, by computing the Chern character of (π∗S(E),AT), we find a

family of Thom forms.

4 Direct Image

We go back to the setting of Atiyah-Hirzebruch’s theorem. µ → Y is a Hermitian

vector bundle with a connection ∇µ compatible with the metric. We choose a small

tubular neighborhood of Y, which is Nε diffeomorphic to the set of normal vectors

of length less than ε. So we have π : Nε → Y. Also we have the spinor bundle

S(N) over Y. Then set E± = π∗(S±(N) ⊗ µ) over Nε. We can find a complex vector

bundle F over Y such that S−(N)⊗ µ⊕ F is trivial. So set ξ± = π∗(S±(N)⊗ µF) and for

v ∈ Nε−Y,
√
−1c(v)⊗π∗Idµ⊕π∗IdF is invertible from ξ+ to ξ−. Hence both ξ+ and ξ−

are trivial on the boundary of Nε. So we can extend them trivially to the whole X.

And extend the morphism on Nε trivially to the whole X as well, which is denoted

by V : ξ± → ξ∓.

Since V is positive and bounded below outside Nε, we see that the Chern char-

acter form of the superconnection ∇µ + TV has exponential decay outside Nε. While
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inside Nε, F doesn’t contribute to the Chern character and we see by the above result,

(34) ch(ξ,∇µ+TV) =
( 1
2πi

)n/2

e−T2
‖x‖2(Ti)nπ∗Â−1(N,∇N)∧(−2i)n/2(−1)n/2dx1 . . . dxn + ...

But along each fibre,

(35) lim
T→∞

∫
Bε

e−T2
‖x‖2Tndx1 . . . dxn = lim

T→∞

∫
BTε

e−‖x‖
2
dx1 . . . dxn = πn/2.

5 Relation with Atiyah-Singer index theorem

There are several different proofs of Atiyah-Singer index theorem. The first one is

the cobordism proof, which is to modify Hirzebruch’s proof of Riemann-Roch. But

the founders of index theorem thought that this proof is not natural. Then motivated

by Grothendieck-Riemann-Roch, Atiyah and Singer gave the second proof, which is

called the K-theory proof, in which Bott periodicity played a significant role. There

are also the heat equation proof and physical proof of this theorem.

Actually, the characteristic number

〈Â(TX), [X]〉

(the special case where µ is the trivial line bundle in above situation) is called the

Â-genus of X. It used to be mysterious why this number is an integer when TX is

spin. This was one of the starting point of the index theorem and this integer is

equal to the index of the Dirac operator on X.
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