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1. Morse-Smale-Witten chain complex

Let M be a smooth manifold, f : M — R a Morse function, g a
complete Riemannian metric.

For p € Critf, index(p, f) € Z>op.

Negative gradient flow equation

z(t) + Vf(z(¢)) = 0.

The Morse-Smale condition:

Vp,q € Critf, W¥(p) h W*(q)
holds for generic pair (f,g).



We work with Zy-coefficients. The Morse-Smale-Witten complex CM(f, g)
is defined as:

e Generators and grading:

CM; .= @ Ly < p>.
index(p)=1

e Differential is defined by counting trajectories:

(Op,q) = # [(W"(p) " W?*(q))/R] mod 2.

e Palais-Smale condition on f == #W%(p) N W5(q) < oo, and 82 = 0.



e [ he Morse homology

o If M is compact, (f',¢") is another pair, then there is a quasi-
iIsomorphism

CM*(f: g) ~ CM*(flag,)
And HM.(f,q) ~ He(M;Z5).



2. Lagrange multipliers

Let M be a compact manifold, f,u : M — R be two Morse functions.
Assume

e O is a regular value of pu.
° f|u—1(0) IS Morse.

o Critf N Critu = 0.



We define the Lagrange multiplier

F: MxR — R
(z,n) = f(z)+nu(z).

The critical point set of F

CritF = {(z,n) | p(z) =0, df(x) + ndu(z) = 0}.



e [ here is a one-to-one correspondence
CritF ~ Critf|'u_1(0)

p .= (prﬂ?p) — Tp

e Indices shifted by one:

index(p, F) = index (:I:p,f|u_1(0)) + 1.



e Now choose a metric g on M, and e the Euclidean metric on R.
Denote

g\ =gD A e,

e [ he negative gradient flow equation
{ z(t) + Vf(z) +nVu(z) = 0O,

n(t) + \2u(z) = 0.
We call the solutions with finite energy “M\-trajectories”. And the
solution space M*(p, q).

e The chain complex obtained from the pair (F, g)) on M xR is denoted
by

CA(fm9) = (CH,0%).



e T he homology H?* of the chain complex is defined for and indepen-
dent of generic A € Ry .

e When varying )\, the generators of C* don't change, while the tra-
jectories change.

e We push X to oo and O, to see if there are “limit chain complexes' .
Then we need to know the behavior of A-trajectories connecting p to
q when X\ is very large and very small.
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3. A\ — 0.

e Let's fix p,qg € CritF. Then for any A-trajectory v € M*(p,q), the
energy of ~

+o0o
B = [ (I8P + 532 |u@)?) dt = F(p) = F(a) = f(zp) = f(ag)

doesn’t depend on A. So if A — oo,

()|l 2 — O.

e Compactness Indeed, for any sequence \; — oo, v; € MAi(p, q), there
IS @ subsequence converging to a broken trajectory of the negative
gradient flow of (f,g)[,-1(oy connecting zp and zq.
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e Gluing Conversely, for any v € M (xp,xq4), using implicit function
theorem, one shows that there is a homeomorphism

M (xp, xq) ~ ./\/l>‘(p, q), VA >> 0.

e Hence we actually proved

HY ~ HM,_1 ((£,9)],-100y) ~ Hee1(n"1(0); Z2).

e Compare with Gaio-Salamon on Hamiltonian Gromov-Witten invari-
ants of M ~ Gromov-Witten of M//G, or with Katrin’'s lectures on
Donaldson invariants ~ quilts. We are in the classical(not quantum)
Situation so the story is much simplified.
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4. The other direction A - 0O

e Look at the second equation:

{ 2(t) + Vf(z) + nVu(z) 0,

n(t) + X2u(x) = 0.
As X — 0, n will converge to constant on compact intervals.

e A fast trajectory is a trajectory of the flow of —Vf —nVu in M for
some n € R. Its image can be viewed as a subset in M x{n} C M xR.

e But near points where Vf 4+ nVu = 0 and for small A, both x and n
changes slowly along the flow.
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e [0 describe “limit” trajectories, we introduce the slow manifold:

Cr:={(z,n) | Vf(z) + nVu(z) =0} C M x R.

e In generic situation, Cr is a 1-dimensional submanifold of M xR, and

CritF = Crn (p~1(0) x R).

e A slow trajectory is an oriented arc v C Cr such that Fl|, is de-
screasing.
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e A fast-slow trajectory connecting p to g is a sequence

1.1 .2 .2 k k
(7}"77377}*7737"' 7’7]‘“7’75)
where fy} are fast trajectories and ~% are slow trajectories, such that

the end of 7} is the beginning of 7§+1, etc., and the beginning of 7}
is p and the end of ~¥ is g.

e Note that a fast-slow trajectory doesn’t necessarily start/end with a
fast/slow trajectory, but we allow trivial trajectories appearing in the
sequence.
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Compactness For any sequence \; — 0 and ~; € M?i(p,q), there exists
a subsequence ‘“converging” (e.g., in Hausdorff topology) to a fast-slow
trajectory ~p.

Gluing Suppose index(p) — index(q) = 1. Then for any fast-slow trajec-
tory vo and small enough A, there exists a unique v, &€ ./\/l>‘(p, qg) which is
“close™ to ~p.

The proof of the gluing theorem is not using the usual implicit func-
tion theorem approach. Instead, we are using the *“generalized exchange
lemma” of Schecter(2008) in the context of geometric singular pertur-
bation theory with minor modifications.
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e Let MO(p,q) be the moduli space of fast-slow trajectories connecting
p and g. Under various transversality assumptions

index(p) — index(q) = 1 = #M(p, q) < co.

e This allows us to define a chain complex (C9, 89) by couting fast-slow

trajectories. (89)2 = 0 follows from the 1-1 correspondence between
MO and MA<<1 and (6*)2 = 0.

e Hence the complex (C9,89) gives an equivalent definition of the
Morse homology of ;fl(O), by counting those singular objects.
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We give two examples of the objects we are counting. Critical points of
F are also critical points of -7:|C;- We assume that p is a local maximum
and q a local minimum of F|c,. and assuming index(p) — index(q) = 1.

e It is possible that p and q lie in the same connected component of
C'r, with a slow trajectory vs connecting them. Then ~; itself forms
a fast-slow trajectory.

e A fast-slow trajectory connecting p and ¢ may contain several “handle-
slides” , that is, fast trajectories with relative index zero; and ‘“cusp
trajectories”, that is, fast trajectories with beginning or ending a
degenerate critical point.
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5. Wall-crossing

e The classical Morse theory studies the change of the level set u=1(¢)
when ¢ crosses a critical value of u.

e We replace u by u—c, and look at the change of the chain complex
C9 as ¢ varies.

e Note that Cr = {(x,n) | Vf(z) + nVu(x) = 0} and the fast flow
doesn’t change, while the generators and the slow flows will change.
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Two examples of wall-crossing:

e 'Birth-death”: The chain complexes differ by two redundant gener-
ators.

e Crossing a critical value of u: The chain complexes differ by two
generators of degree kK and n— 1 — k, corresponding to the attaching
of a k-handle(or (n — k)-handle).
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Thank you!
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