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Introduction

What are these tutorials about?

The Connes Embedding Problem (or CEP) is a famous problem
posed by Alain Connes in his landmark 1976 paper in the field of
von Neumann algebras.
The CEP is a model theory problem when viewed in the right light.
In early 2020, a group of computer scientists proved a result in
quantum complexity theory known as MIP∗ = RE.
Besides being intrinsically fascinating, it yielded a refutation of
CEP.
The “standard” path from MIP∗ = RE to ¬CEP uses a lot of heavy
machinery.
We will show how basic continuous model theory can give an
alternate proof of this implication, bypassing many of the
intermediate ingredients, as well as yielding further results.
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Introduction

The ubiquity of the CEP

C∗algebras: CEP is equivalent to Kirchberg’s QWEP problem, a
problem stemming from the theory of C∗-algebra tensor products.
Quantum information theory: CEP is equivalent to Tsirelson’s
problem about the equality of two different models for quantum
correlations.
Free probability: CEP is equivalent to microstate free entropy
dimension being nonnegative (Voiculescu).
Group theory: CEP for group von Neumann algebras is equivalent
to every countable discrete group being hyperlinear. (Rǎdulescu)
Noncommutative real algebraic geometry: CEP is equivalent to a
certain tracial Positivstellenzats (Klep and Schweighofer).
Model theory: Connections with decidability, e.c. models, and
Henkin constructions...
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Basics on tracial von Neumann algebras

B(H)

Throughout, H is a complex Hilbert space.
A linear operator T : H → H is called bounded if

‖T‖ := sup{‖T ξ‖ : ‖ξ‖ ≤ 1} <∞.

B(H) denotes the set of bounded operators on H. It is a unital
Banach ∗-algebra when equipped with the operator norm,
operator addition, scalar multiplication, composition and adjoint:
〈T ξ, η〉 = 〈ξ,T ∗η〉 for all ξ, η ∈ H.
The weak operator topology (WOT) on B(H) is given by
Ti

WOT−−−→ T if and only if 〈T iξ, η〉 → 〈T ξ, η〉 for all ξ, η ∈ H.
The WOT is a weaker topology than the operator norm topology.
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Basics on tracial von Neumann algebras

C∗-algebras and von Neumann algebras

Definition

1 A C∗-algebra is a *-subalgebra of B(H) closed in the operator
norm topology.

2 A von Neumann algebra is a unital *-subalgebra of B(H) closed
in the WOT.

Example

B(H) is a von Neumann algebra. In particular, when dim(H) = n, we
see that Mn(C) is a von Neumann algebra.

Example

If (X , µ) is a measure space, then L∞(X , µ) is an abelian von
Neumann subalgebra of B(L2(X , µ)).
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Basics on tracial von Neumann algebras

von Neumann’s bicommutant theorem

Given X ⊆ B(H), we set

X ′ := {T ∈ B(H) : TS = ST for all S ∈ X}.

If X is closed under adjoint, it is easy to see that X ′ is a von
Neumann algebra and X ⊆ X ′′ := (X ′)′.

Theorem (von Neumann’s bicommutant theorem)

If M is a unital ∗-subalgebra of B(H), then M is a
von Neumann algebra if and only if M = M ′′.
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Basics on tracial von Neumann algebras

Group von Neumann algebras

Let Γ denote a countable discrete group.
`2(Γ) is the Hilbert space with orthonormal basis (δγ)γ∈Γ.
The left-regular representation of Γ is the unitary representation
λΓ : Γ→ U(`2(Γ)) ⊆ B(`2(Γ)) given by λΓ(γ)(δη) = δγη.
Note that span(λΓ(Γ)) ∼= C[Γ].
The group von Neumann algebra of Γ is L(Γ) := λΓ(Γ)′′.
Example: L(Z) ∼= L∞(T) (Fourier analysis).
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Basics on tracial von Neumann algebras

Factors

Definition

If M is a von Neumann algebra, then its center is

Z (M) := M ∩M ′ = {T ∈ B(H) : TS = ST for all S ∈ M}.

M is a factor if Z (M) = C · 1.

Factors are the “building blocks” of von Neumann algebras (every
von Neumann algebra is a direct integral of factors).

Examples

1 B(H) is a factor.
2 L(Γ) is a factor if and only if Γ is an ICC group, i.e. all nontrivial

conjugacy classes are infinite, e.g. Γ = S∞ or Fn.
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Basics on tracial von Neumann algebras

Traces

Definition

1 A trace on M is a normal, positive linear functional τ : M → C with
τ(1) = 1 and τ(xy) = τ(yx). (E.g. integration on M = L∞(X , µ).)

2 A tracial von Neumann algebra is a pair (M, τ), where M is a
von Neumann algebra and τ is a trace on M.

3 A II1 factor is an infinite-dimensional factor that admits a trace
(which is then necessarily unique).

Examples

1 Mn(C) is a tracial factor, but not II1. If dim(H) =∞, then B(H)
admits no trace.

2 L(Γ) admits the trace x 7→ 〈xδe, δe〉. ∴ If Γ is a countably infinite
ICC group, then L(Γ) is a II1 factor.
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Basics on tracial von Neumann algebras

The hyperfinite II1 factor

Consider the map A 7→
(

A 0
0 A

)
from M2n (C) to M2n+1(C).

This map is a ∗-homomorphism that preserves the normalized
trace on M2n (C).
The limit of this chain, denoted M, possesses a natural trace τ for
which we can apply the GNS procedure, obtaining a faithful
representation πτ : M ↪→ B(H).
The hyperfinite II1 factor is the von Neumann algebra
R := πτ (M)′′.
By a major theorem of Connes, R ∼= L(Γ) for any infinite ICC
amenable group Γ.
R is contained in any II1 factor.
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Basics on tracial von Neumann algebras

Ultrapowers of II1 factors

Fix a family (Mi)i∈I of II1 factors and an ultrafilter U on I.
The (tracial) ultraproduct of the family (Mi)i∈I with respect to
the ultrafilter U is the II1 factor

∏
U Mi := `∞(Mi)/cU , where:

`∞(Mi ) := {(ai ) ∈
∏

i∈I Mi : supi∈I ‖ai‖ <∞} (operator norm
bounded)
cU := {(ai ) ∈ `∞(Mi ) : limU ‖ai‖τi = 0} (trace infinitesimal).

It carries the ultraproduct trace τ((ai)
•) := limU τi(ai).

When each Mi = M, speak of ultrapowers of M, denoted MU .
Have the diagonal embedding M ↪→ MU , a 7→ (a,a,a, . . .)•.
If U is principal, say supported on j ∈ I, then

∏
U Mi

∼= Mj .
Otherwise,

∏
U Mi is nonseparable.
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Basics on tracial von Neumann algebras

Connes’ Embedding Problem

Quote (Connes, 1976)

“We now construct an approximate imbedding of
N in R. Apparently such an imbedding ought to
exist for all II1 factors because it does for the
regular representation of free groups. However,
the construction below relies on condition 6.”

The Connes Embedding Problem

Does every II1 factor embed into an ultrapower of R?
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Model theory of tracial von Neumann algebras

1 Introduction

2 Basics on tracial von Neumann algebras

3 Model theory of tracial von Neumann algebras

Isaac Goldbring (UCI) CEP and Model Theory ASL Annual Meeting April 7, 2022 15 / 25



Model theory of tracial von Neumann algebras

The language for tracial von Neumann algebras

Developed by Ilijas Farah, Bradd Hart, and David Sherman
Domains of quantification: operator norm balls of integer radii
Function symbols for the *-algebra operations
Real-valued predicate symbols for the (real and imaginary parts of
the) trace
Distinguished predicate symbol for the metric arising from the
trace
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Model theory of tracial von Neumann algebras

An example of a continuous formula

Example

Let ϕ(x , y) be the formula ‖xy − yx‖2 (with x and y ranging over the
unit ball), let M be a tracial von Neumann algebra, and let a,b ∈ M1.
We then have:

ϕ(a,b)M = 0 if and only if a and b commute.
(supy ϕ(a, y))M = 0 if and only if a ∈ Z (M).

(supx supy ϕ(x , y))M = 0 if and only if M is abelian.

The formula appearing in the third bullet has no free variables (so is a
sentence) and is in fact a universal sentence.
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Model theory of tracial von Neumann algebras

The elementary class of tracial von Neumann algebras

Theorem (Farah-Hart-Sherman)

1 The class of tracial von Neumann algebras forms a universally
axiomatizable elementary class in the language just described.

2 The model-theoretic ultraproduct coincides with the tracial
ultraproduct.

3 The class of tracial factors and the class of II1 factors form
∀∃-axiomatizable subclasses.

This theorem is not super obvious.
It uses the GNS construction to take a model of the theory and
construct a *-algebra of operators on a Hilbert space.
To see that the model forms a von Neumann algebra, one needs
to use the fact that continuous structures are complete and the
Kaplansky density theorem.
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Model theory of tracial von Neumann algebras

CEP and Model theory: Part I

Definition

Given a continuous structure M, its universal theory is the function
Th∀(M) : {universal sentences} → R given by Th∀(M)(σ) := σM .

Model theory 101 (continuous version)

If M and N are structures in the same language, then
Th∀(M) ≤ Th∀(N) (as functions) if and only if M embeds into an
ultrapower of N.

Corollary

CEP is equivalent to:
Th∀(M) ≤ Th∀(R) for all tracial von Neumann algebras M.
Th∀(M) = Th∀(R) for all II1 factors M.
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Model theory of tracial von Neumann algebras

Existentially closed structures

Definition

If M ⊆ N, then M is existentially closed (e.c.) in N if: for every
quantifier-free formula ϕ(x , y) and tuple a from M, we have

(infy ϕ(a, y))M = (infy ϕ(a, y))N .

More model theory 101

M is e.c. in N if and only if there is an embedding ι : N ↪→ MU such
that ι|M : M ↪→ MU is the diagonal embedding.

Definition

M |= T is an existentially closed model of T if and only if it is e.c. in
all superstructures that are models of T .
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Model theory of tracial von Neumann algebras

Locally universal models

Definition

A model M of T is locally universal if every model of T embeds into
an ultrapower of M.

So CEP asks: is R is locally universal?

Fact

If T has the joint embedding property (JEP), then an e.c. model M of T
is a locally universal model of T , that is, all models of T embed into an
ultrapower of M.

Since tracial von Neumann algebras have JEP (e.g. tensor products,
free products,...), we get:

Theorem (Poor Man’s CEP (FHS))

There is a locally universal tracial von Neumann algebra.
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Model theory of tracial von Neumann algebras

CEP and Model Theory: Part II

Theorem (FGHS)

CEP is equivalent to R being an e.c. tracial von Neumann algebra.

Proof.

Assume CEP holds and R ⊆ M.
By CEP we have ι : M ↪→ RU .
Issue: the composite map R ⊆ M ↪→ RU is not the diagonal.
Folklore: the composite is unitarily conjugate to the diagonal. That
is good enough.
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Model theory of tracial von Neumann algebras

Building models by games (a la Hodges)

We fix a countably infinite set C of distinct symbols (witnesses)
that are to represent generators of a separable tracial vNa that
two players (traditionally named ∀ and ∃) are going to build
together (albeit adversarially).
The two players take turns playing finite sets of expressions of the
form |ϕ(c)− r | < ε, where c is a tuple of variables, ϕ(x) is a
quantifier-free formula, and each player’s move is required to
extend the previous player’s move. These sets are called (open)
conditions.
Moreover, these conditions are required to be satisfiable, meaning
that there should be some vNa A and some tuple a from A such
that |ϕ(a)− r | < ε for each such expression in the condition.
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Model theory of tracial von Neumann algebras

Introducing the game (cont’d)

We play this game for ω many steps.
At the end of this game, we have enumerated some countable,
satisfiable set of expressions.
Player II can also ensure that the play is definitive, meaning that
the final set of expressions yields complete information about all
∗-polynomials over the variables C (that is, for each ∗-polynomial
p(c), there should be a unique r such that the play of the game
implies that ‖p(c)‖2 = r ) and that this data describes a countable,
dense ∗-subalgebra of a unique vNa, which is often called the
compiled structure.
With extra care, player II can also ensure that the compiled
structure is actually a II1 factor!
What other properties can player II enforce?
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Model theory of tracial von Neumann algebras

CEP and model theory: Part III

Theorem

The following are equivalent:
1 CEP has a positive solution.
2 R is the enforceable II1 factor.
3 RU -embeddability is enforceable.

By the negative solution of CEP (and a little extra reasoning), we
actually see that being a counterexample to CEP is enforceable (and
thus model-theoretically generic).

One of my favorite open questions

Does the enforceable II1 factor E exist?
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