$MIP^* = RE \Rightarrow \neg CEP$

Isaac Goldbring

University of California, Irvine

ASL North American Annual Meeting Cornell University April 8, 2022

1/26

1 CEP and QWEP

2 QWEP and Tsirelson

3 The model-theoretic approach

- Recall the left-regular representation $\lambda_{\Gamma}: \Gamma \to U(\ell^2(\Gamma))$.
- The reduced group C*-algebra of Γ is $C_r^*(\Gamma) := \overline{\operatorname{span}(\lambda_{\Gamma}(\Gamma))}^{\|\cdot\|}$.
- There is another C^* -algebra associated to Γ , called the **universal group** C^* -algebra of Γ , denoted $C^*(\Gamma)$, characterized by the universal property: any unitary representation $\Gamma \to U(H)$ extends to a *-homomorphism $C^*(\Gamma) \to B(H)$.
- Always have a surjective *-homomorphism $C^*(\Gamma) \to C^*_r(\Gamma)$. It is an isomorphism if and only if Γ is amenable.

- Recall the left-regular representation $\lambda_{\Gamma}: \Gamma \to U(\ell^2(\Gamma))$.
- The reduced group C*-algebra of Γ is $C_r^*(\Gamma) := \overline{\operatorname{span}(\lambda_{\Gamma}(\Gamma))}^{\|\cdot\|}$.
- There is another C^* -algebra associated to Γ , called the **universal group** C^* -algebra of Γ , denoted $C^*(\Gamma)$, characterized by the universal property: any unitary representation $\Gamma \to U(H)$ extends to a *-homomorphism $C^*(\Gamma) \to B(H)$.
- Always have a surjective *-homomorphism $C^*(\Gamma) \to C^*_r(\Gamma)$. It is an isomorphism if and only if Γ is amenable.

- Recall the left-regular representation $\lambda_{\Gamma}: \Gamma \to U(\ell^2(\Gamma))$.
- The reduced group C*-algebra of Γ is $C_r^*(\Gamma) := \overline{\operatorname{span}(\lambda_{\Gamma}(\Gamma))}^{\|\cdot\|}$.
- There is another C^* -algebra associated to Γ , called the **universal group** C^* -algebra of Γ , denoted $C^*(\Gamma)$, characterized by the universal property: any unitary representation $\Gamma \to U(H)$ extends to a *-homomorphism $C^*(\Gamma) \to B(H)$.
- Always have a surjective *-homomorphism $C^*(\Gamma) \to C^*_r(\Gamma)$. It is an isomorphism if and only if Γ is amenable.

- Recall the left-regular representation $\lambda_{\Gamma}: \Gamma \to U(\ell^2(\Gamma))$.
- The reduced group C*-algebra of Γ is $C_r^*(\Gamma) := \overline{\operatorname{span}(\lambda_{\Gamma}(\Gamma))}^{\|\cdot\|}$.
- There is another C^* -algebra associated to Γ , called the **universal group** C^* -algebra of Γ , denoted $C^*(\Gamma)$, characterized by the universal property: any unitary representation $\Gamma \to U(H)$ extends to a *-homomorphism $C^*(\Gamma) \to B(H)$.
- Always have a surjective *-homomorphism $C^*(\Gamma) \to C^*_r(\Gamma)$. It is an isomorphism if and only if Γ is amenable.

- Given two C*-algebras \mathcal{A} and \mathcal{B} , their vector space tensor product $A \odot B$ carries a natural *-algebra operation.
- One would like to equip $A \odot B$ with a C^* -norm, that is, a norm such that the completion with respect to that norm is a C^* -algebra.
- Issue: in general, there many such norms yielding nonisomorphic completions.
- For example, there are continuum many C^* -norms on $B(H) \odot B(H)$. (Ozawa-Pisier)
- There is always a smallest and largest such norm on $A \odot B$, whose completions are denoted $A \otimes_{\min} B$ and $A \otimes_{\max} B$.

- Given two C*-algebras \mathcal{A} and \mathcal{B} , their vector space tensor product $A \odot B$ carries a natural *-algebra operation.
- One would like to equip $A \odot B$ with a C^* -norm, that is, a norm such that the completion with respect to that norm is a C^* -algebra.
- Issue: in general, there many such norms yielding nonisomorphic completions.
- For example, there are continuum many C^* -norms on $B(H) \odot B(H)$. (Ozawa-Pisier)
- There is always a smallest and largest such norm on $A \odot B$, whose completions are denoted $A \otimes_{\min} B$ and $A \otimes_{\max} B$.

- Given two C*-algebras \mathcal{A} and \mathcal{B} , their vector space tensor product $A \odot B$ carries a natural *-algebra operation.
- One would like to equip $A \odot B$ with a C^* -norm, that is, a norm such that the completion with respect to that norm is a C^* -algebra.
- Issue: in general, there many such norms yielding nonisomorphic completions.
- For example, there are continuum many C^* -norms on $B(H) \odot B(H)$. (Ozawa-Pisier)
- There is always a smallest and largest such norm on $A \odot B$, whose completions are denoted $A \otimes_{\min} B$ and $A \otimes_{\max} B$.

- Given two C*-algebras \mathcal{A} and \mathcal{B} , their vector space tensor product $A \odot B$ carries a natural *-algebra operation.
- One would like to equip $A \odot B$ with a C^* -norm, that is, a norm such that the completion with respect to that norm is a C^* -algebra.
- Issue: in general, there many such norms yielding nonisomorphic completions.
- For example, there are continuum many C^* -norms on $B(H) \odot B(H)$. (Ozawa-Pisier)
- There is always a smallest and largest such norm on $A \odot B$, whose completions are denoted $A \otimes_{\min} B$ and $A \otimes_{\max} B$.

- Given two C*-algebras \mathcal{A} and \mathcal{B} , their vector space tensor product $A \odot B$ carries a natural *-algebra operation.
- One would like to equip $A \odot B$ with a C^* -norm, that is, a norm such that the completion with respect to that norm is a C^* -algebra.
- Issue: in general, there many such norms yielding nonisomorphic completions.
- For example, there are continuum many C^* -norms on $B(H) \odot B(H)$. (Ozawa-Pisier)
- There is always a smallest and largest such norm on $A \odot B$, whose completions are denoted $A \otimes_{\min} B$ and $A \otimes_{\max} B$.

Nuclear pairs

Definition

- (A, B) are a **nuclear pair** if there is a unique C*-norm on $A \odot B$ (equivalently $A \otimes_{\min} B = A \otimes_{\max} B$).
- \blacksquare A is **nuclear** if (A, B) is a nuclear pair for all B.

Example

If Γ is a group, then $C_r^*(\Gamma)$ is nuclear if and only if $C^*(\Gamma)$ is nuclear if and only if Γ is amenable (in which case $C_r^*(\Gamma) \cong C^*(\Gamma)$).

Example

 $(C_r^*(\mathbb{F}), C_r^*(\mathbb{F}))$ is not a nuclear pair.

Nuclear pairs

Definition

- (A, B) are a **nuclear pair** if there is a unique C^* -norm on $A \odot B$ (equivalently $A \otimes_{\min} B = A \otimes_{\max} B$).
- \blacksquare A is **nuclear** if (A, B) is a nuclear pair for all B.

Example

If Γ is a group, then $C_r^*(\Gamma)$ is nuclear if and only if $C^*(\Gamma)$ is nuclear if and only if Γ is amenable (in which case $C_r^*(\Gamma) \cong C^*(\Gamma)$).

Example

 $(C_r^*(\mathbb{F}), C_r^*(\mathbb{F}))$ is not a nuclear pair.

Nuclear pairs

Definition

- (A, B) are a **nuclear pair** if there is a unique C*-norm on $A \odot B$ (equivalently $A \otimes_{\min} B = A \otimes_{\max} B$).
- \blacksquare A is **nuclear** if (A, B) is a nuclear pair for all B.

Example

If Γ is a group, then $C_r^*(\Gamma)$ is nuclear if and only if $C^*(\Gamma)$ is nuclear if and only if Γ is amenable (in which case $C_r^*(\Gamma) \cong C^*(\Gamma)$).

Example

 $(C_r^*(\mathbb{F}), C_r^*(\mathbb{F}))$ is not a nuclear pair.

Kirchberg's QWEP Problem

Theorem (Kirchberg)

 $(C^*(\mathbb{F}), B(H))$ is a nuclear pair.

Kirchberg's QWEP Problem

Is $(C^*(\mathbb{F}), C^*(\mathbb{F}))$ a nuclear pair?

Theorem (Kirchberg)

CEP is equivalent to the QWEP Problem.

Kirchberg's QWEP Problem

Theorem (Kirchberg)

 $(C^*(\mathbb{F}), B(H))$ is a nuclear pair.

Kirchberg's QWEP Problem

Is $(C^*(\mathbb{F}), C^*(\mathbb{F}))$ a nuclear pair?

Theorem (Kirchberg)

CEP is equivalent to the QWEP Problem.

Kirchberg's QWEP Problem

Theorem (Kirchberg)

 $(C^*(\mathbb{F}), B(H))$ is a nuclear pair.

Kirchberg's QWEP Problem

Is $(C^*(\mathbb{F}), C^*(\mathbb{F}))$ a nuclear pair?

Theorem (Kirchberg)

CEP is equivalent to the QWEP Problem.

1 CEP and QWEP

2 QWEP and Tsirelson

3 The model-theoretic approach

Another kind of quantum correlation

Definition

The set $C_{qc}(k, n) \subseteq [0, 1]^{k^2n^2}$ of **quantum commuting strategies** is the set of all p for which there are:

- a single (possibly infinite-dimensional) Hilbert space H,
- \blacksquare a unit vector $\xi \in H$, and
- POVMs A^x and B^y on H of length n (for each $x, y \in [k]$) satisfying $A^x_a B^y_b = B^y_b A^x_a$ for all $x, y \in [k]$ and $a, b \in [n]$,

such that $p(a, b|x, y) = \langle A_a^x B_b^y \xi, \xi \rangle$.

- Note $C_q(k, n) \subseteq C_{qc}(k, n)$.
- It can be shown that $C_{qc}(k, n)$ is closed, so $C_{qa}(k, n) \subseteq C_{qc}(k, n)$.

Another kind of quantum correlation

Definition

The set $C_{qc}(k, n) \subseteq [0, 1]^{k^2n^2}$ of **quantum commuting strategies** is the set of all p for which there are:

- a *single* (possibly infinite-dimensional) Hilbert space *H*,
- \blacksquare a unit vector $\xi \in H$, and
- POVMs A^x and B^y on H of length n (for each $x, y \in [k]$) satisfying $A^x_a B^y_b = B^y_b A^x_a$ for all $x, y \in [k]$ and $a, b \in [n]$,

such that $p(a, b|x, y) = \langle A_a^x B_b^y \xi, \xi \rangle$.

- Note $C_q(k, n) \subseteq C_{qc}(k, n)$.
- It can be shown that $C_{qc}(k, n)$ is closed, so $C_{qa}(k, n) \subseteq C_{qc}(k, n)$.

- Boris Tsirelson claimed in a paper, without proof, that $C_a(k, n) = C_{ac}(k, n)$.
- It soon became clear that the question of equality for both inclusions $C_q(k, n) \subseteq C_{qa}(k, n) \subseteq C_{qc}(k, n)$ was nontrivial.
- In 2018, Slofstra showed that $C_q(k, n) \subsetneq C_{qa}(k, n)$ for sufficiently large (k, n).

Tsirelson's Problem

 $C_{\alpha\alpha}(k,n) = C_{\alpha\alpha}(k,n)$ for all k,n > 2?

- Boris Tsirelson claimed in a paper, without proof, that $C_{\alpha}(k, n) = C_{\alpha c}(k, n)$.
- It soon became clear that the question of equality for both inclusions $C_q(k, n) \subseteq C_{qa}(k, n) \subseteq C_{qc}(k, n)$ was nontrivial.
- In 2018, Slofstra showed that $C_q(k, n) \subsetneq C_{qa}(k, n)$ for sufficiently large (k, n).

Tsirelson's Problem

 $C_{\alpha\alpha}(k,n) = C_{\alpha\alpha}(k,n)$ for all k,n > 2?

- Boris Tsirelson claimed in a paper, without proof, that $C_q(k, n) = C_{qc}(k, n)$.
- It soon became clear that the question of equality for both inclusions $C_q(k, n) \subseteq C_{qa}(k, n) \subseteq C_{qc}(k, n)$ was nontrivial.
- In 2018, Slofstra showed that $C_q(k, n) \subsetneq C_{qa}(k, n)$ for sufficiently large (k, n).

Tsirelson's Problem

 $C_{aa}(k,n) = C_{ac}(k,n)$ for all $k, n \ge 2$?

- Boris Tsirelson claimed in a paper, without proof, that $C_a(k, n) = C_{ac}(k, n)$.
- It soon became clear that the question of equality for both inclusions $C_q(k, n) \subseteq C_{qa}(k, n) \subseteq C_{qc}(k, n)$ was nontrivial.
- In 2018, Slofstra showed that $C_q(k, n) \subsetneq C_{qa}(k, n)$ for sufficiently large (k, n).

Tsirelson's Problem

 $C_{aa}(k, n) = C_{ac}(k, n)$ for all $k, n \ge 2$?

- Recall val*(𝔥) is effectively approximable from below.
- Set $val^{co}(\mathfrak{G}) := \sup_{p \in C_{oc}(k,n)} val(\mathfrak{G},p)$.
- Note that $val^{co}(\mathfrak{G}) \ge val^*(\mathfrak{G})$.
- It can be shown that val^{co}(⑤) can be effectively approximated from above! (Semidefinite programming or model theory)
- Thus, if Tsirelson has a positive solution, then one can effectively approximate $val^*(\mathfrak{G}) = val^{co}(\mathfrak{G})$, contradicting $MIP^* = RE!$

- Recall val*(𝔥) is effectively approximable from below.
- Set $val^{co}(\mathfrak{G}) := \sup_{p \in C_{ac}(k,n)} val(\mathfrak{G},p)$.
- Note that $val^{co}(\mathfrak{G}) \ge val^*(\mathfrak{G})$.
- It can be shown that val^{co}(𝔥) can be effectively approximated from above! (Semidefinite programming or model theory)
- Thus, if Tsirelson has a positive solution, then one can effectively approximate $val^*(\mathfrak{G}) = val^{co}(\mathfrak{G})$, contradicting $MIP^* = RE!$

- Recall val*(𝔥) is effectively approximable from below.
- Set $val^{co}(\mathfrak{G}) := \sup_{p \in C_{ac}(k,n)} val(\mathfrak{G},p)$.
- Note that $val^{co}(\mathfrak{G}) \ge val^*(\mathfrak{G})$.
- It can be shown that val^{co}(𝔥) can be effectively approximated from above! (Semidefinite programming or model theory)
- Thus, if Tsirelson has a positive solution, then one can effectively approximate $val^*(\mathfrak{G}) = val^{co}(\mathfrak{G})$, contradicting $MIP^* = RE!$

- Recall val*(𝔥) is effectively approximable from below.
- Set $val^{co}(\mathfrak{G}) := \sup_{p \in C_{ac}(k,n)} val(\mathfrak{G},p)$.
- Note that $val^{co}(\mathfrak{G}) \ge val^*(\mathfrak{G})$.
- It can be shown that val^{co}(⑤) can be effectively approximated from above! (Semidefinite programming or model theory)
- Thus, if Tsirelson has a positive solution, then one can effectively approximate $val^*(\mathfrak{G}) = val^{co}(\mathfrak{G})$, contradicting $MIP^* = RE!$

- Recall val*(B) is effectively approximable from below.
- Set $val^{co}(\mathfrak{G}) := \sup_{p \in C_{oc}(k,n)} val(\mathfrak{G},p)$.
- Note that $val^{co}(\mathfrak{G}) \ge val^*(\mathfrak{G})$.
- It can be shown that val^{co}(⑤) can be effectively approximated from above! (Semidefinite programming or model theory)
- Thus, if Tsirelson has a positive solution, then one can effectively approximate $val^*(\mathfrak{G}) = val^{co}(\mathfrak{G})$, contradicting MIP* = RE!

Theorem (Fritz and Junge, et. al. (independently); Ozawa)

- Set $\mathbb{F}(k, n)$ to be the group freely generated by k elements of order n.
- The key point in the backwards direction is the existence of an element $\eta_{\mathfrak{G}} \in C^*(\mathbb{F}(k,n)) \odot C^*(\mathbb{F}(k,n))$ such that:
 - \blacksquare val*(\mathfrak{G}) = $\|\eta_{\mathfrak{G}}\|_{\min}$
 - \blacksquare val^{co}(\mathfrak{G}) = $\|\eta_{\mathfrak{G}}\|_{\max}$.
- The last bullet explains why $\operatorname{val}^{co}(\mathfrak{G})$ is effectively approximable from above: for any finitely presented group Γ , the norm on $C^*(\Gamma)$ is effectively approximable from above (Fritz, Netzer and Thom) and $C^*(\mathbb{F}(k,n)) \otimes_{\max} C^*(\mathbb{F}(k,n)) \cong C^*(\mathbb{F}(k,n) \times \mathbb{F}(k,n))$.

Theorem (Fritz and Junge, et. al. (independently); Ozawa)

- Set $\mathbb{F}(k, n)$ to be the group freely generated by k elements of order n.
- The key point in the backwards direction is the existence of an element $\eta_{\mathfrak{G}} \in C^*(\mathbb{F}(k,n)) \odot C^*(\mathbb{F}(k,n))$ such that:
 - \blacksquare val*(\mathfrak{G}) = $\|\eta_{\mathfrak{G}}\|_{\min}$
 - \blacksquare val^{co}(\mathfrak{G}) = $\|\eta_{\mathfrak{G}}\|_{\max}$.
- The last bullet explains why $\operatorname{val}^{co}(\mathfrak{G})$ is effectively approximable from above: for any finitely presented group Γ , the norm on $C^*(\Gamma)$ is effectively approximable from above (Fritz, Netzer and Thom) and $C^*(\mathbb{F}(k,n)) \otimes_{\max} C^*(\mathbb{F}(k,n)) \cong C^*(\mathbb{F}(k,n) \times \mathbb{F}(k,n))$.

Theorem (Fritz and Junge, et. al. (independently); Ozawa)

- Set $\mathbb{F}(k, n)$ to be the group freely generated by k elements of order n.
- The key point in the backwards direction is the existence of an element $\eta_{\mathfrak{G}} \in C^*(\mathbb{F}(k,n)) \odot C^*(\mathbb{F}(k,n))$ such that:
 - \blacksquare val*(\mathfrak{G}) = $\|\eta_{\mathfrak{G}}\|_{\min}$
 - \blacksquare val^{co}(\mathfrak{G}) = $\|\eta_{\mathfrak{G}}\|_{\max}$.
- The last bullet explains why $\operatorname{val}^{co}(\mathfrak{G})$ is effectively approximable from above: for any finitely presented group Γ , the norm on $C^*(\Gamma)$ is effectively approximable from above (Fritz, Netzer and Thom) and $C^*(\mathbb{F}(k,n)) \otimes_{\max} C^*(\mathbb{F}(k,n)) \cong C^*(\mathbb{F}(k,n) \times \mathbb{F}(k,n))$.

Theorem (Fritz and Junge, et. al. (independently); Ozawa)

- Set $\mathbb{F}(k, n)$ to be the group freely generated by k elements of order n.
- The key point in the backwards direction is the existence of an element $\eta_{\mathfrak{G}} \in C^*(\mathbb{F}(k,n)) \odot C^*(\mathbb{F}(k,n))$ such that:
 - lacksquare val* $(\mathfrak{G}) = \|\eta_{\mathfrak{G}}\|_{\mathsf{min}}$
 - \blacksquare val^{co}(\mathfrak{G}) = $\|\eta_{\mathfrak{G}}\|_{\max}$.
- The last bullet explains why $\operatorname{val}^{co}(\mathfrak{G})$ is effectively approximable from above: for any finitely presented group Γ , the norm on $C^*(\Gamma)$ is effectively approximable from above (Fritz, Netzer and Thom) and $C^*(\mathbb{F}(k,n)) \otimes_{\max} C^*(\mathbb{F}(k,n)) \cong C^*(\mathbb{F}(k,n) \times \mathbb{F}(k,n))$.

1 CEP and QWEP

2 QWEP and Tsirelson

3 The model-theoretic approach

Model theory to the rescue

- After seeing the initial derivation of ¬CEP from MIP* = RE, our initial reaction was: ????
- Using basic ideas from continuous model theory (and a key result in operator algebras), we given a more direct derivation.
- Plus, the model-theoretic approach offers additional "bells and whistles."

Model theory to the rescue

- After seeing the initial derivation of ¬CEP from MIP* = RE, our initial reaction was: ???
- Using basic ideas from continuous model theory (and a key result in operator algebras), we given a more direct derivation.
- Plus, the model-theoretic approach offers additional "bells and whistles."

Model theory to the rescue

- After seeing the initial derivation of ¬CEP from MIP* = RE, our initial reaction was: ???
- Using basic ideas from continuous model theory (and a key result in operator algebras), we given a more direct derivation.
- Plus, the model-theoretic approach offers additional "bells and whistles."

Model theory to the rescue

- After seeing the initial derivation of ¬CEP from MIP* = RE, our initial reaction was: ???
- Using basic ideas from continuous model theory (and a key result in operator algebras), we given a more direct derivation.
- Plus, the model-theoretic approach offers additional "bells and whistles."

Theorem (G. and Hart (2016))

- This means that there is an algorithm such that, upon input a universal sentence σ , returns an interval $I \subseteq \mathbb{R}$ with $|I| < \epsilon$ and $\sigma^{\mathcal{R}} \in I$.
- Lower bounds: brute force.
- The Completeness theorem for continuous logic says that $\sup \{\sigma^M : M \models T_{II_1}\} = \inf \{r \in \mathbb{Q}^{>0} : T_{II_1} \vdash \sigma \vdash r\}.$
- CEP tells us that the LHS is $\sigma^{\mathcal{R}}$, whence running proofs from T_{II_1} will yield effective upper bounds on $\sigma^{\mathcal{R}}$.

Theorem (G. and Hart (2016))

- This means that there is an algorithm such that, upon input a universal sentence σ , returns an interval $I \subseteq \mathbb{R}$ with $|I| < \epsilon$ and $\sigma^{\mathcal{R}} \in I$.
- Lower bounds: brute force.
- The Completeness theorem for continuous logic says that $\sup \{\sigma^M : M \models T_{II_1}\} = \inf \{r \in \mathbb{Q}^{>0} : T_{II_1} \vdash \sigma \vdash r\}.$
- CEP tells us that the LHS is $\sigma^{\mathcal{R}}$, whence running proofs from T_{II_1} will yield effective upper bounds on $\sigma^{\mathcal{R}}$.

Theorem (G. and Hart (2016))

- This means that there is an algorithm such that, upon input a universal sentence σ , returns an interval $I \subseteq \mathbb{R}$ with $|I| < \epsilon$ and $\sigma^{\mathcal{R}} \in I$.
- Lower bounds: brute force.
- The Completeness theorem for continuous logic says that $\sup\{\sigma^M: M \models T_{II_1}\} = \inf\{r \in \mathbb{Q}^{>0}: T_{II_1} \vdash \sigma \vdash r\}.$
- CEP tells us that the LHS is $\sigma^{\mathcal{R}}$, whence running proofs from T_{ll_1} will yield effective upper bounds on $\sigma^{\mathcal{R}}$.

Theorem (G. and Hart (2016))

- This means that there is an algorithm such that, upon input a universal sentence σ , returns an interval $I \subseteq \mathbb{R}$ with $|I| < \epsilon$ and $\sigma^{\mathcal{R}} \in I$.
- Lower bounds: brute force.
- The Completeness theorem for continuous logic says that $\sup\{\sigma^M: M \models T_{II_1}\} = \inf\{r \in \mathbb{Q}^{>0}: T_{II_1} \vdash \sigma \vdash r\}.$
- CEP tells us that the LHS is $\sigma^{\mathcal{R}}$, whence running proofs from T_{II_1} will yield effective upper bounds on $\sigma^{\mathcal{R}}$.

On the other hand...

Theorem (G. and Hart (2020))

The universal theory of \mathcal{R} is **not** computable.

Of course, we are going to use $MIP^* = RE$, but how?

Synchronous correlations and synchronous games

Definition

- 1 A correlation p(a, b|x, y) is **synchronous** if p(a, b|x, x) = 0 whenever $a \neq b$.
- 2 $C_{qa}^s(n,k)$ denotes the synchronous elements of $C_{qa}(n,k)$.
- $\operatorname{\mathsf{IS}} \operatorname{\mathsf{s-val}}^*(\mathfrak{G}) = \sup_{p \in C^{\mathfrak{s}}_{qa}(n,k)} \operatorname{\mathsf{val}}^*(\mathfrak{G},p).$
 - Clearly s-val*(\mathfrak{G}) \leq val*(\mathfrak{G}).

Remark

The games in MIP* = RE are such that, if $val^*(\mathfrak{G}_{\mathcal{M}}) = 1$, then $s-val^*(\mathfrak{G}_{\mathcal{M}}) = 1$.

Synchronous correlations and synchronous games

Definition

- 1 A correlation p(a, b|x, y) is **synchronous** if p(a, b|x, x) = 0 whenever $a \neq b$.
- $C_{qa}^s(n,k)$ denotes the synchronous elements of $C_{qa}(n,k)$.
- $\operatorname{\mathsf{IS}} \operatorname{\mathsf{s-val}}^*(\mathfrak{G}) = \sup_{p \in C^{\mathfrak{s}}_{qa}(n,k)} \operatorname{\mathsf{val}}^*(\mathfrak{G},p).$
 - Clearly s-val*(\mathfrak{G}) \leq val*(\mathfrak{G}).

Remark

The games in MIP* = RE are such that, if $val^*(\mathfrak{G}_{\mathcal{M}}) = 1$, then $s-val^*(\mathfrak{G}_{\mathcal{M}}) = 1$.

Synchronous correlations and synchronous games

Definition

- 1 A correlation p(a, b|x, y) is **synchronous** if p(a, b|x, x) = 0 whenever $a \neq b$.
- 2 $C_{qa}^s(n,k)$ denotes the synchronous elements of $C_{qa}(n,k)$.
- $exttt{3} exttt{s-val}^*(\mathfrak{G}) = \sup_{oldsymbol{p} \in C^s_{aa}(n,k)} exttt{val}^*(\mathfrak{G},oldsymbol{p}).$
 - Clearly s-val*(\mathfrak{G}) \leq val*(\mathfrak{G}).

Remark

The games in MIP* = RE are such that, if $val^*(\mathfrak{G}_{\mathcal{M}})=1$, then s-val* $(\mathfrak{G}_{\mathcal{M}})=1$.

Synchronous strategies and operator algebras

Theorem (Kim-Paulsen-Shaufhauser)

 $p \in C_{qa}^{s}(k, n)$ if and only if there are PVMs $e^{1}, ..., e^{k}$ of length n in $\mathbb{R}^{\mathcal{U}}$ such that $p(a, b|x, y) = \tau(e_{a}^{x}e_{b}^{y})$, where τ is the unique trace on $\mathbb{R}^{\mathcal{U}}$.

Corollary

For any nonlocal game &,

$$\operatorname{s-val}^*(\mathfrak{G}) = \left(\sup_{e^1, \dots, e^k} \sum_{x, y} \lambda(x, y) \sum_{a, b} D(a, b, x, y) \operatorname{tr}(e_a^x e_b^y)\right)^{\mathcal{R}^{\mathcal{U}}},$$

where the supremum is being taken over PVMs of length n.

- This looks a lot more like a universal sentence being evaluated in $\mathcal{R}^{\mathcal{U}}$.
- If it were and the universal theory of R were computable, then we could effectively approximate s-val*(⑤) for any nonlocal game ⑤ and thus decide the halting problem!
- Issue: The supremum over PVMs is not officially part of the language!

Corollary

For any nonlocal game &,

$$\operatorname{s-val}^*(\mathfrak{G}) = \left(\sup_{e^1,\dots,e^k} \sum_{x,y} \lambda(x,y) \sum_{a,b} D(a,b,x,y) \operatorname{tr}(e_a^x e_b^y)\right)^{\mathcal{R}^{\mathcal{U}}},$$

where the supremum is being taken over PVMs of length n.

- This looks a lot more like a universal sentence being evaluated in $\mathcal{R}^{\mathcal{U}}$.
- \blacksquare If it were and the universal theory of \mathcal{R} were computable, then we
- Issue: The supremum over PVMs is not officially part of the

Corollary

For any nonlocal game &,

$$\operatorname{s-val}^*(\mathfrak{G}) = \left(\sup_{e^1, \dots, e^k} \sum_{x, y} \lambda(x, y) \sum_{a, b} D(a, b, x, y) \operatorname{tr}(e_a^x e_b^y)\right)^{\mathcal{R}^{\mathcal{U}}},$$

where the supremum is being taken over PVMs of length n.

- This looks a lot more like a universal sentence being evaluated in $\mathcal{R}^{\mathcal{U}}$.
- If it were and the universal theory of R were computable, then we could effectively approximate s-val*(⑤) for any nonlocal game ⑤ and thus decide the halting problem!
- Issue: The supremum over PVMs is not officially part of the language!

18/26

Corollary

For any nonlocal game &,

$$\operatorname{s-val}^*(\mathfrak{G}) = \left(\sup_{e^1, \dots, e^k} \sum_{x, y} \lambda(x, y) \sum_{a, b} D(a, b, x, y) \operatorname{tr}(e_a^x e_b^y)\right)^{\mathcal{R}^{\mathcal{U}}},$$

where the supremum is being taken over PVMs of length n.

- This looks a lot more like a universal sentence being evaluated in $\mathcal{R}^{\mathcal{U}}$.
- If it were and the universal theory of R were computable, then we could effectively approximate s-val*(⑤) for any nonlocal game ⑤ and thus decide the halting problem!
- Issue: The supremum over PVMs is not officially part of the language!

Definable sets in continuous logic

Theorem/Definition

Given a formula $\varphi(x)$ relative to some theory T, TFAE:

1 For any formula $\psi(x,y)$ and $\epsilon>0$, there is a formula $\theta(y)$ such that

$$T \models \sup_{y} \left| \left(\sup_{\{x: \varphi(x)=0\}} \psi(x,y) \right) - \theta(y) \right| \leq \epsilon$$

and ditto for infimum.

- 2 For every $\epsilon > 0$, there is $\delta > 0$ such that, for all $M \models T$ and $a \in M$, if $\varphi(a) < \delta$, then there is $b \in M$ such that $\varphi(b) = 0$ and $d(a, b) < \epsilon$.
- 3 For any family of models $(M_i)_{i\in I}$ of T, any ultrafilter \mathcal{U} on I, and any $a\in M:=\prod_{\mathcal{U}}M_i$, if $\varphi^M(a)=0$, then there are $a_i\in M_i$ such that $\varphi(a_i)^{M_i}=0$ and $a=(a_i)_{\mathcal{U}}$.

We then call $\varphi(x)$ a definable set relative to T.

Some technical wrinkles

- It remains to check then that the set of PVMs in \mathcal{R} of length n form a definable set relative to the theory of \mathcal{R} .
- Fortunately for us, this is the case, and Kim, Paulsen, and Schaufhauser themselves proved it!
- Then the translation from the expression using the definable set to an approximating family of "legitimate" sentences needs to be done effectively and the resulting sentences need to be universal
- But it all works out just fine!

Some technical wrinkles

- It remains to check then that the set of PVMs in \mathcal{R} of length n form a definable set relative to the theory of \mathcal{R} .
- Fortunately for us, this is the case, and Kim, Paulsen, and Schaufhauser themselves proved it!
- Then the translation from the expression using the definable set to an approximating family of "legitimate" sentences needs to be done effectively and the resulting sentences need to be universal...
- But it all works out just fine!

Some technical wrinkles

- It remains to check then that the set of PVMs in \mathcal{R} of length n form a definable set relative to the theory of \mathcal{R} .
- Fortunately for us, this is the case, and Kim, Paulsen, and Schaufhauser themselves proved it!
- Then the translation from the expression using the definable set to an approximating family of "legitimate" sentences needs to be done effectively and the resulting sentences need to be universal...
- But it all works out just fine!

A Gödelian style refutation of CEP

- Perhaps it is too arrogant to simply expect all tracial von Neumann algebras to embed into $\mathcal{R}^{\mathcal{U}}$, but maybe by adding some "reasonable" set of extra conditions, we can ensure $\mathcal{R}^{\mathcal{U}}$ -embeddability.
- Nope!

A Gödelian style refutation of CEP

- Perhaps it is too arrogant to simply expect all tracial von Neumann algebras to embed into $\mathcal{R}^{\mathcal{U}}$, but maybe by adding some "reasonable" set of extra conditions, we can ensure $\mathcal{R}^{\mathcal{U}}$ -embeddability.
- Nope!

Theorem (G. and Hart)

Suppose that T is any "effective" satisfiable set of (first-order) conditions extending the axioms for being a II_1 factor. Then there is a II_1 factor satisfying T that does not embed in $\mathcal{R}^{\mathcal{U}}$.

"Many" counterexamples to CEP

Corollary

There is a sequence M_1, M_2, \ldots , of separable II_1 factors, none of which embed into an ultrapower of \mathcal{R} , and such that, for all i < j, M_i does not embed into an ultrapower of M_i .

Proof

Suppose now that M_1, \ldots, M_n have been constructed. Let σ_i be a sentence such that $\sigma_i^{\mathcal{R}} = 0$ but $\sigma_i^{M_i} > 0$. Fix a rational number $\delta_i \in (0, \sigma_i^{M_i})$. Let $T \subseteq \mathsf{Th}(\mathcal{R})$ be the effective theory of II_1 factors together with the single condition $\max_{i=1,\ldots,n}(\sigma_i \div \delta_i) = 0$. Thus there is a separable model M_{n+1} of T such that M_{n+1} does not embed into an ultrapower of \mathcal{R} . Since $\sigma_i^{M_i} > \delta_i$ while $\sigma_i^{M_{n+1}} \le \delta_i$, it follows that M_i does not embed into an ultrapower of M_{n+1} .

"Many" counterexamples to CEP

Corollary

There is a sequence M_1, M_2, \ldots , of separable II_1 factors, none of which embed into an ultrapower of \mathcal{R} , and such that, for all i < j, M_i does not embed into an ultrapower of M_i .

Proof.

Suppose now that M_1,\ldots,M_n have been constructed. Let σ_i be a sentence such that $\sigma_i^{\mathcal{R}}=0$ but $\sigma_i^{M_i}>0$. Fix a rational number $\delta_i\in(0,\sigma_i^{M_i})$. Let $T\subseteq\operatorname{Th}(\mathcal{R})$ be the effective theory of II_1 factors together with the single condition $\max_{i=1,\ldots,n}(\sigma_i\div\delta_i)=0$. Thus there is a separable model M_{n+1} of T such that M_{n+1} does not embed into an ultrapower of \mathcal{R} . Since $\sigma_i^{M_i}>\delta_i$ while $\sigma_i^{M_{n+1}}\le\delta_i$, it follows that M_i does not embed into an ultrapower of M_{n+1} .

$\mathsf{Th}_{\forall}(\mathcal{R})$ is not computable for operator algebraists

- Let m_1, \ldots, m_L enumerate all *-monomials in the variables x_1, \ldots, x_n of total degree at most d.
- We consider the map $\mu_{n,d}: \mathcal{R}_1^n \to \mathbb{D}^L$ given by $\mu_{n,d}(\vec{a}) = (\operatorname{tr}(m_i(\vec{a})): i = 1, \dots, L).$
- We let X(n, d) denote the range of $\mu_{n,d}$ and X(n, d, p) be the image of $(M_p(\mathbb{C}))_1$ under $\mu_{n,d}$.
- Notice that $\bigcup_{p \in \mathbb{N}} X(n, d, p)$ is dense in X(n, d).

Theorem (G. and Hart)

The following statements are equivalent:

- The universal theory of R is computable.
- There is a computable function $F : \mathbb{N}^3 \to \mathbb{N}$ such that, for every $n, d, k \in \mathbb{N}$, X(n, d, F(n, d, k)) is $\frac{1}{k}$ -dense in X(n, d).

$\mathsf{Th}_\forall(\mathcal{R})$ is not computable for operator algebraists

- Let m_1, \ldots, m_L enumerate all *-monomials in the variables x_1, \ldots, x_n of total degree at most d.
- We consider the map $\mu_{n,d}: \mathcal{R}_1^n \to \mathbb{D}^L$ given by $\mu_{n,d}(\vec{a}) = (\operatorname{tr}(m_i(\vec{a})): i = 1, \dots, L).$
- We let X(n, d) denote the range of $\mu_{n,d}$ and X(n, d, p) be the image of $(M_p(\mathbb{C}))_1$ under $\mu_{n,d}$.
- Notice that $\bigcup_{p \in \mathbb{N}} X(n, d, p)$ is dense in X(n, d).

Theorem (G. and Hart)

The following statements are equivalent:

- 1 The universal theory of $\mathcal R$ is computable.
- There is a computable function $F: \mathbb{N}^3 \to \mathbb{N}$ such that, for every $n, d, k \in \mathbb{N}$, X(n, d, F(n, d, k)) is $\frac{1}{k}$ -dense in X(n, d).

Effective computability of s-val^{co}(\mathfrak{G}) from above

Theorem (Paulsen, Severini, Stahlke, Todorov, Winter)

 $p \in C_{qc}^s(k, n)$ if and only if there is a tracial C^* -algebra (A, τ) and PVMs e^1, \ldots, e^k of length n in A such that $p(a, b|x, y) = \tau(e_a^x e_b^y)$

Proposition

For any nonlocal game \mathfrak{G} , we have s-val^{co}(\mathfrak{G}) $\geq r$ if and only if the theory $T \cup \{\theta_{\mathfrak{G},r} = 0\}$ is satisfiable, where $\theta_{\mathfrak{G},r}$ is the sentence $r \div \left(\sup_{e^1,\dots,e^k} \sum_{x,y} \lambda(x,y) \sum_{a,b} D(a,b,x,y) \operatorname{tr}(e^x_a e^y_b)\right)$.

- For any continuous theory U, we have that U is satisfiable if and only if $U \not\vdash 1 \div \frac{1}{2}$.
- Combined with the previous proposition, we get that s-val^{co}(𝔥) is effectively approximable from above (uniformly in 𝔥).

Effective computability of s-val $^{co}(\mathfrak{G})$ from above

Theorem (Paulsen, Severini, Stahlke, Todorov, Winter)

 $p \in C_{qc}^s(k, n)$ if and only if there is a tracial C^* -algebra (A, τ) and PVMs e^1, \ldots, e^k of length n in A such that $p(a, b|x, y) = \tau(e_a^x e_b^y)$

Proposition

For any nonlocal game \mathfrak{G} , we have s-val^{co}(\mathfrak{G}) $\geq r$ if and only if the theory $T \cup \{\theta_{\mathfrak{G},r} = 0\}$ is satisfiable, where $\theta_{\mathfrak{G},r}$ is the sentence $r \div \left(\sup_{e^1,\dots,e^k} \sum_{x,y} \lambda(x,y) \sum_{a,b} D(a,b,x,y) \operatorname{tr}(e^x_a e^y_b)\right)$.

- For any continuous theory U, we have that U is satisfiable if and only if $U \not\vdash 1 \div \frac{1}{2}$.
- Combined with the previous proposition, we get that s-val^{co}(𝔥) is effectively approximable from above (uniformly in 𝔥).

ASL Annual Meeting April 8, 2022

Effective computability of s-val $^{co}(\mathfrak{G})$ from above

Theorem (Paulsen, Severini, Stahlke, Todorov, Winter)

 $p \in C_{qc}^s(k, n)$ if and only if there is a tracial C^* -algebra (A, τ) and PVMs e^1, \ldots, e^k of length n in A such that $p(a, b|x, y) = \tau(e_a^x e_b^y)$

Proposition

For any nonlocal game \mathfrak{G} , we have s-val^{co}(\mathfrak{G}) $\geq r$ if and only if the theory $T \cup \{\theta_{\mathfrak{G},r} = 0\}$ is satisfiable, where $\theta_{\mathfrak{G},r}$ is the sentence $r \cdot \left(\sup_{e^1,\dots,e^k} \sum_{x,y} \lambda(x,y) \sum_{a,b} D(a,b,x,y) \operatorname{tr}(e^x_a e^y_b)\right)$.

- For any continuous theory U, we have that U is satisfiable if and only if $U \not\vdash 1 \frac{1}{2}$.
- Combined with the previous proposition, we get that s-val^{co}(𝔥) is effectively approximable from above (uniformly in 𝔥).

References

- ISAAC GOLDBRING, *The Connes Embedding Problem: a guided tour*, to appear in the Bulletin of the AMS.
- ISAAC GOLDBRING AND BRADD HART, *A computability-theoretic reformulation of the Connes Embedding Problem*, Bulletin of Symbolic Logic, **22** (2016), 238-248.
- ISAAC GOLDBRING AND BRADD HART, The universal theory of the hyperfinite II₁ factor is not comutable, arXiv 2006.05629.
- ZHENGFENG JI, ANAND NATARAJAN, THOMAS VIDICK, JOHN WRIGHT, AND HENRY YUEN, MIP* = RE, arXiv 2001.04383.
- THOMAS VIDICK, From operator algebras to complexity theory and back, Notices of the AMS, November 2019.

See you next year!

2023 North American Annual Meeting of the Association for Symbolic Logic

Home Hotel & Travel Schedule Social Events Registration

General Information

The 2023 North American Annual Meeting of the ASL will be held March 25-29 at the University of California, Irvine.

