

Isaac Goldbring

University of California, Irvine

ASL North American Annual Meeting Cornell University April 7, 2022

2 A quantum detour

3 $MIP^* = RE$

4 A few words about the proof of $MIP^* = RE$

3

Alice and Bob against the world

- Alice and Bob are two cooperating but *noncommunicating* players playing a game against a "referee."
- They are each asked a question $x, y \in [k] := \{1, ..., k\}$ randomly according to some probability distribution π on $[k] \times [k]$.
- Somehow they return answers $a, b \in [n]$ respectively.
- There is a function $D : [k]^2 \times [n]^2 \rightarrow \{0, 1\}$, called the **decision predicate**, which determines if they win this round of the game, that is, they win if and only if D(x, y, a, b) = 1.
- This describes a **nonlocal game** $\mathfrak{G} := (\pi, D)$ with *k* questions and *n* answers.

Alice and Bob against the world

- Alice and Bob are two cooperating but *noncommunicating* players playing a game against a "referee."
- They are each asked a question x, y ∈ [k] := {1,...,k} randomly according to some probability distribution π on [k] × [k].
- Somehow they return answers $a, b \in [n]$ respectively.
- There is a function $D : [k]^2 \times [n]^2 \rightarrow \{0, 1\}$, called the **decision predicate**, which determines if they win this round of the game, that is, they win if and only if D(x, y, a, b) = 1.
- This describes a **nonlocal game** $\mathfrak{G} := (\pi, D)$ with *k* questions and *n* answers.

Alice and Bob against the world

- Alice and Bob are two cooperating but *noncommunicating* players playing a game against a "referee."
- They are each asked a question x, y ∈ [k] := {1,...,k} randomly according to some probability distribution π on [k] × [k].
- Somehow they return answers $a, b \in [n]$ respectively.
- There is a function $D : [k]^2 \times [n]^2 \rightarrow \{0, 1\}$, called the **decision predicate**, which determines if they win this round of the game, that is, they win if and only if D(x, y, a, b) = 1.
- This describes a **nonlocal game** $\mathfrak{G} := (\pi, D)$ with *k* questions and *n* answers.

Isaac Goldbring (UCI)

Alice and Bob against the world

- Alice and Bob are two cooperating but *noncommunicating* players playing a game against a "referee."
- They are each asked a question x, y ∈ [k] := {1,...,k} randomly according to some probability distribution π on [k] × [k].
- Somehow they return answers $a, b \in [n]$ respectively.
- There is a function D : [k]² × [n]² → {0, 1}, called the decision predicate, which determines if they win this round of the game, that is, they win if and only if D(x, y, a, b) = 1.

This describes a **nonlocal game** $\mathfrak{G} := (\pi, D)$ with *k* questions and *n* answers.

Alice and Bob against the world

- Alice and Bob are two cooperating but *noncommunicating* players playing a game against a "referee."
- They are each asked a question x, y ∈ [k] := {1,...,k} randomly according to some probability distribution π on [k] × [k].
- Somehow they return answers $a, b \in [n]$ respectively.
- There is a function D: [k]² × [n]² → {0, 1}, called the decision predicate, which determines if they win this round of the game, that is, they win if and only if D(x, y, a, b) = 1.
- This describes a **nonlocal game** $\mathfrak{G} := (\pi, D)$ with *k* questions and *n* answers.

- Alice and Bob can meet before the game to decide on a strategy for playing & that they will use before the game.
- For us, a strategy will simply be a matrix $p(a, b|x, y) \in [0, 1]^{k^2n^2}$ describing the conditional probability they respond with answers $(a, b) \in [n]^2$ given that they are asked questions $(x, y) \in [k]^2$.
- Given a strategy *p*, the **value of the game** 𝔅 **with respect to** *p* is the quantity

$$\mathsf{val}(\mathfrak{G}, p) := \sum_{(x,y) \in [k]^2} \pi(x,y) \sum_{(a,b) \in [n]^2} p(a,b|x,y) D(a,b,x,y).$$

val(𝔅, 𝒫) measures the expected probability of winning the game if they play according to the strategy 𝒫.

- Alice and Bob can meet before the game to decide on a strategy for playing & that they will use before the game.
- For us, a strategy will simply be a matrix $p(a, b|x, y) \in [0, 1]^{k^2 n^2}$ describing the conditional probability they respond with answers $(a, b) \in [n]^2$ given that they are asked questions $(x, y) \in [k]^2$.
- Given a strategy p, the value of the game & with respect to p is the quantity

$$\mathsf{val}(\mathfrak{G}, p) := \sum_{(x,y) \in [k]^2} \pi(x,y) \sum_{(a,b) \in [n]^2} p(a,b|x,y) D(a,b,x,y).$$

val(𝔅, 𝒫) measures the expected probability of winning the game if they play according to the strategy 𝒫.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Alice and Bob can meet before the game to decide on a strategy for playing & that they will use before the game.
- For us, a strategy will simply be a matrix $p(a, b|x, y) \in [0, 1]^{k^2 n^2}$ describing the conditional probability they respond with answers $(a, b) \in [n]^2$ given that they are asked questions $(x, y) \in [k]^2$.

Given a strategy p, the value of the game & with respect to p is the quantity

$$\operatorname{val}(\mathfrak{G}, p) := \sum_{(x,y) \in [k]^2} \pi(x,y) \sum_{(a,b) \in [n]^2} p(a,b|x,y) D(a,b,x,y).$$

val(&, p) measures the expected probability of winning the game if they play according to the strategy p.

- Alice and Bob can meet before the game to decide on a strategy for playing & that they will use before the game.
- For us, a strategy will simply be a matrix $p(a, b|x, y) \in [0, 1]^{k^2 n^2}$ describing the conditional probability they respond with answers $(a, b) \in [n]^2$ given that they are asked questions $(x, y) \in [k]^2$.

Given a strategy p, the value of the game & with respect to p is the quantity

$$\mathsf{val}(\mathfrak{G}, p) := \sum_{(x,y) \in [k]^2} \pi(x,y) \sum_{(a,b) \in [n]^2} p(a,b|x,y) D(a,b,x,y).$$

val(𝔅, 𝒫) measures the expected probability of winning the game if they play according to the strategy 𝒫.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• A deterministic strategy is given by a pair of functions $A, B : [k] \rightarrow [n]$ such that

p(A(x), B(y)|x, y) = 1 for all $(x, y) \in [k]^2$.

• A classical (or local) strategy is given by a probability space (Ω, μ) together with pairs of functions $A_{\omega}, B_{\omega} : [k] \to [n]$ such that $p(a, b|x, v) = \mu(\{\omega \in \Omega : A_{\omega}(x) = a \text{ and } B_{\omega}(v) = b\}).$

C_{loc}(k, n) ⊆ [0, 1]^{k²n²} denotes the set of classical strategies. It is the convex hull of the set C_{det}(k, n) of deterministic strategies.
The classical value of 𝔅 is the quantity

$$\operatorname{val}(\mathfrak{G}) := \sup_{p \in C_{\operatorname{loc}}(k,n)} \operatorname{val}(\mathfrak{G},p) = \sup_{p \in C_{\operatorname{det}}(k,n)} \operatorname{val}(\mathfrak{G},p).$$

• A deterministic strategy is given by a pair of functions $A, B : [k] \rightarrow [n]$ such that

```
p(A(x), B(y)|x, y) = 1 for all (x, y) \in [k]^2.
```

• A classical (or local) strategy is given by a probability space (Ω, μ) together with pairs of functions $A_{\omega}, B_{\omega} : [k] \to [n]$ such that $p(a, b|x, y) = \mu(\{\omega \in \Omega : A_{\omega}(x) = a \text{ and } B_{\omega}(y) = b\}).$

C_{loc}(k, n) ⊆ [0, 1]^{k²n²} denotes the set of classical strategies. It is the convex hull of the set C_{det}(k, n) of deterministic strategies.
The classical value of 𝔅 is the quantity

$$\operatorname{val}(\mathfrak{G}) := \sup_{p \in C_{\operatorname{loc}}(k,n)} \operatorname{val}(\mathfrak{G},p) = \sup_{p \in C_{\operatorname{det}}(k,n)} \operatorname{val}(\mathfrak{G},p).$$

• A deterministic strategy is given by a pair of functions $A, B : [k] \rightarrow [n]$ such that

```
p(A(x), B(y)|x, y) = 1 for all (x, y) \in [k]^2.
```

• A classical (or local) strategy is given by a probability space (Ω, μ) together with pairs of functions $A_{\omega}, B_{\omega} : [k] \to [n]$ such that $p(a, b|x, y) = \mu(\{\omega \in \Omega : A_{\omega}(x) = a \text{ and } B_{\omega}(y) = b\}).$

C_{loc}(k, n) ⊆ [0, 1]^{k²n²} denotes the set of classical strategies. It is the convex hull of the set C_{det}(k, n) of deterministic strategies.
The classical value of 𝔅 is the quantity

$$\operatorname{val}(\mathfrak{G}) := \sup_{p \in C_{\operatorname{loc}}(k,n)} \operatorname{val}(\mathfrak{G},p) = \sup_{p \in C_{\operatorname{det}}(k,n)} \operatorname{val}(\mathfrak{G},p).$$

-

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• A deterministic strategy is given by a pair of functions $A, B : [k] \rightarrow [n]$ such that

```
p(A(x), B(y)|x, y) = 1 for all (x, y) \in [k]^2.
```

• A classical (or local) strategy is given by a probability space (Ω, μ) together with pairs of functions $A_{\omega}, B_{\omega} : [k] \to [n]$ such that $p(a, b|x, y) = \mu(\{\omega \in \Omega : A_{\omega}(x) = a \text{ and } B_{\omega}(y) = b\}).$

• $C_{\text{loc}}(k,n) \subseteq [0,1]^{k^2n^2}$ denotes the set of classical strategies. It is the convex hull of the set $C_{\text{det}}(k,n)$ of deterministic strategies.

■ The classical value of 𝔅 is the quantity

$$\mathsf{val}(\mathfrak{G}) := \sup_{p \in C_{\mathsf{loc}}(k,n)} \mathsf{val}(\mathfrak{G},p) = \sup_{p \in C_{\mathsf{det}}(k,n)} \mathsf{val}(\mathfrak{G},p).$$

The CHSH game

Example

The CHSH game (named after Clauser, Horne, Shimony, and Holt) is the game \mathfrak{G}_{CHSH} with k = n = 2 and such that:

- If x = 1 or y = 1, then Alice and Bob win if and only if their answers agree.
- If *x* = *y* = 2, then Alice and Bob win if and only if their answers disagree.

By inspecting all deterministic strategies, one sees that

$$\operatorname{val}(\mathfrak{G}_{\mathsf{CHSH}}) = \frac{3}{4}.$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

2 A quantum detour

3 $MIP^* = RE$

4 A few words about the proof of $MIP^* = RE$

э

・ロト ・ 四ト ・ ヨト ・ ヨト

The spin of an electron

An electron can have one of two spins: "up" or "down."

- At any given moment, however, it does not have a definite spin and instead is in a **superposition** of the two spins, as represented by the linear combination $\alpha | up \rangle + \beta | down \rangle \in \mathbb{C}^2$, where $| up \rangle$ and $| down \rangle$ are two orthogonal vectors in \mathbb{C}^2 and $\alpha, \beta \in \mathbb{C}$ are such that $|\alpha|^2 + |\beta|^2 = 1$.
- If it is not disturbed, its state evolves linearly according to the Shrödinger equation.
- However, when it is measured, its state randomly and discontinuously jumps to one of the two definite spin states | up⟩ or | down⟩ with probabilities |α|² and |β|² respectively.

The spin of an electron

- An electron can have one of two spins: "up" or "down."
- At any given moment, however, it does not have a definite spin and instead is in a **superposition** of the two spins, as represented by the linear combination $\alpha | up \rangle + \beta | down \rangle \in \mathbb{C}^2$, where $| up \rangle$ and $| down \rangle$ are two orthogonal vectors in \mathbb{C}^2 and $\alpha, \beta \in \mathbb{C}$ are such that $|\alpha|^2 + |\beta|^2 = 1$.
- If it is not disturbed, its state evolves linearly according to the Shrödinger equation.
- However, when it is measured, its state randomly and discontinuously jumps to one of the two definite spin states | up > or | down> with probabilities |α|² and |β|² respectively;

The spin of an electron

- An electron can have one of two spins: "up" or "down."
- At any given moment, however, it does not have a definite spin and instead is in a **superposition** of the two spins, as represented by the linear combination $\alpha | up \rangle + \beta | down \rangle \in \mathbb{C}^2$, where $| up \rangle$ and $| down \rangle$ are two orthogonal vectors in \mathbb{C}^2 and $\alpha, \beta \in \mathbb{C}$ are such that $|\alpha|^2 + |\beta|^2 = 1$.
- If it is not disturbed, its state evolves linearly according to the Shrödinger equation.
- However, when it is measured, its state randomly and discontinuously jumps to one of the two definite spin states | up > or | down> with probabilities |α|² and |β|² respectively.

The spin of an electron

- An electron can have one of two spins: "up" or "down."
- At any given moment, however, it does not have a definite spin and instead is in a **superposition** of the two spins, as represented by the linear combination $\alpha | up \rangle + \beta | down \rangle \in \mathbb{C}^2$, where $| up \rangle$ and $| down \rangle$ are two orthogonal vectors in \mathbb{C}^2 and $\alpha, \beta \in \mathbb{C}$ are such that $|\alpha|^2 + |\beta|^2 = 1$.
- If it is not disturbed, its state evolves linearly according to the Shrödinger equation.
- However, when it is measured, its state randomly and discontinuously jumps to one of the two definite spin states | up > or | down> with probabilities |α|² and |β|² respectively.

Recommended summer reading

Convenied Material

the conceptual foundations of quantum mechanics

・ロト ・ 四ト ・ ヨト ・ ヨト

More summer reading (shameless plug)

Isaac Goldbring (UCI)

 $MIP^* = RE$

ASL Annual Meeting April 7, 2022 10/27

・ロト ・ 四ト ・ ヨト ・ ヨト

æ

- Associated to a quantum system is its state space, which is a complex Hilbert space H.
- The **state** of the system at any given moment is described by a unit vector $\xi \in H$, which evolves linearly until it is measured.
- A **measurement** with *n* outcomes is a tuple $M_1, ..., M_n \in B(H)$ such that, upon measurement, the probability of outcome *i* occurring is given by $||M_i\xi||^2$, in which case the state of the system jumps to $\frac{M_i\xi}{||M_i\xi||}$. (**Born rule**)
- For these to determine legitimate probabilities, for all unit vectors $\xi \in H$, one must have

$$1 = \sum_{i=1}^n \|M_i\xi\|^2 = \sum_{i=1}^n \langle M_i^*M_i\xi,\xi\rangle$$

and thus $\sum_{i=1}^{n} M_i^* M_i = I_H$.

11/27

- Associated to a quantum system is its state space, which is a complex Hilbert space H.
- The **state** of the system at any given moment is described by a unit vector *ξ* ∈ *H*, which evolves linearly until it is measured.
- A **measurement** with *n* outcomes is a tuple $M_1, ..., M_n \in B(H)$ such that, upon measurement, the probability of outcome *i* occurring is given by $||M_i\xi||^2$, in which case the state of the system jumps to $\frac{M_i\xi}{||M_i\xi||}$. (**Born rule**)
- For these to determine legitimate probabilities, for all unit vectors $\xi \in H$, one must have

$$1 = \sum_{i=1}^n \|M_i\xi\|^2 = \sum_{i=1}^n \langle M_i^*M_i\xi,\xi\rangle$$

and thus $\sum_{i=1}^{n} M_i^* M_i = I_H$.

11/27

- Associated to a quantum system is its state space, which is a complex Hilbert space H.
- The **state** of the system at any given moment is described by a unit vector *ξ* ∈ *H*, which evolves linearly until it is measured.
- A **measurement** with *n* outcomes is a tuple $M_1, ..., M_n \in B(H)$ such that, upon measurement, the probability of outcome *i* occurring is given by $||M_i\xi||^2$, in which case the state of the system jumps to $\frac{M_i\xi}{||M_i\xi||}$. (Born rule)
- For these to determine legitimate probabilities, for all unit vectors $\xi \in H$, one must have

$$1 = \sum_{i=1}^n \|M_i\xi\|^2 = \sum_{i=1}^n \langle M_i^* M_i\xi, \xi \rangle$$

and thus $\sum_{i=1}^{n} M_i^* M_i = I_H$.

11/27

- Associated to a quantum system is its state space, which is a complex Hilbert space H.
- The **state** of the system at any given moment is described by a unit vector *ξ* ∈ *H*, which evolves linearly until it is measured.
- A **measurement** with *n* outcomes is a tuple $M_1, ..., M_n \in B(H)$ such that, upon measurement, the probability of outcome *i* occurring is given by $||M_i\xi||^2$, in which case the state of the system jumps to $\frac{M_i\xi}{||M_i\xi||}$. (Born rule)
- For these to determine legitimate probabilities, for all unit vectors $\xi \in H$, one must have

$$1 = \sum_{i=1}^n \|M_i\xi\|^2 = \sum_{i=1}^n \langle M_i^*M_i\xi,\xi\rangle$$

and thus $\sum_{i=1}^{n} M_i^* M_i = I_H$.

- If one only cares about the statistics of the outcomes of a measurement (like us!), then we can simplify matters by assuming that each measurement operator is **positive**.
- A **POVM** (positive operator-valued measure) of length *n* is a collection A_1, \ldots, A_n of positive operators on *H* such that $\sum_{i=1}^n A_i = I_H$.
- On state ξ , the probability outcome *i* occurs is given by $\langle A_i \xi, \xi \rangle$.
- If each A_i is actually a projection, we speak of PVMs (projection-valued measures). This is the same as an orthogonal decomposition of H into n orthogonal subspaces.
- The case of the spin of an electron was a PVM corresponding to the one-dimensional subspaces spanned by | up > and | down >.

- If one only cares about the statistics of the outcomes of a measurement (like us!), then we can simplify matters by assuming that each measurement operator is **positive**.
- A **POVM** (positive operator-valued measure) of length *n* is a collection A_1, \ldots, A_n of positive operators on *H* such that $\sum_{i=1}^n A_i = I_H$.
- On state ξ , the probability outcome *i* occurs is given by $\langle A_i \xi, \xi \rangle$.
- If each A_i is actually a projection, we speak of PVMs (projection-valued measures). This is the same as an orthogonal decomposition of H into n orthogonal subspaces.
- The case of the spin of an electron was a PVM corresponding to the one-dimensional subspaces spanned by | up > and | down >.

- If one only cares about the statistics of the outcomes of a measurement (like us!), then we can simplify matters by assuming that each measurement operator is **positive**.
- A **POVM** (positive operator-valued measure) of length *n* is a collection A_1, \ldots, A_n of positive operators on *H* such that $\sum_{i=1}^n A_i = I_H$.
- On state ξ , the probability outcome *i* occurs is given by $\langle A_i \xi, \xi \rangle$.
- If each A_i is actually a projection, we speak of PVMs (projection-valued measures). This is the same as an orthogonal decomposition of H into n orthogonal subspaces.
- The case of the spin of an electron was a PVM corresponding to the one-dimensional subspaces spanned by | up > and | down >.

- If one only cares about the statistics of the outcomes of a measurement (like us!), then we can simplify matters by assuming that each measurement operator is **positive**.
- A **POVM** (positive operator-valued measure) of length *n* is a collection A_1, \ldots, A_n of positive operators on *H* such that $\sum_{i=1}^n A_i = I_H$.
- On state ξ , the probability outcome *i* occurs is given by $\langle A_i \xi, \xi \rangle$.
- If each A_i is actually a projection, we speak of PVMs (projection-valued measures). This is the same as an orthogonal decomposition of H into n orthogonal subspaces.
- The case of the spin of an electron was a PVM corresponding to the one-dimensional subspaces spanned by | up > and | down >.

- If one only cares about the statistics of the outcomes of a measurement (like us!), then we can simplify matters by assuming that each measurement operator is **positive**.
- A **POVM** (positive operator-valued measure) of length *n* is a collection A_1, \ldots, A_n of positive operators on *H* such that $\sum_{i=1}^n A_i = I_H$.
- On state ξ , the probability outcome *i* occurs is given by $\langle A_i \xi, \xi \rangle$.
- If each A_i is actually a projection, we speak of PVMs (projection-valued measures). This is the same as an orthogonal decomposition of H into n orthogonal subspaces.
- The case of the spin of an electron was a PVM corresponding to the one-dimensional subspaces spanned by |up> and |down>.

Another axiom of quantum mechanics is that if H_A and H_B are the state spaces for two quantum systems, then the state space for their composite system is given by $H_A \otimes H_B$.

Thus, the state space for two electrons is given by $\mathbb{C}^2 \otimes \mathbb{C}^2 \cong \mathbb{C}^4$.

- The **EPR state** is given by $\psi_{\text{EPR}} = \frac{1}{\sqrt{2}} |\text{up}\rangle |\text{up}\rangle + \frac{1}{\sqrt{2}} |\text{down}\rangle |\text{down}\rangle$.
- It was used by Einstein, Podolsky, and Rosen in their famous paper arguing that quantum mechanics was incomplete!
- The spookiness of entanglement!

• • • • • • • • • • • • •

- Another axiom of quantum mechanics is that if H_A and H_B are the state spaces for two quantum systems, then the state space for their composite system is given by $H_A \otimes H_B$.
- Thus, the state space for two electrons is given by $\mathbb{C}^2 \otimes \mathbb{C}^2 \cong \mathbb{C}^4$.
- The **EPR state** is given by $\psi_{\text{EPR}} = \frac{1}{\sqrt{2}} |\text{up}\rangle |\text{up}\rangle + \frac{1}{\sqrt{2}} |\text{down}\rangle |\text{down}\rangle$.
- It was used by Einstein, Podolsky, and Rosen in their famous paper arguing that quantum mechanics was incomplete!
- The spookiness of entanglement!

• • • • • • • • • • •

- Another axiom of quantum mechanics is that if H_A and H_B are the state spaces for two quantum systems, then the state space for their composite system is given by $H_A \otimes H_B$.
- Thus, the state space for two electrons is given by $\mathbb{C}^2 \otimes \mathbb{C}^2 \cong \mathbb{C}^4$.
- The **EPR state** is given by $\psi_{\text{EPR}} = \frac{1}{\sqrt{2}} |\text{up}\rangle |\text{up}\rangle + \frac{1}{\sqrt{2}} |\text{down}\rangle |\text{down}\rangle$.
- It was used by Einstein, Podolsky, and Rosen in their famous paper arguing that quantum mechanics was incomplete!
- The spookiness of entanglement!

• • • • • • • • • • • •

- Another axiom of quantum mechanics is that if H_A and H_B are the state spaces for two quantum systems, then the state space for their composite system is given by $H_A \otimes H_B$.
- Thus, the state space for two electrons is given by $\mathbb{C}^2 \otimes \mathbb{C}^2 \cong \mathbb{C}^4$.
- The **EPR state** is given by $\psi_{\text{EPR}} = \frac{1}{\sqrt{2}} |\text{up}\rangle |\text{up}\rangle + \frac{1}{\sqrt{2}} |\text{down}\rangle |\text{down}\rangle$.
- It was used by Einstein, Podolsky, and Rosen in their famous paper arguing that quantum mechanics was incomplete!
- The spookiness of entanglement!
The EPR state

- Another axiom of quantum mechanics is that if H_A and H_B are the state spaces for two quantum systems, then the state space for their composite system is given by $H_A \otimes H_B$.
- Thus, the state space for two electrons is given by $\mathbb{C}^2 \otimes \mathbb{C}^2 \cong \mathbb{C}^4$.
- The **EPR state** is given by $\psi_{\text{EPR}} = \frac{1}{\sqrt{2}} |\text{up}\rangle |\text{up}\rangle + \frac{1}{\sqrt{2}} |\text{down}\rangle |\text{down}\rangle$.
- It was used by Einstein, Podolsky, and Rosen in their famous paper arguing that quantum mechanics was incomplete!
- The spookiness of entanglement!

1 Nonlocal games

3 $MIP^* = RE$

4 A few words about the proof of $MIP^* = RE$

Isaac Goldbring (UCI)

 $MIP^* = RE$

ASL Annual Meeting April 7, 2022 14/27

э

・ロト ・ 四ト ・ ヨト ・ ヨト

Consider a game & with k questions and n answers.

- This time, when playing the game, Alice and Bob have quantum systems H_A and H_B and share a state $\xi \in H_A \otimes H_B$.
- Upon receiving question $x \in [k]$, Alice will perform a POVM $A^x = (A_1^x, ..., A_n^x)$ on her part of ξ to decide which answer to gi
- Bob similarly has a POVM $B^y = (B_1^y, \ldots, B_n^y)$ for measuring on his part of ξ .
- We then have $p(a, b|x, y) = \langle (A_a^x \otimes B_b^y) \xi, \xi \rangle$

Isaac Goldbring (UCI)

- Consider a game 𝔅 with *k* questions and *n* answers.
- This time, when playing the game, Alice and Bob have quantum systems H_A and H_B and share a state $\xi \in H_A \otimes H_B$.
- Upon receiving question $x \in [k]$, Alice will perform a POVM $A^x = (A_1^x, ..., A_n^x)$ on her part of ξ to decide which answer to give.
- Bob similarly has a POVM $B^{y} = (B_{1}^{y}, ..., B_{n}^{y})$ for measuring on his part of ξ .
- We then have $p(a, b|x, y) = \langle (A_a^x \otimes B_b^y) \xi, \xi \rangle$.

Isaac Goldbring (UCI)

- Consider a game \mathfrak{G} with k questions and n answers.
- This time, when playing the game, Alice and Bob have quantum systems H_A and H_B and share a state $\xi \in H_A \otimes H_B$.
- Upon receiving question $x \in [k]$, Alice will perform a POVM $A^x = (A_1^x, \dots, A_n^x)$ on her part of ξ to decide which answer to give.
- Bob similarly has a POVM $B^y = (B_1^y, \ldots, B_n^y)$ for measuring on his part of ξ .
- We then have $p(a, b|x, y) = \langle (A_a^x \otimes B_b^y) \xi, \xi \rangle$.

- Consider a game \mathfrak{G} with k questions and n answers.
- This time, when playing the game, Alice and Bob have quantum systems H_A and H_B and share a state $\xi \in H_A \otimes H_B$.
- Upon receiving question $x \in [k]$, Alice will perform a POVM $A^x = (A_1^x, ..., A_n^x)$ on her part of ξ to decide which answer to give.
- Bob similarly has a POVM $B^y = (B_1^y, \ldots, B_n^y)$ for measuring on his part of ξ .
- We then have $p(a, b|x, y) = \langle (A_a^x \otimes B_b^y) \xi, \xi \rangle$.

- Consider a game \mathfrak{G} with k questions and n answers.
- This time, when playing the game, Alice and Bob have quantum systems H_A and H_B and share a state $\xi \in H_A \otimes H_B$.
- Upon receiving question $x \in [k]$, Alice will perform a POVM $A^x = (A_1^x, ..., A_n^x)$ on her part of ξ to decide which answer to give.
- Bob similarly has a POVM $B^{y} = (B_{1}^{y}, ..., B_{n}^{y})$ for measuring on his part of ξ .
- We then have $p(a, b|x, y) = \langle (A_a^x \otimes B_b^y) \xi, \xi \rangle$.

• $C_q(k, n)$ denotes the set of strategies for which there are:

- **finite-dimensional** Hilbert spaces H_A and H_B ,
- POVMs A^x and B^y on H_A and H_B respectively (one for each $x, y \in [k]$), and
- a unit vector $\xi \in H_A \otimes H_B$
- for which $p(a, b|x, y) = \langle (A_a^x \otimes B_b^y) \xi, \xi \rangle$.
- We also consider $C_{qa}(k, n) := \overline{C_q(k, n)}$.

If & is a nonlocal game with k questions and n answers, the entangled value of & is

$$\operatorname{val}^*(\mathfrak{G}) := \sup_{p \in C_q(k,n)} \operatorname{val}(\mathfrak{G},p) = \sup_{p \in C_{qa}(k,n)} \operatorname{val}(\mathfrak{G},p).$$

• $C_{\text{loc}}(k,n) \subseteq C_q(k,n)$ so $\text{val}(\mathfrak{G}) \leq \text{val}^*(\mathfrak{G})$.

< 回 > < 三 > < 三 >

• $C_q(k, n)$ denotes the set of strategies for which there are:

- **finite-dimensional** Hilbert spaces H_A and H_B ,
- POVMs A^x and B^y on H_A and H_B respectively (one for each $x, y \in [k]$), and
- a unit vector $\xi \in H_A \otimes H_B$
- for which $p(a, b|x, y) = \langle (A_a^x \otimes B_b^y) \xi, \xi \rangle$.
- We also consider $C_{qa}(k, n) := \overline{C_q(k, n)}$.

If & is a nonlocal game with k questions and n answers, the entangled value of & is

$$\operatorname{val}^*(\mathfrak{G}) := \sup_{p \in C_q(k,n)} \operatorname{val}(\mathfrak{G},p) = \sup_{p \in C_{qa}(k,n)} \operatorname{val}(\mathfrak{G},p).$$

• $C_{\text{loc}}(k,n) \subseteq C_q(k,n)$ so $\text{val}(\mathfrak{G}) \leq \text{val}^*(\mathfrak{G})$.

< 回 ト < 三 ト < 三

- $C_q(k, n)$ denotes the set of strategies for which there are:
 - finite-dimensional Hilbert spaces H_A and H_B ,
 - POVMs A^x and B^y on H_A and H_B respectively (one for each $x, y \in [k]$), and
 - a unit vector $\xi \in H_A \otimes H_B$
 - for which $p(a, b|x, y) = \langle (A_a^x \otimes B_b^y) \xi, \xi \rangle$.
- We also consider $C_{qa}(k, n) := \overline{C_q(k, n)}$.
- If & is a nonlocal game with k questions and n answers, the entangled value of & is

$$\operatorname{val}^*(\mathfrak{G}) := \sup_{p \in C_q(k,n)} \operatorname{val}(\mathfrak{G}, p) = \sup_{p \in C_{qa}(k,n)} \operatorname{val}(\mathfrak{G}, p).$$

• $C_{\text{loc}}(k,n) \subseteq C_q(k,n)$ so $\text{val}(\mathfrak{G}) \leq \text{val}^*(\mathfrak{G})$.

- $C_q(k, n)$ denotes the set of strategies for which there are:
 - finite-dimensional Hilbert spaces H_A and H_B ,
 - POVMs A^x and B^y on H_A and H_B respectively (one for each $x, y \in [k]$), and
 - a unit vector $\xi \in H_A \otimes H_B$
 - for which $p(a, b|x, y) = \langle (A_a^x \otimes B_b^y) \xi, \xi \rangle$.
- We also consider $C_{qa}(k, n) := \overline{C_q(k, n)}$.
- If & is a nonlocal game with k questions and n answers, the entangled value of & is

$$\operatorname{val}^*(\mathfrak{G}) := \sup_{p \in C_q(k,n)} \operatorname{val}(\mathfrak{G}, p) = \sup_{p \in C_{qa}(k,n)} \operatorname{val}(\mathfrak{G}, p).$$

• $C_{\mathsf{loc}}(k,n) \subseteq C_q(k,n)$ so $\mathsf{val}(\mathfrak{G}) \le \mathsf{val}^*(\mathfrak{G})$.

CHSH, EPR, and Bell's Theorem

Theorem (Bell's Theorem)

 $\mathsf{val}^*(\mathfrak{G}_{\mathsf{CHSH}}) > \mathsf{val}(\mathfrak{G}_{\mathsf{CHSH}}).$

- Recall val(\mathfrak{G}_{CHSH}) = $\frac{3}{4}$.
- However, there is an entangled strategy p, based on the EPR state ψ_{EPR} , such that $val(\mathfrak{G}, p) = \cos^2(\frac{\pi}{8}) \approx 0.85$ (which equals $val^*(\mathfrak{G}_{\text{CHSH}})$ by a result of Tsirelson).
- This inequality showed that EPR were wrong!

- One can effectively compute *lower bounds* for val*(&) uniformly in &:
- Given some dimension *d*, you can enumerate a computable sequence of finite nets N₁^d ⊆ N₂^d ⊆ ··· over all states and POVMs in dimension *d* with |N_m^d| = m^{O(d²)} such that for any p ∈ C_q(k, n) based on a *d*-dimensional strategy and any *m*, there is q ∈ N_m^d with |val(𝔅, p) val(𝔅, q)| < 1/m.
 Set

$$\operatorname{val}^n(\mathfrak{G}, p) = \max_{\substack{d,m \leq n \ p \in N_m^d}} \max \operatorname{val}(\mathfrak{G}, p).$$

Then valⁿ(𝔅, 𝒫) is computable and valⁿ(𝔅, 𝒫) ↗ val(𝔅).
 Could it be that val*(𝔅) is actually uniformly computable in 𝔅?

- One can effectively compute *lower bounds* for val*(&) uniformly in &:
- Given some dimension *d*, you can enumerate a computable sequence of finite nets N₁^d ⊆ N₂^d ⊆ ··· over all states and POVMs in dimension *d* with |N_m^d| = m^{O(d²)} such that for any p ∈ C_q(k, n) based on a *d*-dimensional strategy and any *m*, there is q ∈ N_m^d with |val(𝔅, p) val(𝔅, q)| < 1/m.

$$\operatorname{val}^{n}(\mathfrak{G},p) = \max_{d,m \leq n} \max_{p \in N_{m}^{d}} \operatorname{val}(\mathfrak{G},p).$$

Then valⁿ(𝔅, p) is computable and valⁿ(𝔅, p) ↗ val(𝔅).
 Could it be that val*(𝔅) is actually uniformly computable in 𝔅?

A (10) A (10) A (10) A

- One can effectively compute *lower bounds* for val*(&) uniformly in &:
- Given some dimension *d*, you can enumerate a computable sequence of finite nets N₁^d ⊆ N₂^d ⊆ ··· over all states and POVMs in dimension *d* with |N_m^d| = m^{O(d²)} such that for any p ∈ C_q(k, n) based on a *d*-dimensional strategy and any *m*, there is q ∈ N_m^d with |val(𝔅, p) val(𝔅, q)| < 1/m.
 Set

$$\operatorname{val}^n(\mathfrak{G}, oldsymbol{p}) = \max_{d, m \leq n} \max_{oldsymbol{p} \in N^d_m} \operatorname{wal}(\mathfrak{G}, oldsymbol{p}).$$

Then valⁿ(𝔅, 𝒫) is computable and valⁿ(𝔅, 𝒫) ↗ val(𝔅).
 Could it be that val*(𝔅) is actually uniformly computable in 𝔅?

< 回 > < 三 > < 三 >

- One can effectively compute *lower bounds* for val*(&) uniformly in &:
- Given some dimension *d*, you can enumerate a computable sequence of finite nets N₁^d ⊆ N₂^d ⊆ ··· over all states and POVMs in dimension *d* with |N_m^d| = m^{O(d²)} such that for any p ∈ C_q(k, n) based on a *d*-dimensional strategy and any *m*, there is q ∈ N_m^d with |val(𝔅, p) val(𝔅, q)| < 1/m.
 Set

$$\operatorname{val}^n(\mathfrak{G}, \boldsymbol{p}) = \max_{d,m \leq n} \max_{\boldsymbol{p} \in N_m^d} \operatorname{val}(\mathfrak{G}, \boldsymbol{p}).$$

Then valⁿ(𝔅, 𝒫) is computable and valⁿ(𝔅, 𝒫) ∧ val(𝔅).
 Could it be that val^{*}(𝔅) is actually uniformly computable in 𝔅?

- One can effectively compute *lower bounds* for val*(&) uniformly in &:
- Given some dimension *d*, you can enumerate a computable sequence of finite nets N₁^d ⊆ N₂^d ⊆ ··· over all states and POVMs in dimension *d* with |N_m^d| = m^{O(d²)} such that for any p ∈ C_q(k, n) based on a *d*-dimensional strategy and any *m*, there is q ∈ N_m^d with |val(𝔅, p) val(𝔅, q)| < 1/m.
 Set

$$\operatorname{val}^n(\mathfrak{G}, oldsymbol{p}) = \max_{d, m \leq n} \max_{oldsymbol{p} \in N^d_m} \operatorname{wal}(\mathfrak{G}, oldsymbol{p}).$$

- Then $\operatorname{val}^{n}(\mathfrak{G},p)$ is computable and $\operatorname{val}^{n}(\mathfrak{G},p) \nearrow \operatorname{val}(\mathfrak{G})$.
- Could it be that val*(𝔅) is actually uniformly computable in 𝔅?

$MIP^* = RE$

Theorem (Ji, Natarajan, Vidick, Wright, Yuen (2020))

There is an effective mapping $\mathcal{M} \mapsto \mathfrak{G}_{\mathcal{M}}$ from Turing machines to nonlocal games such that:

- If \mathcal{M} halts, then $\operatorname{val}^*(\mathfrak{G}_{\mathcal{M}}) = 1$.
- If \mathcal{M} does not halt, then $\operatorname{val}^*(\mathfrak{G}_{\mathcal{M}}) \leq \frac{1}{2}$.

19/27

< 回 ト < 三 ト < 三

1 Nonlocal games

2 A quantum detour

3 $MIP^* = RE$

4 A few words about the proof of $MIP^* = RE$

3

イロト イポト イヨト イヨト

Uniform game sequences

Definition

A uniform game sequence (UGS) is an infinite sequence $\bar{\mathfrak{G}} := (\mathfrak{G}_1, \mathfrak{G}_2, ...,)$ of nonlocal games for which there is a single Turing machine *V* which computes in time poly(log *n*):

- The number of questions and answers in \mathfrak{G}_n .
- A Turing machine which specifies the probability distribution for *B_n*.
- A Turing machine which specifies the decision predicate for \mathfrak{G}_n .

Entanglement lower bound for nonlocal games

Definition

Given a nonlocal game \mathfrak{G} and $r \in [0, 1]$, we set $\mathcal{E}(\mathfrak{G}, r)$ to be the minimum dimension *d* for which there exists a strategy $p \in C_q$ based on *d*-dimensional Hilbert spaces so that $val(\mathfrak{G}, p) \ge r$.

Example

1
$$\mathcal{E}(\mathfrak{G}_{CHSH}, \frac{3}{4}) = 0$$

2 $\mathcal{E}(\mathfrak{G}_{CHSH}, \cos^2(\frac{\pi}{8})) = 2$
3 $\mathcal{E}(\mathfrak{G}_{CHSH}, 1) = \infty$

Entanglement lower bound for nonlocal games

Definition

Given a nonlocal game \mathfrak{G} and $r \in [0, 1]$, we set $\mathcal{E}(\mathfrak{G}, r)$ to be the minimum dimension *d* for which there exists a strategy $p \in C_q$ based on *d*-dimensional Hilbert spaces so that val $(\mathfrak{G}, p) \ge r$.

Example

1
$$\mathcal{E}(\mathfrak{G}_{CHSH}, \frac{3}{4}) = 0$$

2 $\mathcal{E}(\mathfrak{G}_{CHSH}, \cos^2(\frac{\pi}{8})) = 2$
3 $\mathcal{E}(\mathfrak{G}_{CHSH}, 1) = \infty$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem

There exists an algorithm C such that upon input a Turing machine V describing a UGS $\bar{\mathfrak{G}}$ with each \mathfrak{G}_n of "complexity" at most $O(n^2)$ outputs a Turing machine V' describing a UGS $\bar{\mathfrak{G}}'$ of polynomial-time computable games such that:

- If $\operatorname{val}^*(\mathfrak{G}_n) = 1$, then $\operatorname{val}^*(\mathfrak{G}'_n) = 1$.
- $\blacksquare \mathcal{E}(\mathfrak{G}'_n, \frac{1}{2}) \geq \max\{\mathcal{E}(\mathfrak{G}_n, \frac{1}{2}), n\}.$
- The time complexity of \mathfrak{G}'_n is $poly(\log n)$.

Theorem

There exists an algorithm C such that upon input a Turing machine V describing a UGS $\bar{\mathfrak{G}}$ with each \mathfrak{G}_n of "complexity" at most $O(n^2)$ outputs a Turing machine V' describing a UGS $\bar{\mathfrak{G}}'$ of polynomial-time computable games such that:

If
$$\operatorname{val}^*(\mathfrak{G}_n) = 1$$
, then $\operatorname{val}^*(\mathfrak{G}'_n) = 1$.

 $\blacksquare \mathcal{E}(\mathfrak{G}'_n, \frac{1}{2}) \geq \max\{\mathcal{E}(\mathfrak{G}_n, \frac{1}{2}), n\}.$

The time complexity of \mathfrak{G}'_n is $poly(\log n)$.

Theorem

There exists an algorithm C such that upon input a Turing machine V describing a UGS $\bar{\mathfrak{G}}$ with each \mathfrak{G}_n of "complexity" at most $O(n^2)$ outputs a Turing machine V' describing a UGS $\bar{\mathfrak{G}}'$ of polynomial-time computable games such that:

- If $\operatorname{val}^*(\mathfrak{G}_n) = 1$, then $\operatorname{val}^*(\mathfrak{G}'_n) = 1$.
- $\blacksquare \mathcal{E}(\mathfrak{G}'_n, \frac{1}{2}) \geq \max\{\mathcal{E}(\mathfrak{G}_n, \frac{1}{2}), n\}.$

The time complexity of \mathfrak{G}'_n is $poly(\log n)$.

Theorem

There exists an algorithm C such that upon input a Turing machine V describing a UGS $\bar{\mathfrak{G}}$ with each \mathfrak{G}_n of "complexity" at most $O(n^2)$ outputs a Turing machine V' describing a UGS $\bar{\mathfrak{G}}'$ of polynomial-time computable games such that:

- If $\operatorname{val}^*(\mathfrak{G}_n) = 1$, then $\operatorname{val}^*(\mathfrak{G}'_n) = 1$.
- $\blacksquare \mathcal{E}(\mathfrak{G}'_n, \frac{1}{2}) \geq \max\{\mathcal{E}(\mathfrak{G}_n, \frac{1}{2}), n\}.$
- The time complexity of \mathfrak{G}'_n is $poly(\log n)$.

- Given *M*, we define a Turing machine *V^M* which computes a UGS [®] ⊕^M = (𝔅₁, 𝔅₂, ...).
- Here is how 𝔅_n looks:
 - **Run** \mathcal{M} on the empty input for *n* time steps. If \mathcal{M} halts, then victory!
 - If not, run *C* on $V^{\mathcal{M}}$ to get $V' := (V^{\mathcal{M}})'$ which computes the UGS $\overline{\mathfrak{G}}'$.
 - Then play \mathfrak{G}'_{n+1} .
- This is self-referential, but we are used to that :)
- The compression algorithm is indeed applicable (check execution times of the various steps...)
- Define $\mathfrak{G}_{\mathcal{M}} := \mathfrak{G}_1$.
- Why does this work?

- Given *M*, we define a Turing machine *V^M* which computes a UGS [®] ⊕^M = (𝔅₁, 𝔅₂, ...).
- Here is how \mathfrak{G}_n looks:
 - **R**un \mathcal{M} on the empty input for *n* time steps. If \mathcal{M} halts, then victory!
 - If not, run *C* on $V^{\mathcal{M}}$ to get $V' := (V^{\mathcal{M}})'$ which computes the UGS $\overline{\mathfrak{G}}'$.
 - Then play \mathfrak{G}'_{n+1} .
- This is self-referential, but we are used to that :)
- The compression algorithm is indeed applicable (check execution times of the various steps...)
- Define $\mathfrak{G}_{\mathcal{M}} := \mathfrak{G}_1$.
- Why does this work?

- Given *M*, we define a Turing machine *V^M* which computes a UGS [®] ⊕^M = (𝔅₁, 𝔅₂, ...).
- Here is how 𝔅_n looks:
 - **R**un \mathcal{M} on the empty input for *n* time steps. If \mathcal{M} halts, then victory!
 - If not, run *C* on $V^{\mathcal{M}}$ to get $V' := (V^{\mathcal{M}})'$ which computes the UGS $\overline{\mathfrak{G}}'$.
 - Then play \mathfrak{G}'_{n+1} .

This is self-referential, but we are used to that :)

- The compression algorithm is indeed applicable (check execution times of the various steps...)
- Define $\mathfrak{G}_{\mathcal{M}} := \mathfrak{G}_1$.
- Why does this work?

- Given *M*, we define a Turing machine *V^M* which computes a UGS [®] ⊕^M = (𝔅₁, 𝔅₂, ...).
- Here is how \mathfrak{G}_n looks:
 - **R**un \mathcal{M} on the empty input for *n* time steps. If \mathcal{M} halts, then victory!
 - If not, run *C* on $V^{\mathcal{M}}$ to get $V' := (V^{\mathcal{M}})'$ which computes the UGS $\overline{\mathfrak{G}}'$.
 - Then play \mathfrak{G}'_{n+1} .
- This is self-referential, but we are used to that :)
- The compression algorithm is indeed applicable (check execution times of the various steps...)
- Define $\mathfrak{G}_{\mathcal{M}} := \mathfrak{G}_1$.
- Why does this work?

A (10) A (10)

- Given *M*, we define a Turing machine *V^M* which computes a UGS [®] ⊕^M = (𝔅₁, 𝔅₂, ...).
- Here is how \mathfrak{G}_n looks:
 - **R**un \mathcal{M} on the empty input for *n* time steps. If \mathcal{M} halts, then victory!
 - If not, run *C* on $V^{\mathcal{M}}$ to get $V' := (V^{\mathcal{M}})'$ which computes the UGS $\overline{\mathfrak{G}}'$.
 - Then play \mathfrak{G}'_{n+1} .
- This is self-referential, but we are used to that :)
- The compression algorithm is indeed applicable (check execution times of the various steps...)
- Define $\mathfrak{G}_{\mathcal{M}} := \mathfrak{G}_1$.
- Why does this work?

< 回 > < 三 > < 三 >

- Given *M*, we define a Turing machine *V^M* which computes a UGS [®] ⊕^M = (𝔅₁, 𝔅₂, ...).
- Here is how 𝔅_n looks:
 - **R**un \mathcal{M} on the empty input for *n* time steps. If \mathcal{M} halts, then victory!
 - If not, run *C* on $V^{\mathcal{M}}$ to get $V' := (V^{\mathcal{M}})'$ which computes the UGS $\overline{\mathfrak{G}}'$.
 - Then play \mathfrak{G}'_{n+1} .
- This is self-referential, but we are used to that :)
- The compression algorithm is indeed applicable (check execution times of the various steps...)
- Define $\mathfrak{G}_{\mathcal{M}} := \mathfrak{G}_1$.
- Why does this work?

< 回 > < 三 > < 三 >

• Case 1: \mathcal{M} halts, say in T steps.

- Then val^{*}(\mathfrak{G}_n) = 1 for all $n \ge T$.
- What about *n* < *T*?

For
$$n < T$$
, $\operatorname{val}^*(\mathfrak{G}_n) = \operatorname{val}^*(\mathfrak{G}'_{n+1})$.

- So val^{*}(𝔅_{T-1}) = val^{*}(𝔅_T) = 1 since val^{*}(𝔅_T) = 1 (preservation of perfect completeness).
- By induction, we get that $\operatorname{val}^*(\mathfrak{G}_{\mathcal{M}}) = \operatorname{val}^*(\mathfrak{G}_1) = 1$.

э.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Case 1: \mathcal{M} halts, say in T steps.

- Then $\operatorname{val}^*(\mathfrak{G}_n) = 1$ for all $n \ge T$.
- What about *n* < *T*?

For
$$n < T$$
, $\operatorname{val}^*(\mathfrak{G}_n) = \operatorname{val}^*(\mathfrak{G}'_{n+1})$.

- So val^{*}(𝔅_{T-1}) = val^{*}(𝔅_T) = 1 since val^{*}(𝔅_T) = 1 (preservation of perfect completeness).
- By induction, we get that $\operatorname{val}^*(\mathfrak{G}_{\mathcal{M}}) = \operatorname{val}^*(\mathfrak{G}_1) = 1$.

э

- Case 1: \mathcal{M} halts, say in T steps.
- Then $\operatorname{val}^*(\mathfrak{G}_n) = 1$ for all $n \ge T$.
- What about n < T?</p>
- For n < T, $\operatorname{val}^*(\mathfrak{G}_n) = \operatorname{val}^*(\mathfrak{G}'_{n+1})$.
- So val^{*}(𝔅_{T-1}) = val^{*}(𝔅_T) = 1 since val^{*}(𝔅_T) = 1 (preservation of perfect completeness).
- By induction, we get that $\operatorname{val}^*(\mathfrak{G}_{\mathcal{M}}) = \operatorname{val}^*(\mathfrak{G}_1) = 1$.

э

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Case 1: \mathcal{M} halts, say in T steps.
- Then $\operatorname{val}^*(\mathfrak{G}_n) = 1$ for all $n \ge T$.
- What about *n* < *T*?
- For n < T, $val^*(\mathfrak{G}_n) = val^*(\mathfrak{G}'_{n+1})$.
- So val^{*}(𝔅_{T-1}) = val^{*}(𝔅_T) = 1 since val^{*}(𝔅_T) = 1 (preservation of perfect completeness).
- By induction, we get that $\operatorname{val}^*(\mathfrak{G}_{\mathcal{M}}) = \operatorname{val}^*(\mathfrak{G}_1) = 1$.

э

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >
- Case 1: \mathcal{M} halts, say in T steps.
- Then $\operatorname{val}^*(\mathfrak{G}_n) = 1$ for all $n \ge T$.
- What about *n* < *T*?
- For n < T, $val^*(\mathfrak{G}_n) = val^*(\mathfrak{G}'_{n+1})$.
- So val^{*}(𝔅_{T-1}) = val^{*}(𝔅_T) = 1 since val^{*}(𝔅_T) = 1 (preservation of perfect completeness).

By induction, we get that $\operatorname{val}^*(\mathfrak{G}_{\mathcal{M}}) = \operatorname{val}^*(\mathfrak{G}_1) = 1$.

A (10) A (10) A (10) A

- Case 1: \mathcal{M} halts, say in T steps.
- Then $\operatorname{val}^*(\mathfrak{G}_n) = 1$ for all $n \geq T$.
- What about n < T?</p>

• For
$$n < T$$
, $\operatorname{val}^*(\mathfrak{G}_n) = \operatorname{val}^*(\mathfrak{G}'_{n+1})$.

- So val^{*}(𝔅_{T-1}) = val^{*}(𝔅_T) = 1 since val^{*}(𝔅_T) = 1 (preservation of perfect completeness).
- By induction, we get that $val^*(\mathfrak{G}_M) = val^*(\mathfrak{G}_1) = 1$.

э.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Now suppose that \mathcal{M} does not halt.

- Then $\operatorname{val}^*(\mathfrak{G}_n) = \operatorname{val}^*(\mathfrak{G}'_{n+1})$ and $\mathcal{E}(\mathfrak{G}_n, r) = \mathcal{E}(\mathfrak{G}'_{n+1}, r)$ for all $n \in \mathbb{N}$ and $r \in [0, 1]$.
- $= \mathcal{E}(\mathfrak{G}'_{n+1}, \frac{1}{2}) \geq \mathcal{E}(\mathfrak{G}_{n+1}, \frac{1}{2}) = \mathcal{E}(\mathfrak{G}'_{n+2}, \frac{1}{2}) \geq \mathcal{E}(\mathfrak{G}_{n+2}, \frac{1}{2}) \cdots$
- $\blacksquare \therefore \mathcal{E}(\mathfrak{G}_n, \frac{1}{2}) \geq \mathcal{E}(\mathfrak{G}'_m, \frac{1}{2}) \text{ for all } m > n.$
- OTOH $\mathcal{E}(\mathfrak{G}'_m, \frac{1}{2}) \geq m$ for all $m \in \mathbb{N}$.
- Therefore $\mathcal{E}(\mathfrak{G}_n, \frac{1}{2}) = \infty$ for all $n \in \mathbb{N}$ and thus

$$\operatorname{val}^*(\mathfrak{G}_{\mathcal{M}}) = \operatorname{val}^*(\mathfrak{G}_1) < \frac{1}{2}.$$

< 回 ト < 三 ト < 三

- Now suppose that \mathcal{M} does not halt.
- Then $\operatorname{val}^*(\mathfrak{G}_n) = \operatorname{val}^*(\mathfrak{G}'_{n+1})$ and $\mathcal{E}(\mathfrak{G}_n, r) = \mathcal{E}(\mathfrak{G}'_{n+1}, r)$ for all $n \in \mathbb{N}$ and $r \in [0, 1]$.
- $= \mathcal{E}(\mathfrak{G}'_{n+1}, \frac{1}{2}) \geq \mathcal{E}(\mathfrak{G}_{n+1}, \frac{1}{2}) = \mathcal{E}(\mathfrak{G}'_{n+2}, \frac{1}{2}) \geq \mathcal{E}(\mathfrak{G}_{n+2}, \frac{1}{2}) \cdots$
- $\blacksquare \therefore \mathcal{E}(\mathfrak{G}_n, \frac{1}{2}) \geq \mathcal{E}(\mathfrak{G}'_m, \frac{1}{2}) \text{ for all } m > n.$
- OTOH $\mathcal{E}(\mathfrak{G}'_m, \frac{1}{2}) \geq m$ for all $m \in \mathbb{N}$.
- Therefore $\mathcal{E}(\mathfrak{G}_n, \frac{1}{2}) = \infty$ for all $n \in \mathbb{N}$ and thus

$$\operatorname{val}^*(\mathfrak{G}_{\mathcal{M}}) = \operatorname{val}^*(\mathfrak{G}_1) < \frac{1}{2}.$$

< 回 ト < 三 ト < 三

- Now suppose that \mathcal{M} does not halt.
- Then $\operatorname{val}^*(\mathfrak{G}_n) = \operatorname{val}^*(\mathfrak{G}'_{n+1})$ and $\mathcal{E}(\mathfrak{G}_n, r) = \mathcal{E}(\mathfrak{G}'_{n+1}, r)$ for all $n \in \mathbb{N}$ and $r \in [0, 1]$.
- $\blacksquare \therefore \mathcal{E}(\mathfrak{G}_n, \frac{1}{2}) \geq \mathcal{E}(\mathfrak{G}'_m, \frac{1}{2}) \text{ for all } m > n.$
- OTOH $\mathcal{E}(\mathfrak{G}'_m, \frac{1}{2}) \geq m$ for all $m \in \mathbb{N}$.
- Therefore $\mathcal{E}(\mathfrak{G}_n, \frac{1}{2}) = \infty$ for all $n \in \mathbb{N}$ and thus

$$\operatorname{val}^*(\mathfrak{G}_{\mathcal{M}}) = \operatorname{val}^*(\mathfrak{G}_1) < \frac{1}{2}.$$

< 回 ト < 三 ト < 三

- Now suppose that \mathcal{M} does not halt.
- Then $\operatorname{val}^*(\mathfrak{G}_n) = \operatorname{val}^*(\mathfrak{G}'_{n+1})$ and $\mathcal{E}(\mathfrak{G}_n, r) = \mathcal{E}(\mathfrak{G}'_{n+1}, r)$ for all $n \in \mathbb{N}$ and $r \in [0, 1]$.
- $\mathcal{E}(\mathfrak{G}_n, \frac{1}{2}) \geq \mathcal{E}(\mathfrak{G}'_m, \frac{1}{2})$ for all m > n.
- OTOH $\mathcal{E}(\mathfrak{G}'_m, \frac{1}{2}) \geq m$ for all $m \in \mathbb{N}$.
- Therefore $\mathcal{E}(\mathfrak{G}_n, \frac{1}{2}) = \infty$ for all $n \in \mathbb{N}$ and thus

$$\operatorname{val}^*(\mathfrak{G}_{\mathcal{M}}) = \operatorname{val}^*(\mathfrak{G}_1) < \frac{1}{2}.$$

< 🗇 > < 🖻 > < 🖻 >

- Now suppose that \mathcal{M} does not halt.
- Then $\operatorname{val}^*(\mathfrak{G}_n) = \operatorname{val}^*(\mathfrak{G}'_{n+1})$ and $\mathcal{E}(\mathfrak{G}_n, r) = \mathcal{E}(\mathfrak{G}'_{n+1}, r)$ for all $n \in \mathbb{N}$ and $r \in [0, 1]$.
- $\mathcal{E}(\mathfrak{G}_n, \frac{1}{2}) \geq \mathcal{E}(\mathfrak{G}'_m, \frac{1}{2})$ for all m > n.
- OTOH $\mathcal{E}(\mathfrak{G}'_m, \frac{1}{2}) \geq m$ for all $m \in \mathbb{N}$.
- Therefore $\mathcal{E}(\mathfrak{G}_n, \frac{1}{2}) = \infty$ for all $n \in \mathbb{N}$ and thus

$$\operatorname{val}^*(\mathfrak{G}_{\mathcal{M}}) = \operatorname{val}^*(\mathfrak{G}_1) < \frac{1}{2}.$$

- Now suppose that \mathcal{M} does not halt.
- Then $\operatorname{val}^*(\mathfrak{G}_n) = \operatorname{val}^*(\mathfrak{G}'_{n+1})$ and $\mathcal{E}(\mathfrak{G}_n, r) = \mathcal{E}(\mathfrak{G}'_{n+1}, r)$ for all $n \in \mathbb{N}$ and $r \in [0, 1]$.
- $\mathcal{E}(\mathfrak{G}_n, \frac{1}{2}) \geq \mathcal{E}(\mathfrak{G}'_m, \frac{1}{2})$ for all m > n.
- OTOH $\mathcal{E}(\mathfrak{G}'_m, \frac{1}{2}) \geq m$ for all $m \in \mathbb{N}$.
- Therefore $\mathcal{E}(\mathfrak{G}_n, \frac{1}{2}) = \infty$ for all $n \in \mathbb{N}$ and thus

$$\mathsf{val}^*(\mathfrak{G}_\mathcal{M}) = \mathsf{val}^*(\mathfrak{G}_1) < \frac{1}{2}.$$

Hand-waving about the proof of the Compression Theorem

- Question reduction
 - Get the players to sample questions for themselves.
 - Uses rigidity of nonlocal games and the Heisenberg uncertainty principle.
 - Brings the sampler complexity down from poly(n) to poly(log n).
- Answer reduction
 - The players must now also compute the decision predicate $D_n(x, y, a, b)$ for themselves
 - They must include a *succint proof* that they computed *D_n* correctly
 - Uses probabilistically checkable proofs (PCP)
 - Brings the decider complexity down to poly(log n)

Hand-waving about the proof of the Compression Theorem

- Question reduction
 - Get the players to sample questions for themselves.
 - Uses rigidity of nonlocal games and the Heisenberg uncertainty principle.
 - Brings the sampler complexity down from poly(n) to poly(log n).
- Answer reduction
 - The players must now also compute the decision predicate D_n(x, y, a, b) for themselves
 - They must include a succint proof that they computed D_n correctly
 - Uses probabilistically checkable proofs (PCP)
 - Brings the decider complexity down to poly(log n)