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Nonlocal games

Alice and Bob against the world

Alice and Bob are two cooperating but noncommunicating players
playing a game against a “referee.”
They are each asked a question x , y ∈ [k ] := {1, . . . , k} randomly
according to some probability distribution π on [k ]× [k ].
Somehow they return answers a,b ∈ [n] respectively.
There is a function D : [k ]2 × [n]2 → {0,1}, called the decision
predicate, which determines if they win this round of the game,
that is, they win if and only if D(x , y ,a,b) = 1.
This describes a nonlocal game G := (π,D) with k questions and
n answers.
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Nonlocal games

Strategies for nonlocal games

Alice and Bob can meet before the game to decide on a strategy
for playing G that they will use before the game.
For us, a strategy will simply be a matrix p(a,b|x , y) ∈ [0,1]k

2n2

describing the conditional probability they respond with answers
(a,b) ∈ [n]2 given that they are asked questions (x , y) ∈ [k ]2.
Given a strategy p, the value of the game G with respect to p is
the quantity

val(G,p) :=
∑

(x ,y)∈[k ]2
π(x , y)

∑
(a,b)∈[n]2

p(a,b|x , y)D(a,b, x , y).

val(G,p) measures the expected probability of winning the game if
they play according to the strategy p.
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Nonlocal games

Classical strategies for nonlocal games

A deterministic strategy is given by a pair of functions
A,B : [k ]→ [n] such that

p(A(x),B(y)|x , y) = 1 for all (x , y) ∈ [k ]2.

A classical (or local) strategy is given by a probability space
(Ω, µ) together with pairs of functions Aω,Bω : [k ]→ [n] such that

p(a,b|x , y) = µ({ω ∈ Ω : Aω(x) = a and Bω(y) = b}).

Cloc(k ,n) ⊆ [0,1]k
2n2

denotes the set of classical strategies. It is
the convex hull of the set Cdet(k ,n) of determinstic strategies.
The classical value of G is the quantity

val(G) := sup
p∈Cloc(k ,n)

val(G,p) = sup
p∈Cdet(k ,n)

val(G,p).
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Nonlocal games

The CHSH game

Example

The CHSH game (named after Clauser, Horne, Shimony, and Holt) is
the game GCHSH with k = n = 2 and such that:

If x = 1 or y = 1, then Alice and Bob win if and only if their
answers agree.
If x = y = 2, then Alice and Bob win if and only if their answers
disagree.

By inspecting all deterministic strategies, one sees that

val(GCHSH) =
3
4
.
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A quantum detour

The spin of an electron

An electron can have one of two spins: “up” or “down.”
At any given moment, however, it does not have a definite spin
and instead is in a superposition of the two spins, as represented
by the linear combination α| up〉+ β| down〉 ∈ C2, where | up〉 and
| down〉 are two orthogonal vectors in C2 and α, β ∈ C are such
that |α|2 + |β|2 = 1.
If it is not disturbed, its state evolves linearly according to the
Shrödinger equation.
However, when it is measured, its state randomly and
discontinuously jumps to one of the two definite spin states | up〉 or
| down〉 with probabilities |α|2 and |β|2 respectively.
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A quantum detour

Recommended summer reading
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A quantum detour

More summer reading (shameless plug)
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A quantum detour

General quantum systems

Associated to a quantum system is its state space, which is a
complex Hilbert space H.
The state of the system at any given moment is described by a
unit vector ξ ∈ H, which evolves linearly until it is measured.
A measurement with n outcomes is a tuple M1, . . . ,Mn ∈ B(H)
such that, upon measurement, the probability of outcome i
occurring is given by ‖Miξ‖2, in which case the state of the system
jumps to Miξ

‖Miξ‖ . (Born rule)

For these to determine legitimate probabilities, for all unit vectors
ξ ∈ H, one must have

1 =
n∑

i=1

‖Miξ‖2 =
n∑

i=1

〈M∗i Miξ, ξ〉

and thus
∑n

i=1 M∗i Mi = IH .
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A quantum detour

POVMs and PVMs

If one only cares about the statistics of the outcomes of a
measurement (like us!), then we can simplify matters by assuming
that each measurement operator is positive.
A POVM (positive operator-valued measure) of length n is a
collection A1, . . . ,An of positive operators on H such that∑n

i=1 Ai = IH .
On state ξ, the probability outcome i occurs is given by 〈Aiξ, ξ〉.
If each Ai is actually a projection, we speak of PVMs
(projection-valued measures). This is the same as an orthogonal
decomposition of H into n orthogonal subspaces.
The case of the spin of an electron was a PVM corresponding to
the one-dimensional subspaces spanned by | up〉 and | down〉.
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A quantum detour

The EPR state

Another axiom of quantum mechanics is that if HA and HB are the
state spaces for two quantum systems, then the state space for
their composite system is given by HA ⊗ HB.
Thus, the state space for two electrons is given by C2 ⊗ C2 ∼= C4.
The EPR state is given by ψEPR = 1√

2
| up〉| up〉+ 1√

2
| down〉| down〉.

It was used by Einstein, Podolsky, and Rosen in their famous
paper arguing that quantum mechanics was incomplete!
The spookiness of entanglement!
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MIP∗ = RE

Quantum strategies for nonlocal games

Consider a game G with k questions and n answers.
This time, when playing the game, Alice and Bob have quantum
systems HA and HB and share a state ξ ∈ HA ⊗ HB.
Upon receiving question x ∈ [k ], Alice will perform a POVM
Ax = (Ax

1, . . . ,A
x
n) on her part of ξ to decide which answer to give.

Bob similarly has a POVM By = (By
1 , . . . ,B

y
n ) for measuring on his

part of ξ.
We then have p(a,b|x , y) = 〈(Ax

a ⊗ By
b )ξ, ξ〉.
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MIP∗ = RE

The entangled value of a nonlocal game

Cq(k ,n) denotes the set of strategies for which there are:
finite-dimensional Hilbert spaces HA and HB,
POVMs Ax and By on HA and HB respectively (one for each
x , y ∈ [k ]), and
a unit vector ξ ∈ HA ⊗ HB

for which p(a,b|x , y) = 〈(Ax
a ⊗ By

b )ξ, ξ〉.
We also consider Cqa(k ,n) := Cq(k ,n).
If G is a nonlocal game with k questions and n answers, the
entangled value of G is

val∗(G) := sup
p∈Cq(k ,n)

val(G,p) = sup
p∈Cqa(k ,n)

val(G,p).

Cloc(k ,n) ⊆ Cq(k ,n) so val(G) ≤ val∗(G).

Isaac Goldbring (UCI) MIP∗ = RE ASL Annual Meeting April 7, 2022 16 / 27



MIP∗ = RE

The entangled value of a nonlocal game

Cq(k ,n) denotes the set of strategies for which there are:
finite-dimensional Hilbert spaces HA and HB,
POVMs Ax and By on HA and HB respectively (one for each
x , y ∈ [k ]), and
a unit vector ξ ∈ HA ⊗ HB

for which p(a,b|x , y) = 〈(Ax
a ⊗ By

b )ξ, ξ〉.
We also consider Cqa(k ,n) := Cq(k ,n).
If G is a nonlocal game with k questions and n answers, the
entangled value of G is

val∗(G) := sup
p∈Cq(k ,n)

val(G,p) = sup
p∈Cqa(k ,n)

val(G,p).

Cloc(k ,n) ⊆ Cq(k ,n) so val(G) ≤ val∗(G).

Isaac Goldbring (UCI) MIP∗ = RE ASL Annual Meeting April 7, 2022 16 / 27



MIP∗ = RE

The entangled value of a nonlocal game

Cq(k ,n) denotes the set of strategies for which there are:
finite-dimensional Hilbert spaces HA and HB,
POVMs Ax and By on HA and HB respectively (one for each
x , y ∈ [k ]), and
a unit vector ξ ∈ HA ⊗ HB

for which p(a,b|x , y) = 〈(Ax
a ⊗ By

b )ξ, ξ〉.
We also consider Cqa(k ,n) := Cq(k ,n).
If G is a nonlocal game with k questions and n answers, the
entangled value of G is

val∗(G) := sup
p∈Cq(k ,n)

val(G,p) = sup
p∈Cqa(k ,n)

val(G,p).

Cloc(k ,n) ⊆ Cq(k ,n) so val(G) ≤ val∗(G).

Isaac Goldbring (UCI) MIP∗ = RE ASL Annual Meeting April 7, 2022 16 / 27



MIP∗ = RE

The entangled value of a nonlocal game

Cq(k ,n) denotes the set of strategies for which there are:
finite-dimensional Hilbert spaces HA and HB,
POVMs Ax and By on HA and HB respectively (one for each
x , y ∈ [k ]), and
a unit vector ξ ∈ HA ⊗ HB

for which p(a,b|x , y) = 〈(Ax
a ⊗ By

b )ξ, ξ〉.
We also consider Cqa(k ,n) := Cq(k ,n).
If G is a nonlocal game with k questions and n answers, the
entangled value of G is

val∗(G) := sup
p∈Cq(k ,n)

val(G,p) = sup
p∈Cqa(k ,n)

val(G,p).

Cloc(k ,n) ⊆ Cq(k ,n) so val(G) ≤ val∗(G).

Isaac Goldbring (UCI) MIP∗ = RE ASL Annual Meeting April 7, 2022 16 / 27



MIP∗ = RE

CHSH, EPR, and Bell’s Theorem

Theorem (Bell’s Theorem)

val∗(GCHSH) > val(GCHSH).

Recall val(GCHSH) = 3
4 .

However, there is an entangled strategy p, based on the EPR
state ψEPR, such that val(G,p) = cos2(π8 ) ≈ 0.85 (which equals
val∗(GCHSH) by a result of Tsirelson).
This inequality showed that EPR were wrong!
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MIP∗ = RE

How hard is it to compute val∗(G)?

One can effectively compute lower bounds for val∗(G) uniformly in
G:
Given some dimension d , you can enumerate a computable
sequence of finite nets Nd

1 ⊆ Nd
2 ⊆ · · · over all states and POVMs

in dimension d with |Nd
m| = mO(d2) such that for any p ∈ Cq(k ,n)

based on a d-dimensional strategy and any m, there is q ∈ Nd
m

with | val(G,p)− val(G,q)| < 1
m .

Set
valn(G,p) = max

d ,m≤n
max
p∈Nd

m

val(G,p).

Then valn(G,p) is computable and valn(G,p)↗ val(G).
Could it be that val∗(G) is actually uniformly computable in G?
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MIP∗ = RE

MIP∗ = RE

Theorem (Ji, Natarajan, Vidick, Wright, Yuen (2020))

There is an effective mappingM 7→ GM from Turing machines to
nonlocal games such that:

IfM halts, then val∗(GM) = 1.
IfM does not halt, then val∗(GM) ≤ 1

2 .
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A few words about the proof of MIP∗ = RE

1 Nonlocal games

2 A quantum detour

3 MIP∗ = RE

4 A few words about the proof of MIP∗ = RE
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A few words about the proof of MIP∗ = RE

Uniform game sequences

Definition

A uniform game sequence (UGS) is an infinite sequence
Ḡ := (G1,G2, . . . , ) of nonlocal games for which there is a single Turing
machine V which computes in time poly(log n):

The number of questions and answers in Gn.
A Turing machine which specifies the probability distribution for
Gn.
A Turing machine which specifies the decision predicate for Gn.
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A few words about the proof of MIP∗ = RE

Entanglement lower bound for nonlocal games

Definition

Given a nonlocal game G and r ∈ [0,1], we set E(G, r) to be the
minimum dimension d for which there exists a strategy p ∈ Cq based
on d-dimensional Hilbert spaces so that val(G,p) ≥ r .

Example

1 E(GCHSH,
3
4) = 0

2 E(GCHSH, cos2(π8 )) = 2
3 E(GCHSH,1) =∞
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A few words about the proof of MIP∗ = RE

Compression theorem for nonlocal games

Theorem

There exists an algorithm C such that upon input a Turing machine V
describing a UGS Ḡ with each Gn of “complexity” at most O(n2)
outputs a Turing machine V ′ describing a UGS Ḡ′ of polynomial-time
computable games such that:

If val∗(Gn) = 1, then val∗(G′n) = 1.
E(G′n,

1
2) ≥ max{E(Gn,

1
2),n}.

The time complexity of G′n is poly(log n).
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describing a UGS Ḡ with each Gn of “complexity” at most O(n2)
outputs a Turing machine V ′ describing a UGS Ḡ′ of polynomial-time
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describing a UGS Ḡ with each Gn of “complexity” at most O(n2)
outputs a Turing machine V ′ describing a UGS Ḡ′ of polynomial-time
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A few words about the proof of MIP∗ = RE

MIP∗ = RE from Compression: Part I

GivenM, we define a Turing machine VM which computes a
UGS ḠM = (G1,G2, . . .).
Here is how Gn looks:

RunM on the empty input for n time steps. IfM halts, then victory!
If not, run C on VM to get V ′ := (VM)′ which computes the UGS
Ḡ′.
Then play G′

n+1.

This is self-referential, but we are used to that :)
The compression algorithm is indeed applicable (check execution
times of the various steps...)
Define GM := G1.
Why does this work?
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A few words about the proof of MIP∗ = RE

MIP∗ = RE from Compression: Part II

Case 1: M halts, say in T steps.
Then val∗(Gn) = 1 for all n ≥ T .
What about n < T ?
For n < T , val∗(Gn) = val∗(G′n+1).
So val∗(GT−1) = val∗(G′T ) = 1 since val∗(GT ) = 1 (preservation of
perfect completeness).
By induction, we get that val∗(GM) = val∗(G1) = 1.
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A few words about the proof of MIP∗ = RE

MIP∗ = RE from Compression: Part III

Now suppose thatM does not halt.
Then val∗(Gn) = val∗(G′n+1) and E(Gn, r) = E(G′n+1, r) for all n ∈ N
and r ∈ [0,1].
E(G′n+1,

1
2) ≥ E(Gn+1,

1
2) = E(G′n+2,

1
2) ≥ E(Gn+2,

1
2) · · ·

∴ E(Gn,
1
2) ≥ E(G′m,

1
2) for all m > n.

OTOH E(G′m,
1
2) ≥ m for all m ∈ N.

Therefore E(Gn,
1
2) =∞ for all n ∈ N and thus

val∗(GM) = val∗(G1) <
1
2
.
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1
2) =∞ for all n ∈ N and thus

val∗(GM) = val∗(G1) <
1
2
.
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A few words about the proof of MIP∗ = RE

Hand-waving about the proof of the Compression
Theorem

Question reduction
Get the players to sample questions for themselves.
Uses rigidity of nonlocal games and the Heisenberg uncertainty
principle.
Brings the sampler complexity down from poly(n) to poly(log n).

Answer reduction
The players must now also compute the decision predicate
Dn(x , y ,a,b) for themselves
They must include a succint proof that they computed Dn correctly
Uses probabilistically checkable proofs (PCP)
Brings the decider complexity down to poly(log n)
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