$\mathrm{MIP}^{*}=\mathrm{RE}$

Isaac Goldbring

University of California, Irvine

ASL North American Annual Meeting
 Cornell University April 7, 2022

1 Nonlocal games

2 A quantum detour

$3 \mathrm{MIP}^{*}=\mathrm{RE}$

4 A few words about the proof of MIP* $=$ RE

Alice and Bob against the world

■ Alice and Bob are two cooperating but noncommunicating players playing a game against a "referee."

- They are each asked a question $x, y \in[k]:=\{1, \ldots, k\}$ randomly according to some probability distribution π on $[k] \times[k]$.
- Somehow they return answers $a, b \in[n]$ respectively.
- There is a function $D:[k]^{2} \times[n]^{2} \rightarrow\{0,1\}$, called the decision predicate, which determines if they win this round of the game, that is, they win if and only if $D(x, y, a, b)=1$
- This describes a nonlocal game $\mathfrak{G}:=(\pi, D)$ with k questions and n answers.

Alice and Bob against the world

■ Alice and Bob are two cooperating but noncommunicating players playing a game against a "referee."
■ They are each asked a question $x, y \in[k]:=\{1, \ldots, k\}$ randomly according to some probability distribution π on $[k] \times[k]$.

- Somehow they return answers $a, b \in[n]$ respectively.
- There is a function $D:[k]^{2} \times[n]^{2} \rightarrow\{0,1\}$, called the decision predicate, which determines if they win this round of the game, that is, they win if and only if $D(x, y, a, b)=1$
■ This describes a nonlocal game $\mathfrak{G}:=(\pi, D)$ with k questions and n answers.

Alice and Bob against the world

■ Alice and Bob are two cooperating but noncommunicating players playing a game against a "referee."
■ They are each asked a question $x, y \in[k]:=\{1, \ldots, k\}$ randomly according to some probability distribution π on $[k] \times[k]$.
■ Somehow they return answers $a, b \in[n]$ respectively. predicate, which determines if they win this round of the game, that is, they win if and only if $D(x, y, a, b)=1$

- This describes a nonlocal game $\mathfrak{G}:=(\pi, D)$ with k questions and n answers.

Alice and Bob against the world

■ Alice and Bob are two cooperating but noncommunicating players playing a game against a "referee."
■ They are each asked a question $x, y \in[k]:=\{1, \ldots, k\}$ randomly according to some probability distribution π on $[k] \times[k]$.
■ Somehow they return answers $a, b \in[n]$ respectively.

- There is a function $D:[k]^{2} \times[n]^{2} \rightarrow\{0,1\}$, called the decision predicate, which determines if they win this round of the game, that is, they win if and only if $D(x, y, a, b)=1$.
- This describes a nonlocal game $\mathfrak{G}:=(\pi, D)$ with k questions and n answers.

Alice and Bob against the world

■ Alice and Bob are two cooperating but noncommunicating players playing a game against a "referee."
■ They are each asked a question $x, y \in[k]:=\{1, \ldots, k\}$ randomly according to some probability distribution π on $[k] \times[k]$.
■ Somehow they return answers $a, b \in[n]$ respectively.
■ There is a function $D:[k]^{2} \times[n]^{2} \rightarrow\{0,1\}$, called the decision predicate, which determines if they win this round of the game, that is, they win if and only if $D(x, y, a, b)=1$.
■ This describes a nonlocal game $\mathfrak{G}:=(\pi, D)$ with k questions and n answers.

Strategies for nonlocal games

- Alice and Bob can meet before the game to decide on a strategy for playing \mathfrak{G} that they will use before the game.
describing the conditional probability they respond with answers $(a, b) \in[n]^{2}$ given that they are asked questions $(x, y) \in[k]^{2}$.
- Given a strategy p, the value of the game \mathfrak{G} with respect to p is the quantity

$(x, y) \in[k]^{2}$

■ $\operatorname{val}(\mathfrak{G}, p)$ measures the expected probability of winning the game if they play according to the strategy p.

Strategies for nonlocal games

■ Alice and Bob can meet before the game to decide on a strategy for playing \mathfrak{G} that they will use before the game.
■ For us, a strategy will simply be a matrix $p(a, b \mid x, y) \in[0,1]^{k^{2} n^{2}}$ describing the conditional probability they respond with answers $(a, b) \in[n]^{2}$ given that they are asked questions $(x, y) \in[k]^{2}$.
Given a strategy p, the value of the game \mathfrak{G} with respect to p is the quantity

- $\operatorname{val}(\mathfrak{G}, p)$ measures the expected probability of winning the game if they play according to the strategy p.

Strategies for nonlocal games

■ Alice and Bob can meet before the game to decide on a strategy for playing \mathfrak{G} that they will use before the game.
■ For us, a strategy will simply be a matrix $p(a, b \mid x, y) \in[0,1]^{k^{2} n^{2}}$ describing the conditional probability they respond with answers $(a, b) \in[n]^{2}$ given that they are asked questions $(x, y) \in[k]^{2}$.
■ Given a strategy p, the value of the game \mathfrak{G} with respect to p is the quantity

$$
\operatorname{val}(\mathfrak{G}, p):=\sum_{(x, y) \in[k]^{2}} \pi(x, y) \sum_{(a, b) \in[n]^{2}} p(a, b \mid x, y) D(a, b, x, y)
$$

- val((\mathfrak{G}, p) measures the expected probability of winning the game if they play according to the strategy p.

Strategies for nonlocal games

■ Alice and Bob can meet before the game to decide on a strategy for playing \mathfrak{G} that they will use before the game.
■ For us, a strategy will simply be a matrix $p(a, b \mid x, y) \in[0,1]^{k^{2} n^{2}}$ describing the conditional probability they respond with answers $(a, b) \in[n]^{2}$ given that they are asked questions $(x, y) \in[k]^{2}$.
■ Given a strategy p, the value of the game \mathfrak{G} with respect to p is the quantity

$$
\operatorname{val}(\mathfrak{G}, p):=\sum_{(x, y) \in[k]^{2}} \pi(x, y) \sum_{(a, b) \in[n]^{2}} p(a, b \mid x, y) D(a, b, x, y) .
$$

■ $\operatorname{val}(\mathfrak{G}, p)$ measures the expected probability of winning the game if they play according to the strategy p.

Classical strategies for nonlocal games

\square A deterministic strategy is given by a pair of functions $A, B:[k] \rightarrow[n]$ such that

$$
p(A(x), B(y) \mid x, y)=1 \text { for all }(x, y) \in[k]^{2} .
$$

■ A classical (or local) strategy is given by a probability space (Ω, μ) together with pairs of functions $A_{\omega}, B_{\omega}:[k] \rightarrow[n]$ such that $p(a, b \mid x, y)=\mu\left(\left\{\omega \in \Omega: A_{\omega}(x)=a\right.\right.$ and $\left.\left.B_{\omega}(y)=b\right\}\right)$.

- $C_{\text {loc }}(k, n) \subseteq[0,1]^{k^{2} n^{2}}$ denotes the set of classical strategies. It is the convex hull of the set $C_{\text {det }}(k, n)$ of determinstic strategies.
- The classical value of \mathfrak{G} is the quantity

Classical strategies for nonlocal games

- A deterministic strategy is given by a pair of functions
$A, B:[k] \rightarrow[n]$ such that

$$
p(A(x), B(y) \mid x, y)=1 \text { for all }(x, y) \in[k]^{2} .
$$

■ A classical (or local) strategy is given by a probability space (Ω, μ) together with pairs of functions $A_{\omega}, B_{\omega}:[k] \rightarrow[n]$ such that

$$
p(a, b \mid x, y)=\mu\left(\left\{\omega \in \Omega: A_{\omega}(x)=a \text { and } B_{\omega}(y)=b\right\}\right)
$$

- $C_{\text {loc }}(k, n) \subseteq[0,1]^{k^{2} n^{2}}$ denotes the set of classical strategies. It is the convex hull of the set $C_{\text {det }}(k, n)$ of determinstic strategies.
- The classical value of \mathfrak{G} is the quantity

Classical strategies for nonlocal games

\square A deterministic strategy is given by a pair of functions
$A, B:[k] \rightarrow[n]$ such that

$$
p(A(x), B(y) \mid x, y)=1 \text { for all }(x, y) \in[k]^{2} .
$$

■ A classical (or local) strategy is given by a probability space (Ω, μ) together with pairs of functions $A_{\omega}, B_{\omega}:[k] \rightarrow[n]$ such that

$$
p(a, b \mid x, y)=\mu\left(\left\{\omega \in \Omega: A_{\omega}(x)=a \text { and } B_{\omega}(y)=b\right\}\right)
$$

- $C_{\text {loc }}(k, n) \subseteq[0,1]^{k^{2} n^{2}}$ denotes the set of classical strategies. It is the convex hull of the set $C_{\text {det }}(k, n)$ of determinstic strategies.

Classical strategies for nonlocal games

\square A deterministic strategy is given by a pair of functions
$A, B:[k] \rightarrow[n]$ such that

$$
p(A(x), B(y) \mid x, y)=1 \text { for all }(x, y) \in[k]^{2} .
$$

■ A classical (or local) strategy is given by a probability space (Ω, μ) together with pairs of functions $A_{\omega}, B_{\omega}:[k] \rightarrow[n]$ such that

$$
p(a, b \mid x, y)=\mu\left(\left\{\omega \in \Omega: A_{\omega}(x)=a \text { and } B_{\omega}(y)=b\right\}\right)
$$

$\square C_{\text {loc }}(k, n) \subseteq[0,1]^{k^{2} n^{2}}$ denotes the set of classical strategies. It is the convex hull of the set $C_{\text {det }}(k, n)$ of determinstic strategies.
■ The classical value of \mathfrak{G} is the quantity

$$
\operatorname{val}(\mathfrak{G}):=\sup _{p \in C_{\mathrm{loc}}(k, n)} \operatorname{val}(\mathfrak{G}, p)=\sup _{p \in C_{\operatorname{det}}(k, n)} \operatorname{val}(\mathfrak{G}, p)
$$

The CHSH game

Example

The CHSH game (named after Clauser, Horne, Shimony, and Holt) is the game $\mathfrak{G}_{\mathrm{CHSH}}$ with $k=n=2$ and such that:
\square If $x=1$ or $y=1$, then Alice and Bob win if and only if their answers agree.
■ If $x=y=2$, then Alice and Bob win if and only if their answers disagree.
By inspecting all deterministic strategies, one sees that

$$
\operatorname{val}\left(\mathfrak{G}_{\mathrm{CHSH}}\right)=\frac{3}{4}
$$

1 Nonlocal games

2 A quantum detour

$3 \mathrm{MIP}^{*}=\mathrm{RE}$

4 A few words about the proof of MIP* $=$ RE

The spin of an electron

- An electron can have one of two spins: "up" or "down."
- At any given moment, however, it does not have a definite spin and instead is in a superposition of the two spins, as represented by the linear combination $\alpha \mid$ up $\rangle+\beta \mid$ down $\rangle \in \mathbb{C}^{2}$, where \mid up \rangle and down) are two orthogonal vectors in \mathbb{C}^{2} and $\alpha, \beta \in \mathbb{C}$ are such that $|\alpha|^{2}+|\beta|^{2}=1$
- If it is not disturbed, its state evolves linearly according to the Shrödinger equation.
- However, when it is measured, its state randomly and discontinuously jumps to one of the two definite spin states |up〉 or down \rangle with probabilities $|\alpha|^{2}$ and $|\beta|^{2}$ respectively;

The spin of an electron

■ An electron can have one of two spins: "up" or "down."
■ At any given moment, however, it does not have a definite spin and instead is in a superposition of the two spins, as represented by the linear combination $\alpha \mid$ up $\rangle+\beta \mid$ down $\rangle \in \mathbb{C}^{2}$, where |up \rangle and |down \rangle are two orthogonal vectors in \mathbb{C}^{2} and $\alpha, \beta \in \mathbb{C}$ are such that $|\alpha|^{2}+|\beta|^{2}=1$.

- If it is not disturbed, its state evolves linearly according to the Shrödinger equation.
However, when it is measured, its state randomly and
discontinuously jumps to one of the two definite spin states|up) or down with probabilities $|\alpha|^{2}$ and $|\beta|^{2}$ respectively.

The spin of an electron

■ An electron can have one of two spins: "up" or "down."
■ At any given moment, however, it does not have a definite spin and instead is in a superposition of the two spins, as represented by the linear combination $\alpha \mid$ up $\rangle+\beta \mid$ down $\rangle \in \mathbb{C}^{2}$, where \mid up \rangle and \mid down \rangle are two orthogonal vectors in \mathbb{C}^{2} and $\alpha, \beta \in \mathbb{C}$ are such that $|\alpha|^{2}+|\beta|^{2}=1$.
■ If it is not disturbed, its state evolves linearly according to the Shrödinger equation.
However, when it is measured, its state randomly and
discontinuously jumps to one of the two definite spin states |up) or

The spin of an electron

■ An electron can have one of two spins: "up" or "down."
■ At any given moment, however, it does not have a definite spin and instead is in a superposition of the two spins, as represented by the linear combination $\alpha \mid$ up $\rangle+\beta \mid$ down $\rangle \in \mathbb{C}^{2}$, where |up \rangle and \mid down \rangle are two orthogonal vectors in \mathbb{C}^{2} and $\alpha, \beta \in \mathbb{C}$ are such that $|\alpha|^{2}+|\beta|^{2}=1$.
■ If it is not disturbed, its state evolves linearly according to the Shrödinger equation.
■ However, when it is measured, its state randomly and discontinuously jumps to one of the two definite spin states |up〉 or \mid down \rangle with probabilities $|\alpha|^{2}$ and $|\beta|^{2}$ respectively.

Recommended summer reading

THE UNFINISHED QUEST FOR THI MEANING OF QUANTUM PHYSICS

ADAM BECKER
the conceptual foundations of quantum mechanics

More summer reading (shameless plug)

| onsums muest 220 |
| :--- | :--- |
| Ultrafilters |
| Throughout |
| Mathematics |
| Isaac Goldbring |

General quantum systems

- Associated to a quantum system is its state space, which is a complex Hilbert space H.
- The state of the system at any given moment is described by a unit vector $\xi \in H$, which evolves linearly until it is measured. A measurement with n outcomes is a tuple $M_{1}, \ldots, M_{n} \in B(H)$ such that, upon measurement, the probability of outcome i occurring is given by $\left\|M_{i} \xi\right\|^{2}$, in which case the state of the system jumps to $\frac{M_{i} \xi}{\left\|M_{i} ;\right\|}$. (Born rule)
- For these to determine legitimate probabilities, for all unit vectors $\xi \in H$, one must have

General quantum systems

- Associated to a quantum system is its state space, which is a complex Hilbert space H.
■ The state of the system at any given moment is described by a unit vector $\xi \in H$, which evolves linearly until it is measured.
A measurement with n outcomes is a tuple $M_{1}, \ldots, M_{n} \in B(H)$
such that, upon measurement, the probability of outcome i
occurring is given by $\left\|M_{i} \xi\right\|^{2}$, in which case the state of the system
jumps to $\frac{M_{i} \xi}{\left\|M_{i} \xi\right\|}$. (Born rule)
For these to determine legitimate probabilities, for all unit vectors
$\xi \in H$, one must have

General quantum systems

- Associated to a quantum system is its state space, which is a complex Hilbert space H.
- The state of the system at any given moment is described by a unit vector $\xi \in H$, which evolves linearly until it is measured.
- A measurement with n outcomes is a tuple $M_{1}, \ldots, M_{n} \in B(H)$ such that, upon measurement, the probability of outcome i occurring is given by $\left\|M_{i} \xi\right\|^{2}$, in which case the state of the system jumps to $\frac{M_{i} \xi}{\left\|M_{i} \xi\right\|}$. (Born rule)
For these to determine legitimate probabilities, for all unit vectors $\xi \in H$, one must have

and thus $\sum_{i=1}^{n} M_{i}^{*} M_{i}=I_{H}$.

General quantum systems

- Associated to a quantum system is its state space, which is a complex Hilbert space H.
■ The state of the system at any given moment is described by a unit vector $\xi \in H$, which evolves linearly until it is measured.
■ A measurement with n outcomes is a tuple $M_{1}, \ldots, M_{n} \in B(H)$ such that, upon measurement, the probability of outcome i occurring is given by $\left\|M_{i} \xi\right\|^{2}$, in which case the state of the system jumps to $\frac{M_{i} \xi}{\left\|M_{i} \xi\right\|}$. (Born rule)
- For these to determine legitimate probabilities, for all unit vectors $\xi \in H$, one must have

$$
1=\sum_{i=1}^{n}\left\|M_{i} \xi\right\|^{2}=\sum_{i=1}^{n}\left\langle M_{i}^{*} M_{i} \xi, \xi\right\rangle
$$

and thus $\sum_{i=1}^{n} M_{i}^{*} M_{i}=I_{H}$.

POVMs and PVMs

■ If one only cares about the statistics of the outcomes of a measurement (like us!), then we can simplify matters by assuming that each measurement operator is positive.

- A POVM (positive operator-valued measure) of length n is a collection A_{1}, \ldots, A_{n} of positive operators on H such that $\sum_{i=1}^{n} A_{i}=I_{H}$.
- On state ξ, the probability outcome i occurs is given by $\left\langle A_{i} \xi, \xi\right\rangle$
- If each A_{i} is actually a projection, we speak of PVMs (projection-valued measures). This is the same as an orthogonal decomposition of H into n orthogonal subspaces.
- The case of the spin of an electron was a PVM corresponding to the one-dimensional subspaces spanned by |up \rangle and \mid down \rangle

POVMs and PVMs

■ If one only cares about the statistics of the outcomes of a measurement (like us!), then we can simplify matters by assuming that each measurement operator is positive.
■ A POVM (positive operator-valued measure) of length n is a collection A_{1}, \ldots, A_{n} of positive operators on H such that $\sum_{i=1}^{n} A_{i}=I_{H}$.

- On state ξ, the probability outcome i occurs is given by $\left\langle A_{i} \xi\right.$
- If each A_{i} is actually a projection, we speak of PVMs (projection-valued measures). This is the same as an orthogonal decomposition of H into n orthogonal subspaces.
- The case of the spin of an electron was a PVM corresponding to the one-dimensional subspaces spanned by |up〉 and | down)

POVMs and PVMs

■ If one only cares about the statistics of the outcomes of a measurement (like us!), then we can simplify matters by assuming that each measurement operator is positive.
■ A POVM (positive operator-valued measure) of length n is a collection A_{1}, \ldots, A_{n} of positive operators on H such that $\sum_{i=1}^{n} A_{i}=I_{H}$.
■ On state ξ, the probability outcome i occurs is given by $\left\langle A_{i} \xi, \xi\right\rangle$.

- If each A_{i} is actually a projection, we speak of PVMs (projection-valued measures). This is the same as an orthogonal decomposition of H into n orthogonal subspaces.
- The case of the spin of an electron was a PVM corresponding to the one-dimensional subspaces spanned by |up \rangle and \mid down \rangle

POVMs and PVMs

- If one only cares about the statistics of the outcomes of a measurement (like us!), then we can simplify matters by assuming that each measurement operator is positive.
- A POVM (positive operator-valued measure) of length n is a collection A_{1}, \ldots, A_{n} of positive operators on H such that $\sum_{i=1}^{n} A_{i}=I_{H}$.
■ On state ξ, the probability outcome i occurs is given by $\left\langle\boldsymbol{A}_{i} \xi, \xi\right\rangle$.
- If each A_{i} is actually a projection, we speak of PVMs (projection-valued measures). This is the same as an orthogonal decomposition of H into n orthogonal subspaces.
- The case of the spin of an electron was a PVM corresponding to the one-dimensional subspaces spanned by |up \rangle and \mid down \rangle

POVMs and PVMs

- If one only cares about the statistics of the outcomes of a measurement (like us!), then we can simplify matters by assuming that each measurement operator is positive.
- A POVM (positive operator-valued measure) of length n is a collection A_{1}, \ldots, A_{n} of positive operators on H such that $\sum_{i=1}^{n} A_{i}=I_{H}$.
■ On state ξ, the probability outcome i occurs is given by $\left\langle\boldsymbol{A}_{i} \xi, \xi\right\rangle$.
- If each A_{i} is actually a projection, we speak of PVMs (projection-valued measures). This is the same as an orthogonal decomposition of H into n orthogonal subspaces.
- The case of the spin of an electron was a PVM corresponding to the one-dimensional subspaces spanned by |up \rangle and | down \rangle.

The EPR state

■ Another axiom of quantum mechanics is that if H_{A} and H_{B} are the state spaces for two quantum systems, then the state space for their composite system is given by $H_{A} \otimes H_{B}$.

- Thus, the state space for two electrons is given by $\mathbb{C}^{2} \otimes \mathbb{C}^{2} \cong \mathbb{C}^{4}$.

■ The EPR state is given by $\left.\psi_{E P R}=\frac{1}{\sqrt{2}}|u p\rangle|u p\rangle+\frac{1}{\sqrt{2}} \right\rvert\,$ down $\rangle \mid$ down \rangle

- It was used by Einstein. Podolsky, and Rosen in their famous paper arguing that quantum mechanics was incomplete!
- The spookiness of entanglement!

The EPR state

■ Another axiom of quantum mechanics is that if H_{A} and H_{B} are the state spaces for two quantum systems, then the state space for their composite system is given by $H_{A} \otimes H_{B}$.
■ Thus, the state space for two electrons is given by $\mathbb{C}^{2} \otimes \mathbb{C}^{2} \cong \mathbb{C}^{4}$.

- The EPR state is given by $\left.\psi_{E P R}=\frac{1}{\sqrt{2}} \right\rvert\,$ up $\rangle \mid$ up $\rangle \left.+\frac{1}{\sqrt{2}} \right\rvert\,$ down $\rangle \mid$ down \rangle
- It was used by Einstein, Podolsky, and Rosen in their famous paper arguing that quantum mechanics was incomplete!
\square

The EPR state

■ Another axiom of quantum mechanics is that if H_{A} and H_{B} are the state spaces for two quantum systems, then the state space for their composite system is given by $H_{A} \otimes H_{B}$.
■ Thus, the state space for two electrons is given by $\mathbb{C}^{2} \otimes \mathbb{C}^{2} \cong \mathbb{C}^{4}$.
■ The EPR state is given by $\left.\psi_{\text {EPR }}=\frac{1}{\sqrt{2}} \right\rvert\,$ up $\rangle \mid$ up $\rangle \left.+\frac{1}{\sqrt{2}} \right\rvert\,$ down $\rangle \mid$ down \rangle.

- It was used by Einstein, Podolsky, and Rosen in their famous
paper arguing that quantum mechanics was incomplete!

The EPR state

■ Another axiom of quantum mechanics is that if H_{A} and H_{B} are the state spaces for two quantum systems, then the state space for their composite system is given by $H_{A} \otimes H_{B}$.
■ Thus, the state space for two electrons is given by $\mathbb{C}^{2} \otimes \mathbb{C}^{2} \cong \mathbb{C}^{4}$.
■ The EPR state is given by $\left.\psi_{\mathrm{EPR}}=\frac{1}{\sqrt{2}} \right\rvert\,$ up $\rangle \mid$ up $\rangle \left.+\frac{1}{\sqrt{2}} \right\rvert\,$ down $\rangle \mid$ down \rangle.
■ It was used by Einstein, Podolsky, and Rosen in their famous paper arguing that quantum mechanics was incomplete!

The EPR state

■ Another axiom of quantum mechanics is that if H_{A} and H_{B} are the state spaces for two quantum systems, then the state space for their composite system is given by $H_{A} \otimes H_{B}$.
■ Thus, the state space for two electrons is given by $\mathbb{C}^{2} \otimes \mathbb{C}^{2} \cong \mathbb{C}^{4}$.
■ The EPR state is given by $\left.\psi_{\text {EPR }}=\frac{1}{\sqrt{2}} \right\rvert\,$ up $\rangle \mid$ up $\rangle \left.+\frac{1}{\sqrt{2}} \right\rvert\,$ down $\rangle \mid$ down \rangle.
■ It was used by Einstein, Podolsky, and Rosen in their famous paper arguing that quantum mechanics was incomplete!
■ The spookiness of entanglement!

1 Nonlocal games

2 A quantum detour

$3 \mathrm{MIP}^{*}=\mathrm{RE}$

4 A few words about the proof of MIP* $=$ RE

Quantum strategies for nonlocal games

■ Consider a game \mathfrak{G} with k questions and n answers.

- This time, when playing the game, Alice and Bob have quantum systems H_{A} and H_{B} and share a state $\xi \in H_{A} \otimes H_{B}$.
- Upon receiving question $x \in[k]$, Alice will perform a POVM $A^{x}=\left(A_{1}^{x}, \ldots, A_{n}^{x}\right)$ on her part of ξ to decide which answer to give.
- Bob similarly has a POVM $B^{y}=\left(B_{1}^{y}\right.$ B_{n}^{y}) for measuring on his part of ξ.
- We then have $p(a, b \mid x, y)=\left\langle\left(A_{a}^{x}\right.\right.$

Quantum strategies for nonlocal games

■ Consider a game \mathfrak{G} with k questions and n answers.
■ This time, when playing the game, Alice and Bob have quantum systems H_{A} and H_{B} and share a state $\xi \in H_{A} \otimes H_{B}$.

- Upon receiving question $x \in[k]$, Alice will perform a POVM $A^{x}=\left(A_{1}^{x}, \ldots, A_{n}^{x}\right)$ on her part of ξ to decide which answer to give.
- Bob similarly has a POVM $B^{y}=\left(B_{1}^{y}\right.$ B_{n}^{y}) for measuring on his part of ξ
- We then have $p(a, b \mid x, y)=\left\langle\left(A_{a}^{x}\right.\right.$

Quantum strategies for nonlocal games

■ Consider a game \mathfrak{G} with k questions and n answers.
■ This time, when playing the game, Alice and Bob have quantum systems H_{A} and H_{B} and share a state $\xi \in H_{A} \otimes H_{B}$.
■ Upon receiving question $x \in[k]$, Alice will perform a POVM $A^{x}=\left(A_{1}^{x}, \ldots, A_{n}^{x}\right)$ on her part of ξ to decide which answer to give.

- Bob similarly has a POVM $B^{y}=\left(B_{1}^{y}, \ldots, B_{n}^{y}\right)$ for measuring on his part of ξ
- We then have $p(a, b \mid x, y)=\left\langle\left(A_{a}^{x}\right.\right.$

Quantum strategies for nonlocal games

■ Consider a game \mathfrak{G} with k questions and n answers.
■ This time, when playing the game, Alice and Bob have quantum systems H_{A} and H_{B} and share a state $\xi \in H_{A} \otimes H_{B}$.
■ Upon receiving question $x \in[k]$, Alice will perform a POVM $A^{x}=\left(A_{1}^{X}, \ldots, A_{n}^{X}\right)$ on her part of ξ to decide which answer to give.
■ Bob similarly has a POVM $B^{y}=\left(B_{1}^{y}, \ldots, B_{n}^{y}\right)$ for measuring on his part of ξ.

Quantum strategies for nonlocal games

■ Consider a game \mathfrak{G} with k questions and n answers.
■ This time, when playing the game, Alice and Bob have quantum systems H_{A} and H_{B} and share a state $\xi \in H_{A} \otimes H_{B}$.
■ Upon receiving question $x \in[k]$, Alice will perform a POVM $A^{x}=\left(A_{1}^{X}, \ldots, A_{n}^{X}\right)$ on her part of ξ to decide which answer to give.
■ Bob similarly has a POVM $B^{y}=\left(B_{1}^{y}, \ldots, B_{n}^{y}\right)$ for measuring on his part of ξ.

- We then have $p(a, b \mid x, y)=\left\langle\left(A_{a}^{x} \otimes B_{b}^{y}\right) \xi, \xi\right\rangle$.

The entangled value of a nonlocal game

■ $C_{q}(k, n)$ denotes the set of strategies for which there are:

- finite-dimensional Hilbert spaces H_{A} and H_{B},

■ POVMs A^{x} and B^{y} on H_{A} and H_{B} respectively (one for each $x, y \in[k])$, and
■ a unit vector $\xi \in H_{A} \otimes H_{B}$ for which $p(a, b \mid x, y)=\left\langle\left(A_{a}^{X} \otimes B_{b}^{y}\right) \xi, \xi\right\rangle$.

- We also consider $C_{q a}(k, n):=C_{q}(k, n)$.
- If \mathfrak{G} is a nonlocal game with k questions and n answers, the entangled value of \mathfrak{G} is
\square

The entangled value of a nonlocal game

■ $C_{q}(k, n)$ denotes the set of strategies for which there are:

- finite-dimensional Hilbert spaces H_{A} and H_{B},

■ POVMs A^{x} and B^{y} on H_{A} and H_{B} respectively (one for each $x, y \in[k])$, and
■ a unit vector $\xi \in H_{A} \otimes H_{B}$ for which $p(a, b \mid x, y)=\left\langle\left(A_{a}^{X} \otimes B_{b}^{y}\right) \xi, \xi\right\rangle$.
\square We also consider $C_{q a}(k, n):=\overline{C_{q}(k, n)}$.

- If \mathfrak{G} is a nonlocal game with k questions and n answers, the entangled value of \mathfrak{G} is
\square

The entangled value of a nonlocal game

■ $C_{q}(k, n)$ denotes the set of strategies for which there are:

- finite-dimensional Hilbert spaces H_{A} and H_{B},

■ POVMs A^{x} and B^{y} on H_{A} and H_{B} respectively (one for each $x, y \in[k])$, and
■ a unit vector $\xi \in H_{A} \otimes H_{B}$ for which $p(a, b \mid x, y)=\left\langle\left(A_{a}^{X} \otimes B_{b}^{y}\right) \xi, \xi\right\rangle$.
\square We also consider $C_{q a}(k, n):=\overline{C_{q}(k, n)}$.
■ If \mathfrak{G} is a nonlocal game with k questions and n answers, the entangled value of \mathfrak{G} is

$$
\operatorname{val}^{*}(\mathfrak{G}):=\sup _{p \in C_{q}(k, n)} \operatorname{val}(\mathfrak{G}, p)=\sup _{p \in C_{q a}(k, n)} \operatorname{val}(\mathfrak{G}, p)
$$

- $C_{\text {loc }}(k, n) \subseteq C_{q}(k, n)$ so $\operatorname{val}(\mathfrak{G}) \leq \operatorname{val}^{*}(\mathfrak{G})$.

The entangled value of a nonlocal game

■ $C_{q}(k, n)$ denotes the set of strategies for which there are:
■ finite-dimensional Hilbert spaces H_{A} and H_{B},
■ POVMs A^{x} and B^{y} on H_{A} and H_{B} respectively (one for each $x, y \in[k])$, and
■ a unit vector $\xi \in H_{A} \otimes H_{B}$ for which $p(a, b \mid x, y)=\left\langle\left(A_{a}^{X} \otimes B_{b}^{y}\right) \xi, \xi\right\rangle$.
\square We also consider $C_{q a}(k, n):=\overline{C_{q}(k, n)}$.
$■$ If \mathfrak{G} is a nonlocal game with k questions and n answers, the entangled value of \mathfrak{G} is

$$
\operatorname{val}^{*}(\mathfrak{G}):=\sup _{p \in C_{q}(k, n)} \operatorname{val}(\mathfrak{G}, p)=\sup _{p \in C_{q a}(k, n)} \operatorname{val}(\mathfrak{G}, p)
$$

■ $C_{\text {loc }}(k, n) \subseteq C_{q}(k, n)$ so $\operatorname{val}(\mathfrak{G}) \leq \operatorname{val}^{*}(\mathfrak{G})$.

CHSH, EPR, and Bell's Theorem

Theorem (Bell's Theorem)

$\operatorname{val}^{*}\left(\mathfrak{G}_{\mathrm{CHSH}}\right)>\operatorname{val}\left(\mathfrak{G}_{\mathrm{CHSH}}\right)$.

■ Recall val $\left(\mathfrak{G}_{\mathrm{CHSH}}\right)=\frac{3}{4}$.
■ However, there is an entangled strategy p, based on the EPR state $\psi_{\text {EPR }}$, such that $\operatorname{val}(\mathfrak{G}, p)=\cos ^{2}\left(\frac{\pi}{8}\right) \approx 0.85$ (which equals val ${ }^{*}\left(\mathfrak{G}_{\text {CHSH }}\right)$ by a result of Tsirelson).
■ This inequality showed that EPR were wrong!

How hard is it to compute val* ${ }^{*}(\mathfrak{G})$?

■ One can effectively compute lower bounds for val* ${ }^{*}(\mathfrak{G})$ uniformly in \mathfrak{G} :

- Given some dimension d, you can enumerate a computable sequence of finite nets $N_{1}^{d} \subseteq N_{2}^{d} \subseteq \cdots$ over all states and POVMs in dimension d with $\left|N_{m}^{d}\right|=m^{O\left(d^{2}\right)}$ such that for any $p \in C_{a}(k, n)$ based on a d-dimensional strategy and any m, there is $q \in N_{m}^{d}$ with $|\operatorname{val}(\mathfrak{G}, p)-\operatorname{val}(\mathfrak{G}, q)|<\frac{1}{m}$.
- Set

$$
\operatorname{val}^{\eta}(\mathfrak{G}, p)=\max _{d, m \leq n} \max _{p \in N_{m}^{d}} \operatorname{val}(\mathfrak{G}, p) .
$$

- Then $\operatorname{val}^{n}(\mathfrak{G}, p)$ is computable and $\operatorname{val}^{n}(\mathfrak{G}, p) \nearrow \operatorname{val}(\mathfrak{G})$.
- Could it be that val* (\mathfrak{G}) is actually uniformly computable in \mathfrak{G} ?

How hard is it to compute val ${ }^{*}(\mathfrak{G})$?

■ One can effectively compute lower bounds for val* (\mathfrak{G}) uniformly in \mathfrak{G} :

■ Given some dimension d, you can enumerate a computable sequence of finite nets $N_{1}^{d} \subseteq N_{2}^{d} \subseteq \cdots$ over all states and POVMs in dimension d with $\left|N_{m}^{d}\right|=m^{O\left(d^{2}\right)}$ such that for any $p \in C_{q}(k, n)$ based on a d-dimensional strategy and any m, there is $q \in N_{m}^{d}$ with $|\operatorname{val}(\mathfrak{G}, p)-\operatorname{val}(\mathfrak{G}, q)|<\frac{1}{m}$.

- Set

- Then $\operatorname{val}^{n}(\mathfrak{G}, p)$ is computable and $\operatorname{val}^{n}(\mathfrak{G}, p) \nearrow \operatorname{val}(\mathfrak{G})$.
- Could it be that val ${ }^{*}(\mathfrak{G})$ is actually uniformly computable in \mathfrak{G} ?

How hard is it to compute val ${ }^{*}(\mathfrak{G})$?

■ One can effectively compute lower bounds for val* (\mathfrak{G}) uniformly in \mathfrak{G} :
■ Given some dimension d, you can enumerate a computable sequence of finite nets $N_{1}^{d} \subseteq N_{2}^{d} \subseteq \cdots$ over all states and POVMs in dimension d with $\left|N_{m}^{d}\right|=m^{O\left(d^{2}\right)}$ such that for any $p \in C_{q}(k, n)$ based on a d-dimensional strategy and any m, there is $q \in N_{m}^{d}$ with $|\operatorname{val}(\mathfrak{G}, p)-\operatorname{val}(\mathfrak{G}, q)|<\frac{1}{m}$.
■ Set

$$
\operatorname{val}^{n}(\mathfrak{G}, p)=\max _{d, m \leq n} \max _{p \in N_{m}^{d}} \operatorname{val}(\mathfrak{G}, p)
$$

- Then $\operatorname{val}^{n}(\mathfrak{G}, p)$ is computable and $\operatorname{val}^{n}(\mathfrak{G}, p) \nearrow \operatorname{val}(\mathfrak{G})$.
- Could it be that val ${ }^{*}(\mathfrak{G})$ is actually uniformly computable in \mathfrak{G} ?

How hard is it to compute val ${ }^{*}(\mathfrak{G})$?

■ One can effectively compute lower bounds for val* (\mathfrak{G}) uniformly in \mathfrak{G} :
■ Given some dimension d, you can enumerate a computable sequence of finite nets $N_{1}^{d} \subseteq N_{2}^{d} \subseteq \cdots$ over all states and POVMs in dimension d with $\left|N_{m}^{d}\right|=m^{O\left(d^{2}\right)}$ such that for any $p \in C_{q}(k, n)$ based on a d-dimensional strategy and any m, there is $q \in N_{m}^{d}$ with $|\operatorname{val}(\mathfrak{G}, p)-\operatorname{val}(\mathfrak{G}, q)|<\frac{1}{m}$.

- Set

$$
\operatorname{val}^{n}(\mathfrak{G}, p)=\max _{d, m \leq n} \max _{p \in N_{m}^{d}} \operatorname{val}(\mathfrak{G}, p)
$$

■ Then $\operatorname{val}^{n}(\mathfrak{G}, p)$ is computable and $\operatorname{val}^{n}(\mathfrak{G}, p) \nearrow \operatorname{val}(\mathfrak{G})$.

- Could it be that val* (\mathfrak{G}) is actually uniformly computable in \mathfrak{G} ?

How hard is it to compute val ${ }^{*}(\mathfrak{G})$?

■ One can effectively compute lower bounds for val* ${ }^{*}(\mathfrak{G})$ uniformly in \mathfrak{G} :
■ Given some dimension d, you can enumerate a computable sequence of finite nets $N_{1}^{d} \subseteq N_{2}^{d} \subseteq \cdots$ over all states and POVMs in dimension d with $\left|N_{m}^{d}\right|=m^{O\left(d^{2}\right)}$ such that for any $p \in C_{q}(k, n)$ based on a d-dimensional strategy and any m, there is $q \in N_{m}^{d}$ with $|\operatorname{val}(\mathfrak{G}, p)-\operatorname{val}(\mathfrak{G}, q)|<\frac{1}{m}$.

- Set

$$
\operatorname{val}^{n}(\mathfrak{G}, p)=\max _{d, m \leq n} \max _{p \in N_{m}^{d}} \operatorname{val}(\mathfrak{G}, p)
$$

■ Then $\operatorname{val}^{n}(\mathfrak{G}, p)$ is computable and $\operatorname{val}^{n}(\mathfrak{G}, p) \nearrow \operatorname{val}(\mathfrak{G})$.
■ Could it be that val* (\mathfrak{G}) is actually uniformly computable in \mathfrak{G} ?

$\mathrm{MIP}^{*}=\mathrm{RE}$

Theorem (Ji, Natarajan, Vidick, Wright, Yuen (2020))
There is an effective mapping $\mathcal{M} \mapsto \mathfrak{G}_{\mathcal{M}}$ from Turing machines to nonlocal games such that:

■ If \mathcal{M} halts, then val $\left(\mathfrak{G}_{\mathcal{M}}\right)=1$.

- If \mathcal{M} does not halt, then val ${ }^{*}\left(\mathfrak{G}_{\mathcal{M}}\right) \leq \frac{1}{2}$.

1 Nonlocal games

2 A quantum detour

$3 \mathrm{MIP}^{*}=\mathrm{RE}$

4 A few words about the proof of MIP* $=$ RE

Uniform game sequences

Definition

A uniform game sequence (UGS) is an infinite sequence $\overline{\mathfrak{G}}:=\left(\mathfrak{G}_{1}, \mathfrak{G}_{2}, \ldots,\right)$ of nonlocal games for which there is a single Turing machine V which computes in time poly $(\log n)$:

■ The number of questions and answers in \mathfrak{G}_{n}.
■ A Turing machine which specifies the probability distribution for \mathfrak{G}_{n}.
■ A Turing machine which specifies the decision predicate for \mathfrak{G}_{n}.

Entanglement lower bound for nonlocal games

Definition

Given a nonlocal game \mathfrak{G} and $r \in[0,1]$, we set $\mathcal{E}(\mathfrak{G}, r)$ to be the minimum dimension d for which there exists a strategy $p \in C_{q}$ based on d-dimensional Hilbert spaces so that $\operatorname{val}(\mathfrak{G}, p) \geq r$.

Example

- $\mathcal{E}^{\left(\mathrm{C}_{\mathrm{CHSH}}, \frac{3}{4}\right)=0}$
$2 \mathcal{E}\left(\mathfrak{G}_{\mathrm{CHSH}}, \cos ^{2}\left(\frac{\pi}{8}\right)\right)=2$$\mathcal{E}\left(\mathfrak{G}_{\mathrm{CHSH}}, 1\right)=\infty$

Entanglement lower bound for nonlocal games

Definition

Given a nonlocal game \mathfrak{G} and $r \in[0,1]$, we set $\mathcal{E}(\mathfrak{G}, r)$ to be the minimum dimension d for which there exists a strategy $p \in C_{q}$ based on d-dimensional Hilbert spaces so that $\operatorname{val}(\mathfrak{G}, p) \geq r$.

Example

$1 \mathcal{E}\left(\mathfrak{G}_{\mathrm{CHSH}}, \frac{3}{4}\right)=0$
$2 \mathcal{E}\left(\mathfrak{G}_{\mathrm{CHSH}}, \cos ^{2}\left(\frac{\pi}{8}\right)\right)=2$
$3 \mathcal{E}\left(\mathfrak{G}_{\mathrm{CHSH}}, 1\right)=\infty$

Compression theorem for nonlocal games

(

Theorem

There exists an algorithm C such that upon input a Turing machine V describing a UGS $\overline{\mathfrak{G}}$ with each \mathfrak{G}_{n} of "complexity" at most $O\left(n^{2}\right)$ outputs a Turing machine V^{\prime} describing a UGS $\overline{\mathfrak{G}^{\prime}}$ of polynomial-time computable games such that:

- If val* $\left(\mathfrak{G}_{n}\right)=1$, then $\operatorname{val}^{*}\left(\mathfrak{G}_{n}^{\prime}\right)=1$.

E $\left(\mathfrak{G}_{n}^{\prime}, \frac{1}{2}\right) \geq \max \left\{\mathcal{E}\left(\mathfrak{G}_{n}, \frac{1}{2}\right), n\right\}$.
The time complexity of $\mathfrak{G}_{n}^{\prime}$ is poly $(\log n)$.

Compression theorem for nonlocal games

(10n)

Theorem

There exists an algorithm C such that upon input a Turing machine V describing a UGS $\overline{\mathfrak{G}}$ with each \mathfrak{G}_{n} of "complexity" at most $O\left(n^{2}\right)$ outputs a Turing machine V^{\prime} describing a UGS $\overline{\mathfrak{G}^{\prime}}$ of polynomial-time computable games such that:

■ If val* $\left(\mathfrak{G}_{n}\right)=1$, then val ${ }^{*}\left(\mathfrak{G}_{n}^{\prime}\right)=1$.

Compression theorem for nonlocal games

(1un)

Theorem

There exists an algorithm C such that upon input a Turing machine V describing a UGS $\overline{\mathfrak{G}}$ with each \mathfrak{G}_{n} of "complexity" at most $O\left(n^{2}\right)$ outputs a Turing machine V^{\prime} describing a UGS $\overline{\mathfrak{G}^{\prime}}$ of polynomial-time computable games such that:

■ If $\operatorname{val}^{*}\left(\mathfrak{G}_{n}\right)=1$, then $\operatorname{val}^{*}\left(\mathfrak{G}_{n}^{\prime}\right)=1$.

- $\mathcal{E}\left(\mathfrak{G}_{n}^{\prime}, \frac{1}{2}\right) \geq \max \left\{\mathcal{E}\left(\mathfrak{G}_{n}, \frac{1}{2}\right), n\right\}$.
- The time complexity of $\mathfrak{G}_{n}^{\prime}$ is poly $(\log n)$.

Compression theorem for nonlocal games

(1un)

Theorem

There exists an algorithm C such that upon input a Turing machine V describing a UGS $\overline{\mathfrak{G}}$ with each \mathfrak{G}_{n} of "complexity" at most $O\left(n^{2}\right)$ outputs a Turing machine V^{\prime} describing a UGS $\overline{\mathfrak{G}^{\prime}}$ of polynomial-time computable games such that:

■ If $\operatorname{val}^{*}\left(\mathfrak{G}_{n}\right)=1$, then $\operatorname{val}^{*}\left(\mathfrak{G}_{n}^{\prime}\right)=1$.

- $\mathcal{E}\left(\mathfrak{G}_{n}^{\prime}, \frac{1}{2}\right) \geq \max \left\{\mathcal{E}\left(\mathfrak{G}_{n}, \frac{1}{2}\right), n\right\}$.
- The time complexity of $\mathfrak{G}_{n}^{\prime}$ is poly $(\log n)$.

MIP* $^{*}=$ RE from Compression: Part I

■ Given \mathcal{M}, we define a Turing machine $V^{\mathcal{M}}$ which computes a UGS $\overline{\mathfrak{G}} \mathcal{M}=\left(\mathfrak{G}_{1}, \mathfrak{G}_{2}, \ldots\right)$.

- Here is how \mathfrak{G}_{n} looks:
- Run \mathcal{M} on the empty input for n time steps. If \mathcal{M} halts, then victory!
- If not, run C on $V^{\mathcal{M}}$ to get $V^{\prime}:=\left(V^{\mathcal{M}}\right)^{\prime}$ which computes the UGS
- Then play $\mathfrak{G}_{n+1}^{\prime}$.
- This is self-referential, but we are used to that :)
- The compression algorithm is indeed applicable (check execution times of the various steps...)
- Define $\mathfrak{G}_{\mathcal{M}}:=\mathfrak{G}_{1}$.
- Why does this work?

MIP* $=$ RE from Compression: Part I

■ Given \mathcal{M}, we define a Turing machine $V^{\mathcal{M}}$ which computes a UGS $\overline{\mathfrak{G}}^{\mathcal{M}}=\left(\mathfrak{G}_{1}, \mathfrak{G}_{2}, \ldots\right)$.
■ Here is how \mathfrak{G}_{n} looks:
$■$ Run \mathcal{M} on the empty input for n time steps. If \mathcal{M} halts, then victory!
■ If not, run C on $V^{\mathcal{M}}$ to get $V^{\prime}:=\left(V^{\mathcal{M}}\right)^{\prime}$ which computes the UGS $\overline{\mathfrak{G}}^{\prime}$.

- Then play $\mathfrak{G}_{n+1}^{\prime}$.
- This is self-referential, but we are used to that :)
- The compression algorithm is indeed applicable (check execution times of the various steps...)
- Define $\mathfrak{G}_{\mathcal{M}}:=\mathscr{G}_{1}$
- Why does this work?

MIP＊$=$ RE from Compression：Part I

\square Given \mathcal{M} ，we define a Turing machine $V^{\mathcal{M}}$ which computes a UGS $\overline{\mathfrak{G}}^{\mathcal{M}}=\left(\mathfrak{G}_{1}, \mathfrak{G}_{2}, \ldots\right)$ ．
■ Here is how \mathfrak{G}_{n} looks：
$■$ Run \mathcal{M} on the empty input for n time steps．If \mathcal{M} halts，then victory！
■ If not，run C on $V^{\mathcal{M}}$ to get $V^{\prime}:=\left(V^{\mathcal{M}}\right)^{\prime}$ which computes the UGS $\overline{\mathfrak{G}}^{\prime}$ ．
■ Then play $\mathfrak{G}_{n+1}^{\prime}$ ．
■ This is self－referential，but we are used to that ：）
－The compression algorithm is indeed applicable（check execution times of the various steps．．．）

E Define がッ：＝が．
－Why does this work？

MIP* $=$ RE from Compression: Part I

\square Given \mathcal{M}, we define a Turing machine $V^{\mathcal{M}}$ which computes a UGS $\overline{\mathfrak{G}}^{\mathcal{M}}=\left(\mathfrak{G}_{1}, \mathfrak{G}_{2}, \ldots\right)$.
■ Here is how \mathfrak{G}_{n} looks:
■ Run \mathcal{M} on the empty input for n time steps. If \mathcal{M} halts, then victory!
■ If not, run C on $V^{\mathcal{M}}$ to get $V^{\prime}:=\left(V^{\mathcal{M}}\right)^{\prime}$ which computes the UGS $\overline{\mathfrak{G}}^{\prime}$.
■ Then play $\mathfrak{G}_{n+1}^{\prime}$.
■ This is self-referential, but we are used to that :)
■ The compression algorithm is indeed applicable (check execution times of the various steps...)

- Define $\mathfrak{G}_{\mathcal{M}}:=\mathfrak{G}_{1}$.
- Why does this work?

MIP* $=$ RE from Compression: Part I

\square Given \mathcal{M}, we define a Turing machine $V^{\mathcal{M}}$ which computes a UGS $\overline{\mathfrak{G}}^{\mathcal{M}}=\left(\mathfrak{G}_{1}, \mathfrak{G}_{2}, \ldots\right)$.
■ Here is how \mathfrak{G}_{n} looks:
■ Run \mathcal{M} on the empty input for n time steps. If \mathcal{M} halts, then victory!
■ If not, run C on $V^{\mathcal{M}}$ to get $V^{\prime}:=\left(V^{\mathcal{M}}\right)^{\prime}$ which computes the UGS $\overline{\mathfrak{G}}^{\prime}$.
■ Then play $\mathfrak{G}_{n+1}^{\prime}$.
■ This is self-referential, but we are used to that :)
■ The compression algorithm is indeed applicable (check execution times of the various steps...)
■ Define $\mathfrak{G}_{\mathcal{M}}:=\mathfrak{G}_{1}$.

- Why does this work?

MIP* $=$ RE from Compression: Part I

\square Given \mathcal{M}, we define a Turing machine $V^{\mathcal{M}}$ which computes a UGS $\overline{\mathfrak{G}}^{\mathcal{M}}=\left(\mathfrak{G}_{1}, \mathfrak{G}_{2}, \ldots\right)$.
■ Here is how \mathfrak{G}_{n} looks:
■ Run \mathcal{M} on the empty input for n time steps. If \mathcal{M} halts, then victory!
■ If not, run C on $V^{\mathcal{M}}$ to get $V^{\prime}:=\left(V^{\mathcal{M}}\right)^{\prime}$ which computes the UGS $\overline{\mathfrak{G}}^{\prime}$.
■ Then play $\mathfrak{G}_{n+1}^{\prime}$.
■ This is self-referential, but we are used to that :)
■ The compression algorithm is indeed applicable (check execution times of the various steps...)
■ Define $\mathfrak{G}_{\mathcal{M}}:=\mathfrak{G}_{1}$.
■ Why does this work?

MIP* $=$ RE from Compression: Part II

■ Case 1: \mathcal{M} halts, say in T steps.

- Then val* $\left(\mathfrak{G}_{n}\right)=1$ for all $n \geq T$.

■ What about $n<T$?
■ For $n<T$, val ${ }^{*}\left(\mathfrak{G}_{n}\right)=\operatorname{val}^{*}\left(\mathbb{G}_{n+1}^{\prime}\right)$.

- So val* $\left(\mathfrak{G}_{T-1}\right)=\operatorname{val}^{*}\left(\mathfrak{G}_{T}^{\prime}\right)=1$ since val* $\left(\mathfrak{G}_{T}\right)=1$ (preservation of perfect completeness).
- By induction, we get that val* $\left(G_{\mathcal{M}}\right)=\operatorname{val}^{*}\left(\mathfrak{G}_{1}\right)=1$.

MIP* $^{*}=$ RE from Compression: Part II

■ Case 1: \mathcal{M} halts, say in T steps.
■ Then $\operatorname{val}^{*}\left(\mathfrak{G}_{n}\right)=1$ for all $n \geq T$.

- What about $n<T$?

■ For $n<T$, $\operatorname{val}^{*}\left(\mathfrak{G}_{n}\right)=\operatorname{val}^{*}\left(\mathfrak{G}_{n+1}^{\prime}\right)$.
■ So val* $\left(\mathfrak{G}_{T-1}\right)=\operatorname{val}^{*}\left(\mathfrak{G}_{T}^{\prime}\right)=1$ since val $^{*}\left(\mathfrak{G}_{T}\right)=1$ (preservation of perfect completeness).

■ By induction, we get that val ${ }^{*}\left(\mathfrak{G}_{\mathcal{M}}\right)=\operatorname{val}^{*}\left(\mathfrak{G}_{1}\right)=1$

MIP* $^{*}=$ RE from Compression: Part II

■ Case 1: \mathcal{M} halts, say in T steps.

- Then val $\left(\mathfrak{G}_{n}\right)=1$ for all $n \geq T$.

■ What about $n<T$?

- For $n<T$, val ${ }^{*}\left(\mathfrak{G}_{n}\right)=\operatorname{val}^{*}\left(\mathfrak{G}_{n+1}^{\prime}\right)$.

■ So val ${ }^{*}\left(\mathfrak{G}_{T-1}\right)=\operatorname{val}^{*}\left(\mathfrak{G}_{T}^{\prime}\right)=1$ since val $^{*}\left(\mathfrak{G}_{T}\right)=1$ (preservation of perfect completeness).

- By induction, we get that val* $\left(\mathfrak{G}_{\mathcal{M}}\right)=$ val $^{*}\left(\mathfrak{G}_{1}\right)=1$

MIP* $^{*}=$ RE from Compression: Part II

■ Case 1: \mathcal{M} halts, say in T steps.
■ Then $\operatorname{val}^{*}\left(\mathfrak{G}_{n}\right)=1$ for all $n \geq T$.
■ What about $n<T$?
$■$ For $n<T$, $\operatorname{val}^{*}\left(\mathfrak{G}_{n}\right)=\operatorname{val}^{*}\left(\mathfrak{G}_{n+1}^{\prime}\right)$.

- So val* $\left(\mathfrak{G}_{T-1}\right)=\operatorname{val}^{*}\left(\mathfrak{G}_{T}^{\prime}\right)=1$ since val $^{*}\left(\mathfrak{G}_{T}\right)=1$ (preservation of perfect completeness).
- By induction, we get that val* $\left(G_{\mathcal{M}}\right)=\operatorname{val}^{*}\left(\mathfrak{G}_{1}\right)=1$

MIP $^{*}=$ RE from Compression: Part II

■ Case 1: \mathcal{M} halts, say in T steps.
■ Then $\operatorname{val}^{*}\left(\mathfrak{G}_{n}\right)=1$ for all $n \geq T$.
■ What about $n<T$?
■ For $n<T$, val ${ }^{*}\left(\mathfrak{G}_{n}\right)=\operatorname{val}^{*}\left(\mathfrak{G}_{n+1}^{\prime}\right)$.
$■$ So val* $\left(\mathfrak{G}_{T-1}\right)=\operatorname{val}^{*}\left(\mathfrak{G}_{T}^{\prime}\right)=1$ since val* $\left(\mathfrak{G}_{T}\right)=1$ (preservation of perfect completeness).

- By induction, we get that val* $\left(\mathfrak{G}_{\mathcal{M}}\right)=\operatorname{val}^{*}\left(\mathfrak{G}_{1}\right)=1$

MIP* $=$ RE from Compression: Part II

■ Case 1: \mathcal{M} halts, say in T steps.
■ Then $\operatorname{val}^{*}\left(\mathfrak{G}_{n}\right)=1$ for all $n \geq T$.
■ What about $n<T$?
■ For $n<T$, val ${ }^{*}\left(\mathfrak{G}_{n}\right)=\operatorname{val}^{*}\left(\mathfrak{G}_{n+1}^{\prime}\right)$.
$■$ So val* $\left(\mathfrak{G}_{T-1}\right)=\operatorname{val}^{*}\left(\mathfrak{G}_{T}^{\prime}\right)=1$ since val* $\left(\mathfrak{G}_{T}\right)=1$ (preservation of perfect completeness).
$■$ By induction, we get that val ${ }^{*}\left(\mathfrak{G}_{\mathcal{M}}\right)=\operatorname{val}^{*}\left(\mathfrak{G}_{1}\right)=1$.

MIP* $=$ RE from Compression: Part III

■ Now suppose that \mathcal{M} does not halt.
Then val ${ }^{*}\left(\mathfrak{G}_{n}\right)=\operatorname{val}^{*}\left(\mathscr{G}_{n+1}^{\prime}\right)$ and $\mathcal{E}\left(\mathfrak{G}_{n}, r\right)=\mathcal{E}\left(\mathfrak{G}_{n+1}^{\prime}, r\right)$ for all $n \in \mathbb{N}$ and $r \in[0,1]$.
$\square \mathcal{E}\left(\mathfrak{G}_{n+1}^{\prime}, \frac{1}{2}\right) \geq \mathcal{E}\left(\mathfrak{G}_{n+1}, \frac{1}{2}\right)=\mathcal{E}\left(\mathfrak{G}_{n+2}^{\prime}, \frac{1}{2}\right) \geq \mathcal{E}\left(\mathfrak{G}_{n+2}, \frac{1}{2}\right)$
$\therefore \mathcal{E}\left(\mathfrak{G}_{n}, \frac{1}{2}\right) \geq \mathcal{E}\left(\mathfrak{G}_{m}^{\prime}, \frac{1}{2}\right)$ for all $m>n$.

- OTOH $\mathcal{E}\left(\mathfrak{G}_{m}^{\prime}, \frac{1}{2}\right) \geq m$ for all $m \in \mathbb{N}$.

■ Therefore $\mathcal{E}\left(\mathfrak{G}_{n}, \frac{1}{2}\right)=\infty$ for all $n \in \mathbb{N}$ and thus

MIP* $=$ RE from Compression: Part III

■ Now suppose that \mathcal{M} does not halt.
\square Then val* $\left(\mathfrak{G}_{n}\right)=\operatorname{val}^{*}\left(\mathfrak{G}_{n+1}^{\prime}\right)$ and $\mathcal{E}\left(\mathfrak{G}_{n}, r\right)=\mathcal{E}\left(\mathfrak{G}_{n+1}^{\prime}, r\right)$ for all $n \in \mathbb{N}$ and $r \in[0,1]$.

- $\mathcal{E}\left(\mathfrak{G}_{n+1}^{\prime}, \frac{1}{2}\right) \geq \mathcal{E}\left(\mathfrak{G}_{n+1}, \frac{1}{2}\right)=\mathcal{E}\left(\mathfrak{G}_{n+2}^{\prime}, \frac{1}{2}\right) \geq \mathcal{E}\left(\mathfrak{G}_{n+2}, \frac{1}{2}\right)$
$\therefore \mathcal{E}\left(\mathfrak{G}_{n}, \frac{1}{2}\right) \geq \mathcal{E}\left(\mathfrak{G}_{m}^{\prime}, \frac{1}{2}\right)$ for all $m>n$.
- OTOH $\mathcal{E}\left(\mathfrak{G}_{m}^{\prime}, \frac{1}{2}\right) \geq m$ for all $m \in \mathbb{N}$.
- Therefore $\mathcal{E}\left(\mathfrak{G}_{n}, \frac{1}{2}\right)=\infty$ for all $n \in \mathbb{N}$ and thus

MIP* $^{*}=$ RE from Compression: Part III

■ Now suppose that \mathcal{M} does not halt.
■ Then val* $\left(\mathfrak{G}_{n}\right)=\operatorname{val}^{*}\left(\mathfrak{G}_{n+1}^{\prime}\right)$ and $\mathcal{E}\left(\mathfrak{G}_{n}, r\right)=\mathcal{E}\left(\mathfrak{G}_{n+1}^{\prime}, r\right)$ for all $n \in \mathbb{N}$ and $r \in[0,1]$.
$\square \mathcal{E}\left(\mathfrak{G}_{n+1}^{\prime}, \frac{1}{2}\right) \geq \mathcal{E}\left(\mathfrak{G}_{n+1}, \frac{1}{2}\right)=\mathcal{E}\left(\mathfrak{G}_{n+2}^{\prime}, \frac{1}{2}\right) \geq \mathcal{E}\left(\mathfrak{G}_{n+2}, \frac{1}{2}\right) \cdots$

$\mathcal{E}\left(\mathfrak{G}_{n}, \frac{1}{2}\right) \geq \mathcal{E}\left(\mathfrak{G}_{m}^{\prime}, \frac{1}{2}\right)$ for all $m>n$.
 - OTOH $\mathcal{E}\left(\mathfrak{G}_{m}^{\prime}, \frac{1}{2}\right) \geq m$ for all $m \in \mathbb{N}$.
 - Therefore $\mathcal{E}\left(\mathfrak{G}_{n}, \frac{1}{2}\right)=\infty$ for all $n \in \mathbb{N}$ and thus

MIP* $=$ RE from Compression: Part III

■ Now suppose that \mathcal{M} does not halt.
$■$ Then val* $\left(\mathfrak{G}_{n}\right)=\operatorname{val}^{*}\left(\mathfrak{G}_{n+1}^{\prime}\right)$ and $\mathcal{E}\left(\mathfrak{G}_{n}, r\right)=\mathcal{E}\left(\mathfrak{G}_{n+1}^{\prime}, r\right)$ for all $n \in \mathbb{N}$ and $r \in[0,1]$.
$\square \mathcal{E}\left(\mathfrak{G}_{n+1}^{\prime}, \frac{1}{2}\right) \geq \mathcal{E}\left(\mathfrak{G}_{n+1}, \frac{1}{2}\right)=\mathcal{E}\left(\mathfrak{G}_{n+2}^{\prime}, \frac{1}{2}\right) \geq \mathcal{E}\left(\mathfrak{G}_{n+2}, \frac{1}{2}\right) \cdots$
■ $\therefore \mathcal{E}\left(\mathfrak{G}_{n}, \frac{1}{2}\right) \geq \mathcal{E}\left(\mathfrak{G}_{m}^{\prime}, \frac{1}{2}\right)$ for all $m>n$.

- OTOH $\mathcal{E}\left(\mathscr{G}_{m}^{\prime}, \frac{1}{2}\right) \geq m$ for all $m \in \mathbb{N}$.
- Therefore $\mathcal{E}\left(\mathfrak{G}_{n}, \frac{1}{2}\right)=\infty$ for all $n \in \mathbb{N}$ and thus

MIP* $=$ RE from Compression: Part III

■ Now suppose that \mathcal{M} does not halt.
$■$ Then val* $\left(\mathfrak{G}_{n}\right)=\operatorname{val}^{*}\left(\mathfrak{G}_{n+1}^{\prime}\right)$ and $\mathcal{E}\left(\mathfrak{G}_{n}, r\right)=\mathcal{E}\left(\mathfrak{G}_{n+1}^{\prime}, r\right)$ for all $n \in \mathbb{N}$ and $r \in[0,1]$.
$\square \mathcal{E}\left(\mathfrak{G}_{n+1}^{\prime}, \frac{1}{2}\right) \geq \mathcal{E}\left(\mathfrak{G}_{n+1}, \frac{1}{2}\right)=\mathcal{E}\left(\mathfrak{G}_{n+2}^{\prime}, \frac{1}{2}\right) \geq \mathcal{E}\left(\mathfrak{G}_{n+2}, \frac{1}{2}\right) \cdots$
■ $\therefore \mathcal{E}\left(\mathfrak{G}_{n}, \frac{1}{2}\right) \geq \mathcal{E}\left(\mathfrak{G}_{m}^{\prime}, \frac{1}{2}\right)$ for all $m>n$.
■ OTOH $\mathcal{E}\left(\mathfrak{G}_{m}^{\prime}, \frac{1}{2}\right) \geq m$ for all $m \in \mathbb{N}$.

- Therefore $\mathcal{E}\left(\mathfrak{G}_{n}, \frac{1}{2}\right)=\infty$ for all $n \in \mathbb{N}$ and thus

MIP* $^{*}=$ RE from Compression: Part III

■ Now suppose that \mathcal{M} does not halt.
$■$ Then val* $\left(\mathfrak{G}_{n}\right)=\operatorname{val}^{*}\left(\mathfrak{G}_{n+1}^{\prime}\right)$ and $\mathcal{E}\left(\mathfrak{G}_{n}, r\right)=\mathcal{E}\left(\mathfrak{G}_{n+1}^{\prime}, r\right)$ for all $n \in \mathbb{N}$ and $r \in[0,1]$.
$\square \mathcal{E}\left(\mathfrak{G}_{n+1}^{\prime}, \frac{1}{2}\right) \geq \mathcal{E}\left(\mathfrak{G}_{n+1}, \frac{1}{2}\right)=\mathcal{E}\left(\mathfrak{G}_{n+2}^{\prime}, \frac{1}{2}\right) \geq \mathcal{E}\left(\mathfrak{G}_{n+2}, \frac{1}{2}\right) \cdots$
■ $\therefore \mathcal{E}\left(\mathfrak{G}_{n}, \frac{1}{2}\right) \geq \mathcal{E}\left(\mathfrak{G}_{m}^{\prime}, \frac{1}{2}\right)$ for all $m>n$.

- $\mathrm{OTOH} \mathcal{E}\left(\mathfrak{G}_{m}^{\prime}, \frac{1}{2}\right) \geq m$ for all $m \in \mathbb{N}$.

■ Therefore $\mathcal{E}\left(\mathfrak{G}_{n}, \frac{1}{2}\right)=\infty$ for all $n \in \mathbb{N}$ and thus

$$
\operatorname{val}^{*}\left(\mathfrak{G}_{\mathcal{M}}\right)=\operatorname{val}^{*}\left(\mathfrak{G}_{1}\right)<\frac{1}{2}
$$

Hand-waving about the proof of the Compression Theorem

■ Question reduction
■ Get the players to sample questions for themselves.
■ Uses rigidity of nonlocal games and the Heisenberg uncertainty principle.
■ Brings the sampler complexity down from poly (n) to poly $(\log n)$.

- Answer reduction
- The players must now also compute the decision predicate
$D_{n}(x, y, a, b)$ for themselves
- They must include a succint proof that they computed D_{n} correctly
- Uses probabilistically checkable proofs (PCP)
- Brings the decider complexity down to poly($\log n)$

Hand-waving about the proof of the Compression Theorem

■ Question reduction
■ Get the players to sample questions for themselves.
■ Uses rigidity of nonlocal games and the Heisenberg uncertainty principle.
■ Brings the sampler complexity down from poly (n) to poly $(\log n)$.

- Answer reduction
- The players must now also compute the decision predicate $D_{n}(x, y, a, b)$ for themselves
■ They must include a succint proof that they computed D_{n} correctly
■ Uses probabilistically checkable proofs (PCP)
- Brings the decider complexity down to poly $(\log n)$

