$MIP^* = RE \Rightarrow \neg CEP$ #### Isaac Goldbring University of California, Irvine ASL North American Annual Meeting Cornell University April 8, 2022 1/26 1 CEP and QWEP 2 QWEP and Tsirelson 3 The model-theoretic approach - Recall the left-regular representation $\lambda_{\Gamma}: \Gamma \to U(\ell^2(\Gamma))$. - The reduced group C*-algebra of Γ is $C_r^*(\Gamma) := \overline{\operatorname{span}(\lambda_{\Gamma}(\Gamma))}^{\|\cdot\|}$. - There is another C^* -algebra associated to Γ , called the **universal group** C^* -algebra of Γ , denoted $C^*(\Gamma)$, characterized by the universal property: any unitary representation $\Gamma \to U(H)$ extends to a *-homomorphism $C^*(\Gamma) \to B(H)$. - Always have a surjective *-homomorphism $C^*(\Gamma) \to C^*_r(\Gamma)$. It is an isomorphism if and only if Γ is amenable. - Recall the left-regular representation $\lambda_{\Gamma}: \Gamma \to U(\ell^2(\Gamma))$. - The reduced group C*-algebra of Γ is $C_r^*(\Gamma) := \overline{\operatorname{span}(\lambda_{\Gamma}(\Gamma))}^{\|\cdot\|}$. - There is another C^* -algebra associated to Γ , called the **universal group** C^* -algebra of Γ , denoted $C^*(\Gamma)$, characterized by the universal property: any unitary representation $\Gamma \to U(H)$ extends to a *-homomorphism $C^*(\Gamma) \to B(H)$. - Always have a surjective *-homomorphism $C^*(\Gamma) \to C^*_r(\Gamma)$. It is an isomorphism if and only if Γ is amenable. - Recall the left-regular representation $\lambda_{\Gamma}: \Gamma \to U(\ell^2(\Gamma))$. - The reduced group C*-algebra of Γ is $C_r^*(\Gamma) := \overline{\operatorname{span}(\lambda_{\Gamma}(\Gamma))}^{\|\cdot\|}$. - There is another C^* -algebra associated to Γ , called the **universal group** C^* -algebra of Γ , denoted $C^*(\Gamma)$, characterized by the universal property: any unitary representation $\Gamma \to U(H)$ extends to a *-homomorphism $C^*(\Gamma) \to B(H)$. - Always have a surjective *-homomorphism $C^*(\Gamma) \to C^*_r(\Gamma)$. It is an isomorphism if and only if Γ is amenable. - Recall the left-regular representation $\lambda_{\Gamma}: \Gamma \to U(\ell^2(\Gamma))$. - The reduced group C*-algebra of Γ is $C_r^*(\Gamma) := \overline{\operatorname{span}(\lambda_{\Gamma}(\Gamma))}^{\|\cdot\|}$. - There is another C^* -algebra associated to Γ , called the **universal group** C^* -algebra of Γ , denoted $C^*(\Gamma)$, characterized by the universal property: any unitary representation $\Gamma \to U(H)$ extends to a *-homomorphism $C^*(\Gamma) \to B(H)$. - Always have a surjective *-homomorphism $C^*(\Gamma) \to C^*_r(\Gamma)$. It is an isomorphism if and only if Γ is amenable. - Given two C*-algebras \mathcal{A} and \mathcal{B} , their vector space tensor product $A \odot B$ carries a natural *-algebra operation. - One would like to equip $A \odot B$ with a C^* -norm, that is, a norm such that the completion with respect to that norm is a C^* -algebra. - Issue: in general, there many such norms yielding nonisomorphic completions. - For example, there are continuum many C^* -norms on $B(H) \odot B(H)$. (Ozawa-Pisier) - There is always a smallest and largest such norm on $A \odot B$, whose completions are denoted $A \otimes_{\min} B$ and $A \otimes_{\max} B$. - Given two C*-algebras \mathcal{A} and \mathcal{B} , their vector space tensor product $A \odot B$ carries a natural *-algebra operation. - One would like to equip $A \odot B$ with a C^* -norm, that is, a norm such that the completion with respect to that norm is a C^* -algebra. - Issue: in general, there many such norms yielding nonisomorphic completions. - For example, there are continuum many C^* -norms on $B(H) \odot B(H)$. (Ozawa-Pisier) - There is always a smallest and largest such norm on $A \odot B$, whose completions are denoted $A \otimes_{\min} B$ and $A \otimes_{\max} B$. - Given two C*-algebras \mathcal{A} and \mathcal{B} , their vector space tensor product $A \odot B$ carries a natural *-algebra operation. - One would like to equip $A \odot B$ with a C^* -norm, that is, a norm such that the completion with respect to that norm is a C^* -algebra. - Issue: in general, there many such norms yielding nonisomorphic completions. - For example, there are continuum many C^* -norms on $B(H) \odot B(H)$. (Ozawa-Pisier) - There is always a smallest and largest such norm on $A \odot B$, whose completions are denoted $A \otimes_{\min} B$ and $A \otimes_{\max} B$. - Given two C*-algebras \mathcal{A} and \mathcal{B} , their vector space tensor product $A \odot B$ carries a natural *-algebra operation. - One would like to equip $A \odot B$ with a C^* -norm, that is, a norm such that the completion with respect to that norm is a C^* -algebra. - Issue: in general, there many such norms yielding nonisomorphic completions. - For example, there are continuum many C^* -norms on $B(H) \odot B(H)$. (Ozawa-Pisier) - There is always a smallest and largest such norm on $A \odot B$, whose completions are denoted $A \otimes_{\min} B$ and $A \otimes_{\max} B$. - Given two C*-algebras \mathcal{A} and \mathcal{B} , their vector space tensor product $A \odot B$ carries a natural *-algebra operation. - One would like to equip $A \odot B$ with a C^* -norm, that is, a norm such that the completion with respect to that norm is a C^* -algebra. - Issue: in general, there many such norms yielding nonisomorphic completions. - For example, there are continuum many C^* -norms on $B(H) \odot B(H)$. (Ozawa-Pisier) - There is always a smallest and largest such norm on $A \odot B$, whose completions are denoted $A \otimes_{\min} B$ and $A \otimes_{\max} B$. ## **Nuclear pairs** #### Definition - (A, B) are a **nuclear pair** if there is a unique C*-norm on $A \odot B$ (equivalently $A \otimes_{\min} B = A \otimes_{\max} B$). - \blacksquare A is **nuclear** if (A, B) is a nuclear pair for all B. #### Example If Γ is a group, then $C_r^*(\Gamma)$ is nuclear if and only if $C^*(\Gamma)$ is nuclear if and only if Γ is amenable (in which case $C_r^*(\Gamma) \cong C^*(\Gamma)$). #### Example $(C_r^*(\mathbb{F}), C_r^*(\mathbb{F}))$ is not a nuclear pair. ## Nuclear pairs #### **Definition** - (A, B) are a **nuclear pair** if there is a unique C^* -norm on $A \odot B$ (equivalently $A \otimes_{\min} B = A \otimes_{\max} B$). - \blacksquare A is **nuclear** if (A, B) is a nuclear pair for all B. #### Example If Γ is a group, then $C_r^*(\Gamma)$ is nuclear if and only if $C^*(\Gamma)$ is nuclear if and only if Γ is amenable (in which case $C_r^*(\Gamma) \cong C^*(\Gamma)$). #### Example $(C_r^*(\mathbb{F}), C_r^*(\mathbb{F}))$ is not a nuclear pair. ## Nuclear pairs #### Definition - (A, B) are a **nuclear pair** if there is a unique C*-norm on $A \odot B$ (equivalently $A \otimes_{\min} B = A \otimes_{\max} B$). - \blacksquare A is **nuclear** if (A, B) is a nuclear pair for all B. #### Example If Γ is a group, then $C_r^*(\Gamma)$ is nuclear if and only if $C^*(\Gamma)$ is nuclear if and only if Γ is amenable (in which case $C_r^*(\Gamma) \cong C^*(\Gamma)$). ### Example $(C_r^*(\mathbb{F}), C_r^*(\mathbb{F}))$ is not a nuclear pair. ## Kirchberg's QWEP Problem ### Theorem (Kirchberg) $(C^*(\mathbb{F}), B(H))$ is a nuclear pair. #### Kirchberg's QWEP Problem Is $(C^*(\mathbb{F}), C^*(\mathbb{F}))$ a nuclear pair? #### Theorem (Kirchberg) CEP is equivalent to the QWEP Problem. # Kirchberg's QWEP Problem ### Theorem (Kirchberg) $(C^*(\mathbb{F}), B(H))$ is a nuclear pair. #### Kirchberg's QWEP Problem Is $(C^*(\mathbb{F}), C^*(\mathbb{F}))$ a nuclear pair? #### Theorem (Kirchberg) CEP is equivalent to the QWEP Problem. # Kirchberg's QWEP Problem #### Theorem (Kirchberg) $(C^*(\mathbb{F}), B(H))$ is a nuclear pair. #### Kirchberg's QWEP Problem Is $(C^*(\mathbb{F}), C^*(\mathbb{F}))$ a nuclear pair? #### Theorem (Kirchberg) CEP is equivalent to the QWEP Problem. 1 CEP and QWEP 2 QWEP and Tsirelson 3 The model-theoretic approach # Another kind of quantum correlation #### Definition The set $C_{qc}(k, n) \subseteq [0, 1]^{k^2n^2}$ of **quantum commuting strategies** is the set of all p for which there are: - a single (possibly infinite-dimensional) Hilbert space H, - \blacksquare a unit vector $\xi \in H$, and - POVMs A^x and B^y on H of length n (for each $x, y \in [k]$) satisfying $A^x_a B^y_b = B^y_b A^x_a$ for all $x, y \in [k]$ and $a, b \in [n]$, such that $p(a, b|x, y) = \langle A_a^x B_b^y \xi, \xi \rangle$. - Note $C_q(k, n) \subseteq C_{qc}(k, n)$. - It can be shown that $C_{qc}(k, n)$ is closed, so $C_{qa}(k, n) \subseteq C_{qc}(k, n)$. # Another kind of quantum correlation #### Definition The set $C_{qc}(k, n) \subseteq [0, 1]^{k^2n^2}$ of **quantum commuting strategies** is the set of all p for which there are: - a *single* (possibly infinite-dimensional) Hilbert space *H*, - \blacksquare a unit vector $\xi \in H$, and - POVMs A^x and B^y on H of length n (for each $x, y \in [k]$) satisfying $A^x_a B^y_b = B^y_b A^x_a$ for all $x, y \in [k]$ and $a, b \in [n]$, such that $p(a, b|x, y) = \langle A_a^x B_b^y \xi, \xi \rangle$. - Note $C_q(k, n) \subseteq C_{qc}(k, n)$. - It can be shown that $C_{qc}(k, n)$ is closed, so $C_{qa}(k, n) \subseteq C_{qc}(k, n)$. - Boris Tsirelson claimed in a paper, without proof, that $C_a(k, n) = C_{ac}(k, n)$. - It soon became clear that the question of equality for both inclusions $C_q(k, n) \subseteq C_{qa}(k, n) \subseteq C_{qc}(k, n)$ was nontrivial. - In 2018, Slofstra showed that $C_q(k, n) \subsetneq C_{qa}(k, n)$ for sufficiently large (k, n). #### Tsirelson's Problem $C_{\alpha\alpha}(k,n) = C_{\alpha\alpha}(k,n)$ for all k,n > 2? - Boris Tsirelson claimed in a paper, without proof, that $C_{\alpha}(k, n) = C_{\alpha c}(k, n)$. - It soon became clear that the question of equality for both inclusions $C_q(k, n) \subseteq C_{qa}(k, n) \subseteq C_{qc}(k, n)$ was nontrivial. - In 2018, Slofstra showed that $C_q(k, n) \subsetneq C_{qa}(k, n)$ for sufficiently large (k, n). #### Tsirelson's Problem $C_{\alpha\alpha}(k,n) = C_{\alpha\alpha}(k,n)$ for all k,n > 2? - Boris Tsirelson claimed in a paper, without proof, that $C_q(k, n) = C_{qc}(k, n)$. - It soon became clear that the question of equality for both inclusions $C_q(k, n) \subseteq C_{qa}(k, n) \subseteq C_{qc}(k, n)$ was nontrivial. - In 2018, Slofstra showed that $C_q(k, n) \subsetneq C_{qa}(k, n)$ for sufficiently large (k, n). #### Tsirelson's Problem $C_{aa}(k,n) = C_{ac}(k,n)$ for all $k, n \ge 2$? - Boris Tsirelson claimed in a paper, without proof, that $C_a(k, n) = C_{ac}(k, n)$. - It soon became clear that the question of equality for both inclusions $C_q(k, n) \subseteq C_{qa}(k, n) \subseteq C_{qc}(k, n)$ was nontrivial. - In 2018, Slofstra showed that $C_q(k, n) \subsetneq C_{qa}(k, n)$ for sufficiently large (k, n). #### Tsirelson's Problem $C_{aa}(k, n) = C_{ac}(k, n)$ for all $k, n \ge 2$? - Recall val*(𝔥) is effectively approximable from below. - Set $val^{co}(\mathfrak{G}) := \sup_{p \in C_{oc}(k,n)} val(\mathfrak{G},p)$. - Note that $val^{co}(\mathfrak{G}) \ge val^*(\mathfrak{G})$. - It can be shown that val^{co}(⑤) can be effectively approximated from above! (Semidefinite programming or model theory) - Thus, if Tsirelson has a positive solution, then one can effectively approximate $val^*(\mathfrak{G}) = val^{co}(\mathfrak{G})$, contradicting $MIP^* = RE!$ - Recall val*(𝔥) is effectively approximable from below. - Set $val^{co}(\mathfrak{G}) := \sup_{p \in C_{ac}(k,n)} val(\mathfrak{G},p)$. - Note that $val^{co}(\mathfrak{G}) \ge val^*(\mathfrak{G})$. - It can be shown that val^{co}(𝔥) can be effectively approximated from above! (Semidefinite programming or model theory) - Thus, if Tsirelson has a positive solution, then one can effectively approximate $val^*(\mathfrak{G}) = val^{co}(\mathfrak{G})$, contradicting $MIP^* = RE!$ - Recall val*(𝔥) is effectively approximable from below. - Set $val^{co}(\mathfrak{G}) := \sup_{p \in C_{ac}(k,n)} val(\mathfrak{G},p)$. - Note that $val^{co}(\mathfrak{G}) \ge val^*(\mathfrak{G})$. - It can be shown that val^{co}(𝔥) can be effectively approximated from above! (Semidefinite programming or model theory) - Thus, if Tsirelson has a positive solution, then one can effectively approximate $val^*(\mathfrak{G}) = val^{co}(\mathfrak{G})$, contradicting $MIP^* = RE!$ - Recall val*(𝔥) is effectively approximable from below. - Set $val^{co}(\mathfrak{G}) := \sup_{p \in C_{ac}(k,n)} val(\mathfrak{G},p)$. - Note that $val^{co}(\mathfrak{G}) \ge val^*(\mathfrak{G})$. - It can be shown that val^{co}(⑤) can be effectively approximated from above! (Semidefinite programming or model theory) - Thus, if Tsirelson has a positive solution, then one can effectively approximate $val^*(\mathfrak{G}) = val^{co}(\mathfrak{G})$, contradicting $MIP^* = RE!$ - Recall val*(B) is effectively approximable from below. - Set $val^{co}(\mathfrak{G}) := \sup_{p \in C_{oc}(k,n)} val(\mathfrak{G},p)$. - Note that $val^{co}(\mathfrak{G}) \ge val^*(\mathfrak{G})$. - It can be shown that val^{co}(⑤) can be effectively approximated from above! (Semidefinite programming or model theory) - Thus, if Tsirelson has a positive solution, then one can effectively approximate $val^*(\mathfrak{G}) = val^{co}(\mathfrak{G})$, contradicting MIP* = RE! ### Theorem (Fritz and Junge, et. al. (independently); Ozawa) - Set $\mathbb{F}(k, n)$ to be the group freely generated by k elements of order n. - The key point in the backwards direction is the existence of an element $\eta_{\mathfrak{G}} \in C^*(\mathbb{F}(k,n)) \odot C^*(\mathbb{F}(k,n))$ such that: - \blacksquare val*(\mathfrak{G}) = $\|\eta_{\mathfrak{G}}\|_{\min}$ - \blacksquare val^{co}(\mathfrak{G}) = $\|\eta_{\mathfrak{G}}\|_{\max}$. - The last bullet explains why $\operatorname{val}^{co}(\mathfrak{G})$ is effectively approximable from above: for any finitely presented group Γ , the norm on $C^*(\Gamma)$ is effectively approximable from above (Fritz, Netzer and Thom) and $C^*(\mathbb{F}(k,n)) \otimes_{\max} C^*(\mathbb{F}(k,n)) \cong C^*(\mathbb{F}(k,n) \times \mathbb{F}(k,n))$. ### Theorem (Fritz and Junge, et. al. (independently); Ozawa) - Set $\mathbb{F}(k, n)$ to be the group freely generated by k elements of order n. - The key point in the backwards direction is the existence of an element $\eta_{\mathfrak{G}} \in C^*(\mathbb{F}(k,n)) \odot C^*(\mathbb{F}(k,n))$ such that: - \blacksquare val*(\mathfrak{G}) = $\|\eta_{\mathfrak{G}}\|_{\min}$ - \blacksquare val^{co}(\mathfrak{G}) = $\|\eta_{\mathfrak{G}}\|_{\max}$. - The last bullet explains why $\operatorname{val}^{co}(\mathfrak{G})$ is effectively approximable from above: for any finitely presented group Γ , the norm on $C^*(\Gamma)$ is effectively approximable from above (Fritz, Netzer and Thom) and $C^*(\mathbb{F}(k,n)) \otimes_{\max} C^*(\mathbb{F}(k,n)) \cong C^*(\mathbb{F}(k,n) \times \mathbb{F}(k,n))$. ### Theorem (Fritz and Junge, et. al. (independently); Ozawa) - Set $\mathbb{F}(k, n)$ to be the group freely generated by k elements of order n. - The key point in the backwards direction is the existence of an element $\eta_{\mathfrak{G}} \in C^*(\mathbb{F}(k,n)) \odot C^*(\mathbb{F}(k,n))$ such that: - \blacksquare val*(\mathfrak{G}) = $\|\eta_{\mathfrak{G}}\|_{\min}$ - \blacksquare val^{co}(\mathfrak{G}) = $\|\eta_{\mathfrak{G}}\|_{\max}$. - The last bullet explains why $\operatorname{val}^{co}(\mathfrak{G})$ is effectively approximable from above: for any finitely presented group Γ , the norm on $C^*(\Gamma)$ is effectively approximable from above (Fritz, Netzer and Thom) and $C^*(\mathbb{F}(k,n)) \otimes_{\max} C^*(\mathbb{F}(k,n)) \cong C^*(\mathbb{F}(k,n) \times \mathbb{F}(k,n))$. ### Theorem (Fritz and Junge, et. al. (independently); Ozawa) - Set $\mathbb{F}(k, n)$ to be the group freely generated by k elements of order n. - The key point in the backwards direction is the existence of an element $\eta_{\mathfrak{G}} \in C^*(\mathbb{F}(k,n)) \odot C^*(\mathbb{F}(k,n))$ such that: - lacksquare val* $(\mathfrak{G}) = \|\eta_{\mathfrak{G}}\|_{\mathsf{min}}$ - \blacksquare val^{co}(\mathfrak{G}) = $\|\eta_{\mathfrak{G}}\|_{\max}$. - The last bullet explains why $\operatorname{val}^{co}(\mathfrak{G})$ is effectively approximable from above: for any finitely presented group Γ , the norm on $C^*(\Gamma)$ is effectively approximable from above (Fritz, Netzer and Thom) and $C^*(\mathbb{F}(k,n)) \otimes_{\max} C^*(\mathbb{F}(k,n)) \cong C^*(\mathbb{F}(k,n) \times \mathbb{F}(k,n))$. 1 CEP and QWEP 2 QWEP and Tsirelson 3 The model-theoretic approach # Model theory to the rescue - After seeing the initial derivation of ¬CEP from MIP* = RE, our initial reaction was: ???? - Using basic ideas from continuous model theory (and a key result in operator algebras), we given a more direct derivation. - Plus, the model-theoretic approach offers additional "bells and whistles." # Model theory to the rescue - After seeing the initial derivation of ¬CEP from MIP* = RE, our initial reaction was: ??? - Using basic ideas from continuous model theory (and a key result in operator algebras), we given a more direct derivation. - Plus, the model-theoretic approach offers additional "bells and whistles." # Model theory to the rescue - After seeing the initial derivation of ¬CEP from MIP* = RE, our initial reaction was: ??? - Using basic ideas from continuous model theory (and a key result in operator algebras), we given a more direct derivation. - Plus, the model-theoretic approach offers additional "bells and whistles." # Model theory to the rescue - After seeing the initial derivation of ¬CEP from MIP* = RE, our initial reaction was: ??? - Using basic ideas from continuous model theory (and a key result in operator algebras), we given a more direct derivation. - Plus, the model-theoretic approach offers additional "bells and whistles." #### Theorem (G. and Hart (2016)) - This means that there is an algorithm such that, upon input a universal sentence σ , returns an interval $I \subseteq \mathbb{R}$ with $|I| < \epsilon$ and $\sigma^{\mathcal{R}} \in I$. - Lower bounds: brute force. - The Completeness theorem for continuous logic says that $\sup \{\sigma^M : M \models T_{II_1}\} = \inf \{r \in \mathbb{Q}^{>0} : T_{II_1} \vdash \sigma \vdash r\}.$ - CEP tells us that the LHS is $\sigma^{\mathcal{R}}$, whence running proofs from T_{II_1} will yield effective upper bounds on $\sigma^{\mathcal{R}}$. ## Theorem (G. and Hart (2016)) - This means that there is an algorithm such that, upon input a universal sentence σ , returns an interval $I \subseteq \mathbb{R}$ with $|I| < \epsilon$ and $\sigma^{\mathcal{R}} \in I$. - Lower bounds: brute force. - The Completeness theorem for continuous logic says that $\sup \{\sigma^M : M \models T_{II_1}\} = \inf \{r \in \mathbb{Q}^{>0} : T_{II_1} \vdash \sigma \vdash r\}.$ - CEP tells us that the LHS is $\sigma^{\mathcal{R}}$, whence running proofs from T_{II_1} will yield effective upper bounds on $\sigma^{\mathcal{R}}$. ## Theorem (G. and Hart (2016)) - This means that there is an algorithm such that, upon input a universal sentence σ , returns an interval $I \subseteq \mathbb{R}$ with $|I| < \epsilon$ and $\sigma^{\mathcal{R}} \in I$. - Lower bounds: brute force. - The Completeness theorem for continuous logic says that $\sup\{\sigma^M: M \models T_{II_1}\} = \inf\{r \in \mathbb{Q}^{>0}: T_{II_1} \vdash \sigma \vdash r\}.$ - CEP tells us that the LHS is $\sigma^{\mathcal{R}}$, whence running proofs from T_{ll_1} will yield effective upper bounds on $\sigma^{\mathcal{R}}$. ## Theorem (G. and Hart (2016)) - This means that there is an algorithm such that, upon input a universal sentence σ , returns an interval $I \subseteq \mathbb{R}$ with $|I| < \epsilon$ and $\sigma^{\mathcal{R}} \in I$. - Lower bounds: brute force. - The Completeness theorem for continuous logic says that $\sup\{\sigma^M: M \models T_{II_1}\} = \inf\{r \in \mathbb{Q}^{>0}: T_{II_1} \vdash \sigma \vdash r\}.$ - CEP tells us that the LHS is $\sigma^{\mathcal{R}}$, whence running proofs from T_{II_1} will yield effective upper bounds on $\sigma^{\mathcal{R}}$. ## On the other hand... ## Theorem (G. and Hart (2020)) The universal theory of \mathcal{R} is **not** computable. Of course, we are going to use $MIP^* = RE$, but how? # Synchronous correlations and synchronous games #### Definition - 1 A correlation p(a, b|x, y) is **synchronous** if p(a, b|x, x) = 0 whenever $a \neq b$. - 2 $C_{qa}^s(n,k)$ denotes the synchronous elements of $C_{qa}(n,k)$. - $\operatorname{\mathsf{IS}} \operatorname{\mathsf{s-val}}^*(\mathfrak{G}) = \sup_{p \in C^{\mathfrak{s}}_{qa}(n,k)} \operatorname{\mathsf{val}}^*(\mathfrak{G},p).$ - Clearly s-val*(\mathfrak{G}) \leq val*(\mathfrak{G}). #### Remark The games in MIP* = RE are such that, if $val^*(\mathfrak{G}_{\mathcal{M}}) = 1$, then $s-val^*(\mathfrak{G}_{\mathcal{M}}) = 1$. # Synchronous correlations and synchronous games #### Definition - 1 A correlation p(a, b|x, y) is **synchronous** if p(a, b|x, x) = 0 whenever $a \neq b$. - $C_{qa}^s(n,k)$ denotes the synchronous elements of $C_{qa}(n,k)$. - $\operatorname{\mathsf{IS}} \operatorname{\mathsf{s-val}}^*(\mathfrak{G}) = \sup_{p \in C^{\mathfrak{s}}_{qa}(n,k)} \operatorname{\mathsf{val}}^*(\mathfrak{G},p).$ - Clearly s-val*(\mathfrak{G}) \leq val*(\mathfrak{G}). #### Remark The games in MIP* = RE are such that, if $val^*(\mathfrak{G}_{\mathcal{M}}) = 1$, then $s-val^*(\mathfrak{G}_{\mathcal{M}}) = 1$. # Synchronous correlations and synchronous games #### Definition - 1 A correlation p(a, b|x, y) is **synchronous** if p(a, b|x, x) = 0 whenever $a \neq b$. - 2 $C_{qa}^s(n,k)$ denotes the synchronous elements of $C_{qa}(n,k)$. - $exttt{3} exttt{s-val}^*(\mathfrak{G}) = \sup_{oldsymbol{p} \in C^s_{aa}(n,k)} exttt{val}^*(\mathfrak{G},oldsymbol{p}).$ - Clearly s-val*(\mathfrak{G}) \leq val*(\mathfrak{G}). #### Remark The games in MIP* = RE are such that, if $val^*(\mathfrak{G}_{\mathcal{M}})=1$, then s-val* $(\mathfrak{G}_{\mathcal{M}})=1$. # Synchronous strategies and operator algebras #### Theorem (Kim-Paulsen-Shaufhauser) $p \in C_{qa}^{s}(k, n)$ if and only if there are PVMs $e^{1}, ..., e^{k}$ of length n in $\mathbb{R}^{\mathcal{U}}$ such that $p(a, b|x, y) = \tau(e_{a}^{x}e_{b}^{y})$, where τ is the unique trace on $\mathbb{R}^{\mathcal{U}}$. #### Corollary For any nonlocal game &, $$\operatorname{s-val}^*(\mathfrak{G}) = \left(\sup_{e^1, \dots, e^k} \sum_{x, y} \lambda(x, y) \sum_{a, b} D(a, b, x, y) \operatorname{tr}(e_a^x e_b^y)\right)^{\mathcal{R}^{\mathcal{U}}},$$ where the supremum is being taken over PVMs of length n. - This looks a lot more like a universal sentence being evaluated in $\mathcal{R}^{\mathcal{U}}$. - If it were and the universal theory of R were computable, then we could effectively approximate s-val*(⑤) for any nonlocal game ⑤ and thus decide the halting problem! - Issue: The supremum over PVMs is not officially part of the language! ## Corollary For any nonlocal game &, $$\operatorname{s-val}^*(\mathfrak{G}) = \left(\sup_{e^1,\dots,e^k} \sum_{x,y} \lambda(x,y) \sum_{a,b} D(a,b,x,y) \operatorname{tr}(e_a^x e_b^y)\right)^{\mathcal{R}^{\mathcal{U}}},$$ where the supremum is being taken over PVMs of length n. - This looks a lot more like a universal sentence being evaluated in $\mathcal{R}^{\mathcal{U}}$. - \blacksquare If it were and the universal theory of \mathcal{R} were computable, then we - Issue: The supremum over PVMs is not officially part of the #### Corollary For any nonlocal game &, $$\operatorname{s-val}^*(\mathfrak{G}) = \left(\sup_{e^1, \dots, e^k} \sum_{x, y} \lambda(x, y) \sum_{a, b} D(a, b, x, y) \operatorname{tr}(e_a^x e_b^y)\right)^{\mathcal{R}^{\mathcal{U}}},$$ where the supremum is being taken over PVMs of length n. - This looks a lot more like a universal sentence being evaluated in $\mathcal{R}^{\mathcal{U}}$. - If it were and the universal theory of R were computable, then we could effectively approximate s-val*(⑤) for any nonlocal game ⑤ and thus decide the halting problem! - Issue: The supremum over PVMs is not officially part of the language! 18/26 #### Corollary For any nonlocal game &, $$\operatorname{s-val}^*(\mathfrak{G}) = \left(\sup_{e^1, \dots, e^k} \sum_{x, y} \lambda(x, y) \sum_{a, b} D(a, b, x, y) \operatorname{tr}(e_a^x e_b^y)\right)^{\mathcal{R}^{\mathcal{U}}},$$ where the supremum is being taken over PVMs of length n. - This looks a lot more like a universal sentence being evaluated in $\mathcal{R}^{\mathcal{U}}$. - If it were and the universal theory of R were computable, then we could effectively approximate s-val*(⑤) for any nonlocal game ⑤ and thus decide the halting problem! - Issue: The supremum over PVMs is not officially part of the language! # Definable sets in continuous logic #### Theorem/Definition Given a formula $\varphi(x)$ relative to some theory T, TFAE: 1 For any formula $\psi(x,y)$ and $\epsilon>0$, there is a formula $\theta(y)$ such that $$T \models \sup_{y} \left| \left(\sup_{\{x: \varphi(x)=0\}} \psi(x,y) \right) - \theta(y) \right| \leq \epsilon$$ and ditto for infimum. - 2 For every $\epsilon > 0$, there is $\delta > 0$ such that, for all $M \models T$ and $a \in M$, if $\varphi(a) < \delta$, then there is $b \in M$ such that $\varphi(b) = 0$ and $d(a, b) < \epsilon$. - 3 For any family of models $(M_i)_{i\in I}$ of T, any ultrafilter \mathcal{U} on I, and any $a\in M:=\prod_{\mathcal{U}}M_i$, if $\varphi^M(a)=0$, then there are $a_i\in M_i$ such that $\varphi(a_i)^{M_i}=0$ and $a=(a_i)_{\mathcal{U}}$. We then call $\varphi(x)$ a definable set relative to T. ## Some technical wrinkles - It remains to check then that the set of PVMs in \mathcal{R} of length n form a definable set relative to the theory of \mathcal{R} . - Fortunately for us, this is the case, and Kim, Paulsen, and Schaufhauser themselves proved it! - Then the translation from the expression using the definable set to an approximating family of "legitimate" sentences needs to be done effectively and the resulting sentences need to be universal - But it all works out just fine! ## Some technical wrinkles - It remains to check then that the set of PVMs in \mathcal{R} of length n form a definable set relative to the theory of \mathcal{R} . - Fortunately for us, this is the case, and Kim, Paulsen, and Schaufhauser themselves proved it! - Then the translation from the expression using the definable set to an approximating family of "legitimate" sentences needs to be done effectively and the resulting sentences need to be universal... - But it all works out just fine! ## Some technical wrinkles - It remains to check then that the set of PVMs in \mathcal{R} of length n form a definable set relative to the theory of \mathcal{R} . - Fortunately for us, this is the case, and Kim, Paulsen, and Schaufhauser themselves proved it! - Then the translation from the expression using the definable set to an approximating family of "legitimate" sentences needs to be done effectively and the resulting sentences need to be universal... - But it all works out just fine! # A Gödelian style refutation of CEP - Perhaps it is too arrogant to simply expect all tracial von Neumann algebras to embed into $\mathcal{R}^{\mathcal{U}}$, but maybe by adding some "reasonable" set of extra conditions, we can ensure $\mathcal{R}^{\mathcal{U}}$ -embeddability. - Nope! # A Gödelian style refutation of CEP - Perhaps it is too arrogant to simply expect all tracial von Neumann algebras to embed into $\mathcal{R}^{\mathcal{U}}$, but maybe by adding some "reasonable" set of extra conditions, we can ensure $\mathcal{R}^{\mathcal{U}}$ -embeddability. - Nope! ## Theorem (G. and Hart) Suppose that T is any "effective" satisfiable set of (first-order) conditions extending the axioms for being a II_1 factor. Then there is a II_1 factor satisfying T that does not embed in $\mathcal{R}^{\mathcal{U}}$. # "Many" counterexamples to CEP ## Corollary There is a sequence M_1, M_2, \ldots , of separable II_1 factors, none of which embed into an ultrapower of \mathcal{R} , and such that, for all i < j, M_i does not embed into an ultrapower of M_i . #### **Proof** Suppose now that M_1, \ldots, M_n have been constructed. Let σ_i be a sentence such that $\sigma_i^{\mathcal{R}} = 0$ but $\sigma_i^{M_i} > 0$. Fix a rational number $\delta_i \in (0, \sigma_i^{M_i})$. Let $T \subseteq \mathsf{Th}(\mathcal{R})$ be the effective theory of II_1 factors together with the single condition $\max_{i=1,\ldots,n}(\sigma_i \div \delta_i) = 0$. Thus there is a separable model M_{n+1} of T such that M_{n+1} does not embed into an ultrapower of \mathcal{R} . Since $\sigma_i^{M_i} > \delta_i$ while $\sigma_i^{M_{n+1}} \le \delta_i$, it follows that M_i does not embed into an ultrapower of M_{n+1} . # "Many" counterexamples to CEP ## Corollary There is a sequence M_1, M_2, \ldots , of separable II_1 factors, none of which embed into an ultrapower of \mathcal{R} , and such that, for all i < j, M_i does not embed into an ultrapower of M_i . #### Proof. Suppose now that M_1,\ldots,M_n have been constructed. Let σ_i be a sentence such that $\sigma_i^{\mathcal{R}}=0$ but $\sigma_i^{M_i}>0$. Fix a rational number $\delta_i\in(0,\sigma_i^{M_i})$. Let $T\subseteq\operatorname{Th}(\mathcal{R})$ be the effective theory of II_1 factors together with the single condition $\max_{i=1,\ldots,n}(\sigma_i\div\delta_i)=0$. Thus there is a separable model M_{n+1} of T such that M_{n+1} does not embed into an ultrapower of \mathcal{R} . Since $\sigma_i^{M_i}>\delta_i$ while $\sigma_i^{M_{n+1}}\le\delta_i$, it follows that M_i does not embed into an ultrapower of M_{n+1} . # $\mathsf{Th}_{\forall}(\mathcal{R})$ is not computable for operator algebraists - Let m_1, \ldots, m_L enumerate all *-monomials in the variables x_1, \ldots, x_n of total degree at most d. - We consider the map $\mu_{n,d}: \mathcal{R}_1^n \to \mathbb{D}^L$ given by $\mu_{n,d}(\vec{a}) = (\operatorname{tr}(m_i(\vec{a})): i = 1, \dots, L).$ - We let X(n, d) denote the range of $\mu_{n,d}$ and X(n, d, p) be the image of $(M_p(\mathbb{C}))_1$ under $\mu_{n,d}$. - Notice that $\bigcup_{p \in \mathbb{N}} X(n, d, p)$ is dense in X(n, d). #### Theorem (G. and Hart) The following statements are equivalent: - The universal theory of R is computable. - There is a computable function $F : \mathbb{N}^3 \to \mathbb{N}$ such that, for every $n, d, k \in \mathbb{N}$, X(n, d, F(n, d, k)) is $\frac{1}{k}$ -dense in X(n, d). # $\mathsf{Th}_\forall(\mathcal{R})$ is not computable for operator algebraists - Let m_1, \ldots, m_L enumerate all *-monomials in the variables x_1, \ldots, x_n of total degree at most d. - We consider the map $\mu_{n,d}: \mathcal{R}_1^n \to \mathbb{D}^L$ given by $\mu_{n,d}(\vec{a}) = (\operatorname{tr}(m_i(\vec{a})): i = 1, \dots, L).$ - We let X(n, d) denote the range of $\mu_{n,d}$ and X(n, d, p) be the image of $(M_p(\mathbb{C}))_1$ under $\mu_{n,d}$. - Notice that $\bigcup_{p \in \mathbb{N}} X(n, d, p)$ is dense in X(n, d). #### Theorem (G. and Hart) The following statements are equivalent: - 1 The universal theory of $\mathcal R$ is computable. - There is a computable function $F: \mathbb{N}^3 \to \mathbb{N}$ such that, for every $n, d, k \in \mathbb{N}$, X(n, d, F(n, d, k)) is $\frac{1}{k}$ -dense in X(n, d). # Effective computability of s-val^{co}(\mathfrak{G}) from above ## Theorem (Paulsen, Severini, Stahlke, Todorov, Winter) $p \in C_{qc}^s(k, n)$ if and only if there is a tracial C^* -algebra (A, τ) and PVMs e^1, \ldots, e^k of length n in A such that $p(a, b|x, y) = \tau(e_a^x e_b^y)$ #### **Proposition** For any nonlocal game \mathfrak{G} , we have s-val^{co}(\mathfrak{G}) $\geq r$ if and only if the theory $T \cup \{\theta_{\mathfrak{G},r} = 0\}$ is satisfiable, where $\theta_{\mathfrak{G},r}$ is the sentence $r \div \left(\sup_{e^1,\dots,e^k} \sum_{x,y} \lambda(x,y) \sum_{a,b} D(a,b,x,y) \operatorname{tr}(e^x_a e^y_b)\right)$. - For any continuous theory U, we have that U is satisfiable if and only if $U \not\vdash 1 \div \frac{1}{2}$. - Combined with the previous proposition, we get that s-val^{co}(𝔥) is effectively approximable from above (uniformly in 𝔥). # Effective computability of s-val $^{co}(\mathfrak{G})$ from above #### Theorem (Paulsen, Severini, Stahlke, Todorov, Winter) $p \in C_{qc}^s(k, n)$ if and only if there is a tracial C^* -algebra (A, τ) and PVMs e^1, \ldots, e^k of length n in A such that $p(a, b|x, y) = \tau(e_a^x e_b^y)$ #### Proposition For any nonlocal game \mathfrak{G} , we have s-val^{co}(\mathfrak{G}) $\geq r$ if and only if the theory $T \cup \{\theta_{\mathfrak{G},r} = 0\}$ is satisfiable, where $\theta_{\mathfrak{G},r}$ is the sentence $r \div \left(\sup_{e^1,\dots,e^k} \sum_{x,y} \lambda(x,y) \sum_{a,b} D(a,b,x,y) \operatorname{tr}(e^x_a e^y_b)\right)$. - For any continuous theory U, we have that U is satisfiable if and only if $U \not\vdash 1 \div \frac{1}{2}$. - Combined with the previous proposition, we get that s-val^{co}(𝔥) is effectively approximable from above (uniformly in 𝔥). ASL Annual Meeting April 8, 2022 # Effective computability of s-val $^{co}(\mathfrak{G})$ from above #### Theorem (Paulsen, Severini, Stahlke, Todorov, Winter) $p \in C_{qc}^s(k, n)$ if and only if there is a tracial C^* -algebra (A, τ) and PVMs e^1, \ldots, e^k of length n in A such that $p(a, b|x, y) = \tau(e_a^x e_b^y)$ #### Proposition For any nonlocal game \mathfrak{G} , we have s-val^{co}(\mathfrak{G}) $\geq r$ if and only if the theory $T \cup \{\theta_{\mathfrak{G},r} = 0\}$ is satisfiable, where $\theta_{\mathfrak{G},r}$ is the sentence $r \cdot \left(\sup_{e^1,\dots,e^k} \sum_{x,y} \lambda(x,y) \sum_{a,b} D(a,b,x,y) \operatorname{tr}(e^x_a e^y_b)\right)$. - For any continuous theory U, we have that U is satisfiable if and only if $U \not\vdash 1 \frac{1}{2}$. - Combined with the previous proposition, we get that s-val^{co}(𝔥) is effectively approximable from above (uniformly in 𝔥). ## References - ISAAC GOLDBRING, *The Connes Embedding Problem: a guided tour*, to appear in the Bulletin of the AMS. - ISAAC GOLDBRING AND BRADD HART, *A computability-theoretic reformulation of the Connes Embedding Problem*, Bulletin of Symbolic Logic, **22** (2016), 238-248. - ISAAC GOLDBRING AND BRADD HART, The universal theory of the hyperfinite II₁ factor is not comutable, arXiv 2006.05629. - ZHENGFENG JI, ANAND NATARAJAN, THOMAS VIDICK, JOHN WRIGHT, AND HENRY YUEN, MIP* = RE, arXiv 2001.04383. - THOMAS VIDICK, From operator algebras to complexity theory and back, Notices of the AMS, November 2019. # See you next year! #### 2023 North American Annual Meeting of the Association for Symbolic Logic Home Hotel & Travel Schedule Social Events Registration #### General Information The 2023 North American Annual Meeting of the ASL will be held March 25-29 at the University of California, Irvine.