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1. Morse-Smale-Witten chain complex

• Let M be a smooth manifold, f : M → R a Morse function, g a
complete Riemannian metric.

• For p ∈ Critf , index(p, f) ∈ Z≥0.

• Negative gradient flow equation

ẋ(t) +∇f(x(t)) = 0.

• The Morse-Smale condition:

∀p, q ∈ Critf, Wu(p) tW s(q)

holds for generic pair (f, g).
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We work with Z2-coefficients. The Morse-Smale-Witten complex CM(f, g)

is defined as:

• Generators and grading:

CMi :=
⊕

index(p)=i

Z2 < p > .

• Differential is defined by counting trajectories:

〈∂p, q〉 = # [(Wu(p) ∩W s(q))/R] mod 2.

• Palais-Smale condition on f =⇒#Wu(p) ∩W s(q) <∞, and ∂2 = 0.
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• The Morse homology

HM(f, g) := H (CM∗(f, g), ∂) .

• If M is compact, (f ′, g′) is another pair, then there is a quasi-

isomorphism

CM∗(f, g) ∼ CM∗(f ′, g′).

And HM∗(f, g) ' H∗(M ;Z2).

5



2. Lagrange multipliers

Let M be a compact manifold, f, µ : M → R be two Morse functions.

Assume

• 0 is a regular value of µ.

• f |µ−1(0) is Morse.

• Critf ∩Critµ = ∅.
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We define the Lagrange multiplier

F : M × R → R
(x, η) 7→ f(x) + ηµ(x).

The critical point set of F

CritF = {(x, η) | µ(x) = 0, df(x) + ηdµ(x) = 0} .
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• There is a one-to-one correspondence

CritF ' Critf |µ−1(0)

p := (xp, ηp) 7→ xp

• Indices shifted by one:

index(p,F) = index
(
xp, f |µ−1(0)

)
+ 1.
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• Now choose a metric g on M , and e the Euclidean metric on R.
Denote

gλ := g ⊕ λ−2e.

• The negative gradient flow equation ẋ(t) +∇f(x) + η∇µ(x) = 0,

η̇(t) + λ2µ(x) = 0.

We call the solutions with finite energy “λ-trajectories”. And the
solution space Mλ(p, q).

• The chain complex obtained from the pair (F , gλ) on M×R is denoted
by

Cλ(f, µ, g) =
(
Cλ, ∂λ

)
.
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• The homology Hλ of the chain complex is defined for and indepen-

dent of generic λ ∈ R>0.

• When varying λ, the generators of Cλ don’t change, while the tra-

jectories change.

• We push λ to ∞ and 0, to see if there are “limit chain complexes”.

Then we need to know the behavior of λ-trajectories connecting p to

q when λ is very large and very small.
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3. λ→∞.

• Let’s fix p, q ∈ CritF. Then for any λ-trajectory γ ∈ Mλ(p, q), the

energy of γ

E(γ) :=
∫ +∞

−∞

(
‖ẋ(t)‖2 + λ2 |µ(x)|2

)
dt = F(p)−F(q) = f(xp)− f(xq)

doesn’t depend on λ. So if λ→∞,

‖µ(x)‖L2 → 0.

• Compactness Indeed, for any sequence λi →∞, γi ∈Mλi(p, q), there

is a subsequence converging to a broken trajectory of the negative

gradient flow of (f, g)|µ−1(0) connecting xp and xq.
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• Gluing Conversely, for any γ∞ ∈ M∞(xp, xq), using implicit function

theorem, one shows that there is a homeomorphism

M∞(xp, xq) 'Mλ(p, q), ∀λ >> 0.

• Hence we actually proved

Hλ
∗ ' HM∗−1

(
(f, g)|µ−1(0)

)
' H∗−1(µ−1(0);Z2).

• Compare with Gaio-Salamon on Hamiltonian Gromov-Witten invari-

ants of M ∼ Gromov-Witten of M//G, or with Katrin’s lectures on

Donaldson invariants ∼ quilts. We are in the classical(not quantum)

situation so the story is much simplified.
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4. The other direction λ→ 0

• Look at the second equation:{
ẋ(t) +∇f(x) + η∇µ(x) = 0,

η̇(t) + λ2µ(x) = 0.

As λ→ 0, η will converge to constant on compact intervals.

• A fast trajectory is a trajectory of the flow of −∇f − η∇µ in M for

some η ∈ R. Its image can be viewed as a subset in M ×{η} ⊂M ×R.

• But near points where ∇f + η∇µ = 0 and for small λ, both x and η

changes slowly along the flow.
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• To describe “limit” trajectories, we introduce the slow manifold:

CF := {(x, η) | ∇f(x) + η∇µ(x) = 0} ⊂M × R.

• In generic situation, CF is a 1-dimensional submanifold of M×R, and

CritF = CF ∩ (µ−1(0)× R).

• A slow trajectory is an oriented arc γ ⊂ CF such that F|γ is de-

screasing.
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• A fast-slow trajectory connecting p to q is a sequence(
γ1
f , γ

1
s , γ

2
f , γ

2
s , · · · , γkf , γ

k
s

)
where γif are fast trajectories and γis are slow trajectories, such that

the end of γif is the beginning of γi+1
s , etc., and the beginning of γ1

f

is p and the end of γks is q.

• Note that a fast-slow trajectory doesn’t necessarily start/end with a

fast/slow trajectory, but we allow trivial trajectories appearing in the

sequence.
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Compactness For any sequence λi → 0 and γi ∈ Mλi(p, q), there exists

a subsequence “converging”(e.g., in Hausdorff topology) to a fast-slow

trajectory γ0.

Gluing Suppose index(p)− index(q) = 1. Then for any fast-slow trajec-

tory γ0 and small enough λ, there exists a unique γλ ∈Mλ(p, q) which is

“close” to γ0.

The proof of the gluing theorem is not using the usual implicit func-

tion theorem approach. Instead, we are using the “generalized exchange

lemma” of Schecter(2008) in the context of geometric singular pertur-

bation theory with minor modifications.
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• Let M0(p, q) be the moduli space of fast-slow trajectories connecting

p and q. Under various transversality assumptions

index(p)− index(q) = 1 =⇒#M0(p, q) <∞.

• This allows us to define a chain complex (C0, ∂0) by couting fast-slow

trajectories. (∂0)2 = 0 follows from the 1-1 correspondence between

M0 and Mλ<<1 and (∂λ)2 = 0.

• Hence the complex (C0, ∂0) gives an equivalent definition of the

Morse homology of µ−1(0), by counting those singular objects.
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We give two examples of the objects we are counting. Critical points of

F are also critical points of F|CF . We assume that p is a local maximum

and q a local minimum of F|CF and assuming index(p)− index(q) = 1.

• It is possible that p and q lie in the same connected component of

CF , with a slow trajectory γs connecting them. Then γs itself forms

a fast-slow trajectory.

• A fast-slow trajectory connecting p and q may contain several “handle-

slides”, that is, fast trajectories with relative index zero; and “cusp

trajectories”, that is, fast trajectories with beginning or ending a

degenerate critical point.
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5. Wall-crossing

• The classical Morse theory studies the change of the level set µ−1(c)

when c crosses a critical value of µ.

• We replace µ by µ− c, and look at the change of the chain complex

C0 as c varies.

• Note that CF = {(x, η) | ∇f(x) + η∇µ(x) = 0} and the fast flow

doesn’t change, while the generators and the slow flows will change.
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Two examples of wall-crossing:

• “Birth-death”: The chain complexes differ by two redundant gener-

ators.

• Crossing a critical value of µ: The chain complexes differ by two

generators of degree k and n− 1− k, corresponding to the attaching

of a k-handle(or (n− k)-handle).
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Thank you!
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