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1 Lecture 1

1.1 Example of R>" = C"

Remark 1.1. For now we will denote /—1 by 7. However, later we will not do this, because
the letter 7 is sometimes used as an index.

We consider R?" and denote the coordinates as z', 9%, ..., 2", y". Letting 2/ = 27 + 43/
and 2/ = 2/ — iy/, define complex one-forms

dz) = da? + idy’,
d7 = da? — idy’,
and complex tangent vectors
0/07 = (1/2) (8/07 —i0/0y’),
0/0% = (1/2) (0/3xj + i@/@yj) .
Note that
dz1(0/02%) = dz7(0/07") = §7*,
dz1(0/07%) = dz7(0/02%) = 0.



The standard complex structure .Jy : TR?" — TR?*" on R?" is given by
Jo(8/0a7) = 0/dy’,  Jo(0/dy’) = —0/0a7,

which in matrix form is written

ngdiag{(? _01)((1) _01)}. (1.1)
Next, we complexify the tangent space T'® C, and let
T (Jy) =span{8/0z7,j =1...n} = {X —iJoX, X € T,R™} (1.2)
be the i-eigenspace and
TOY(Jy) =span{0/977,j = 1...n} = {X +iJoX, X € T,R™} (1.3)
be the —i-eigenspace of Jy, so that
T®C=T%(J) @ T (J). (1.4)
The map Jy also induces an endomorphism of 1-forms by
Jo(w)(v1) = w(Jovy).
Since the components of this map in a dual basis are given by the transpose, we have
Jo(dxjy) = —dy;,  Jo(dy;) = +dx;.
Then complexifying the cotangent space T* ® C, we have
AY(Jy) = span{dz’,j = 1...n} = {a —iJoa,a € T;R*} (1.5)
is the i-eigenspace, and
A% (Jo) = span{dz’,j = 1...n} = {a +iJoa,a € T;R*™"} (1.6)

is the —i-eigenspace of Jy, and

T ®C = AY(Jy) ® A% (Jp). (1.7)

We note that
AV ={aeT " ®C:a(X)=0forall X € TOD}, (1.8)

and similarly
A ={aeT*®C: a(X)=0 for all X € TU}, (1.9)



We define A7 € AP*? ® C to be the span of forms which can be written as the wedge
product of exactly p elements in AM® and exactly ¢ elements in A%!. We have that

AMNeC= @ AP

(1.10)
pt+q=k
and note that

. n n
dimg (AP) (p) : (q> (1.11)
Note that we can characterize AP? as those forms satisfying
a(vy, ..., vp4q) =0, (1.12)
if more than p if the v;-s are in T or if more than ¢ of the vj-s are in 701
Finally, we can extend J : A¥ ® C — A* @ C by letting
Ja =", (1.13)
for o € AP p+q=k.

In general, J is not a complex structure on the space A% for k > 1. Also, note that if
o € APP then « is J-invariant.

1.2 Cauchy-Riemann equations

Let f:C" — C™. Let the coordinates on C™ be given by

{212 = {2! + iy,

N A 2 (1.14)
and coordinates on C™ given by
{wh, . w™} = {u! + ot u™ ™) (1.15)
Write
Tx(C") = span{0/0x',...0/0x"™,0/0y",...0/0y"}, (1.16)
Tr(C™) = span{d/ou’,...0/ou™, 0/0v',...0/0v™}. (1.17)
Then the real Jacobian of
F= (Y ™) = (who fiuPo o 0™ o f). (1.18)
in this basis is given by
ort oft
oxl oy
Jef=| + .. (1.19)
8f2m 8f2m
ozl : oy™



Definition 1.2. A differentiable mapping f : C* — C™ is pseudo-holomorphic if

fxoJocn = Joom o fi. (1.20)
That is, the differential of f commutes with Jj.
We have the following characterization of pseudo-holomorphic maps.

Proposition 1.3. A mapping f : C"™ — C" is pseudo-holomorphic if and only if the Cauchy-
Riemann equations are satisfied, that is, writing

f(Zl, . Zm) = (fl, ce ,fn) = (u1 + Z"Ub e Up T iUn), (121)
and 77 = 29 +iy?, for each j = 1...n, we have
8uj 81)]' an an
I v 22

for each k =1...m, and these equations are equivalent to

azkff =0, (1.23)

foreach j=1...n and each k=1...m

Proof. First, we consider m =n = 1. We compute

of  oh of Oh
ot oyt (0 —1)_(0 —1) T (1.24)
o) \o) o) Gk ) |

says that
o _on\ (_on _on
oyl T D ] P
0#2 8?2 ﬁ ﬁ ? (]‘25)
oyl dal oxl oyt
which is exactly the Cauchy-Riemann equations. In the general case, rearrange the coordi-
nates so that (z!,... 2™ y!, ... y™) are the real coordinates on R*™ and (u!, ..., u" v, ... v"),
such that the complex structure Jy is given by
0 -1
Jo(R*™) = ™ (1.26)
I, O

and similarly for Jo(R?*"). Then the computation in matrix form is entirely analogous to the
case of m =n = 1.
Finally, we compute

0 8 .
1 0 8 0 0
:—{@uj o kvj—i-z(a - a—ykuj>}, (1.28)
the vanishing of which again yields the Cauchy-Riemann equations. O
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From now on, if f is a mapping satisfying the Cauchy-Riemann equations, we will just
say that f is holomorphic.
For any differentiable f, the mapping f. : Tg(C") — Tr(C™) extends to a mapping

Consider the bases
Tc(C™) = span{d/dz',...0/02",0/07",...0/0z"}, (1.30)
Te(C™) = span{d/ow',...0/ow™, 0/0w",...0/0w™}. (1.31)

The matrix of f, with respect to these bases is the complex Jacobian, and is given by

oft ... oft oft . off
ozt ozn ozt oz"
oo oo
ozt oz" ozt z"
Jef=1or o o o (1.32)
021 dzn 9zt zZ"
AN N N i
921 8z 9zt Tt o9z
where (f!,...,f™) = f now denotes the complex components of f. This is equivalent to
saying that
: of! oft
dfi =% ——dF+ ) ——dz". 1.33
=2 gt D o (1.33)
k k
Notice that (1.32)) is of the form
A B
1= (5 §) (1.3)

which is equivalent to the condition that the complex mapping is the complexification of a
real mapping.
What we have done here is to embed

Homg(R**,R*™) C Hom¢(C*", C*™), (1.35)
where C-linear means with respect to i (not Jy), via

(A B) 1(A+D+i(C—B) A—D+¢(B+(J))_

¢ D)7 3\A-D—i(B+C) A+D—i(C—B) (1.36)

Notice that if f is holomorphic, the condition that f, commutes with J; says that the real
Jacobian must have the form

(fo)m = (g _AB) : (1.37)



This corresponds to the embeddings
Homg(C",C™) C Homg(R*",R*™) C Home(C*",C*™), (1.38)

where the left C-linear is with respect to Jy, via

. A -B A+1B 0
A+an—><B A>'_>< 0 A—z’B)' (1.39)

Note that since the latter embedding is just a change of basis, if m = n, then
det(Jr) = det(A + iB) det(A — iB) = |det(A +iB)|* > 0, (1.40)

which implies that holomorphic maps are orientation-preserving. Note also that f is holo-
morphic if and only if

f (T ¢ 7O, (1.41)

Notice that if f is anti-holomorphic, which is the condition that f, anti-commutes with
Jo, then the real Jacobian must have the form

A B
(fr = (B _A> . (1.42)
This corresponds to the embeddings
Homz(C",C™) C Homg(R*",R*™) C Homc(C*",C*™) (1.43)
via
. A B 0 A+1B
A+zBr—>(B —A)H(A—Z'B 0 > (1.44)

We see that f is anti-holomorphic if and only if
f (T ¢ 7O, (1.45)

Note that if f is antiholomorphic, then is it holomorphic with respect to the complex struc-
ture —Jy on the domain (but still Jy on the range).
Note that we can decompose f, = f¢ + f2, where

FE =3 (= Tf) (1.46)
A= %(f* +JfJ), (1.47)

and f¢ is holomorphic, while f# is anti-holomorphic. In block matrix form, this just says

that
A B\ _1(A+D B-C\ 1(A-D B+C (1.48)
C D) 2\C—-—B A+D 2\B+C D—-A)" :
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2 Lecture 2

2.1 Cauchy’s formula in one complex variable

For now, just consider f : U — C, where U C C is an open set. Assume that f, as a
mapping from R? — R?, is differentiable. This means that, for each z € U, there exists a
linear mapping L. : R? — R? such that

h—0 1Al

0. (2.1)

This implies that the partial derivatives of f exist. Conversely, if the partial derivatives
exists and are continuous at z, then the mapping L, exists.

We say that f is holomorphic in U if it is C'* and satisfies the Cauchy-Riemann equations.
Writing f = w + tv, then Cauchy-Riemann equations are

ou Ov ou ov 0
gr oy Mg, T T T T (2:2)

Note that the linear mapping L is given by
Ou  u Ju v
v (& %)= (% &) (2.3
oxr Oy
If we consider h as a complex number, then f being holomorphic is equivalent to

) = ) = S
1m =
h—0 | Al

0. (2.4)

Definition 2.1. We say that f is complex analytic in U if for each zy € U, there exists a
power series expansion

o0

f(2) = ar(z— 2)", (2.5)

k=0
which converges absolutely and uniformly in a disc A(zg, €) around zp, for some € > 0.

Proposition 2.2 (Cauchy-Pompieu Formula). Let Q@ C C be a bounded domain in C with
C! boundary. For z € Q and f € CY(Q), we have

1 fw)dw 1 / If(w) dw A dw
- CAA S At R 2.
1) 270 Jpq w — z +2m' o O w-—z (2.6)
where the boundary has the counterclockwise orientation.
Proof. The 1-form
1 f(w)dw
- 2.
2w — 2 (27)



satisfies

dny = __L of dwndw (2.8)

2mi 0w w — 2

Apply Stokes” Theorem to the annular domain Q2 \ A(z,¢€), to get

/ 7}:/ dn. (2.9)
O(Q\A(z,€)) Q\A(z,€)
/ n— / , (2.10)
09 OA(2,¢)
/dn—/ dn, (2.11)
Q A(z,€)

since dn is obviously in L'(€2). A calculation shows that the inner boundary integral limits
to f(z), and the error term in the solid integral goes to 0 as € — 0. For details, see [GHTS,
page 3|. O

The left hand side of (2.9)) is

and the right hand side of (2.9)) is

Proposition 2.3. Let U be an open set in C. Then f is holomorphic in U if and only if f
15 complex analytic in U.

Proof. 1f f is holomorphic in U the Cauchy-Pompieu formula in a small disc A = A(zg, €)
yields for z € A,

1 f(w)dw
flz) =5~ (w)dw (2.12)

™ Jon W — Z

Then expand
1 1 1 1
_ — — (2.13)
Z—wW Z—2+z—w ’LU—Z(]]_—w_Z?)

1 2 2=z b
= 2.14
w— 2o Z (w — zo) ’ (2.14)

k=0
with the sum converging absolutely and uniformly in any smaller disc. So the above yield
the power series expansion

/1 f(w)dw
flz) = (—/ a1 ) (= 20)" (2.15)
; 27 Jon (w — zp)F+1
which also converges absolutely and uniformly in any smaller disc.

For the converse, if f has a power series expansion, then each term in the power series
satisfies the Cauchy integral formula without solid integral. So then f does also by uniform
convergence. So we have

0 0 [1 flw)dwY 1 0 1 B

For more details, see [GHTE|, page 4]. O
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Definition 2.4. We wil let Q C C be a bounded domain with C* boundary. If u is holo-
morphic in an open set 2, then we write u € O(12).

First, let’s recall the basic result about differentiating under an integral.

Proposition 2.5. Let
f(z) = / a(z,w)dw A dw. (2.17)
Q

(Note this notation does not mean that f is holomorphic in z or that a is holomorphic as a
function of 2 variables!). Assume that

1. a(z,w) € LY(Q), in the w variable.
2. % and g—% exist for all z, for almost every w € (.

3. 19¢| + |%2| < h(w), where h € L'(12).

Then
% = / %(a(z,w))dw A dw (2.18)
Q
% = / %(a(z,w))dw A dw. (2.19)
Q
Proof. Recall that
of 1,0 0
5: = 3lor ~ay) (2.20)

The real part of the left hand side of ([2.18]) is

of\ 1/0Ref OImf
Re<8z> B 2< Ox * Jy ) (2.21)
The real part of the right hand side of (2.18)) is
1 /0Re(a(x + iy, w))  OIm(a(x + iy, w)) _
/Q 5( o= + 5 )dw A d@. (2.22)

Therefore we can consider real-valued functions, and prove for partials with respect to the
real variables z and y. We have that

a 57 - )
—ai(:v,y) = lim flo+ y; f(z.y) (2.23)
For 0 # 0, consider
. 5t i) — .
flz+ ,y()s flxy) _ /Q a(z + +zy,w()S alx +iy,w), o (2.24)

11



By the mean value theorem, given § > 0, there exists 2’ on the line segment from (x,y) to
(x + d,y) such that

a(x + 6 + iy, w) — a(x + iy, w) = %(:{;' + iy, w)d, (2.25)

SO

a(z + 9 + iy, w) — a(r + iy, w
4

)‘ < ’@(1”4—2'3/,11))‘
Oz (2.26)
<’aa(az’+i w)‘—i—‘aa(aj’—l—i w)‘<]h(w)]

— 10z Y 0z 4 - '

We can do this for any sequence 9,, — 0, so the result follows from Lebesgue’s dominated

convergence theorem. The proof for the other derivative (2.19)) is similar. O]

We next go through several corollaries of the Cauchy-Pompieu formula; see [Hor90, Chap-
ter 1] for more details.

Corollary 2.6. Let K C €2 be a compact subset. Then there exist constant Cy, depending
only upon K and €2 such that

ON\FE
sup <3_> u(2)| < CrllullL1 (o), (2.27)
z€K z
for all u € O(R).
Proof. Choose a 1) € C§°(2) (compact support) such that ¢» = 1 in a neighborhood of K. If
u € O(R), then

) )
= () = uz—v. (2.28)

Now we apply (2.6) to ¥u in Q to get

Vo) = o [ a2 AL (229
Now consider
a(z,w) = u(w)&gww) ” 1_ > (2.30)

If z € K, then |w—z| > § > 0, since the support of 0¢/0w is at a positive distance from K.
So using Proposition [2.5] we can differentiate under the integral as many times as we like,

and obtain
0 \* 1 Op(w) r O Nkr 1 _
(32) uten = 57 [ w055 (72) (7= )aw o (231
If z € K, then 9u is equal to u in a neighborhood of z, so (2.27)) follows. O
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Corollary 2.7. If u, € O(Q) and u, — u converges uniformly to u in the C° norm as
n — 0o on compact subsets, then u € O(1).

Proof. Let K C €2, be a compact subset. Then given € > 0, there exist /N such that

Sup |um (2) — un(2)| <€, (2.32)
zeK
for m,n > N. The difference u,, — u, € O(f2). Corollary implies that
0
sup | = (wy, — un)(z)‘ < Ce. (2.33)
zeK 0z

This says that Ou,/0z converges uniformly on K. But Ou,/0Z = 0, so the real partial
derivatives Ou, /Ox and Ou,/Jy converge uniformly. It is an elementary result that if a
sequence of functions converges uniformly, and the derivatives converge uniformly, then
the limit of the derivatives is the derivative of the limit. This implies that « € C! and
Ou/0zZ = lim,,_,o Ou, /0Z = 0. O

Corollary 2.8. Ifu, € O(Q) and |u,| is uniformly bounded on every compact subset K C €2,
then some subsequence u,; converges uniformly on compact subsets to a limit u € O(12).

Proof. Corollary yield a uniform bound on derivatives of u, on any compact subset.
By Arzela-Ascoli Theorem, some subsequence converges to a limit « uniformly on compact
subsets. Then the previous corollary yields that u € O(Q). O

3 Lecture 3

3.1 The 0-equation in domains in C
Theorem 3.1. If Q C C is any bounded domain, then Hg’l(Q) =0.
Recall that

3. A0,1 0,2
HBJ(Q):KGT{_@.A %A }’ (31)
g Im{d: A% 5 AT}

where these are spaces of C* forms. Since n =1, A% = {0}. So w € Ker{d : A®! — A2}
just means that w = gdz for g € C°(Q). Also, f € A®? is just a function, and of = ZLdz.
So the theorem is equivalently stated as the following.

Theorem 3.2. If Q C C is any bounded domain, and g € C*(R), then there exists g €
C>(Q) with Zf = g.

Our goal of this lecture is to prove this result. If we want to solve a% f = g, it is natural
to guess that

£(z) = L/QM, (3.2)

271 w— Z
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is a solution. However, letting a(z,w) = g(w)/(w — z), we have

da(z,w) -1

w—z)?’

(3.3)

so the assumptions of Proposition are NOT satisfied, so we cannot directly differentiate
under the integral sign! Another problem is that g is only assumed to be in C*(2), so it is
not in L'(Q) and is not necessarily defined. We first give a preliminary result, with a
stronger assumption on g.

Proposition 3.3. If g € C'(Q) then the function
1 g(w)dw A dw
1) = 5 [ SR, (3.4)

2mi w—z
satisfies f € CY(Q) and 0f |0z = g in Q.

Proof. We fix a point 2y € 2. Choose a C'* cutoff function ¢ € C§°(2) such that ¢» =1 on
a neighborhood V' C () containing zy. We then write f = fi + f2, where

P(w)g(w)dw A dw
27rz / (3.5)
folz) = S / w(wzj _( Z)dw A dw (3.6)

For z in a small neighborhood of zy, the integrand in f; does not have a singularity. We can
therefore differentiate under the integral sign to see that df2/0Z = 0. So we just need to
prove that df;/0Z = g in V. Since ¢ has compact support, we can extend g to all of C,

and write
A - / Y(w)g(w)dw A dw (3.7)
B ¢§—|—z (5—1—2)d§/\d{;T
= / . | (3.8)

where we used the change of variables w = £ + z. Note that

OW(E+2)9(€+2) _ W€+ 2)9(E +2))

0z B ¢ (8.9)
OW(E+2)g9(§+2) _ OW(E +2)g(€ + 2))
— - 5 . (3.10)

This shows that the z and Z partials of the integrand are uniformly in L', so we can differ-
entiate under the integral sign, to obtain

Ofi(z) 1 [0+ 2)g(E+2))dE N dE
oz 2mi /C o £ (311)
1 I(Y(w)g(w)) dw A dw
=5 ). o — (3.12)

Now apply the Cachy-Pompieu formula in a very large ball in C, to conclude the right hand
side is equal to 1(2)g(z) which is g(z) if z € V. O

14



This result does not directly help us in proving Theorem But notice that in the
proof, we also proved the following result.

Proposition 3.4. If g € C°(R2), then there exists f € C*°(C) such that 0f/0z = g.

Proof. Above, we proved that there is a solution f € C(C), but the same argument allows
us to differentiate f; infinitely many times, provided g is infinitely differentiable. O

Now we can prove a special case of Theorem [£.2]
Proposition 3.5. If Q = A(z,r) is a disc in C, then H%l(Q) = 0.

Proof. Take a sequence 0 < r; < ry < --- < r such that lim; ,7r; = r. Let 0 < ¢y, €
CP(A(z,7541)) and ¥, = Lon A(z, 7). Then g, = g € C5°(A(z, rg41), and by Proposition
3.4} we can find f, € C°°(C) such that 0fy = gk, which is equal to g in A(z,ry).

Now there is no reason that the sequence f; will converge to a limit, so we need to modify
as follows. We claim that we can choose f; so that

sup [ fira(2) = fi(2)] < 27%. (3.13)

z€A(z,rp—1)

Given fy, the difference f3 — fo is holomorphic in A(z,r1). So there exists a polynomial P,
such that

sup |fo(2) - folz) - Pafz) <277 (3.14)

z€A(z,r1)

So we redefined f3 to be f3 — P,. We then proceed by induction. Given f, the difference
fra1 — fr is holomorphic in A(z,7_1), so we can find a polynomial P, such that

sup | fir1(2) = fu(2) = Pena(2)] <275, (3.15)

2€A(z,r—1)

and we redefine fy1 to be fyi1 — P,

The sequence of functions fj will be a Cauchy sequence in any disc A(z,7’), when 1’ < r.
So there exists a uniform limit f. Fixing any m, then f — f,, is then a uniform limit of
holomorphic functions in A(z, 7,,_1), so is holomorphic by Corollary , and the convergence
is in C! of any compact subset. So we can differentiate to show that

Ofm/0Z — 0f )0z = g, (3.16)
and the proof is finished. O
To prove for a general domain, we require the following result.

Theorem 3.6 (Runge’s approximation Theorem, first version). Let K C C be a compact
subset, and f € O(U) for some open set U with K C U. Given any € > 0, there exists a
rational function f. with

sup ‘f(z) - fE(Z)l <€ (317)

zeK

and such that poles of f. are contained in C\ K.
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Proof. The proof is from [Sar(07, Theorem IX.15], we just give an outline. From elementary
arguments, there exists a contour v : S' — U \ K such that K C IntI’ C U, which has
winding number 1 around any point zy € K. Note that K might have several components,
so v will also. Since the winding number is 1, by Cauchy’s Integral formula, we have

f(z)= %/%dw (3.18)

for any z € K. By dividing the plane into a sufficiently fine grid, we can assume that ~
is piecewise smooth and v = = + ---,, with each 7; a line segment parallel to one of the
coordinate axes. Consider each term

fe(z) = zim/ %dw (3.19)

We can approximate this arbitrarily closely with a Riemann sum Ry, which will be of the
form
C1 ]

++ ,
wy — 2 w; — 2

(3.20)

where the w; are points on 7. Doing this for every «;, the proof is complete. m

4 Lecture 4

4.1 Runge’s Theorem

Theorem 4.1 (Runge’s approximation Theorem, second version). Let K C C be a compact
subset, and f € O(U) for some open set U with K C U. Let S C C\ K which contains at
least one point from each connected component of C\ K. Given any € > 0, there exists a
rational function f. with

sup |f(2) — fe(2)] <€, (4.1)
zeK
and such that poles of f. are contained in S. If C\ K is connected, the rational functions
can be taken to be polynomials.

Proof. The proof is from [Sar07, Theorem IX.17]. In the proof of Theorem , each term in
the approximation was of the form ¢/(w — z), where w € . Now choose a picewise linear
path « from w to any point wy in the same connected component of C\ K. Choose points
w; on a so that

We show that any rational R;_; function with a pole only at w;_; may be uniformly ap-
proximated on K by a rational function R; with a poles only at w;. But this follows from
consdering the Laurent series expansion of R;_; centered at w;: R;_; is holomorphic in the
region U = C \ A(wj, |w; — w;_1|), so the Laurent series of R;_; centered at w; converges
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uniformly on compact subsets of U. Then we can approximate ;_; by a rational function
with a pole only at w;, uniformly on K, since K is a compact subset of U, which follows
from (4.2)).

If C\ K is connected, by the above argument, we can move the pole of the rational
function R; to a single point z so that K C A(0, |zo|). The Talyor series of R; converges
uniformly on K, so we can approximate by the partial sums of the Taylor series.

0
Theorem 4.2. If Q C C is any domain, and g € C*®(2), then there exists f € C*°(Q) with
P
ozl =9

Proof. We choose a sequence of compact sets K; C Ko C K3 C ---, so that E C IntKj

and UK; = €. Note that C\ 2 C C\ K}, and we can assume that for large j, each component

of C\ K; contains a component of C\ Q. Let 0 <, € Cj°(K,4+1) and ¢, = 1 on K;. Then

g; = ;9 € C3°(Kj41), and by Proposition we can find f; € C°°(C) such that df; = g;.
We claim that we can choose f; € C*°(2) so that

sup [fy1(2) — ()] < 27, (4.3)

ZEKj_l
We proceed by induction. Given f;, the difference f;;1 — f; is holomorphic in
U=IntK; D K = K;_;. (4.4)

We have C\ 2 C C\ Kj, so by Theorem there exists a rational function R;.; such that
it poles are in C\ 2 and such that

sup [f1(2) = f3(2) = Rya(2)| < 27, (4.5)

ZGKjfl

and we redefine f;4; to be fj11 — Pj_;.

The sequence of functions f; will be a Cauchy sequence in any subset I, for fixed m.
So there exists a limit f, with uniform convergence on compact subsets. Fixing any m,
then f — f,, is then a uniform limit of holomorphic functions in K,, 1, so is holomorphic by
Corollary , and the convergence is in C! of any compact subset. So we can differentiate
to show that

Of /0% — Of 0% = g, (4.6)

and the proof is finished.
[

4.2 Meromorphic Functions

The above solution of the inhomogeneous Cauchy-Riemann equations has many corollaries.
We give some applications to the theory of meromorphic functions. References for this
section are [Hor90, Chapter 1] and [Eps91, Section 1.6].
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Definition 4.3. For a domain Q C C, we say that f € M(Q), or f is meromorphic in 2, if

there is an open covering U; of 2 such that f|y, = Z—;, where g; and h; are in O(Uj).

Note this is equivalent to saying that f has a Laurent series expansion near any z, € €2
with only finitely many negative terms. That is we have
(o.9]

o) = 3 ale— ) (4.7)

k=—m

The finite sum of the negative terms is called the principal part of f at z;. Note the set of
poles will be some discrete subset {w,} of .

Theorem 4.4 (Mittag-LefHler). Let Q2 be a domain in C and {w;} a discrete subset of 2.
Let P; be any principal sum at w;. Then there exists a meromorphic function h € M()
such that the principal part of h at w; is P;.

Proof. Let 1; be a cutoff function supported in a small neighborhood of w; which doesn’t
contain any other points in the discrete subset. Consider g = ) ;¥;Pj. Then 0g/0z €
C>(€2). By Theorem [1.2] there exists a solution f € C*(2) of df/0z = dg/dz. Then
h = g — f satisfies O0h/0Z = 0, and the principal part of h at w; is P;. O

Definition 4.5. The order of f € M(Q) at zg € Q is the least integer n such that the
coefficient a,, # 0 in (4.7))

Theorem 4.6 (Weierstrass). Let Q be a domain in C, {w;} a discrete subset of 2, and
n; € Z. Then there exists a meromorphic function f € M(Q) with the order of f at w; equal
ton;.

Proof. We cover Q) by discs U; = A(z;, ;) such that each w; is contained in exactly one of
these discs. Define the function f; = (2 — w;)™ if w; € U;, and let f; = 1 if U; doesn’t
contain any of the discrete points. On U; N U;, let fi; = fi/f;. Then fi; € O*(U;, N Uj)
is a non-vanishing holomorphic function. Since U; N U; is simply-connected, we can define
gi; = log fi;. Note that g;; € O(U; N Uj) is only defined up to adding an integer multiple of
2mi. Since

i filj
fir = =7 = fijfir, 4.8
e Jifk o (48)
the g,; satisfy on triple intersections U; N U; N Uy
9ij — ik t Gjx = 2T, (4.9)
where n;j; € Z. The n;j;, satisfy the condition on intersections U; N U; N U, N Uy,

Nkt — Mikt + Niji — Ny = 0. (4.10)

So nij, € H*(U,7Z) defines a Cech 2-cocycle. Since i is a good cover of 2, H?(8,Z) =
H?(Q,7Z). However, since € is a domain in C, it is in particular a non-compact 2-manifold,
so this latter group vanishes. Therefore, there exists integers n;; such that

nijk = njk — Nk + nij. (411)

18



Now we define g;; = gij — 2min;;, which now satisfy

9ij — 9k + 95, =0 (4.12)

Now choose a partition of unity v; subordinate to U;, and define

hi =g, (4.13)
J
which satisfies h; € C*(U;). On U; NUj;, we have
h; — h; = Z(Qik — ) = Zgl{ﬂﬁk = gij- (4.14)
k k
We then have that
%(m — hy) = %ggj =0, (4.15)
So we can define h € C*°(Q2) by letting
hly, = aai; (4.16)

By Theorem [£.2] we can solve the equation df/9z = h for f € C*(Q). Then we redefine
h; = h; — f. These now satisfy h; € O(U;), and h} — I, = g;;.
So going back to the above, we define f/ = e~ f;. On overlaps, we now have

A _— | |
LZ, = e,h/ Jio o gmem i oy i s fi 1, (4.17)
fief fi fi fi
so the f! patch together to define f € M(S2). Since we only multiplied the f; by a non-zero
holomorphic function, the order of f at w; is equal to n;. O

Corollary 4.7. If f € M(Q), then there exists g,h € O(Q) such that f = g/h in all of .

Proof. If f has poles of order n; at w;, then by the Weierstrass Theorem, there exists a
holomorphic function h € O(2) which has a zero of order n; at w;. Then g = hf has no
poles so g € O(2). O

5 Lecture 5

5.1 Power series in several variables

We review some basic facts about power series in several variables. Some good references for
this material are [FG02, Chapter 1], [JPO8, Chapter 1], or [KP02, Chapter 2.1], We write

a point z = (z1,...,2,). The open polydisc with polyradius » = (rq,...,r,) about a point
20 = (29,...,29) is the set
Alzo,r) ={z ||z —2j| <rj, j=1...n}. (5.1)
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We will let a = (ay,...,a,) € Z7 denote a multi-index, where Z, denotes the non-negative
integers. Define

24 =2 (5.2)
e A e e (5.3)
al =l ay! (54)
la] =ag + -+ . (5.5)

Definition 5.1. The series Zaezi ao(z — 29)* converges at z if some rearrangement con-
verges, that is, give some bijection ¢ : Z, — (Z,)", the series

Z ag()(z — 20)°V (5.6)

Jj=0

converges. The domain of convergence of the power series is the interior of the set of points
of convergence.

In 1 variable we know that domains of convergence are discs. Regions of convergence in
several variable can be more complicated.

Example 5.2. The domain of convergence of the series > oo zFw" is {(z,w) | |zw| < 1}.

Example 5.3 (Boas). The series > - 2"w™ converges in the 3 sets
Uy ={(z,w) | lw| <1}, Uy ={(0,w)}, Us ={(z,w) | |z] <1 and |w| =1} (5.7)

Only U; is an open set; the sets Us and Us are 1 dimensional, and are not domains. The
domain of convergence is Uj.

Lemma 5.4 (Abel). If Y a.z“ (centered at z = 0) converges at the point 2" then it con-
verges uniformly and absolutely for any point z of the form z; = p;z; where |[p;| < 1. Fur-
thermore, a point p belongs to the domain of convergence of the power series ) aaz® if and

only if there exists a neighborhood U of p, a constant C, and r < 1 such that |a,z®| < Crl®!
forall z € U.

Proof. Since the series converges at the point 2/, the terms must be bounded, so there exists

a constant C' so that |a,||2'|* < C. Let p = max{|p1|,...,|pn|} <1, and consider any point
z=(21,...,2n) s0 that |z;| < p[z}|. We then have
laall2|* < laalp!|2|* < Cpl°l. (5-8)

So given an integer N > 0, we have

N
Y laallz* =" laall2l®

la|<N J=0 |a|=j

<YYo

J=0 |a|=j
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How many multi-indices of length j are there? This is counting the number of non-negative
integer solutions of

ap+ o, =g (5.10)

To see this, let o/ = a; + 1, then we are interested in the number of positive integer solutions
to

A+ ta,=j+n. (5.11)

So we have a total of 7 + n integers, dividing this up into n integers is the same as putting
n — 1 partitions somewhere in the spaces between them, so the number is

(‘7;?; 1). (5.12)

Continuing with the above calculation,

N .
a Jjtn—1Y\ .
) DUNEEETE D (R
=0

la|<N

::ijz:(j'+'n-— 1ﬂ/ﬁ

— jl(n—1)!
Jc? N (5.13)
:G;HTE:U+H—UU+H—@‘“U+Uﬂ
=
N
<Cu Y "
=0
Applying the ratio test, we have
: n j+1 ; n
i UEV P (ALY, (5.14)
| - | p=rp
j—o0 Jnp j—o0 J

so the series converges provided p < 1.

If p belongs to the domain of convergence, then by definition the series converges in a
neighborhood of p. Then by the first part it converges in some polydisc around the origin
containing z, and we follow the first part of the proof.

O

Definition 5.5. We say that f is complex analytic in U if for each zg € U, there exists a
power series expansion

f(2) = aalz = 2)" (5.15)

a€Zly

which converges absolutely and uniformly in a polydisc A(zy, €) around zp, for some positive
polyradius €.
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5.2 Cauchy’s formula in several complex variables
Basic reference are [GHTS, [Hor90, Nog16].

Definition 5.6. We say that f is holomorphic in U if it is C*(U) and satisfies the Cauchy-
Riemann equations,

af

o7
Proposition 5.7. Let U be an open set in C. Then f is holomorphic in U if and only if f
1s complex analytic in U.

=0,j=1--n. (5.16)

Proof. Consider n = 2, the higher-dimensional case is similar. We assume that U =
A(0,7r1) x A(0,72) is a polyd1sc and f € C1(U). If f is holomorphic in U, then for fixed 2,
the slice f(z1, 22) is a 1-variable holomorphic function for z; € A(0,75). This holds similarly
for the other variable, so the Cauchy-Pompieu formula applied twice yields

1 / f(z1, we)dw
|wa|=r2

211 Wy — 29

f(Zla ZQ)

F(wn,wy)dw (5.17)
(27?2) /w2| - /w1| —py (w1 — 21)(we — 29)
For any (29, 29) € U, we expand
1 _ 1 1 _ 1 1 1 (5.18)
(w1 — 21)(wg — 29)  wa— 2wy —2) +20— 21 wy—zowy — 2V _ le—_zz%
1 1 =z =20\
IRT wl—z‘f; (wll—zl?) (5.19)
= : i(22_22>li<21_21)k (5.20)
(w1 — 29) (w2 — 29) & \w2 — 23 ) <= w1 — 2} '
N\ (21 — 29)" (22 — 23)'

=22 Ty P 20

We next show that we are justified in the last step. Let (29,29) € A(0,r])) x A(0, 7‘2) with
ri < r; and 1y, < ro. Then we have |w; — 2| > r; — 7}, and |wy — 29| > 7y — r}. For
|21 — 20| < (ry —r])/2 and |z — 29| < (12 — 1}) /2, we then have

(21 — 27)" (22 — 2)"

_ —ko—1
lan| = (w01 — 20)FT (1 — Q)01 27727 (5.22)

T (r—r)(r2 =)
so the sum converges absolutely and uniformly in any smaller polydisc by Lemma [5.4 In-
terchanging the integration and summation in then yields a power series expansion
for f.

The converse is similar to the 1-variable case. If f has a power series expansion, then
each term in the power series satisfies the Cauchy integral formula . So then f does
also by uniform convergence. Then we can differentiate under the integral to see that f is
holomorphic. For more details, see [GHTS8, page 6]. O
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Remark 5.8. Note that the integral in ([5.17)) is just over a 2-dimensional torus contained
in the boundary of the polydisc. The topological boundary of the polydisc is 3-dimensional,
but it is not a manifold, it is (A x A) = S' x AUA x S', and these 2 sets intersect along
the torus.

Similar to the 1 variable case, we have the following corollaries. In the proofs, we just
consider the case of 2 dimensions, the higher dimensional cases are similar.

Corollary 5.9. If f is analytic at zo then f is infinitely differentiable at zy and
1ORf(zg) 1 o f(z)

al 0z aglag! 02010252

o= (5.23)
Corollary 5.10 (The maximum principle). Let Q C C", and f € O(Q) N C°(2). Then |f]
does not assume its maximum at an interior point unless f is constant.

Proof. Assume that |f| attains local maximum at some interior point zg € ). Since f is
holomorphic, it admits a power series expansion f(z9) = Y, aa(z — 20)* which converges
uniformly in the closure of a polydisc A(zp,7) = A(z3,71) X A(22,73). Write ST x St =
OA(28,m1) x OA(22,79). Then |f(2)[* < |f(20)|* for z € A(zp,7), s0

1)? -
1f(z0)]? > [ — / (21, 22)PdVsicsr = Y lapl’ri*r3! > Jagl® = |f(z0)*.  (5.24)
2T Slx Sl k=0
This implies that ay; is zero except for agg and therefore f is constant. n

Corollary 5.11. Let K C 2 be a compact subset. Then there exist constants C|,|, depending
only upon K and €2 such that

sup
zeK

aoc
a];iz> ) < Clo| sup 1f(2)]- (5.25)

for all u € O(92).

Proof. Again, we just consider the case of 2 dimensions, the higher dimensional case is
similar. Fix (2,29) € Q, and let A(2% (r1,72)) C Q be a polydisc. Then for (21, 29) €
A2 (), 7)) with 7 < 7y and ry < ry, we have

[e.o]

fl,2) = am(z — ) (2 — 2), (5.26)

k,1=0

1 2/ / f(wy, we)dw
(27”) wal=rs Jjwr = (W1 — 29)FHL (wy — 29)HH

We then get Cauchy’s inequalities
8k+l f

where

k!l!T17“2

——— (2, 2] = KW ay| < sup | f(w)]. (5.28)
028024 b (r1 —71)k(rg — 1)t w=(w1,w2),|wi |=r1,|wa|=rs
The claim follows by covering K with finitely many polydiscs contained in €2. O
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The following corollaries are proved exactly as before.

Corollary 5.12. If u, € O(Q) and u, — u converges uniformly to u in the C° norm as
n — 0o on compact subsets, then u € O(S).

Corollary 5.13. If u, € O() and |u,| is uniformly bounded on every compact subset K C
Q, then some subsequence u,; converges uniformly on compact subsets to a limit u € O(S2).

6 Lecture 6

6.1 The operators J and 0 in C”

Using the coordinates
(242" = (@' +ayt, . 2™ iy, (6.1)

recall that that 750 is spanned by

T%! is spanned by
A0 is spanned by

dz! = da? +idy’ (6.4)
and A%! is spanned by

d7 = da? —idy’, (6.5)

forj=1...n.
We define A7 € AP*? @ C to be the span of forms which can be written as the wedge
product of exactly p elements in AM® and exactly ¢ elements in A%!. We have that

MeC= P A (6.6)
p+a=Fk

We define QF, Q% QP4 to be the space of sections of A¥, A¥®C, AP, respectively. So we have
that

PFeC=E o (6.7)
pta=k
If a € QP9(U), then we can write
a= ZaLszI A dz? (6.8)
1,7
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where I and J are multi-indices of length p and ¢, respectively, and a;; : U — C are

complex-valued functions.
The real operator d : Q% — Qﬂkgl, extends to an operator

d:Qf — QFt
by complexification.
Proposition 6.1. We have
d(Qp,q) C Qptla o) Opa+l
Proof. Recall that

j af’ k of! k
j E I
df’ = k adez + k 6zkdz .

Applying d to , we obtain

0z

do=Y" ( 0oLy ) i +y aa’,’f" dzk> Adz' A dZ
k

0zFk
.J -k

and we are done.
We can therefore define operators
d: QF — QFH
d:0¢ — QM

by
o,y ;i I J
Oa = dz" Ndzt N dZ
0zF
1,0k
- 0
da=>" af,;"dz’“ AdzT A dz.
0z
1,Jk
using (9.17) and we have

8|Qp,q - HAp+l,qd
8’9107(1 = HAp,tH-ld.

Corollary 6.2. We have d = 0 + 0 which satisfy
=0, 9 =0, 099+00=0.
Proof. The equation d? = 0 implies that

0=(0+0)(0+0)=0*+080+00+7.

(6.9)

(6.10)

(6.11)

(6.19)

(6.20)

If we plug in a form of type (p, ¢) the first term is of type (p + 2, ¢), the middle terms are of
type (p+ 1,¢+ 1), and the last term is of type (p,q + 2). Since (9.17)) is a direct sum, the

claim follows.
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6.2 Dolbeault cohomology

Definition 6.3. Let U C C" be a domain. For 0 < p, g < n, the (p, ¢) Dolbeault cohomology
group is
~ {a e QP(U)|0a = 0}

HY(U) (D) : (6.21)

where the forms have C* regularity.
The Dolbeault cohomology groups enjoy the following functorality properties.

Proposition 6.4. Let U ¢ C™,V c C*,W C C! be domains. Let f : U — V be a C*
mapping which is holomorphic, that is

frodo=Jyo f. (6.22)
Then there are induced mappings
o HPY(V) — HPUU). (6.23)
If g: V — W is C' holomorphic, then so is go f : U — W and
(go f)" = [ og: HM(W) — HP(U). (6.24)

In particular, if f is a biholomorphism (one-to-one, onto, with holomorphic inverse), then
the Dolbeault cohomologies of U and V' are isomorphic.

Proof. The equation implies that
F5LQPAV) = QPI(D), (6.25)
To see this, let a”? € QP4(V), then for vectors X, ..., X, we have
[FaPU Xy, .o Xprg) = &P X0, o foXpig) (6.26)
Note that if X € TH0(U), then JyX =iX, so then
J X = foJuX = [iX = if.X, (6.27)

therefore f,.X € T°(V). Similarly, if X € T%'(X) then f,X € T% (V). If more than p of
the X, are of type (1,0) or more than ¢ of the X; are of type (1,0), then the same is true
for the f.X;, and the claim follows.

We also know that the exterior derivative commutes with pullback,

dU o f* = f* ®) dv. (628)
This is equivalent to

(8U + EU) o f* = f* o (8\/ + 5\/) (629)
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If we plug in a?? € QP4(V'), we have 2 equations

Oy o f*a?? = f* o Oyal1 (6.30)

Oy o f*aP? = f* o Oyl (6.31)

The second equation implies that f* induces a well-defined mapping on cohomology f* :
HP4(V) — HP4(U) by the following. If [a”9] € HP4(V') is represented by a form a7, such
that dyaP? = 0, then we have

Bufrab? = [ByaPd = 70 = 0, (6.32)

so we can define f*[aP?] = [f*aP ], that is, map to the cohomology class of the pullback of
any representative form. To see that this is well-defined,

fara 4 Byl = frart 4 fOyp = frart By e, (6.33)
so we have
[f* (a9 + 0y )] = [fral + 9y f*B771] = [f*aP]. (6.34)
The next part follows since
(gof) =fog (6.35)

holds on the level of forms. Finally, if f is a pseudo-biholomorphism, then f~! exists and is
pseudo-holomorphic, so we have

fof™t=idy, [rof=idy, (6.36)

and the induced mappings on cohomology satisfy
o (f ) =iduvawy, (f71)" 0 f* = idmraqy, (6.37)
O

Definition 6.5. A form o € QP°(U) is holomorphic if da = 0.

Remark 6.6. We only talk about forms of type (p,0) being holomorphic, we never call a
(p, q¢)-form holomorphic if ¢ > 0. Also, we have (trivially)

HPY(U) = {a € Q"°(U) | @ is holomorphic}. (6.38)

Proposition 6.7. A p-form o € QP°(U) is holomorphic if and only if it can be written as

a = Z ardz’, (6.39)
where the ay : U — C are holomorphic functions.
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Proof. We have

8041

[|=p,k
So da = 0 if and only if the a; are holomorphic. ]

Remark 6.8. So for U C C" a domain, dim¢ H?°(U) = oo is always infinite-dimensional for
0 < p < n, in particular because any polynomial function in the z-variables is holomorphic.
Example 6.9. Let’s review the case of a domain U C C. First, Hg’O(U) = O(U). The-

orem shows that Hg’l(U ) = {0}. The space H%’O(U ) consists of holomorphic 1-forms,
but since n = 1, any holomorphic 1-form is of the form f(z)dz, where f € O(U). So
HZ°(U) = O(U). Finally,
HY () = Kerg_: bt — Qb2 _gdandz
g Image 0 : Q10 — QLY (0f/0%Z)dz N dz

which also follows from Theorem (.21

[0}, (6.41)

7 Lecture 7

7.1 The O-equation for (0,1)-forms and Hartogs’ Theorem

A reference for this section is [HL84) Section 1.2]. For n > 2, and g € Q%(U), the equation
Jf = g is not always solvable. This follows from (9.30): applying 0 yields a compatibility
condition dg = 0. The following is in sharp contrast to the case n = 1.

Proposition 7.1. Let g € Q' (C") (compact support) have C> regularity and satisfy 0g =
0. Then there exists a smooth f € QY(C™) (also having compact support) with Of = g.
Furthermore, f =0 on the unbounded component of C™ \ supp(g).

Proof. We write g = 3", g;dz’. Define

1
f(zl,...,zn)—/gl(w’ZQ’ #0) oy p d. (7.1)
C

2 w— 21
The integral is defined since ¢g; has compact support. Make the change of variable £ = w— 21,
and we can write f as

1 iy 2n -
f(zl’_”’zn):T/gl(£+zl7227 y 2 )dg/\df (72)
T Jc 3
This shows that we can differentiate under the integral sign to conclude that f has C*°

regularity. Furthermore,

Of (21, 2) 1 /(‘9g1(§+21,22,...,zn)1 _
ozt 2 Je ozt fdf/\dg
1 991§ + 21,22, -, 2n) 1 3
= _ —dé Nd 7.3
2mi ). o 55 3 (7.3)
1 Og1(w, 2, ..., 2n) _
= 2mi e 5 w_21dw/\dw—g1(z1,...,zn),
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by the Cauchy-Pompieu formula applied to a large ball containing the support of g. The
condition that dg = 0 means that

n n

- 99 —j
7=1 k=1
SO
Jg;  Ogx
23 ZIk 7.5
0z  0%; (7.5)
for all 1 < j, k <n. Then differentiating ([7.6|) for j > 2, we obtain
6f(zl>'_' '7zn) _ L/ agl(f—i_zlaz?a s 7Zn)1d§/\d§
0%; 21 Je oz’ £
1 agj(§+217227...,2n)1 -
= — —dé Nd 7.6

1 0g;(w, 2, ..., 2n)

= — dw ANdw = gi(z1,...,2,).
21 Je ow w— 2 91 )

So the equation Of = g is satisfied everywhere. Finally, since g has compact support, it fol-
lows that f is holomorphic on the complement of a large ball B,.(0) containing the support of

g. But (7.1)) shows that f vanishes when max{|zs|,...,|2s|} > r. Therefore f is a holomor-
phic function on C™\ B,.(0) which vanishes on the open subset V' = {max{|zs|, ..., |z.|} > r}.
By unique continuation, f = 0 on the unbounded component of C" \ supp(g). ]

Theorem 7.2 (Hartogs). Let n > 2, U a domain, and K C U a compact subset of U such
that U \ K is connected. Then if u € O(U \ K), there exists & € O(U) with |\ g = u.

Proof. Let 0 < xy € C§°(U) and x =1 on K. Define g = 9(x - u). Since

O(xu) = ud(x) + x0(u) = ud(x) + 0, (7.7)

we see that g extends smoothly to U, that is, g € Qg’l(U), and g = 0. By Proposition ,
there exists f € C3°(C") with 0f = g. So then we let @ = (1 — x)u + f. This satisfies

Of =—g+0(f) =0, (7.8)

sou € O(U). Let V denote the unbounded component of the complement of the support of
X Since supp(g) C supp(x), from Proposition [7.1 we have that f = 0in V, so @ = u in
UNV. But since U \ K is connected and V N (U \ K) # 0, we have & = v in U \ K from
unique continuation. ]

Example 7.3. For example, point singularities are removable for n > 2. Even polydics are
removable: if u is holomorphic on A\ A’ where A" C A are polydiscs with A’ C A, then u
extends to a holomorphic function on A. Same for B, (0) C B,,(0) with r; < ro.
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7.2 Dolbeault cohomology of a polydisc
Some references for this section are |[GHT78|, Section 0.2] or [Nogl6, Section 3.6].

Proposition 7.4. If U = A(r) is polydisc (with some radii allowed to be infinite), and
w € QPUU) satisfies Ow = 0 for ¢ > 1, then given any polyradius s < r, there exists
n € QP YA(r)) with On = w satisfied in A(s).

Proof. Step 1: reduce to case of Q%4. If w € QP9(U),

w= Z wrydz' A dz”. (7.9)
[|=p,|J|=q
Define
Wwr = Z (J.}[szj. (710)
[1|=p

Then w; € Q%7 and dw; = 0. If w; = 5771, then
O(dz" Amp) = (=1)Pdz" A Oy = (—1)Pdz" A wy, (7.11)

and we are done with Step 1. B
Step 2. Given s < r, if w € Q%(A(r)) and dw = 0 in A(r), then there exists n €
QU1 (A(r)) with dn = w satisfied in A(s). Choose cutoff functions 0 < x;(t) < 1 so that

1 t<s;
(1) = - 7.12
() {0 o (712

We begin with ¢ = 1. Note that w € Q%(A(r)), but it does not have compact support, so
we proceed differently than in the proof of Proposition Write

w= Zwkdgk, (7.13)
k

and define

1 (w22,
m 2 = o Xl(wl)wﬁ”_”;’ ) gt A dit (7.14)

lwi|<r;
Then 91, /0z' = xwi, and we have

_ 0 ony .
=3 8—7§ﬁl = xwndz + Y a—gjdzf. (7.15)
l

j>1

That is, we have solved the dz'-term, modulo terms involving dz’ for j > 1 (we have not
even used the fact that dw = 0 yet!) Next, we consider the case

w= Zwkdzk, (7.16)

k>1
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Since dw = 0, this tells us that dw,/0%z' = 0. Next, we define

1 Lw? 23, "
(2. .., ") = — Xa(Wo)wnz w7 2,2 )dw2 A dw®. (7.17)

271 w? — 22

lw?|<ro

Then 91y /0z* = xaws and 1y /0z' = 0, so we have

0
Ony = Z 8?7 dZ’ = YowsdZ® + Z azz (7.18)

7>2

Assume that we can solve all the terms involving dz* for k < I, and

w=Y wpdz". (7.19)

k>1

Since dw = 0, this tells us that dw; /07 = 0 for j < 1. Then we define

l n
. 1 Xit (Wi wir (21wt 2 >dwl+1 Adw't. (7.20)

1
ma1(z, ..., 2 —
T omi (o1 |<rise whtl — zi+1

Then Ony1 /07 = xp1wi1 and Oy, /077 = 0 for j < I, so we have

= 041 Oyt
877[+1 = Z 6_-7 d_ = Xl+1&]l+1d—+1 -+ Z zﬁ dz’. (721)
>l G>I+1
By induction, we are done with the case of ¢ = 1.
Next, consider the case of ¢ = 2. Then

w= Y wpd NdZ =) wydz' AdZ + Y wpdz A dE (7.22)

1<k<l 1<l 1<k<l

Define n = Y, _, mxdz", where

1 1 1 .2 L
ez, ..., 2") = — alw e, =, 2 )dw1 A dw'. (7.23)

270 Syt <y w! — 2!

Then 7y solves Oy, /0z = x1wik. So then

_ 0 _ _
on = Z anzlkd A dzF = lewlkdzl ANdZF + R (7.24)

1<k 1<k

where R doesn’t include any dz'-s. So we have solved the terms in w involving dz'-s. We
next assume that w is of the form

w= Y wpd NdZ =) wydP A+ Y wpdzt A dE (7.25)

1<k<l 2«1 2<k<l
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Let n = >",_, noxdz" where

1 Yo (w?)wor (21, w?, 23, ... 2")

ek = 5 3
270 S |<ry w

dw* A dw”. (7.26)

— 2

Then Onoy /0% = Yaway. Furthermore, since dw = 0, ANy /0Z' = 0. So then

I => Onudz*) => > 887;21’“ dz' Ndz* =) xowndZ A dZF + R, (7.27)

2<k 2<k 2<1 2<k

where R only has terms dz* A dz' for k,1 > 3. So we have solved as the term in w having
dz'-s or dz%-s. By a similar induction argument as in the ¢ = 1 case, we can solve all terms
in this manner. The case of ¢ > 2 is similar, and details left as an exercise. O]

Theorem 7.5. If U = A(r) is polydisc (with some radii allowed to be infinite), then
HE9(U) = {0} for g > 1.

Proof. Choose a monotone increasing sequence of polyradii ry < e < ... with lim; . r; = 1.
Given w € QY(A(r), by Step 2, we can find n; € Q"1 (A(r)) with dn; = w on A(r;). We

do not know that the sequence 7; will converge. However,_g(njﬂ —n;) =0in A(r;). If ¢ > 2,
then by Step 2, we can find 8,1 € Q*2(A(r;)) solving d(8;41) = 041 —n; in A(r;_1). We

then consider the sequence 7, = 1,41 — 9(8;41). Then 7, € Q*2(A(r;) and

5(77}“) = 577j+1 - 52(5j+1) =w (7.28)

in A(r;_1), and this new sequence now obviously converges to a solution 7 € Q%4(A(r) with
On = w in A(r).

If ¢ = 1, then we prove exactly like we did in the case of n = 1, by approximating the
difference 7,41 — n; by a polynomial P;;; to obtain a sequence so that

sup 140(2) = ()| < 27, (7.20)

and we obtain a sequence converging on compact subsets to a solution. O

Remark 7.6. Using Laurent series instead of polynomials, a similar proof works to prove
that Theorem [7.5] also holds for products A*(r1) x -+ X A*(rg) X A(rgs1) X - - A(rgyy), that
is, we can allow punctured 1-dimensional disks. With a lot more work, one can also show
that Theorem holds for €y x --- x €, with Q; C C are domains. Note the result is NOT
true for a punctured polydisc A(0,r) \ {0} for n > 2, but we cannot prove that yet.

Remark 7.7. Theorem also holds for a ball B(0,r) C C". However, this is difficult to
prove directly. One could use the Bochner-Martinelli kernel instead of the Cauchy kernel to
prove Proposition . Then one would also need to prove that the B(0, ) is a Runge domain,
that is, O(B(0,r)) can be approximated by holomorphic polynomials uniformly on compact
subsets. However, it seems actually easier to prove this more generally for any pseudoconvex
domain (using Hormander’s L? methods), and then show that B(0,r) is pseudoconvex.
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8 Lecture 8

8.1 Almost complex manifolds

Definition 8.1. An almost complex manifold is a real manifold with an endomorphism
J: TM — TM satisfying J? = —Id.

The following lemma shows that we can always take J to be standard at any point.

Lemma 8.2. Let J : R*™ — R?" be a linear mapping satisfying J?> = —Id. Then there exists
an invertible matriz A such that A~ JA = Jgue.

Proof. For X € R*", define

(a+ib)X =aX +bJX. (8.1)
Then R?" becomes an n-dimensional complex vector space. Let Xi,..., X, be a complex
basis. Then X, JX1,...,X,, JX, is a basis of R?" as a real vector space, and .J is obviously
standard in this basis. O

Remark 8.3. The Newlander-Nirenberg Theorem deals with the following question: when
can we make J standard in a neighborhood of a point? As we will see shortly, this cannot
possibly be true for an arbitrary almost complex structure; there is an integrability condition
which must be satisfied.

All of the linear algebra we discussed above in C" can be done on an almost complex
manifold (M, J). We can decompose

TM®C=TY g1, (8.2)
where
T ={X-iJX,X € T,M} (8.3)
is the i-eigenspace of J and
™' ={X +iJX,X € T,M} (8.4)

is the —i-eigenspace of J.
The map J also induces an endomorphism of 1-forms by

J(w)(v1) = w(Jvy).
We then have
T*®C = Ao A, (8.5)
where

AY ={a—iJo,a € T, M} (8.6)

33



is the i-eigenspace of J, and
A ={a+iJa,a € TAM} (8.7)

is the —i-eigenspace of J.
Next, we can define A»? C AP ® C to be the span of forms which can be written as the
wedge product of exactly p elements in A'Y and exactly ¢ elements in A%!. We have that

MeC= P A" (8.8)

pt+q=k
decomposes as a direct sum.

Remark 8.4. This gives a necessary topological obstruction for existence of an almost
complex structure: the bundle of complex k-forms must decompose into to a direct sum of
subbundles as in ({8.8)).

We can extend J : A* @ C — A* ® C by letting
Ja =i a, (8.9)
for a € AP4 p+ q = k. Note we can also extend J to k-forms by
Joa(Xy, ..., Xg) =a(JXy, ..., JXE). (8.10)
Exercise 8.5. Check that these two definitions of J on k-forms agree.

Definition 8.6. A triple (M, J,g) where J is an almost complex structure, and g is a
Riemannian metric is almost Hermitian if

9(X,Y) = g(JX, JY) (8.11)
for all X,Y € T'M. We also say that g is compatible with J.

Proposition 8.7. Given a linear J with J*> = —Id on R®", and a positive definite inner
product g on R®™ which is compatible with J, there exist elements {X1,...X,} in R*" so that

{X1,JXq,..., X0, JX,, } (8.12)
is an ONB for R*" with respect to g.

Proof. We use induction on the dimension. First we note that if X is any unit vector, then
JX is also unit, and

9(X,JX) = g(JX, J2X) = —g(X, JX), (8.13)

so X and JX are orthonormal. This handles n = 1. In general, start with any X5, and let
W be the orthogonal complement of span{ Xy, JX;}. We claim that J : W — W. To see
this, let X € W so that g(X, X;) = 0, and ¢g(X, JX;) = 0. Using J-invariance of g, we see
that g(JX,JX;) = 0 and ¢g(JX, X;) = 0, which says that JX € W. Then use induction
since W is of dimension 2n — 2. O
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Definition 8.8. To an almost Hermitian structure (M, J, g) we associate a 2-form
w(X,Y)=g(JX,Y) (8.14)
called the Kdhler form or fundamental 2-form.
This is indeed a 2-form since
wY,X)=g(JY,X) =g(J?Y,JX) = —g(JX,Y) = —w(X,Y). (8.15)
Furthermore, since
w(JX,JY) =w(X,Y), (8.16)

this form is a real form of type (1,1). That is, w € T'(Ag'), where Ag' € A is the real
subspace of elements satisfying w = w.
In Euclidean space (R?", Jy, gguc), the fundamental 2-form is

i -
Whue = 3 Z dz? NdZ. (8.17)
We note the following formula for the volume form:

(%) dz' NdZV A ANdZP AN dZET = dat Ady' Ao A da A dy” (8.18)

Note that this defines an orientation on C™, which we will refer to as the natural orientation.
Note also that

wh o=nl-dz' Ady' A Adx™ A dy™. (8.19)
Proposition 8.9. If (M, J) is almost complex, then dim(M) is even and M is orientable.
Proof. 1If M is of real dimension m, and admits an almost complex structure, then

(det(J))? = det(J?) = det(—1) = (—1)™, (8.20)

which implies that m is even. We will henceforth write m = 2n. Next, let ¢ be any
Riemannian metric on M. Then define

WMX,Y) =g(X,Y) +g(JX,JY). (8.21)

Then h(JX,JY) = h(X,Y) is J-invariant, so (M, J, h) is almost Hermitian. We then
consider the fundamental 2-form

W(X,Y) = h(JX,Y). (8.22)

This is a form of type (1,1), so w™ € Ag™ = A" is a top degree 2n-form. It is nowhere-
vanishing since at any point € M by Proposition [8.7] we can assume that both J, = Jgy.
and g, = ggue, 0 w"(z) # 0 by (8.19). Therefore, w gives a globally defined orientation on
M. O
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Example 8.10. For example, RP" does not admit any almost complex structure, since it is
non-orientable for n even.

Definition 8.11. A smooth mapping between f : M — N between almost complex mani-
folds (M, Jy) and (N, Jy) is pseudo-holomorphic if

f*OJM:JNOf* (823)
We have a useful characterization of pseudo-holomorphic mappings.

Proposition 8.12. A mapping f : M — N between almost complex manifolds (M, Jy) and
(N, Jy) is pseudo-holomorphic if and only if

f(THO(M)) € TH(N), (8.24)
if and only if

FH(AYO(N)) € AM(M). (8.25)

8.2 Complex manifolds

We next define a complex manifold.

Definition 8.13. A complex manifold of dimension n is a smooth manifold of real dimension
2n with a collection of coordinate charts (U,, ¢,) covering M, such that ¢, : U, — C™ and
with overlap maps ¢, o gbgl t 9p(Us NUs) — ¢a(Uy N Up) satistying the Cauchy-Riemann
equations.

Example 8.14. Since holomorphic mappings are orientation-preserving by ([1.40)), any com-
plex manifold is necessarily orientable. For example, RP" does not admit any complex
structure. Note that we knew from Example [8.10] above that there is no almost complex
structure.

Complex manifolds have a uniquely determined compatible almost complex structure on
the tangent bundle:

Proposition 8.15. In any coordinate chart, define J, : T My, — T My, by
J(X) = (¢a)t 0 Jo 0 (¢a)X. (8.26)

Then J, = Jg on Uy, NUg and therefore gives a globally defined almost complex structure
J:TM — TM satisfying J* = —Id.

Proof. On overlaps, the equation

(¢a)' 0 Jo0 (¢a)s = (¢5):" 0 Jo o (d5)- (8.27)

can be rewritten as

Jo o (¢a)s 0 (95)7" = (da)x 0 (¢5)7" 0 Jo. (8.28)
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Using the chain rule this is

Joo (¢a0dz')s = (¢ao0dz')s 0o, (8.29)

which is exactly the condition that the overlap maps satisfy the Cauchy-Riemann equations.
Obviously,

J? = (éa)*_l 0 Jo o (¢a)s 0 (¢a)*_1 o Jo 0 (¢a)«
= (Qba);l © Jg 0 (Pa)s
= (¢a); ' o (=Id) o (¢a). = —Id.

O
The next proposition follows from the above discussion on Cauchy-Riemann equations.

Proposition 8.16. If (M, Jy) and (N, Jy) are complex manifolds, then f : M — N is
pseudo-holomorphic if and only if is a holomorphic mapping in local holomorphic coordinate
systems.

Definition 8.17. An almost complex structure .J is said to be a complex structure if J is
induced from a collection of holomorphic coordinates on M.

Proposition 8.18. An almost complex structure J is a complex structure if and only if
for any x € M, there is a neighborhood U of x and a pseudo-holomorphic mapping ¢ :
(U, J) — (C", Jy) which has non-vanishing Jacobian at x. Equivalently, there exist n pseudo-
holomorphic functions f7: U — C,j = 1...n, with linearly independent differentials at x.

Proof. By the inverse function theorem, ¢ gives a coordinate system in a possible smaller
neighborhood of of x. The overlap mappings are pseudo-holomorphic mappings with respect
to Jy, so they satisfy the Cauchy-Riemann equations, and are therefore holomorphic. The
components of ¢ are functions f7,j = 1...n with linearly independent differentials, and
conversely, ¢ = (f1,..., f") is a local coordinate system. O

Proposition 8.19. A real 2-dimensional manifold admits an almost complex structure if
and only if it is oriented.

Proof. We have already proved the forward direction. Let M? be any oriented surface, and

choose any Riemannian metric g on M. Then * : A — Al satisfies > = —Id, and using
the metric to identify A' = T'M, we obtain an endomorphism J : TM — TM satisfying
J? = —Id, which is an almost complex structure. O

Remark 8.20. In this case, any such J is necessarily a complex structure. This is equivalent
to the problem of existence of isothermal coordinates, we will prove this soon.
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9 Lecture 9

9.1 The Nijenhuis tensor

When does an almost complex structure arise from a true complex structure? To answer
this question, we define the following tensor associated to an almost complex structure.

Proposition 9.1. The Nijenhuis tensor of an almost complex structure defined by
NX,Y)=2{[JX,JY] - [X,Y]| - JX,JY] - JJX,Y]} (9.1)
is in D(T*M @ T*M @ TM) and satisfies

N(Y,X)=-N(X,Y),
N(JX,JY)=—-N(X,Y),
N(X,JY)=N(JX,Y)=—J(N(X,Y)).

Proof. Given a function f: M — R, we compute

N(fX,Y)=2{[J(fX),JY] = [fX,Y] = J[fX,JY] = J[J(fX),Y]}
=2{[fJX,JY] - [fX,Y] = J[fX,JY] = J[fJX,Y]}
=2{f[JX,JY] = (JY(f)JX - fIX,Y]+ (Y )X
— J(fIX, JY] = (JY()X) = J(flIX, Y] = (Y [)JX)}
= fNX,Y)+2{—=(JY ()X + Y HX + (JY()IX + (Y f)J*X}.

Since J? = —1I, the last 4 terms vanish. A similar computation proves that N(X, fY) =
fN(X,Y). Consequently, N is a tensor. The skew-symmetry in X and Y (9.2) is obvious,
and (9.3)) follows easily using J? = —Id. For ({9.4)

N(X,JY)=—N(JX,J?Y) = N(JX,Y), (9.5)

and

N(X,JY) = 2{[JX, J?Y] - [X,JY] = JX, J2Y] = J[JX,JY]}
= 2{—[JX,Y] - [X,JY] + J[X,Y] — J[JX, JY]}

QI {JIX, Y]+ JIX, Y]+ [X, Y] = [JX, JY]} (9:6)
= —2J{N(X,Y)}.
O
Proposition 9.2. For a C' almost complex structure J,
Ny eT({(A0 @ T™) @ (A2 ')}, ). (9.7)

Consequently, if dim(M) = 2n, then the Nijenhuis tensor has n*(n — 1) independent real
components. In particular, if n =1, then Ny = 0.
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Proof. If we complexify, just using (9.2)), we have
N;eT(A°®TM)®C))

_ F((A2’0 dA2 @AY @ (TH e T0’1)>. (9:8)
But says that the AY' component vanishes. So we have
Ny e (A% @ A%2) @ (T 7)), (9.9)
Using , for X" Y € I'(T'M), we have
N(X' —id XY —iJY")
— NJ(X,Y') = NS(JX', JY') — NS (X', Y') = iNy (X, Y 010

= NJ(X',Y')+ Ny (X', Y') + i Ny (XY + i N, (X', Y)
= 2N, (X', Y') + 2iJN, (X', Y"),

which lies in 7%!. This shows that the A** @ T%° component vanishes, so the A%? @ T%!
component also vanishes, and (9.7 follows since N, is a real tensor. O

We have the following local formula for the Nijenhuis tensor.

Proposition 9.3. In local coordinates, the Nijenhuis tensor is given by

2n
N =2 (JropTi — JEon) — Ty, T3 + Jy0J)) (9.11)
h=1
Proof. We compute
1
§N(8j, 8k) - [Jﬁj, Jak] - [Gj, 8k] - J[aj, J@k] - J[J(?j, 8k]

= [J10), J[" O] — (05, O] — J[0;, JLOi] — J[J;0y, Ok)
=T+ 1T+ IIT+1V.

The first term 1is

I = J;0/(Jf"Om) — T O (J;00)
= JH O[O + JL T 0100 — T (O )00 — Ji T 0O,
= JH(OI]) O — 7 (O 5) O

The second term is obviously zero. The third term is

IIT = —J(0;(J0)0) = —0;(JL) IOy (9.12)

Finally, the fourth term is
IIT = 8,(J}) J" 0. (9.13)
Combining these, we are done. O
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Definition 9.4. If J is an almost complex structure of class C! satisfying N; = 0, then we
say that J is integrable.

Corollary 9.5. If (M, J) arises from a complex structure, then J is integrable.

Proof. In local holomorphic coordinates J = Jy is a constant tensor, and N(J) = 0 follows
from Proposition [9.3 O

Next, we have an alternative characterization of the vanishing of the Nijenhuis tensor.

Proposition 9.6. For an almost complex structure J the Nijenhius tensor N(J) =0 if and
only if for any 2 vector fields X,Y € T'(T™Y), their Lie bracket [X,Y] € T'(T'Y).

Proof. To see this, if X and Y are both sections of T1? then we can write X = X' —iJX’
and Y =Y’ —iJY’ for real vector fields X’ and Y’. The commutator is

(X' —iJ XY =Y = [ X, Y] = [JX, JY'] —i([X, JY'] + [JX', Y']). (9.14)
But this is also a (1,0) vector field if and only if
(X JY' )+ [JX )Y =JX Y] - JJX JY'] (9.15)
applying J, and moving everything to the left hand side, this says that
[(JX', JY'|— [ X Y- JX,JY'T—JJX' Y =0, (9.16)

which is exactly the vanishing of the Nijenhuis tensor. O

9.2 The operators J and 0

Recall that on any almost complex manifold (M, J), we can define A»? C APT? ® C to be
the span of forms which can be written as the wedge product of exactly p elements in A%°
and exactly ¢ elements in A%, We have that

MeC= P A (9.17)

p+g=k

We define QF, QF, QP9 to be the space of sections of AF, A¥ @ C, AP4, respectively. The real
operator d : Qf — Q&*! extends to an operator

d:Qf — QF! (9.18)
by complexification.

Proposition 9.7. For a C' almost complex structure J
d(QP7Q) c Qpt2a-l g Qptla g Qpat! o Qp—17c1+27 (9‘19)
and Ny =0 if and only if

d(QPT) C QPLa g QPatL, (9.20)
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if and only iof

Q) c 020 g QM (9.21)
if and only if

d(Q™ c Qb g Q02 (9.22)

Proof. Let a € Q77 and write p + ¢ = r. Then we have the basic formula

do(Xo,.... X,) = (-1YX;a(Xo,..., X;, ..., X;)
)X X Xy K K X))
1<J

This is easily seen to vanish if more than p 4+ 2 of the X; are of type (1,0) or if more than

q + 2 are of type (0,1), and (9.19) follows.
Next, assume that (9.22)) is satisfied. Let a € Q%! then

da(X,Y) = X(a(Y)) = YV(a(X)) — a([X,Y]) (9.24)

then implies that if both X and Y are in T then so is their bracket [X,Y]. Proposition
implies that N(J) = 0. Conversely, if N(J) = 0, then we can reverse the steps in this
argument to obtain ((9.22). Equation ((9.21)) is just the conjugate of .

Recall that if o € QF and 3 € Q' then

dlaAB) =daA B+ (=1)FandB. (9.25)
The formula (9.20]) then follows from this. O
If N; =0, we can therefore define operators
d: QF — QFH (9.26)
0:QF — Qt! (9.27)
using (9.17) and
8|Qp,q = HAerl,qd (928)
Olara = I ppard. (9.29)

Corollary 9.8. For a C* almost complex structure J with Ny =0, d = 0 + 0 which satisfy
P2=0, 9 =0, 00+0d=0. (9.30)

Proof. The equation d? = 0 implies that
0=(0+0)(0+0)=0*+080+00+7. (9.31)

If we plug in a form of type (p, ¢) the first term is of type (p + 2, ¢), the middle terms are of
type (p+ 1,q+ 1), and the last term is of type (p,q + 2). Since (9.17)) is a direct sum, the
claim follows. O
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10 Lecture 10

Recall that for n = 1, any almost complex structure .J satisfies N; = 0, so there is no
integrability condition. Let’s look at various forms of the equations.

10.1 Real form of the equations

We just look in an open set in real coordinates (z,y), and then we have

The only condition is

2
2 (a+bc bla+d)
[=J"= (C(a—l—d) be + d? (10.2)

If we assume that J is not too far from Jy, then b ~ —1 and ¢ ~ 1, so we must have
a+d=0, a®+bc=—1. (10.3)

Note that since b ~ —1, we can solve ¢ = —(1+a?)/b, but we won’t need to do this now. So
we just consider

J (a(w,y) b(z,y) ) ' (10.4)

c(r,y) —alz,y)
We want to find a pseudo-holomorphic mapping
¢ (U, J)— (C,Jy) (10.5)
which has non-vanishing Jacobian at 0. So we want to solve
P00 J = Jyo g, (10.6)

If we write

ote.n) = (L)) (10.7)

v(z,y
then the pseudoholomorphic condition is
Uy Uy fa b\ [0 =1\ [u, wuy
()G 2) -0 w03
which yields the 4 equations

g + cuy = —v,  buy —au, = —v,
vy + cvy = Uy bv, —avy = u,

(10.9)
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This looks like 4 first-order equations for 2 unknown functions, so one wouldn’t expect a
solution. However, the first two equations imply the second two:

avy + cv, = a(—au, — cuy) + c(=buy + auy) = (—a® — be)u, = Uy, (10.10)
and
bv, — av, = b(—au, — cu,) + a(bu, — au,) = (—bc — a*)u, = u,, (10.11)
using the condition that a? + bec = —1.

Example 10.1. Let’s now do an example. Consider

2z -1
J = <1 4 42 _233) ) (10.12)

J _(1+4$2 -2z 14422 —2¢) Lo —=1)° (10.13)

so this is indeed an almost complex structure.

From ([10.9), the pseudoholomorphic equations are

We have

2xu, + (14 42%)u, = —v, (10.14)
—Uy — 20Uy, = —U,. (10.15)
If a sufficiently smooth solution exists, then we have v,, = v,,, which yields
(22u, + (14 42*)uy), = —(ux + 271,), (10.16)
This can be rewritten as
Uy + 42Uy + (1 + 42%)uy, + 2u, = 0. (10.17)

By inspection, we find that u = x is obviously a solution. We then return to the pseudo-
holomorphic equations, and find that

Uy = —2x, v, =1, (10.18)

so we can choose v = —z? +y. So our solution is ¢ = (u,v) = (z,y — x?). The Jacobian
at the origin is clearly non-degenerate, so we have found a holomorphic coordinate system.
Note that the mapping ¢ : R? — C is defined everywhere. It is injective: if we have
(r1,51 — 23) = (z2,y2 — x3) then the first component says that z; = z, and the second
component then implies that y; = yo. It is also surjective: given any (u,v) € C, we let
29 = u, and then we need to solve y — u? = v, which obviously has a solution y = —u? + v.
Thus we have found that

¢: (R J) = (C,.Jp) (10.19)

is a global biholomorphism! Note that any function of the form f(z,y) = h(z + i(y — 2?)),
where h is a holomorphic function with respect to Jy, is then holomorphic for Jy, for example

f(z,y) = e*“(cos(y — 2°) + isin(y — z%)). (10.20)
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10.2 Complex form of the equations

In the basis {9/0z,0/dy} we have J of the form

c(z,y) —a(x,y)

satisfying a? + bc = —1. Using (1.36]) to change to the complex basis {0/0z,0/0z}, then we
have

1 i(c—10 2a +1(b+c
1=3 <2a ! i(b+)c> —i(c(— b) )) (10-22)

For a complex valued function w, the equation 9w = 0 is Ijoadw = 0, which is

0 =dw+iJdw = w,dz + wzdz + iJ (w,dz + wzdZ)

10.23
= w,dz + wsdz + 1w, Jdz + 1wz Jdz. ( )

Note that we need to use J : A — A! here, which is the transpose matrix of the above J.
So we have

0 = w.dz + wsdz + %wz(i(c —b)dz + (2a + i(b+ c))dz) + %wg((Qa —i(b+c¢))dz —i(c — b)dz)

1 .. L, . 1 -
= <wz + §(b —cw, + 5(2@@ +b+ c)w;) dz + <wg + 5(2az —b—c)w, + 5(0 — b)w;) dz.
(10.24)

Let’s look only at the second equation which is
1 1.
(1 + 5(0 - b))wg = —5(2a2 —b—c)w,. (10.25)

If b — ¢ # 2, which is certainly the case if J is close to Jy, then the leading coefficient is
non-zero, and we can divide to get

2ai —b—c
;= ———————W, 10.26
v 24+c—> v ( )
Note that the first equation is
1 1, .
(1 + §(b - c))wz = —5(2(” + b+ c)ws. (10.27)
If 2ai — b — ¢ # 0, then we can divide to get
2+b—-c
y = ———————W,. 10.28
201+ b+ ¢ ( )
I claim these are the same equation. For this, we would need
2ai — b — 2+b—
at c 2+ c (10.29)

24c—b  2ai+b+c’
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which yields

(20t —b—c)(2ai+b+c)=(24+c—b)(2+b—c), (10.30)
which is
—4a®> — (b+c)* =4 — (c—b)~ (10.31)
Expanding this out
—4a* — b* — 2bc — 2 =4 — * + 2bc — b, (10.32)
which is true since a® + bc = —1!

Definition 10.2. The equation
wz — u(z,Z)w, =0 (10.33)

is called the Beltrami equation.

10.3 Method of characteristics
This is a general method for solving linear PDE by solving nonlinear ODEs, we just explain

for the Beltrami equation. Let’s solve the nonlinear ODE

% = ulzs), =(0) = (10.31)

The solution will depend on the independent variable s and the initial conditions w, call the
solution ®(s,w), and we write

2= ®(s,w). (10.35)

By the implicit function theorem, we can write w = w(z, s) in a neighborhood of (s,w) =
(0,0), provided that 22| # 0. But this is

0o L ®(0,h) — ©(0,0) B
0 o }lg% - =1. (10.36)
So we have
2= ®(s,w(z,s)). (10.37)

Taking the partial derivative of ((10.37) with respect to z yields

0P Jw
l=——. 10.38
ow 0z ( )
Taking the partial derivative of (|10.37)) with respect to s yields
0P 0P ow
0= —— 1+ 2277 10.39
Os + ow ds’ ( )
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which is
8_w> ow
0z ds’
which is the Beltrami equation upon letting s = Zz.
Let’s return to Example , and solve using this method. Recall

g 2x -1\ [fa b
T \1+422 —22)  \¢ —a)-

So we need to solve the Beltrami equation with

0=—pu(zs)+ (

2ai—b—c_ dri+1— 1 — 422 xi — x? T

,u:

Since z = (2 + %) /2, we have

( _) z24+z
2,Z2) = ——.
% 20+ 2+7Z
Let’s solve the ODE

d

d_z = —u(z,s), z(0) =w.

For our example, this is

dz z+ s

ds  2i+z+s

To solve this, let’s make a change of variables p = z + s. Then

which gives

dp p 2
ds 2i+p 2i+p

or
(20 4+ p)dp = 2ids,
which integrates to
2ip + %p2 = 2is + C,
which is

1
2i(z +s) + 5(2 + 5)? = 2is + C.
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Our initial conditions are z(0) = w, so we get
: 1 5 : : L,
2i(z + s) + 5(2 +5)° = 2is + 2iw + S (10.51)
This is
w? + 4iw — 4iz — (2 +5)* =0 (10.52)

Using the quadratic formula and letting s = Z yields

W= —2i+ /4 +4iz + (2 + 2)2, (10.53)

and we take the branch of the square root satisfying +/—4 = 2i. Note that this does not
agree with the above method, but this is because the initial conditions are different. The
above solution satisfies w(z,0) = z, but the solution found in the previous section was

w=z—ir’ =z — i(z +2)?, (10.54)

22,

which satisfies w(z,0) = z — i

11 Lecture 11

11.1 Another example

This example will be crucial in proving convergence in the analytic case, and is called a
Cauchy majorant.

Proposition 11.1. For p >0, and C' > 0, let
1 _
0= C( _ _ 1) _ CLZ_,
1—(242)p! p—z—72Z

which is analytic in the polydisc P(p) = {(2,2) | |z| < p/2,|Z] < p/2}. Then there is a
solution w* of the Beltrami equation wi — p*(z,Z)w: = 0 satisfying w*(z,0) = z which is
analytic in some polydisc P(p') for some p' > 0.

(11.1)

Proof. We use the method of characteristics from the previous example: solve the ODE

dz

— = —u" 11.2
0 = TH(%8) (11.2)
with initial condition z(0) = w. Note, by scaling the coordinates, without loss of generaliity,
we can assume that p = 1. So we need to solve the ODE

= _ _c 255 0)—w (11.3)

ds 1l—2—35’
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Letting p = z + s, and the equation becomes

dp Cp 1—(C+1)p
—=1- = =w. 11.4
- T, - , p(0) =w (11.4)
This is separable, so we rewrite as
1—
-dp=d 11.5
1-(C+1p P (11.5)
We can write
1—0p 1
= 1+ —). 11.6
1—(C+1)p C+1(+1—(O—|—1)p> (11.6)
So the equation is
C
14— ) = 1 11.
( +1—(C’+1)p> (C +1)ds (11.7)
Integrating yields
C
p— C+1log(1— (C+1)p)=(C+1)s+Ch. (11.8)
Plugging in the initial conditions gives
C
— log(1 — 1)p) = 1 — log(1 — Dw). 11.
P apqlosl—(C+1p)=(C+Ds+w— 7 log(l - (C+ w) (11.9)
In terms of z, this is
e log(1—(C+1)(z2+5))=Cs+w— C’i 1 log(1 — (C' + 1)w). (11.10)
Rewrite this as
w — ¢ log(1—(C+1)w)=2—-Cs— ¢ log(1 = (C'+1)(z2+5)) (11.11)
c+1 8 B c+1 8 ' '
Near (z,s) = (0,0), the right hand side is an analytic function. If we let
C
=w — log(1 — 1 11.12
flw) = w = =—log(1 = (C+ 1w (1112
Then f is analytic near w = 0. Also,
F0)=1+C#0. (11.13)

By the holomorphic inverse function theorem, f~! exists and is analytic near 0; see [Pal91l,
Theorem VIII.1.8]. So then we have

C
_ r—1 _ _ _
w=f (z Cs C+1log(1 (C+1)(z+s))> (11.14)
is analytic. Setting s = z, we have
C
_ -1 (5 _ _ =
w=f (z Cz C+110g(1 (C+1)(z+z))> (11.15)
which is analytic. Note also that
o, _ _ -1 _
w(z0) = (2= Goqlesl - (C+1)2) =) == (1116)
so the correct initial conditions are satisfied. O
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11.2 Equivalence of J and p

The following proposition gives another way to think about almost complex structures for
n=1.

Proposition 11.2. If J is defined in an open set U which induces the standard orientation
on U, then there ezists a unique complez valued function p: U — B(0,1) C C so that

T ={v+uv | veTy'} C Tel. (11.17)
Ezxplicitly, if
J = (a b ) (11.18)
c —a
with a®> + bc = —1, then
2a0 —b—c

_ ' 11.19
K 24+c—b ( )

Conversely, given a function p: U — B(0,1) C C, writing p = f + ig, there is a uniquely
determined almost complex structure J given by

1 2g —(1+f)? =g
= 11.2
! 1—f2—g?(92+(1—f)2 —2g (11.20)
which has Tg’l gwen by the above.

Proof. Given any such J, then we have previously defined
T ={X €TeU | JX = —iX} = {X'+iJX' | X € TrU}. (11.21)

We next claim that the projection 7 : Tg’l — Tgél is a complex linear isomorphism. These
are two 1-dimensional complex subspaces of the 2-dimensional space TU ® C, so there is a
complex linear projection mapping, which is given by

X 4 iJX = X +idX +idy(X +iJX) = (X' — JpJX) +i(J + J)X.  (11.22)

Since both spaces are 1-dimensional, and 7 is complex linear, it is an isomorphism provided
it is not the zero map. Obviously, from , if J # —Jp then it is not the zero mapping.
We may therefore write Tﬁ)’l as a graph over Tgél. To do this, we compute like last time:
using to change to the complex basis {0/0z,0/0z}, then we have

1 ilc—b 2a +i(b+c
1=3 <2a ! z'(b+)c) —z'(c(— b) )) ' (11.23)

Then a basis for the 1-dimensional space T 3’1 is given by

882’ + J(;;) ;Z ‘ ( (b— c)a2 + (2a +i(b+ c))i) (11.24)
= <1+C;b>§+%(2m—b—0)§z (11.25)
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From this, we find that

200 — b —c

= 11.26
as claimed. Using a? 4 bec = —1, we compute
4(—-1 -0 b 2 24b—
|M’Q:( o)+ (b+c)?  24+b—c (11.27)

(24 c —b)2  =24b—c

To show that |u] < 1, we use the orientation condition. Notice that the condition be =
—1 —a? says that be < 0, so there are 2 components to the set of almost complex structures,
determined by the sign of b: if b < 0, then this is the component inducing the standard
orientation. In this case, we have

24+b—c
— <1 11.28
—24+b—-c ( )
is equivalent to
24b—c>-24+b—c, (11.29)

which is obviously true.
Next, given any such function u, we define

0 0
TB’I = Span{a— + u@z} (11.30)
Define
o _0
T = s,pam{E + u£}. (11.31)

We claim that 7,9 N T)" = {0}. To see this, if the intersection was non-zero, then there
would exist o € C so that

Y —

o 0 o 0
55 +hg: =l i) (11.32)

This clearly implies that @ = p and then |u|*> = 1. But we have assumed that |u| < 1, so
the claim follows. To find the corresponding almost complex structure J, we must have

gz + u; — X' +iJX, (11.33)

for some real tangent vector X’. We then write the real and imaginary parts of the left hand
side:

0 0

8E+M5’z

(i) on( o)
0 0

(11.34)
((1+f) a—y)+%<g§+(1—f)a—y).

1
2
1
2
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So we must have

d d d d
J<(1+f)%+ga—y) =95, T (1= fg (11.35)
and since J? = —Id,
0 0 0 0
J(Q%Jr(l—f)a—y) __((1+f)a_x+ga_y>' (11.36)

A simple change of basis computation shows that

_ 1 29 —(14+f)—¢°
J = g (92+(1_f)2 g ) (11.37)

O
This gives another way to understand the Beltrami equation. Given u : U — C with

|| < 1, then since

0 0
0,1 _
T, = Span{_az + “az}’ (11.38)

a function w : U — C is holomorphic if and only if

0 0
(5 + u&)w — 0, (11.39)
or
wz + pw, = 0, (11.40)

which is exactly the Beltrami equation. We can just completely forget about the matrix
version of J, and parametrize almost complex structures by a single function u : U — B(0, 1).

Remark 11.3. This proposition also shows us that the regularity of J : U — GL(2,R) is
the same as the regularity of y: U — B(0,1). That is, J is C®* C>, C% if and only if yu is
also.

Remark 11.4. The complex structures inducing the reversed orientation correspond |u| > 1
together with the point at infinity, which corresponds to the complex structure —.Jy.

12 Lecture 12

12.1 The Beltrami equation: analytic case

Now we consider the Beltrami equation

wy = p(z,2)w, (12.1)
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Assuming p is analytic, we have a convergent power series expansion

w2 %) =Y g =) A7 =) (12.2)
Jik 1=0 j+k=I 1=0

Using Lemma [8.2] we can make the ACS standard at the origin, which implies that py = 0,
that is, u has no constant term. We also write

o e}
w = E w7 = E E wpAZ" = E wy. (12.3)
J:k 1=0 j+k=l 1=0

We want to find a holomorphic coordinate system, so we make the assumption that wy =0
and w; = z.

We then have

Wy = Z Ozw; (12.4)
=2
w, =1+ d.wy. (12.5)

We then want to solve

we= Yo =g = (N ) (14 0m) = (Ln) ¢ X won
=2 =1 k=2 =1

=2 j+k=l,j>1,k>2
(12.6)

We then find the recursion relation

dzwipr = + D pj O wg. (12.7)

J+k=l+1,j>1,k>2

Note that in the sum on the right hand side, we must have k < [, so this in indeed a recursion
relation, provided that we can solve for w;,.

Fixing [, the right hand side is just a homogeneous polynomial of degree [ in the variables
z and Z. In general, if f; =37, 0450 h;rz'Z", then

1 .
Fi= Z k + 1hj/}2']5k+1 (12.8)
j+k=1,j>0,k>0

is a homogeneous polynomial of degree [ + 1, which satisfies OzF = f.

Remark 12.1. Notice that our “inverse” of the d-operator on homogeneous polynomials of
degree [ does not contain any terms proportional to /1. Our inverse operator is unique with
this condition. If we had not imposed this condition, one could have chosen w; = I!2! + O(z),
in which case our series would definitely not converge! Also, if we view our series as a power
series in 2 complex variables, then formally w(z,0) = z exactly because of this choice of
inverse to 0.
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Proposition 12.2. The coefficients w;;, for j+k =1 are a polynomial of degree [ —1 in the
tpg for p+q < 1 with all coefficients non-negative rational numbers.

Proof. Let us examine the first few steps of the iteration. We have wgg = 1, wig = 1, and
wor = 0. The term wsy is determined by

Ozwy = 1 = 12 + [o1Z, (12.9)
SO
_ 1
Wo = (1527 + S Ho1Z" (12.10)
SO
1
wp =0, Wil = jup,  Wea = SHoT- (12.11)

To illustrate, let’s do one more step. The term ws is determined by

Ozws = iy + 110,wa = Ugpz® + 12Z + pe3Z° + (12 + p01Z) (110%)

_ . (12.12)
= 102" + (p11 + 1155) 2% + (02 + poif10)Z”.
SO
2, 1 2 y.=2, 1 3
W3 = f52"Z + 5(#11 + p115)2%" + g(ﬂoé + Kot o)z (12.13)
SO
1 9 1
wap =0, wao = peo, Wiz = 5kt +pg),  Wos = g(ﬂo? + Hoik10), (12.14)
and the claim is evidently true.
To do the general case, we prove by induction: assume the claim is true up to for 0,..., [,
and we prove for [ + 1. Recall that
Ozwip = i + Z [ 0wy (12.15)

GHk=1+1,7>1,k>2

By induction, the coefficients of wy for k <[ are polynomials with non-negative coefficients
in the p,; with p 4+ ¢ < k <1, so that d,wy, is also of this form. Then since

pi= > w27, (12.16)

any term p;0,wy is also a polynomial in the p;; with non-negative coefficients.
To get wiyy, recall that if fi =3, 5,50 hjxz7Z", then

1 ,
Fi= Z k+ 1hijJ5k+1 (12.17)
j+k=1,j>0,k>0

is a homogeneous polynomial of degree [ + 1, which satisfies 0;F = f. Clearly, this preserves
non-negativity of the coefficients, and we are done. O
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Theorem 12.3. If u(z,Z) is analytic in the closed polydisc |z| < p, |Z| < p, there there exists
a unique solution of the Beltrami equation

ws = u(z,Z)w, (12.18)

which is analytic in the polydisc |z| < p,|Z| < p/ for some p' > 0, and satisfies the Cauchy
data

w(z,0) = z. (12.19)
Proof. By assumption, the series
p=> pprz (12.20)
j.k
converges for any point in the polydisc
Plp) ={(2,2) | [z] <p,[2] < p}, (12.21)

with uniform convergence in the polydisc P(p'), for any p' < p. So for any (z,%) € P(p),
there exists a constant C' > 0 so that

|1;z277"] < C (no summation). (12.22)
Choosing (z,Z) = (p/, p’), this implies that
il < C() ", (12.23)

To simplify notation, let’s call p’ by p. Then we define

1 Z+7z
*:c( _1) o2 12.24
a 1—(z+2)p~! p—z—7% ( )
which is analytic in the polydisc P(p) = {(2,2) | |z| < p,|Z| < p}. We have
=0 (z+2)p J—C Z —het (B DL (12.25)
e I ‘

Jj=1

Since the multinomial coefficients are at least 1, we therefore have

x| < Cpi7h < SRS

< ST = e (12.26)

Recall from Proposition that there is a solution w* of the Beltrami equation for u*
satisfying w(z,0) = z which is analytic in P(p’) for some p’ > 0. Write the power series
expansion for w* as

= ) wipdEh (12.27)

(4,k)#(0,0)
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Recall that our formal power series solves
Wy = Pir(pes), (12.28)

where Pjj; is a polynomial with positive coefficients depending only upon fi,4 for p+¢q < j+Fk.
Since w* is an analytic solution of the Beltrami equation with p*, we must also have

wi = Pir(pis), (12.29)
where Pjj, is the same polynomial since 1*(0,0) = 0 and w*(2,0) = z. We then estimate
|wjkl = [Py (pes)| < Prillps]) < Pip(pis) = wiz. (12.30)

The inequalities hold since Pjj is a polynomial with real non-negative coefficients, and using
(12.26)). This shows that our power series is majorized by the power series of w*, which implies
that the power series for w also converges in the open polydisc P(p’), by the comparison
test. [

13 Lecture 13

13.1 Reduction to the analytic case

In the subsection, we will discuss a method of Malgrange, which transforms the smooth
case into the analytic case [Mal69], [Nir73, Section 1.4]. We want to change coordinates
¢ = &(z,%) so that such that our solution of the Beltrami equation in the z-coordinates

wz + w(z, Z)w, (13.1)
transforms into another Beltrami equation,
We + U(E,E)We =0, (13.2)

with U analytic. Note that we want a real change of coordinates, so if we write & = & + i&,,
we need

% 961
det (6{2 € > (0 0) # 0. (13.3)

B oy

As we know, after a change of basis, this is

oe o ,
det (; §£> (0,0) = gg(o 0) %(0, 0)‘ £0. (13.4)

Write
w(z,z) = W(é(z,?),?(z,?)) (13.5
(2, z) = U(&(2,%2),6(2,2)) (13.6



Then
dw OWIE  IW I

= - 13.
0z 00z ot oz (13.7)
ow  OW oL OW O
92 0€ 02 of 02 (13.8)
So the Beltrami equation becomes
oW o¢  OW oL _(OW ¢  OW O¢
AN U ) o€ 02 T oF 5) (13.9)
which we can write as
%€ &) 9¢
W _ (EFUEIE oW (13.10)
0¢ EHUEOS) 08
which is another Beltrami equation with a new right hand side
7 - 5? + U(€7 g)gz
U ) = ——F———. 13.11
R S
Let us try to find the coordinates so that
90,8 =0 (13.12)
el (68 = 0. .

Then then new U will be anti-holomorphic and therefore analytic by the Cauchy integral
formula. From the chain rule, we have

920 0970

o€ —a—ga—l—a—gg, (13.13)
and we have
a & - a E+ U(§7g)gz
—U(¢, il >)S
=g rene) -
_ - &+ US98 '
= (0 70:) &+ U(E ) z)
By the inverse function theorem, we have
e R éz é:z) - _ 1 ( éz_ _52)
(zg Eg) (sz &) TEP-EE\-E &) (13.15)
SO
ze = ;E— (13.16)
CIEP - Il |
1 _
Ze = e S 13.17
PRt (1510
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We therefore have

a ~ —_ 1 - = €3+U(§75)§z
~U = (&0, — £.05) ([ X2—2122 ). 13.18
5060 = T epeo-— e (e ) (13.18)

If we multiply through by the leading factor, we want to solve
§2 =+ U(gv g)£z>
&+ U(EE)E:

but keep in mind that we need to find a solution with |£,|%(0,0) —|&]%(0,0) # 0. Converting

the U(¢,€) term back to the (z,Z) coordinates, we have

0 = (&0. — &02)( (13.19)

- - 52 + M(Za z)éz
0= Eaz — z&z = - 727 ). 13.20
&0 =6 me) (15:20)
The equation (|13.20) is quasilinear of the form
F(D?*¢, D¢, €, 2,Z) = 0. (13.21)
Definition 13.1. The linearization of F' at a function ¢ is given by
d
F{(h) = —F(D*(§ +th),D(§ +th), & + th,2,Z)| . (13.22)

dt t=0

The linearization is too complicated to write down in general, but the following is all
that we really need.

Proposition 13.2. Assuming p € C*, then the linearization of F at & = z is
Fl(h) =0, (hz + pu(h. — hz — uﬁz)> + s, — hepiz. (13.23)
If 1(0,0) = 0, then we have
F!(h)(0,0) = iAh + c1h, + eah, + c3hz + cihs. (13.24)

for some constants cy,ca, cs,cq. If pi has sufficiently small CY®, norm then F! is an elliptic
operator with Holder coefficients bounded in C'.

Proof. We write out

F(D*(& +th), D(€ +th), & + th, 2, %) (13.25)
— ((§ +th):0, — (£ + th)zaz) <(§+—th)z Y th)z). (13.26)
Letting & = 2, this becomes
F(D?*(z +th),D(z +th), z + th, 2, %) (13.27)
B . - ths + u(z,2)(1 + th,)
- ((1 + th,)d, — thﬁ;) <(1 o u(z,z)tl_zz)' (13.28)
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We also see that

Noting that

2
8h_1(ac“; aﬁy)(c‘? ,8) 1

= g0 Figy)h= 700 (13.30)

the proposition follows from this. O
We next need the inverse function theorem in Banach spaces.

Lemma 13.3. Let Z : By — By be a C'-map between two Banach spaces such that F (x) =
F(0)+ L (x)+ 2(x), where the operator £ : By — By is linear and 2(0) = 0. Assume that

1. % is an isomorphism with inverse T  satisfying ||T'|| < Ci,

2. there are constants r > 0 and Cy > 0 with r < such that

3C’C

(a) [ 2(x) = 2)lls, < Co- (Izlls, + lylls,) - 1z = ylls, for all 2,y € B,(0) C By,
(0) |7 O0)lls, < 55

Then there ezists a unique solution to F (x) = 0 in By such that

lzlls, < 3C1 - [.7(0)]5,- (13.31)
Proof. Writing x = T'f, we can write the equation .Z (z) = 0 as

FO)+f+2(Tf)=0, (13.32)
that is

f==2(Tf)-Z(0). (13.33)
So we would like to find a fixed point of the operator S : B, — Bs defined by

Sf=-2(Tf)— Z(0). (13.34)

We next claim that under the assumptions, S is a contraction mapping from B, ¢, (0) C Bs.
To see this, we compute

151~ Sfalls, = 1 2(T 1) — 2(T fo)]|s,
< Co(IT Aills, + T Folls)ITF — Tfolls, (13.35)

< Go(2C1r/CYCh | fr = folls, < 3(Hf1 follB,)-
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We then let fy = 0, and define f;11 = Sf;. If n > m, we have

1o = fmllss < D f5 = fizallss
j=m+1
= > 19 A =5 folls,
i (13.36)

z”: (;)jlﬂfl — folls,

j=m+1
(2/3)™
=193

IN

Hfl - f0||32‘

The right hand side limits to 0 as m — oo. This proves that the sequence f; is a Cauchy
sequence in the Banach space By, which therefore converges to a limit f,,. Since S is
continuous, we therefore have

Jj—00 j—00 j—00
Take m =1 in (|13.36|) to get
1o = fills, < 2[1f1 = folls, = 2[[/1]5, (13.38)
Letting n — oo yields
[fooll, = 1f1ll5, < Nl foo = fillss < 20| 1], (13.39)

Then 2., = T'fy is a solution to % (z) = 0 and

which implies (13.31]). If z is any solution satisfying (13.31)), then letting f = ZLx, we

estimate

[2oolls, < Cill foolls, < 3C1[|(0) |15, (13.40)

1 1 r r
Hf”BQ — Cl H$H31 — Cl 1301 Cl ( )
and uniqueness then follows from ([13.35]). m

Remark 13.4. In the above statment, 2 is a nonlinear operator. But it is easy to see
that the result also holds if 2 is linear, but with sufficiently small operator norm satisfying
2]l < 17|

Back to our problem, we define

By = C>*(B,(0)) = {u € C**(B1(0)) | u =0 on dB,(0)} (13.42)
By = C"*(B,(0)) (13.43)
F(h) = F(z+ h) (13.44)
Z(h) = F'(h) (13.45)
9(h) = F(z+h) — F(z) — F/(h) = F(h) — Z(0) — Z(h). (13.46)



By scaling the coordinates z = €2/, and letting w’(2’,Z") = w(ez’, €z’), then we have
wh = p(ez’, ez )w,. (13.47)
So by choosing e small, we can assume that
el cra(moy) < Cete. (13.48)

From Proposition we see that .Z is an elliptic operator. The mapping T : C%* — C’g’o‘
is defined to be the unique solution to the Dirichlet problem

Z(Tf)=fin B(0,1), Tf=0o0ndB(0,1). (13.49)
From basic elliptic theory, there exists a constant C' so that

|T fllc2eB01)) < Cllfllcoeso)- (13.50)

This constant will be uniformly bounded for sufficiently small e since the elliptic estimates
only depend upon the C% norm of the coefficients. (Note: since .# differs from the Laplacian
by lower order terms, it actually suffices to just invert the Laplacian, but we invert £ here
for simplicity; more on this later.) We need to estimate

D(hy) — D(hy) = F(z + hs) — F'(hs) — (F(2 + h1) — F/(h)). (13.51)

Consider f(t) = F(z +thy + (1 —t)hy). Since F(z+ h) = F(D?h, Dh, h, z), where F is a C"
function of these variables, then using the fundamental theorem of calculus

F(z+4hy) — F(z+ hy) = f(1) — f(0) = /0 f'(t)dt (13.52)
We note that

f/(t) = iF(Z + Shg + (]_ - S>h1)|s:t = %F(Z + thl + (]. - t)hQ + S(hg — hl))lszo

ds (13.53)
= I i (1—tyhe (h2 = ha).
This gives the expression
1
2(1s) = () = ([ Froonva-opalba = b)de) = Filla = )
01 (13.54)
- (/ (Fz/+th1+(1—t)h2 - Fz/)dt> (ha — h1).
0
We next claim that for any y and h, we have the estimate
[(FLin = F)ylleo < Cllpllczllylc (13.55)
To see this, note the linearized operator is of the form
d
F!/(h) = —F th)|e—
ulh) = F(u+th)|=o (13.56)

= a"(D*u, Du,u, 2) Dizh + b (D*u, Du, u, 2) D;h + ¢(D*u, Du, u, z) Dih.
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If F(DQh, Dh, h,z) is C? as in the D?h, Dh, h variables, and continuous in the z variable,
then the coefficients a¥, b, ¢ are C! as functions of D?u, Du,u, and we have for example

c(D*(z+h),D(z+h),z+ h,z) = ¢«(D*2,Dz, 2z, z) + O(|D*h| + |Dh| + |n|),  (13.57)

so the estimate ((13.55)) follows. This implies the quadratic estimate for the C*-norm.
For the Holder norm, similar to the above arguments, we see that any y and h, we have
the estimate

I(F2n = FDyllce < Cllhllc2.e[[yllco.e, (13.58)

provided that F' is C*® in the D2h, Dh, h variables and Holder continuous in the z variable.
This finishes the quadratic estimate.

Also, by taking e sufficiently small, we can always arrange so that condition (b) is satisfied.
The implicit function theorem yields a solution h with

||h||C2’D‘(B(0,1)) = O(E), (1359)
as € — 0. Obviously, we have
|h(0)] = o(e), |Vh|(0) = o(e), (13.60)
as € — 0. Then if € is sufficiently small, then condition ([13.4]) will also be satisfied.

Remark 13.5. The minimal regularity required in the above argument is u € C**. One
can actually get away with only assuming u € C%%, but one needs a different method to see
this.

14 Lecture 14

A reference for this section in [Tayl1] page 376].

14.1 Relation with isothermal coordinates

Given a Riemannian metric g, recall the isomorphism
p:TM — T"M (14.1)
defined by b(X)(Y) = ¢(X,Y), with inverse # : T*M — T'M.

Proposition 14.1. For n = 1, an oriented conformal structure (M, |[g]) is equivalent to
an almost complex structure J : TM — TM. More precisely, given a conformal class [g]
and an orientation, choose a Riemannian metric g € [g]. Then the Hodge star operator
xg 1 T M — T*M satisfies *3 = —1, and then J = #40%40b, is an almost complex structure
which is compatible with g (it is an isometry with respect to g). Conversely, given an almost
complex structure J : TM — TM, choose any Riemannian metric g compatible with J, and
we map J — [g], with the complex orientation.
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Proof. Choose any representative g of the conformal class [g]. The Hodge star operator is
an isometry on 1-forms uniquely defined by

aAx*,0=g(a, B)dV, (14.2)

where dV/, is the oriented volume element. Then x, : T*M — T*M satisfies #* = —Id, so the
mapping #, o *, 0 b, is an almost complex structure. This is clearly conformally invariant,
since if g = fg, then dV; = fdV,, and g(«, 8) = f~tg(a, B).

Conversely, given an almost complex structure J, we know this determines an orientation.
Choose any non-zero 2-form compatible with this orientation, and call it dV};. Then we define
an inner product on 1-forms by

aNJ B =g(a,B)dV,, (14.3)

It is positive definite because by Lemma|8.2] at any point, we can assume that J is standard.
So there is a basis dr, dy of Ty M such that Jdz = —dy. The complex orientation is dy A dx.
Writing any form a = ajdx + asdy, we then have

a A *xa = (aqdz + agdy) A (—aydy + agdr) = (| |* + |aa|?)dy A da. (14.4)

Clearly, different choices of volume elements lead to conformally equivalent metrics. Note
also the mapping J* will be an isometry, so we have J = #,0 J* ob,,.
O

Remark 14.2. Instead of using the Hodge star and the sharp and flat operators, one could
argue directly as follows. Given an oriented conformal class [g] and a non-zero orientation
2-form w, choose a Riemannian metric g € [g] and scale w so that it is the volume element
of g. Then define J : TM — TM by w(X,JY) = g(X,Y). Then J is an almost complex
structure. Conversely, given J, then J determines the complex orientation, and let w be any
non-zero 2-form compatible with this orientation. Then define ¢(X,Y) = w(X,JY). The
proofs are entirely equivalent the above; see [Har90, Theorem 5.34].

Proposition 14.3. Given (M, J;) and (Ms, J), choose any compatible Riemannian metrics
g1 on My and go on My. Let ¢ : My — My be a local diffeomorphism. Then ¢ is holomorphic
of and only if ¢ is orientation-preserving and conformal.

Proof. The Cauchy-Riemann equations are
P 0y = Jy0 ¢, (14.5)
Taking the dual of both sides yields
(J1) 0 ¢" = ¢" o (Jo)". (14.6)
Since #; is an isometry, we have J; = %1, and similarly JJ = %9, so we have

%10 0" = ¢F 0 %9, (14.7)
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On M,, we have the equation

a A x9fl = go(a, B)d Vs, (14.8)
pulling this back under ¢ yields
(¢"a) A (9" 0%2)B = (g2(c, ) © )" dV5. (14.9)
Using , this is
(0*) A (%10 67B) = (g2(a, B) 0 )" dV. (14.10)
Since ¢ is a local diffomorphism, let’s replace o with ¢, and S with ¢,3, and we obtain
a A1 = (g2(ue, . B) 0 §)p"dVa, (14.11)
but the left hand side is g;(c, 8)dVi, so we conclude that ¢*g, = e*g;, for some function
A My — R. For the converse, reverse the above argument. O]

Corollary 14.4. The problem of isothermal coordinates for a Riemannian metric g is equiva-
lent to solving the Beltrami equation for the almost complex structure determined by *,. That
is, solving the Beltrami equation ws = pw, in a neighborhood of a point p with dw(p) # 0 is
equivalent to finding a coordinate system ¢ : U — R? so that

byg = Y (da? + dy?), (14.12)
for some function A : ¢(U) — R.

Proof. We know that a solution of the Beltrami equation ws; = p(z,Z)w, is a holomorphic
function. As long as 0.w(p) # 0, then we know that

w: (U, J) = (C, Jo) (14.13)

is a holomorphic coordinate system. From Proposition [14.3] w must be conformal and
orientation preserving. But the conformal class determined by Jj is the conformal class of
the Euclidean metric, so we have found isothermal coordinates.

Conversely, given an isothermal coordinate system ¢ : (U, [g]) — (R?, [gguc]). Then [g]
induces a unique J, and by the above, ¢ must be pseudoholomorphic with respect to J, so
yields a solution of the Beltrami equation. O]

We can write down explicity the above in coordinates.

Proposition 14.5. Given g = g;;da’ ® dz?, then

+1 912 —911)
Y /det(g) (922 —G12 ( )

depending upon choice of orientation. Consequently, if g = fg, then x5 = *,. Conversely,

given any
a b
= (C —a) , (14.15)



with a® +bc = —1, and a choice of volume form fdx' A dx?, we define a Riemannian metric

up to scaling by

gzifcb i)

for the sign choice which makes this positive definite.

Proof. We choose a coordinate system {z', 2?}, and write
9(0:,9;) = gij-
We then have
g(dz',da’) = g7,
where g” are the components of the inverse matrix of g;;. Also, we have
dV, = /det(g)dz" A da?.

In matrix form, we write
g= g1 Y12 g_l _ 1 922 —012
Go1 g22) det(g) \—=921 911 )~

sdr! = apdrt + agdr®,  xdr? = apdrt + agedx?,

We write

which in matrix form is just

We then have

dz' A xdz' = dot A (apdat + agda®) = agdat A do?

dz' A xdz? = dx' A (a12da’ + axndr®) = apdr' A do?

daz® A xdz' = do? A (apdet + agda?) = —aydat A da?
( )

dz? A xdx? = da? A (apadxt + ageda?

On the other hand, by definition of the Hodge star operator, these must be equal to

g(dx', dxl)dVg = g''/det(g)dz' A da? = _ 922

det(g)
g(dz", dz?)dV, = g'2\/det(g)da’ A da? = —— T2
det(g)
g(dz?, dzt)dV, = g?*\/det(g)da’ A da? = —— T2
det(g)
g(da?, dx?)dV, = g**\/det(g)dz' A dz* = j;é()
ety

64

—aydzt A dz?.

(14.16)

(14.17)

(14.18)

(14.19)

(14.20)

(14.21)



Comparing these equations, we obtain

o (921 _9”>. (14.31)

7 Jdet(g) \922 —9r2

This expression is obviously conformally invariant.
Conversely, given J and a volume element dV = fdz! A dz?, we define an inner product

by

g(a, B)dV, = a N JB. (14.32)
We then have
g(dz', dx?)dV, = g"” fdx' A da?, (14.33)
and by the above, we see that
1 /¢ —a
-1 _ 1
g = 7 (—a —b) ) (14.34)

so then

g=f <_b a) . (14.35)

14.2 Reduction to harmonic functions

We have already solved the Beltrami equation using the Malgrange method, we will next
present an alternative proof using harmonic functions.

Proposition 14.6. If (M?,J) is a real 2-dimensional almost complex manifold with J of
class C?, then J is a complex 1-manifold.

Proof. As before, choose a compatible Riemannian metric g, and let x be the Hodge star
operator with respect to the almost complex orientation. Then on 1-forms, J = *. Given
any point x in M, by Proposition [I7.2], we need to find a function f : U — C where U is a
neighborhood of z satisfying d;f = 0 in U, and 0, f(x) # 0. This equation is

0=0,f=df +iJdf =df +ixdf. (14.36)

Let us write f = u + iv, where u and v are real-valued. Then we need

0 = du +idv + iJ(du + idv) = (du — *dv) + i(dv + *du). (14.37)

Note that applying the Hodge star to du = *dv, results in dv = — * du, so if we solve the
single equation

du = xdv, (14.38)
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then f = u + v will be pseudo-holomorphic. Note that

Of = (du + *dv) + i(dv — *du), (14.39)
so if du(x) # 0, then df(z) # 0. To solve ((14.38)), we apply *d to get
xd * dv = ddv = Ayv = 0. (14.40)

So if v is harmonic, then xdv is closed, and by the Poincaré Lemma, we can solve xdv = du
in any simply-connected neighborhood U of z. To summarize, we have reduced the problem

to finding a simply-connected neighborhood U of z, and a harmonic function v : U — R
with dv(z) # 0. O

15 Lecture 15

15.1 Inverse function theorem
Let’s state another version of the inverse function theorem for linear operators.

Lemma 15.1. Let % : By — By be a bounded linear mapping between two Banach spaces
such that 7 (z) = £ (x)+ 2(x), where £ and 2 are both bounded linear mappings. Assume
that

1. £ is an isomorphism with bounded inverse T .
2. 2 satisfies || 2| - [|T|| =0 < 1.

Then % is also an isomorphism and
1
F < ——|IT]|. 15.1
|77 < 72T (15.1)

Proof. Given f € By, we want to solve the equation #x = f for a unique x € B; with a
bound ||z||z, < C||fl|g,. Writing z = Ty, then the equation we want to solve becomes

F(Ty) = (£ + 2)(Ty) = [, (15.2)
or
y=[f—2(Ty) (15.3)
So we would like to find a fixed point of the operator S : By — Bs defined by
Sy=f—2(Ty) (15.4)

We next claim that under the assumptions, S is a contraction mapping from B to By. To
see this, we compute

1Sy1 — Sualls, = |2(Ty1) — 2(Tys)||5,
<12 - [Ty — Tyl (15.5)
<2l T - [lyr — y2llB, = dllyr — 2B,
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where 0 = || 2||||T|| < 1 by assumption. We then let yo = 0, and define y;1, = Sy;. If
n > m, we have

190 = Ymlls, < Z ly; — yj-1lls,

Jj=m+1
= > 19 ' = wolls,

j=mt1 (15.6)
< Z &y — wolls,

j=m+1

5m
Sl—Hyl Yol s,

The right hand side limits to 0 as m — oo, so the sequence y; is a Cauchy sequence in
the Banach space By, which therefore converges to a limit y.,. Since S is continuous, we
therefore have

SYso = S lim y; = lim Sy; = lim Y41 = Yeo. (15.7)
j—o00 j—o00 j—00

Take m = 1 in (|15.6)) to get

. (15.8)
Letting n — oo yields
el — ol < 1o — wallss < ol (15.9)
Then zo, = Ty is a solution to .#(z) = f and
2ol < 1T Yoo lls, < 1 75T Ifllse, (15.10)
since y1 = S(yo) = S(0) = f, which implies . Finally, uniqueness then follows from
(15.5). 0

15.2 Harmonic Coordinates

The remaining ingredient we need is the following.

Theorem 15.2 (Harmonic coordinates of Sabitov-Shefel (1976) DeTurck-Kazdan (1981)).
If (M™, g) is any Riemannian manifold with g of class C* for k > 1, and p € M, then
there exists a coordinate system (xy,...,x,) defined in some neighborhood of p such that
Ay(z;) =0 for j =1,...,n, with z; of class C¥*1*. If g is C™ then so are x;. If g is real
analytic, then so are x;.
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Proof. We will prove the 2-dimensional case. The higher-dimensional case is identical. From
above, we have that in local coordinates {z,y},

21

x = \/det(g) (‘g“{l _5{§2> : (15.11)

9

Let us write dv = vidx + vody, then

xdv = (—g*'v; — g% v)\/det(g)dx + (g™ vy + g"v2)\/det(g)dy. (15.12)

Then we have
1
*d * dv = ——e (82((921211 + ¢%v2)v/det(g)) + D1 ((¢" v1 + ") det(g))) (15.13)
det(g)
In local coordinates, the Laplacian therefore has the form

! i/ de
Av = m@(g v/ det(g)). (15.14)

(This formula holds in any dimension). Expanding this out yields

Av = ¢70,0;u + (8,97 )u; + 0;(log(+/det(g)))g"” u;. (15.15)
Jacobi’s formula for the determinant is
57005 = Di(log(v/det (). (15.16)
so we have
Av = ¢"9;0;u + (8;9" )u; + %gpq  Gpa g U (15.17)
So we can expand
Av = Agu + Q(u), (15.18)
where
Q(u) = a’9,0;u + b u; (15.19)
a¥ = g — §9 (15.20)
V = 0,9" + %gpqaigpqg”’. (15.21)

Let us assume that g € C*(B(0,1)). Using normal coordinates (which are OK under this
regularity assumption: the geodesic equation has C* coefficients), we have that g;;(p) = d;;
and 0xg;;(p) = 0. It follows that there exists a constant C' so that

9" (x) — 67| < Cla|** (15.22)
10kg" ()| < O™ (15.23)
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Consider the mapping ¢, : B(0,1) — B(0, €) defined by ¢.(z') = ex’. Then

¢rg(x’) = gij(ex’)e’da) ® dx’;.

(15.24)

So the metric g. = e 2¢}g has components (g.);; = gij(€z’) in the 2’ coordinates. We then

have
99 (') — 5] < G|
|Okg? ()] < Ce*e 2’|,
By assumption, there exists a constant C' so that
19ij(x) = 9i5(y)| < Clz —yl%,
which implies that
19:;(2") — g5;(y)| < Ce¥[a” — o]
Also by assumption, there exists a constant C' so that
091 (%) — Okgij(y) < Clo —y|*,
which implies that
|0kt (") — Orgly ()] < € 772" — |,
Consequently, we have that

lad[lora o) < Ce*®
||b?HCO,o¢(B(O71)) S CGa.
We then have that there exists a constant C so that
1Q(N)lcoa(so1y = [a70:0;f +V fillcoaso.n)

< [la” || co.a(B0.1)) - 10:0; fllco (o)) + 1V lcow o)) - | fill commo,1y)
< O fllezBo,1)-

By standard elliptic theory, we know that

Ao : Cy*(B1(0)) — C**(B4(0))

(15.25)
(15.26)

(15.27)

(15.28)

(15.29)

(15.30)

(15.31)
(15.32)

(15.33)

(15.34)

is an isomorphism with bounded inverse, that is, there exists a constant C' so that if Aqu = f

and u = 0 on the boundary, then

[ullc2a ) < Cllfllcoais, o)

So by Lemma and (|15.33)), if € is sufficiently small, then
Ay G (B1(0)) = C™(By(0))
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is an isomorphism, and there exists a constant C' so that if Aju = f and u = 0 on the
boundary, then

ullcze sy 0)) < Cll fllcoe(so0)- (15.37)
Therefore, there exists a solution of the equation
Ay (h) = =Agz, (15.38)

with A = 0 on the boundary of B;(0), where z is any coordinate function in the rescaled
coordinates. From ((15.37)), we have

[Allc2e(Bi0)) < CllAg.x

|co.e(my(0y) < 10 |coaBo,1)) < Ce®. (15.39)
In particular,
101he(0)| < [[Reller(Bo,1)) < [[hellc2aBo)) < Ce. (15.40)

So if € is sufficiently small, 0, (z + he)(0) = 1 + 01h(0) # 0, and we are done.
For higher regularity, we argue as follows. If g € C*® then in particular g € C**. By
the above, we can find C*® harmonic coordinates {z;,r2}. We then write

That is
97 0;0;0p = —b € CF 1, (15.42)

The left hand side is an elliptic operator with C*® coefficients, so by elliptic regularity
arguments, z, € C*+22 If g € C*, the right hand side is also in C'°, so again by elliptic
regularity we see that x;, € C*< for any k > 0, so 2, € C*. For the real analytic case, there
is a general result that solutions of elliptic equations with real analytic coefficients are real
analytic. O]

Unfortunately, the trick in this subsection does not help us to solve the Newlander-
Nirenberg problem in higher dimensions. However, the method in the previous section can
be extended to the higher dimensional case, which we will discuss next.

Remark 15.3. The above methods require that g € C%®. The Beltrami equation can be
solved locally for u € C%* by inverting the 0z operator using the Cauchy-Pompeiu formula.
However, this is a bit technical so we will omit. There are many great references for this
method, see for example [Spi79], [Ber58], [ALI66].

The only “hard” analysis we used in the above proof is the following.

Theorem 15.4. The mapping Ay : Co*(B1(0)) — C%*(By(0)) is an isomorphism with
bounded inverse, that is, there exists a constant C' so that if Aou = f and u = 0 on the
boundary, then

ullcz.eB,0)) < Cllfllcoa(s o) (15.43)

70



We just indicate how this is proved. Any solution is unique by the maximum principle.
There is actually an explicit integral formula for the solution

u = G(z,y)f(y)dzdy, (15.44)
B1(0)

where G(x,y) is the Green’s function defined by
L (10g |z —y| —1 ( —y/lyl? ) 0
Gl y) = 2ﬂ< oglz —y| —log (lylle —y/lyl"l) y#0 (15.45)
= log |z| =0

Then one can just directly verify this is a solution if f € C**(B;(0)), and directly verify the
estimate (15.43)); see [GT0I]. Our method above using the inverse function theorem only
needed to invert Ag; we did not need to use any Schauder Theory for operators with variable
coefficients.

16 Lecture 16

16.1 Endomorphisms
Let Endg(T M) denotes the real endomorphisms of the tangent bundle.

Proposition 16.1. On an almost complex manifold (M, J), the bundle Endg(TM) admit
the decomposition

Endg(TM) = End, (TM) & End_(TM) (16.1)
where the first factor on the left consists of endomorphisms I commuting with J,
1J=JI (16.2)

and the second factor consists of endomorphisms I anti-commuting with J,

1J=-JI (16.3)
Proof. Given J, we define
1
I, = E(I —JI1J) (16.4)
1
I = 5([ + J1J). (16.5)
Then
1 o1
I,.J= é(IJ— J1J?) = 5([J+JI),
and

1 1
JI, = 5(JI — J*1J) = 5(JI +1J).
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Next,
1 9 1
1_J= 5([J+JIJ )= §(IJ— JI),
and

1 1
JI =5 (JT+ JAIJ) = 5(JJ —1J).
Clearly, I = I, + I_. To prove it is a direct sum, if [J = JI and IJ = —JI, then IJ =0

which implies that I = 0 since J is invertible.
O

We write down the above in a basis. Choose a real basis {ej,...es,} such that the
complex structure .J; is given by

0 —I,
Jo = (In 0 ) : (16.6)
Then in matrix terms, the proposition is equivalent to the following decomposition
A B\ _1(A+D B-C —1—1 A-D B+C (16.7)
¢ D) 2\C-B A+D) 2\B+C D—-A)" '
So we have that End, (TM) = GL(n,C) C GL(2n,C) with
A —-B A+1B 0
(B A)'_)( 0 A—z’B)’ (16.8)
and End_(TM) = GL(n,C) C GL(2n,C) with
A B 0 A+iB
(AN oo
16.2 The space of almost complex structures
We define
J(R*™) ={J:R*™ = R, JecGL?2n,R),J* = —I,}. (16.10)

We next give some alternative descriptions of this space.

Proposition 16.2. The space J(R?") is the homogeneous space GL(2n,R)/GL(n,C), and
thus

dim (7 (R*")) = 2n?. (16.11)
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Proof. We note that GL(2n,R) acts on J(R?"), by the following. If A € GL(2n,R) and
J e J(R*™),

Dy AJATL (16.12)
Obviously,
(AJA™Y)? = AJATTAJA = AJPA™ = 1, (16.13)
and
®,p(J) = (AB)J(AB)™' = ABJB'A™' = & ,®5(J), (16.14)

so is indeed a group action (on the left). Given J and J', there exists bases

{e1,...,en, Jer, ..., Je,} and {e},... e, e\, ..., e} (16.15)

Y no

Define S € GL(2n,R) by Se, = ¢, and S(Jeg) = J'e,. Then J' = SJS™! and the action is
therefore transitive. The stabilizer subgroup of Jy is

Stab(Jy) = {A € GL(2n,R) : AJyA™' = Jo}, (16.16)
that is, A commutes with Jy. From ((16.8]) above, this is identified with GL(n, C). ]

Given J € Ty, let J(t) : (—¢,€) = J2n, be a smooth path with J(0) = J, then differenti-
ation yields

—(Ipn) ' =(JoJ) =JoJ+Jo J. (16.17)
So letting J'(0) = I, we have that
1J+ JI=0. (16.18)
Thus we can identify the tangent space at any .J as
T3 TJon = {1 € End(R"™) |IJ + JI = 0}, (16.19)

the space of endomorphisms which anti-commute with J.

16.3 Graph over the reals
Next, we will give another description of 7 (R?"). Define

PR*) ={P CR*"®C = C* | dimc(P) =n,
P is a complex subspace satisfying PN P = {0}}.

If we consider R?"® C, we note that complex conjugation is a well defined complex anti-linear
map R ® C — R?" @ C.
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Proposition 16.3. The space P(R?") can be explicitly identified with J (R*") by the follow-
ing. If J € J(R*) then let

R @ C =1"°(J) o T (J), (16.20)
where

TN J) ={X +iJX, X € R*} = {—i}-cigenspace of J. (16.21)

This an n-dimensional complex subspace of C*", and letting T*°(J) = T91(J), we have
TR AT = {0},
For the converse, given P € P(R?"), then P may be written as a graph over R*®1, that
18
P={X'+iJX' | X' e R c C™}, (16.22)
with J € J(R*"), and
R"@C=P@P=T"J)oT"(J). (16.23)

Proof. For the forward direction, we already know this. To see the other direction, consider
the projection map Re restricted to P

™= Re: P — R*™. (16.24)

We claim this is a real linear isomorphism. Obviously, it is linear over the reals. Let
X € P satisfy 7(X) = 0. Then Re(X) = 0, so X = iX’ for some real X’ € R?*". But
X = —iX' € PN P, so by assumption X = 0. Since these spaces are of the same real
dimension, 7 has an inverse, which we denote by J. Clearly then, (16.22)) is satisfied. Since
P is a complex subspace, given any X = X' +iJX' € P, the vector iX' = (=JX') +iX’
must also lie in P, so

(—JX)+iX' = X"+iJX", (16.25)
for some real X”, which yields the two equations
JX =—X" (16.26)
X' =JX". (16.27)
applying J to the first equation yields
X' =-JX"=-X". (16.28)
Since this is true for any X', we have J? = —Iy,. n

Remark 16.4. We note that J — —.J corresponds to interchanging 7% and 7.

Remark 16.5. If we choose P = spanc{0/dz7,7 = 1...n}. Then P is an n-dimensional
complex subspace of C?", and Re restricted to P is not an isomorphism, for example.

Remark 16.6. The above proposition embeds J(R?") as a subset of the complex Grass-
mannian G(n,2n,C). These spaces have the same dimension, so it is an open subset. Fur-
thermore, the condition that the projection to the real part is an isomorphism is generic, so
it is also dense.
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17 Lecture 17

17.1  Graphs over T%!(.Jy)

Above we viewed T%!(J) as a graph corresponding to the decomposition C*" = R?*" @ iR*".
In the section we will instead view T%!(J) as a graph corresponding to the decomposition
C? = T%(Jy) & T*°(Jy). This corresponds to a mapping

¢ : T (Jo) = TH0(Jo), (17.1)
by writing
TN J) ={v+¢v | ve T (L)} (17.2)
Note we can view ¢ as an element of
Hom(T"(Jo), T"(Jo)) = A™ (Jo) @ T (o), (17.3)

so we will view ¢ as an element of the latter space. In “coordinates”, we can write

G
¢ = ¢hdz’ @ PR (17.4)

and we will view ¢;—? as an n by n complex matrix. We define ¢ as a C-linear mapping

& T (Jy) — T (Jy), (17.5)
by
d(v) = ¢(0). (17.6)
Consider the mapping
¢+ ¢: C" — C™, (17.7)
which in matrix form is
64+3— (% ﬁ) (17.8)

Recall from ([16.9)) that this is the complexification of an R-linear mapping
Iy : R*™ — R*" (17.9)

satistying I,.Jy + Joly = 0, which is given by

_ (Re(¢) Im(¢)
I¢_<[m<¢) _Re(¢)). (17.10)
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Proposition 17.1. If ¢ € A»(J))@T10(Jy), then ¢ determines an almost complex structure
if and only if 14 does not have —1 as an eigenvalue. The corresponding almost complex
structure s

Jy = (Id + 1) Jo(Id + I,) 7" (17.11)

Conversely, given J such that Jy + J is invertible, then J corresponds to a unique ¢ with
Id + 1y invertible, which is given by

Iy=(Jo+J) ' (Jo—J). (17.12)
Proof. Given
¢ € A% (Jo) @ T0(Jo) = Home (T (Jo), T(Jy)), (17.13)
then
T (Jy) = {v + dv,v € T (Jo)} (17.14)

is an n-dimensional complex subspace of R*" @ C. If X € Tg’l N Td?’l for a non-zero vector
X, then

X =v+¢v=uw+ ow, (17.15)
where v € T%(Jp) and w € T*0(Jy). This yields the equations

ow =" (17.16)
oV = w. (17.17)

This is equivalent the matrix ¢ + ¢ having 1 as an eigenvalue with eigenvector (w, v). Since
® + ¢ is matrix equivalent to I, this is equivalent to /4 having 1 as an eigenvalue. But if
I,V =V, then

I, 0V = —JolgV = —JyV, (17.18)
that is JoV is an eigenvalue of I, with eigenvalue —1. Next, any 0 € T%!(Js) is written as

0 =v+ ¢(v)

= Re(v) + Re(¢(v)) + i(Im(v) + Im(¢(v)), (17.19)
for v € T%(Jy). We compute
Re(6(v)) = 5 (9(0) + 3(0))
1 T/ —
"alet ) -
= (0+9) ()
= Iy(Re(v))
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Next,

Im(6(v) = - (6(0) - 50))
1 _
T2 <¢<”) - gb(?)) (17.21)
= 0+9)(5)
— I,(Im(v))
Next, any element v € T%!(Jy) can be written as
v=X"+1iJo X', (17.22)
for X’ € R*", so we have
0= (Id+ 1) X +i(Id+ Is)(JoX"). (17.23)
But if 0 € T%!(Js), we must have
Im(v) = JyRe(D), (17.24)
which yields
(Id + Iy)(JoX') = Jp(Id + 1) X". (17.25)
This implies that
Jy = (Id + 1) Jo(Id + I,) " (17.26)
The remainder of the proposition follows by solving this equation for I. n

17.2 Complex form of the equations

We next discuss the following characterization of pseduo-holomorphic functions on an almost
complex manifold (which holds in any dimension).

Proposition 17.2. Let (M, J) be almost complex. Then the following are equivalent.
(i) f:(M,J)— (C,.Jy) is pseudo-holomorphic.
(ii) O5f = 0.

(iii) X f =0 for all vector fields X € T(T)™").

Proof. Note that if we take any X € I'(TM ® C)

(df +iJdf)(X) = X f+idf (JX) = X[ +iJXf = (X +iJX)f (17.27)
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so we always have
D1 F(X) = (yadf)(X) = (L. X) . (17.28)

If condition (ii) is satisfied, then (iii) follows immediately from ((17.28) Conversely, if condition
(iii) is satisfied then taking X € F(Tg’l) and using ((17.28)), then

(Iy01df)(X) =0 (17.29)

for all such X, which implies that condition (ii) is satisfied.
We next show that (ii) is equivalent to (i). If (ii) is satisfied, then

Jdf = idf. (17.30)

Recall that if v : M — R is a real-valued function, and X € T'M is a real tangent vector,
then there is a canonical identification

du(X) = u.(X), (17.31)

where the right hand side is interpreted as a real number. So then if f = u + v is a
complex-valued function, then we have for X € T M,

df (X) = u.(X) + iv.(X), (17.32)

and then we extend this to complex vectors by complex linearity. We plug in a complex

tangent vector to to get

Jdf (X) =idf (X), (17.33)
which is (using the definition of J on 1-forms as the transpose)

df (JX) =adf (X). (17.34)

Using the above, we then write this as

(du + idv)(JX) = i(du + idv)(X) (17.35)
which is
(s + 10,) (JX) = i(uy + iv.)(X). (17.36)
This yields the equations
u(JX) = —0,(X), v.(JX) = uy(X). (17.37)

But as a real-valued function, we have

f= (Z) , (17.38)



so we can write f, in the form

fo= (Z) . (17.39)

The equation f,J = Jyf. is then

Us (w0 =1\ [u\ [
D)6 D) e
Therefore (ii) implies (i). Reversing the above argument, we see that (i) implies (ii), and we

are done.

]

Next, we let J be a continuous almost complex structure on a open set U C R?" containing
the origin. Then J : U — 7, is a continuous function. Without loss of generality, we may
assume that J(0) = Jy. Then (Jo+ J)(0) = 2.J; is invertible, so Jy + J will also be invertible
in some possibly smaller neighborhood V' C U. Then by Proposition [17.1, we obtain a
unique

¢l V = Hom(T* (Jo), T"(Jy)) = Mat(n x n,C), (17.41)
where V is an open subset in R?".

Proposition 17.3. If ¢£ defines an almost complex structure on'V, then a function f .V —
C is pseudo-holomorphic if and only if

ifw’“ 0

o7 P9z T

Proof. By Proposition [17.2] a function f is holomorphic if and only if Zf = 0 for all vector
fields Z € F(Tg’l). A local basis for Tg’l is given by

0 (17.42)

so we are done. O

Remark 17.4. For n = 1, there is only 1 component y = ¢1, and the pseduo-holomorphic
condition is

0

5/ =0, (17.44)

0
£f+/l

which is of course the Beltrami equation.
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18 Lecture 18

18.1 Integrability

We next interpret the vanishing of the Nijenhuis tensor as an equation on ¢.

Proposition 18.1. The almost complex structure J, is integrable, that is N(J,) = 0, if and
only if

0
R R et I ) (18.1)

Proof. By Proposition , the integrability equation is equivalent to [Tgl,T q? 1] cT q?’l.
Writing

o= ¢ldz ® = (18.2)
if J, is integrable, then we must have
0 0 0 0 0,1
7 +o(z) o) e 2 (18:3)
This yields
8 l 6 j 8 8 7 8 1 a 0,1
[ﬁ’%@} + [ Za 5 a_k] + [ ;@, E@] c T¢ (18.4)

The first two terms are

ol ¢!
[%’%%} +] fai a?'f] - z]: (7 - 6zk>%'

The third term is

[ i% k(’?zl} gbﬂ(@?ﬂ ¢k> P gbg“((?zlgbj)@zﬂ

Both terms are in T'%(Jy). For sufficiently small ¢ however, T0 "N T Jy) = {0}, and
therefore - holds. The converse holds by reversing this argument O]

We can also see directly that this is related to Proposit_io as follows. If there exists
a locally defined holomorphic function f, then taking the O-partial of (17.42) yields

0? 0 [, 0
ool + o (B f) =0, (18.5)
Intechanging j and [ yields
02 g O
T o (¢ ) (18.6)
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If fis C?, then the mixed partials are equal, so subtracting these equations gives

%( §% )- 823<¢l8zk )=0

Expanding this out

82
<02’¢k a‘f¢l> W+ 8—18 kf % gaio FEr

The first 2 terms are good. Using ([17.42)), the last 2 terms are

0? 0 0
k
% 0z ka—lf ¢l 02k0z gb] 0zk ( l 8z1’ ) + ¢l az"f( i 0zp >

- _¢k<8zk ¢P> 8zpf % (Qazk(bp)@
9%, kafp +oi Jaakéfp'

The last 2 terms vanish from symmetry. So we have derived

9 k
0:<£¢3 a—ﬂbl Jap¢l lap¢p>

(18.7)

(18.8)

(18.9)
(18.10)

(18.11)

(18.12)

If there exists n holomorphic functions with linearly independent differentials at the origin,
then this implies implies the integrability condition ([18.1)). This latter argument assumes
that there exists holomorphic coordinates, but nevertheless still gives the correct formula for

the Nijenhuis tensor.

18.2 The operator d°

For an almost complex structure J with N; = 0, we know that
d=0+9,

and
2

P?=0 0 =0 00+00=0.

We can write these complex operators in the form

A 1 - JC _1 - JC
8:§(d—zd), 8—2(d—|—zd).

for a real operator d¢ : Q% — QP! given by

which satisfies

d® =0, dd° + d°d =0, (d°)* = 0.
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We next have an alternative formula for d¢. Recall that J : TM — TM induces a dual

mapping J : T*M — T*M, and we extended to J : Afz — A{ by
JaP = jP=9gPa,
for a a a form of type (p, q). Notice that if o" € Af, then

J?a" = w-a", where w-a” = (—1)"a",

since

J2aPd = 2(0—4) o pa — (_1)p—qap7q — (1)p—q+2qap7q — (_1)p+qap7q.

Proposition 18.2. For a € A", we have
da = (=1 JdJa.
We also have
dd® = 2i00 = (—1)""*dJdJ .
Proof. For o € AP4) p+ q = r, we compute

JdJo = P71 Jda = P~ (Oa + Oav)
= PP 900 + P71 D)
20—+ 9 4 j2-0)-15,

=1
= (=1)P"(ida — ida) = (—1)" T d a.

For (18.22)), using ((18.14) we have
dd® = (0 +D)i(D — ) = i(dD+ D — 8% — DI) = 2i00.

18.3 The analytic case

We assume that qb;—‘? is analytic. So there exists a power series expansion

05 = >_(9)='z
1,J
Let group these terms together by homogeneity and write

5= (#)n

m=0

(18.18)

(18.19)

(18.20)

(18.21)

(18.28)

(18.29)



where

(¢§)m= Z (Qb;j)uzli‘]- (18.30)

(| +[J|=m

We may assume that (gb Jo = 0. We want to solve the equation

8_Jf + gb] 8 - (18.31)
Let’s do the same for f, we write a formal power series
f= Z fr2'27, (18.32)
1,J
and group these terms together by homogeneity and write
F=Y fm (18.33)
m=0
where
> fue (18.34)

(| +]J|=m

By subtracting a constant, we can also assume that fy = 0. Expanding (18.31]), we have

Do(fr+ fat )+ (1 +da+ ) (ofi +0ofa+---)=0. (18.35)

Grouping terms by homogeneity, we have

dofi=0
50f2 = _¢180f1
Oofs = —p100fa — d200 f1

and we see that the general term is given by

afm D afl

L AT (18.36)
ktl=m, k>1,1>1

Proposition 18.3. If f; solves the above system for j =1,...,q, then the expression

0
Ho=— Y (@i

k+l=q+1,k>1,1>1

(18.37)

is a form of type (0,1) with respect to Jy, and satisfies OgHy11 = 0.
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Proof. We prove this by induction. For ¢ = 1, we have dyf; = 0, so f; = ¢jz? is a linear
holomorphic function. Then

Hy = —(¢%)1¢,d7. (18.38)

For reasons of homogeneity, the integrability equation (18.1]) tells us that

el (Cbp)l - ﬁ(cbp) = (18.39)

so H, clearly satisfies 0H, = 0. So assume the system is satisfied for j = 1...¢q. Then the
function f = fi; 4+ --- + f, satisfies

yf = Hyyr + O(|2]7) (18.40)

For the next step, we use the above fact that the integrability of J implies that the operator
0y : A% (J) — A%2(J) defined by 0y = oz da satisfies

9,9, =0, (18.41)
for any function f. This yields
0=0;(Hys1+ O(|2|"") = 0y Hgr + O(|2]%). (18.42)

Note that for a € A»!(J), Ja = —ia, so from Proposition [18.2, we have that

— 1 1 1
dja = §(d —id)o = E(da —iJdJa) = §(da — Jda). (18.43)

Expanding this, we obtain
= 1 1 1
6[;04 = E(da — (J - JO + Jo)dOé) = i(da — JodOé) — é(J — Jo)daf. (1844)

From Proposition above, the correspondence between ¢ and J is analytic, and ¢ = O(|z|)
implies that J — Jy = O(|z|) as z — 0. Now we plug in o = 9, f, and by assumption

1
0=09,0,f = 05(Hysr + O(|2|") = 5 (dHge1 = JodHgir) + O(|2[) (18.45)
- ao a1+ O(2]9). (18.46)
]

Proposition 18.4. For each 1 < p < oo, there exists [ = Z?Zl f; satisfying 0, f = O(|z|P).

Proof. We prove this by induction. For p = 1, we can take f = ¢,2”, and then

02" = 0p2" + = (J Jo)dz" =0+ 0O(|z]). (18.47)
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Assume that we have found a solution for j = 1...p. Let f = Z?Zl fj, by the induction

assumption, we have
Byf = Hypr + (|27,
and by the above, we need to solve the equation
Dofps1 = Hpyr.
From Proposition H, ., satisfies EOHp-i-l = 0. Equivalently, we can write
Hypy = a;d?j ,
where the coefficients satisfy

da;  Odog

ﬁ_ﬁ’ j,l:]_,...7n.

Define
1 n
fp+1:/ ZZ]aj(z,tE)dt.

Then we compute

e - / (a1 + 3% 7 (ot 19)

We will discuss convergence next time.

19 Lecture 19

19.1 Convergence of formal power series solution

(18.48)

(18.49)

(18.50)

(18.51)

(18.52)

(18.53)

Last time, we constructed a formal power series solution. Today, we examine the solution in
more detail. We look at the procedure in Proposition above. We had H,, satisfying

0oH,y1 = 0. Writing
H

p+1 = quzja
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then the coefficients satisfy

daj  Oog
8? =55 jl=1,...,n. (19.2)
Defining
1
oo = / S sag(z, 12)dt, (19.3)
(N
then we showed that 0y fp41 = Hpr1.

Proposition 19.1. Writing H,1 = a;dz’, where

Z Oz;ljzlz‘], (19.4)

| +|J|=p

_ 5] ; _ ; ; .
and fp41 = Z\IH\JI:ZJH J172'Z7. Then the coefficients f;; are linear functions of the oy
with non-negative coefficients.

Proof. We plug (19.4)) into ((19.3), and compute
1 n
for1 :/ Z?j Z ozﬂjzf(ti)‘]dt (19.5)

O j=1  |114J=p

= Z azr72' 27 zj/ thldt (19.6)

G|+ 1=p 0
1
= Z WES ;72277 (19.7)
BN+ |=p
and we are done. O

Remark 19.2. Our choice above is very important: there is a freedom to add an arbitrary
holomorphic homogeneous polynomial to f,+1, and our choice eliminates this ambiguity.

Now we return to solving the equation

f o f : (19.8)

a_J Ja k

We will now consider this as an equation in C?" with coordinates (z',...,2" z' ... z").

)

Note by the transformation 2/ — —2z?, we can assume the equation is of the form

557 - cbf . (19.9)

Remark 19.3. Note that we cannot simply replace ¢ with —¢, since the integrability equa-
tion ([18.1)) is not preserved under this transformation.
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We have the homogeneous decompositions
f= Z i @ =Y (¢5) (19.10)
1=1

We then found the recursive system

Of 1 = Hypa, (19.11)
where

0fz

Hpn= D (#hy 07 (19.12)

k+l=q+1,k>1,1>1

satisfies JgH,,1 = 0. Then we can solve df,+1 = H,.; uniquely with the above proceudre,

where f,i1(2%, -+ ,2",0,---,0) = 0 for ¢ > 1. So once f; = ¢;27 is specified, then our
procedure gives a unique formal power series solution.
Write
> k' (19.13)
|+ T|=p

Proposition 19.4. The coefficients fr; when |I| + |J| = p are a polynomial function of
degree p — 1 in the (Z%?KE for |[K|+ |L| < p—1, with all coefficients non-negative rational
numbers. The polynomials are completely determined by the constants cq, ..., cy.

Proof. Without loss of generality, assume that f; = z!. Then the first nontrivial equation is

0
852 (¢ aip = (¢} = Pp2" + P32" (19.14)
Then
fo = ¢3,2"7 + %qb%,;zjzk, (19.15)

so the claim is true for f,. Then we proceed by induction. So assume the claim is true for
fi,..., fp- Then the equation for f,,, is

Oyt _ > (@ o (19.16)

823 azp
k+l=p+1,k>1,1>1

0
= Y > d)ﬂJag‘ (19.17)

ktl=p+1,k>1,1>1 |I|+|J|=k

From Proposition [19.1], we just need to show the claim is true for the coefficients on the right
hand side. Since [ < p in the sum, by induction the claim is true for the coefficients of f;.
The operator f; — 0f;/0zP obviously preserves non-negativity of the coefficients, so we are
done. 0
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19.2 Cauchy majorant method

By assumption, the series

> ok (19.18)
1,J
converges for any point in the polydisc
Plp) ={(z",....2"7,....Z") [ || < p,[F| <p, 1 <j <}, (19.19)
with umform convergence in the polydisc P( '), for any p’ < p. In particular, for any point
(z1,...,2" 2 ...,2") € P(p), there exists a constant C' > 0 so that
\gbk}jz z’| < C (no summation). (19.20)

Choosing the point 2/ = p/,z7 = p/ for j = 1,...,n, this implies that

|05 < C(p") D, (19.21)
To simplify notation, let’s call p’ by p. Then we define
1 B 1) Cw

- Y (19.22)

q><w):c( p—

1 —wp!

which is analytic in the disc A(p) = {w € C | |w| < p}. The power series of ®(w) is given
by

=CY puw. (19.23)

Next, we let
O, ..., =0k T 4 2. (19.24)

Using the multinomial theorem, we have the expansion

o2, ..., "7 =C Z p~ 1) %z z7, (19.25)
1,J#(0,0)
which converges absolutely in the polydisc
P={(z"....2" 2" ....2") | |Z| < p/2n, || < p/2n}. (19.26)
That is, the power series coefficients of ®(z!,... 2" z' ... 2z") are given by
B, = Cp (D (|I|]T}!J_|)!’ (19.27)
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with &gy = 0. Since the multinomial coeffients are at least 1, we have the inequality

(] + /]!

] =1+ —(1+1D)
¢7 5| < Cp D < ¢ p= (I b0

= O, ;. (19.28)

Next, we claim that q);f = & determines an integrable almost complex structure. Note we
are viewing this as an n x n matrix will all entries equal. To see this, we use ([18.1)):

0 0 m 0 m 0
ﬁq)i—ﬁ@]—i—@ a—q)] 7 am@?C
0 n | =l =n 9 1 n 5l =N
:a__q)(z 4+ "4+ Z )_ﬁ(l)('z B +...+2)
0
n -1 —-n 1 n -1 —n
+Zf)zm 24 +---+z)—zm;az—mc1>(z Fod 2T 4T
=0+0=0.
(19.29)
The equation for a holomorphic function with respect to @ is
aF 1 n —1 —=n aF
ﬁ:@(z +o 24z +---+z)maz—m. (19.30)

Forall j=1,...,n
Let’s assume that we can find a solution Fj, of ((19.30)) satisying the initial conditions

Fu(2',...,2",0,...0) = 2~ (19.31)

which is analytic in some polydisc |z| < p/,|Z| < p/. Without loss of generality, we can
assume that k£ = 1. Then to finish the convergence proof, recall that our formal power series
solves

frr = Pry(97), (19.32)

where P;7 is a polynomial with non-negative coefficients depending only upon ¢}, for
|K |+ |L| < [I|+]J]|. Since F} is an analytic solution of the Cauchy-Riemann equations with
respect to @, and the same initial conditions as f, we must also have

Frj= Prj(®xr), (19.33)

where P;; is the same polynomial since ®(0,0) = 0 and F(z!,...,2",0,...0) = 2! has the
same initial conditions as our formal power series solution. We then estimate

|fr7l = |Pry(@)| < Prs(16i]) < Prp(®xr) = Fiy. (19.34)

The inequalities hold since P; 7 is a polynomial with real non-negative coefficients, and using
(119.28]). This shows that our power series is majorized by the power series of F', which
implies that the power series for f converges in the open polydisc P(p’), by the comparison
test.
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19.3 Completion of convergence proof

To finish the convergence proof, we need to find solution of

8F 1 n =1 —=n aF
55 = QG A+ 4T +---+z);az—m, (19.35)
for all j =1,...,n, satisying the initial conditions
F(z',...,2",0,...0) = ', (19.36)

and which is analytic in some polydisc around the origin in C*".

Proposition 19.5. For any choice of (cq,...,c,) € C", satisfying c1 + -+ + ¢, = 0, the
function F =" c;.2* solves ([19.35)).

Proof. The function F' obviously makes the left hand side of (19.35]) vanish for any 1 < j < n.
The right hand side of (19.35)) is ® - (¢c; + -+ +¢,) = 0. ]

Next, let’s try and find a solution F', of the form
Fo(2h . 2"z 2 =GR+ 22 2. (19.37)
Let'scall z = 2+ .- -+ 2" Z =72+ ... + 2", and write G as a function of 2 variables
G = G(z,%Z). Then ([19.35]) becomes

oG

%G e +3) (19.38)

n—.
0z
This is just the Beltrami equation:

oG nC(z+72)0G

== (19.39)

p—z—2% 0z

But we have already found an analytic solution G for this equation, it is done in Propo-
sition [I1.] (only the constant C' has changed to nC'), which satisfies the initial condition
G(z,0) = 0. So the corresponding solution of the n-dimensional problem satisfies

Fo(z',. . .,2"0,...0)=G(z" +- -+ 2"0) = 2"+ -+ 2" (19.40)

Using Proposition [19.5, we see that the function

F= %(m b ) () e (2 z")) (19.41)

is holomorphic with respect to @, is analytic in some polydisc P(p’), and satisfies the initial
conditions (|19.36)). This finishes the proof.
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20 Lecture 20

20.1 Reduction to the analytic case

In the subsection, we will discuss a method of Malgrange, which transforms the C? case into
the analytic case [Mal69, [Nir73]. In the z-coordinates, our holomorphic equation is

ow ow
— * ¢l’?—k
0z’ 10z

We now view w as a vector-valued function to C". We want to change coordinates £ = £(z, Z)
so that such that our holomorphic equation transform into another holomorphic equation

with analytic coefficients. Write

—0 (20.1)

w(z,7) = W((2,2),£(2,%)) (
¢5(2,2) = UF(£(2,2),£(2, 7)) 20.3
Then
ow oW ot oW o€l
97~ o8 9 T ot b (204)
ow oW ol oW o€l
92~ 002 | 0 020 (20.5)
So the holomorphic equations become
oW ogt oW 8§l o _ . /OW ogt oW o B
a—glﬁ + — 65’ a_] + U* (f(z, z),f(z,z))( ¢l 02 + 8@ 82”“) =0. (20.6)

By inverting the matrix coefficients, this transforms into another holomorphic system of the
form

S+ UHe. D5 =0 (20.7)
where U is of the form
ot = (E+ o 2) YV (55 + ). (20.8)
Let us try to find coordinates so that
> ifﬂ?(g‘, £)=0. (20.9)
J 853 ’

To find the coordinate system &, we must write out (20.9)), and this becomes a second

order system for £ as a function of the original z coordinates. From the chain rule, we have
0 0zt o ozt o

— e =t == 20.10

06 9604 og o7 (20.10)

91



so (20.9) becomes

l =1 Ex Fx\ 1\ q s Lk k
> (Gt s (e ors) (G5 -uss) e
The inverse function theorem says that
0z" 0" o oer\
I B A (20.12)
og* OE* 0z Oz

Making this substitution, and replacing U? (€, £)
is a quasilinear system of the form

$5(2, %), we see that the equation (20.11)

F(D%, D¢, &, 2,Z) = 0. (20.13)
We recall the definition of the linearization.
Definition 20.1. The linearization of F' at a function £ is given by
F{(h) = %F(DQ(g +th), D€+ th), €+ th,2,%)| (20.14)
Proposition 20.2. Assuming ¢ € C*, then the linearization of F at £ = z is
F!(h) = —iAth (p+ &%)« VPh+ (Vo + ¢+ Vo) x Vh. (20.15)
If $(0) = 0, then we have
F/(h)(0) = iAh 4 V6 Vh, (20.16)

If ¢ has sufficiently small CY, norm then F! is an elliptic operator with Holder coefficients
bounded in C.

Proof. We use the following formula: if A(t) is a path of matrices, then

d d
— Aty '=—-A"T"0o—Ac A" 20.1
o (1) o Ao (20.17)
Let look at each term in (20.11))-(20.12)). First, for £ = 2, we have
oer g\ T -
oz* 0z* n
< © = . 20.18
g og” (0 In> (20.15)
oz* 0z
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Also,

J0(z + th)*
d 0z*
dt | 9(z +th)
0z*

Next, we look at the last matrix. At £ = z, we have

The linearization of this term is

d (8(2' + th)k

dt 0z1

Next, we look at the middle matrix. At £ = z, we have

The linearization is

4

Putting everything together, we obtain

, o' 9
i ==2, (@@ t o

Oh¥
B Z D233 ((92‘1

_ Z (Ghl
Oh¥
a Z 077 <8zj

This is of the form

oht 9
0z 07

027 8zl

U?
J

o20) (508) - 5 5 (5 + U7 )
L OhF
=)

oht 0 9 s0hd
2362>Uf_;@<ﬁ+[]_

k
7)

Oz +th)*\ oh*  oh*
oz* __ | 0z Oz
oz +th) t=0 oh*  oh*
oz* dz* 0z*
U?i — sk — Ut
q a q-p q-
(= + th)k ont  ohk
P - P
U= )| L = 5 Ui
35* pag* 7 — q
oz ' U 8210) >j = (In);:
Az + th) \-1\7 Ohl Ohl
P - P
U 0zP > >j t=0 (5’23 Y 0zP

1
@Uw:—ZAh+Vh*VU+VﬂmuJ+Vh*U*VU+Wﬂh*U?

At the origin, all of the terms with U vanish by assumption, so we have

Fxmm):—iAh+Vh*VU
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(20.19)

(20.20)

(20.21)

(20.22)

(20.23)

(20.24)

(20.25)

(20.26)

(20.27)

(20.28)

(20.29)



From the above discussion on coordinate changes, let & = ¢ 12, If £ € By(0) then

z € Bc(0). With ¢¥(z,7) = UF(e”'2,¢7'Z), then we have

Uj(§.€) = e ™' U(£,€) = Uj (5. ).

Note that

1Tlleo s, 0)) = N9llcogs. o
But since ¢ € C'(B.(0)) € C*(B.(0)), by the mean value theorem we have

|9(x) = o(y)] < Cle —yl.
Letting y = 0, since ¢(y) = 0 by assumption, we have

¢(x)| < Cla.
Therefore, we have
1Tllcogy 0y < Ce.

Next, with a slight abuse of notation, we have

i oU (¢, & oU(&,&
IVUllco(sy0p) = sup ) éﬁ 5)‘+‘ . Q‘
€€B1(0) £

73
— sup ’(%(65, e€) ’ N ’&b(ef_, €€) ’
€€B1(0) 3 93
09(2,%) ‘(%(2,5)
=€ su +
zEB}?O) ‘ 0z 0z
=€ HV¢HCO(B€(0))-
Also, we compute
wp TID-VOWI V.l - Vi)
x,y€B1(0),x4y |:E - y|a z,y€Be(0),x#y € a|x - y|o¢
— €1+oz sup VZ¢($, [L’) - vz¢(y7 y) )
2,€B.(0),ay |z —yl|*

(20.30)

(20.31)

(20.32)

(20.33)

(20.34)

(20.35)
(20.36)

(20.37)

(20.38)

(20.39)

(20.40)

Since the C1® norm is the sum of these 3 parts, we can assume without loss of generality

that
[llcras @) <€
for any € > 0.

Proposition 20.3. For e sufficiently small, the linearized operator

FL: Cy™(B1(0)) — C™(B4(0))

(20.41)

(20.42)

is invertible with bounded inverse (independent of €), where the domain satisfies Dirichlet

boundary conditions.
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Proof. The leading term in F? is just the vector Laplacian, which is completely uncoupled.
So by standard elliptic elliptic theory for the Laplacian (on functions), we know that the
leading term is invertible, with bounded inverse (with Dirichlet boundary conditions on each
component). We next show that for e sufficiently small, F/ will be an arbitrarily small
perturbation of the Laplacian in operator norm. To see this, we write

1
Fl(h) = —3Ah+ Qh, (20.43)

where @ are the lower order terms. Let B; = C*%(B;(0))o and By = C%*(B;(0)). Recall

that for the Holder norms, we have

[fallore <\ fllcre - llgllore, (20.44)
so we estimate
1Qh5, = [(¢+ &%) * V*h + (Vo + ¢+ V) * V|5, (20.45)
< (I¢lls, + l¢l5,) - IV?Rls, + (IVSll5, + I¢lls, Vel - VA5, (20.46)
< (e+€) - |5, (20.47)

So the operator norm of () is estimated

|@hls, _

o#hes [Pl

€+ €. (20.48)
So by the above inverse function theorem, Lemma m, F! is also invertible with bounded
inverse if € is sufficiently small. ]

Remark 20.4. Note that the above proof reduced everything to invertibility of the Laplacian
on functions, we did not need to quote any results about elliptic systems of PDEs.

Proposition 20.5. If ¢ is sufficiently small then
I|1F(2)|ls, < Ce. (20.49)

Proof. From the above computations, we have

9
F(z) = Z @%; (20.50)
J
so we have
1E(2)lcoapi0)) < ClIVOlcoaisi o) < Cllollcre o) < Ce (20.51)
]
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21 Lecture 21

21.1 Inverse function theorem

To use the inverse function theorem, Lemma [13.3] it remains to verify the estimate on the
non-linear terms. Recall By = C7*(B;(0), R?") and B, = C%*(B,(0), R?"). Note that F and
& are vector-valued, but for simplicity of notation in the following discussion, we will assume
they are scalar-valued. Let write our nonlinear operator as F : B; — B, as

F(§) = F(D?, D¢, €, 2,%), (21.1)

where F : R** x R?" x R x B;(0) — R. Write these variables as (ry;, pi, u, z). From (20.11)),
we have that for any fixed z € B;(0), F is analytic in the r;;, p;, and u variables, and

F,V,p P, V2 F e COR™ x R¥™ x R x By(0)). (21.2)

r7p7u

Note that we are slightly abusing notation, since this is only true on the subset for which
the inverse matrix in (20.12]) exists. Define

H : C**(B,(0),R) — C%*(By(0), R* x R*" x R) (21.3)
by
u— (V2u, Vu,u). (21.4)
Then we can write
F(u) = Go H(u), (21.5)

where G : C%(B;(0), R* x R?" x R) — C%*(B,(0),R) is defined by
G(rij(z), pi(z), u(z)) = F(ry(z), pi(z), uw(z), ). (21.6)
We want to show the estimate on the nonlinear terms

1 (u2) = Fur) = Foluz — ur)llg, < Clllwlls, + [luzlls,) - lur — ualls,- (21.7)

From the chain rule, we have
F.(h) = G}{(z) o H.(h). (21.8)
But H is a bounded linear operator, because
1H @) o = (V20 Vi, )| v < [l (21.9)
So if we show for ai,as € C%*(B;(0), R x R?" x R) that

1G(az) = G(a1) = Gy (a2 — a1) s, < Clllarllcon + llazlico) - laz — arlco, — (21.10)
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then since H is linear,

| F(ug) — Flur) — FL(ug —wr)|ls, = [|G o H(uz) — G o H(uy) — G,y 0 Ho(ug — 1) ||,
= ||GO H(Ug) —Go H(Ul) — G;{(z) o (HUQ — Hu1)||52
< C(|[H(u2)|5, + |1 H(u1)lls,) - | H (u2) — H(u1)][s,

< C'([Juzlls, + llualls,) - [Juz — |5,
(21.11)

So we just need to show an estimate on G. Again, the fact that the domain of G is
vector-valued functions doesn’t matter, so for simplicity, we just assume that we have

G : C%(By(0),R) — C%*(By(0),R) where G(u(x)) = F(u(x),z), and F : R x B;(0) — R,
with
F,F,, F,, € C”*(R x B;(0)). (21.12)

The linearized operator of G at a function ug is simply
d
G, (h) = EF((UO +th)(x),x)|i=0 = Fu(uo(z), x)h. (21.13)

By considering the function G(ug + u) instead, which satisfies the same properties as the
original G, we can assume that ug = 0. We let

F(£) = G((1 — By + tus). (21.14)

The fundamental theorem of calculus says

1
F(1) — £(0) = / f(t)yd, (21.15)
0
which is
1
Glus) — Glur) = / Glrtyurvug (12 — 1) (21.16)
0
We rewrite this as
1
Glus) — Glwr) — Gl (uz — uy) = / ( st — G{)> (s — uy)dt. (21.17)
0

So we need to prove the estimate

(G = Go)hllcoasi o) < Clihllco s, o) - [1wllcos s o)- (21.18)
But we have

(G, — Go)h = (Fy(u(z),z) — F,(0,2))h, (21.19)
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which implies
(€, — Gihlcosmoy < IFu(ule), 2) = a0, 0)l|conyop [Bllcomimy, (2120

and we just need to prove the estimate
[Eu(u(x), ©) = Fu(0, 2)[|coe s, (0)) < Cllullcoe (s 0)- (21.21)
Now we let f(t) = F,(tu(z), z). The fundamental theorem of calculus gives
F,(u(x),z) — F,(0,2) = /1 Fou(tu(z), z)u(z)dt. (21.22)
0
First, we estimate the C%-norm

| Fuu(tu(x), m)u(z)|lcos, 0)) < [ Fuu(tu(), )|l cos, o)) llu(z) || ooz, (o)

< Cllu@lovcaony 21
as long as u is small enough so that u(z) is in the domain of definition of F,.
Next, we estimate the C'* semi norm. Note that
(f-9) (@) = (f-9)y) = f(x)g(x) — f(y)g(y)
= f(z)g9(x) — f(y)g(z) + f(y)g(z) — f(y)g(y) (21.24)
< (f(@) = f(w)g(x) + f(y)(g(x) — g(y)),
which implies the estimate
[f9la < [flallgllco + [ fllcolgla- (21.25)
So we estimate
[Fuu(tu(z), )u(@)la < [Fuu(tu(z), @)lallullco + [ Fuu(tu(z), )| cou]a- (21.26)
We have that
Fuu(tu(@), 2) — Fuatu(y), )] < Fuudaltu(z) — tuy)] + |z — y1)° (21.27)

IA A

[Fuula(t[ualz —y|* + |z = y|)* < C[Fua, (21.28)
as long as [u], is bounded. Putting all this together, we have

[ Fu(u(), z) — Fu(0,2) | coas, 0y < Ol Fuu(tu(z), 2)u()||coe s, o)

< Cllulleos sy (21.29)
Returning to our problem, we have
F(h) = F(z+h), (21.30)
satisfying
IF(0)[5, < Ce, (21.31)
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and F{, : By — By is invertible with bounded inverse independent of e, for sufficiently small e.
Letting

F(h) = F(0)+ Fi(h) + Q(h), (21.32)
we have proved that there exists a constant C' so that
12(2) = 2W)lls, < Ca- ([l + lylls,) - 2 = ylls (21.33)
So by Lemma [13.3] there exists a solution to F(h) = 0 satisfying
12lls, < ClIFO)l, < Ce. (21.34)
Then the vector-valued function 27 + h? satisfies
Vi(22 + h;) = 6! + V;hy, (21.35)

so for e sufficiently small the Jacobian at 0 is invertible, and we have therefore found a
coordinate system.

21.2 Analyticity

We begin this subsection with the following observation.

Proposition 21.1. Let (M, J) be an almost complex manifold, and f : My — M, a C*
diffeomorphism. Then Ny.; = f*N;. Consequently, the equations of integrability are inde-
pendent of the coordinate system.

Proof. Recall the definition of the Nijenhuis tensor
N(X,Y)=2{[JX,JY] - [X,Y]| - J[X,JY] - JJX,Y]}. (21.36)

Let X,Y € I'(TM,). Then (f*J)(X) = f7'Jf.X. Also, for a diffeomorphism, we have
f[X, Y] = [f. X, f.Y]; see [?]. Therefore

Npg(X,Y) =2{[f7 I fX, [T Y] — (X, Y]
— [ LIX ST LY = LT RX Y]
=20 ILX TLY] = fOULX LY = fIAX T LY = VT AX LY (21.37)
=2f H{[Jf.X, JLY] = [fX, LY = JILX, JLY] = J[J X, L.Y]}
= [N (X, LY) = f*Ny.

]

By assumption, the complex structure J corresponding to ¢ is integrable, so by Propo-
sition [18.1}, we have

O, 0 4 oD
S0k~ e O gl o

oz k9zm

azim(b% = 0. (21.38)
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Let f : U — V be the change of coordinates mapping from the &-coordinates to the z-
coordinates. Clearly f*J is associated to f*¢, and the above derivation shows that the
components of f*¢ in the £-coordinates are given by U. By Proposmlonu 1, the integrability
condition is independent of coordinates, so we have that

0 9] 0 0
—UJ - —U] UZ”—UJ 7 —U] = 0. 21.39
oak ~ agr 1 T Uk ggm T T UL g (21.39)
Above, we have found the coordinates & so that
k _
Z aSJU (£,6) = 0. (21.40)

Nowdwe view the coupled system (21.39)-(21.40) as an equation for (73’“ in the new &-
coordinates.

Proposition 21.2. If HUHCO is sufficiently small, then the system (21.39))-(21.40) is an
overdetermined elliptic first-order system with analytic coefficients.

Proof. We need to linearize at U, but under the assumptions, it is clearly equivalent to
proving ellipticity for the system

B
ﬁﬁ _ qu —0 (21.41)

%Qsj = 0. (21.42)

For (£,€) a complex cotangent vector, the symbol is

o (01— &l Y &%) (21.43)
J
If the right hand side vanishes, then we have
0=2 &&d; — ) &&sf = —I€lg]. (21.44)
k k
So if € # 0, then the symbol mapping is injective. n

Remark 21.3. In other words, applying 0/9¢* to the first equations, and using the second
equation yields

(21.45)

o 0 ~. 0 0 -~ 0
~ger a0l + g (01 gl = U7 g 07) =0
ok agk ok ogm ! g

which is a determined second-order elliptic system, if [|U]|co is sufficiently small.
A classical result implies that [75’“ are then analytic functions in the £ coordinates; see

[?]. So we have proved:

Theorem 21.4. If (M, J) satisfies J € CY and J is an integrable complex structure, then

there exists a coordinate system defined in a neighborhood of any point such that J s real

analytic in these coordinates.

Remark 21.5. By more analysis of the Malgrange system, Hill-Taylor have reduced the
regularity assumption; [?]. For example, it suffices to assume J € WP, for p > 2n.
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22 Lecture 22

This lecture was about presheaves, sheaves, morphisms of sheaves, and exact sequences of
sheaves.

23 Lecture 23

This lecture was about Cech cohomology, good covers, Dolbeault isomorphism.

24 Lecture 24

This lecture was about short exact sequences of sheaves and the resulting long exact sequence
in cohomology, without any assumption on existence of a good cover. We also showed that
the Cech cohomology is equivalent to the cohomology of a acyclic resolution. Discussion of
the exponential sequence.

25 Lecture 25

25.1 Kahler metrics

We next consider (M, J, g) where g is a Riemannian metric, and J is an almost complex
structure. We assume that g and J are compatible, that is,

g(X,Y) = g(JX, JY). (25.1)

The metric g is called an almost-Hermitian metric. If J is also integrable, then g is called
Hermitian.
To an almost Hermitian metric (M, J, g) we associate a 2-form

w(X,Y)=g(JX,Y). (25.2)
This is indeed a 2-form since
w(V,X)=g(JY,X)=g(J?Y,JX) = —g(JX,Y) = —w(X,Y). (25.3)
Since
w(JX,JY) =w(X,Y), (25.4)

this form is a real form of type (1,1), and is called the Kdhler form or fundamental 2-form.
In Euclidean space, this form is

i .
WEue = 5 Zl dz NdZ’. (25.5)
]:
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Definition 25.1. An almost Hermitian manifold (M, g,J) is Kdhler if J is integrable and
dw = 0.

Proposition 25.2. An almost Hermitian manifold (M, g, J) is Kdhler if and only if VJ = 0.

Proof. This follows from the identity
1
20(Vx Y, Z) = —dw(X,JY,JZ) + dw(X,Y,Z) + §g(N(Y, Z), JX), (25.6)

which is true on any almost Hermitian manifold.

If (M, g,J) is Kéhler, then the right hand sides vanishes, so J is parallel.

Conversely, if VJ = 0. Then since w(X,Y) = ¢g(JX,Y), it follows that w is parallel.
Then we recall that the exterior derivative d : QP — QP! can be written in terms of covariant
differentiation.

dw(Xo, ..., X,) = zp:(—nj(vxjw)(xo, XX, (25.7)

=0

which follows immediately from the usual formula for the exterior derivative, and using
normal coordinates around a point. This shows that a parallel form is closed, so then (25.6))
implies that the Nijenhuis tensor vanishes. O]

25.2 Complex tensor notation

We extend ¢ by complex linearity to a symmetric inner product on TM ® C. Choosing any
real basis of the form {X;,JX,..., X,, JX,}, let us abbreviate

1
Zp = §<Xa - iJXa> (25.8)
1
Ze=3 (Xa n z’JXa>, (25.9)
and define
Gap = g(Zom Zﬁ) (2510)
0e3 = 9(Zs, Z3) (25.11)
95 = 9(Za, Z3) (25.12)
gap = 9(Za, Zs)- (25.13)

Notice that
Gop = 9(Zay Z5) = —9(Xo — 1J X0, X5 — 1 Xp)

N S

(9(Xar X5) = 9(J X, X5) = i(9(Xas TX5) + 9(J X X5)) )

o=}

b
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since ¢ is J-invariant, and J? = —Id. Similarly,
955 = 0, (25.14)
Also, from symmetry of g, we have
905 = 9(Za, ZE) = 9(Z5, Za) = 950 (25.15)
However, applying conjugation, since g is real we have
95 = 9(Za, Z3) = 9(Zx, Z3) = 9(Z3, Z=) = gga, (25.16)

which says that g,5 is a Hermitian matrix.
We repeat the above for the fundamental 2-form w, and define

Wap = W(Zu, Zg) = igap =0 (25.17)
Weg = W(Za, Z5) = —igez =0 (25.18)
wo5 = W(Za, Z3) = i9,5 (25.19)
wap = w(Za, Zp) = —igas (25.20)
The first 2 equations are just a restatement that w is of type (1,1). Also, note that
wag = igaﬁ’ (2521)

defines a skew-Hermitian matrix.
On a complex manifold, the fundamental 2-form in holomorphic coordinates takes the
form

W= Z wopdz® AN dz’ =i Z Jazdz® N dZ. (25.22)
Oévﬁ:]- Oé,ﬁ:].

Remark 25.3. Note that for the Euclidean metric, we have g,5 = %504[3, SO
i -
Whe = 5 > dF NdF. (25.23)
Proposition 25.4. (M, g,J) is Kdahler if and only if in any local holomorphic coordinate

system,

agag B 59@

A = g (25.24)
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Proof. 1f (M,g,J) is Kéhler, then

0=dw=1i) (dg.z) Adz" AdZ’
a,f=1
=i (09u5 + 09o5) A dz* A dz’
a,f=1

=i 30 {3 (20) 0 (B2))

(25.25)

n

oy Z ag;fdz N nd i S g‘“ﬁd—k/\dz A dz,

o,B,k=1 o,B,k=1

However, the first term is a form of type (2, 1), and the second term is a form of type (1,2)
so both sums must vanish, which is equivalent to (25.24]). The converse follows by reversing
the above calculation. O]

We also see that the Kihler condition on a Hermitian manifold is equivalent to dw = 0,
which is also equivalent to dw = 0, since w is real.

25.3 Existence of local Kahler potential

We will prove the following very special property of Kahler metrics.

Proposition 25.5. If (M, g, J) is Kdhler then for each p € M, there exists an open neigh-
borhood U of p and a function u : U — R such that w = i00u.

Proof. Choose local homorphic coordinates 2/ around p. Then in a ball B in these coor-
dinates, since w is a real closed 2-form, from the usual Poincaré lemma, there exists a real
1-form o such that w = da in B. Next, write a = o*? + a%! where o' is a 1-form of type
(1,0), and a%! is a 1-form of type (0,1). Since « is real, al0 = a%!. Next,

w=da = da + 0o
— 900 1 900 + 9t 4 Gadl
The first and last terms on the right hand side are forms of type (2,0) and (0, 2), respectively.

Since w is of type (1, 1), we must have da®! = 0. Since we are in a ball in C", the 0—Poincaré
Lemma says that there exists a function f : B — C such that o' = df in B. Substituting

this into (25.26)), we obtain

(25.26)

w=90f + d0f = i0d(2Im(f)). (25.27)
O

Proposition 25.6. (M,g,J) is Kdhler if and only if for each p € M, there exists a holo-
morphic coordinate system around p such that

n

w=2 Y (6 + O(2*)ju)dz" A dz, (25.28)

7,k=1

as |z| — 0.
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Proof. 1f this is true then dw(p) = 0 for any point p, so dw = 0. Conversely, we can assume
that w(p) = 5>, dz/ A dz’. From Proposition [25.5, we can find u : B — R so that

u = co+ Re(cy;27) + Re(cgyjz'2? + CQjEijk) + O(|2*), (25.29)

and w = 100u. But the first terms on the left hand side are in the kernel of the dd-operator,
so by subtracting these terms, we can assume that

u= Re(cQjEszk) + O(]z]*). (25.30)

Then since w(p) = § >, d2 A dz’, we have that

1 . )
U= §|z]2 + Re{ajklzjzkzl + bjkﬁjzkzl)} + O(Jz|"h). (25.31)

Consider the coordinate change
2 =wk+ Z Crrmw!w™. (25.32)

This will eliminate the b;; terms in the expansion of u, and the remaining cubic terms are
annihilated by the dd-operator, so by subtracting those terms, we can arrange that

1
u=Zfwf +O(wl), (25.33)

and (125.28)) follows. O

26 Lecture 26

26.1 L? adjoints
For the real operator d : AP — AP*! the formal L2-adjoint d* is defined by

/M<d*a,5>dvz/ (o, dB)dV, (26.1)

M

where o € QP(M), and B € QP~'(M), and where (-,-) = g(-,-), and dV is the oriented
Riemannian volume element.

The Riemannian inner product on forms extends by complex linearity to an inner product
on complex valued forms. For a and 3 be sections of AL, we define the Hermitian inner
product of o and 3 to be

(a, 8) = g(a, B). (26.2)

The formula (26.1)) holds for complex valued forms. Replacing 3 with 3, we have

/M<d*a,3>dV=/M<a,d3>dV. (26.3)
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But since d is a real operator, d3 = df3, so we can write this as

[ @apav= [ apav

M

That is, d* is the L? adjoint of d with respect to the Hermitian inner product.
We next want to compute the formal L? adjoints of other operators. For

T(AP9) —2— D(APa+L),
the L2-Hermitian adjoint
F(A}%qﬂ) 8_*> F(qu),

is defined as follows. For a € T'(A??"1) and 3 € T'(AP9), we have

[ @amav = [ @apav,

M

where dV denotes the Riemannian volume element. For
[(AP7) —2 5 D(APHLa),
the L2-Hermitian adjoint
F(Ap+1,q> 3_*> F(AJD-q)7

is defined similarly.
The Hodge Laplacian is Ay : AP — AP defined by

Ay =d'd+dd".
We also have the following Laplacians on (p, ¢)-forms

Ay : AP9 — APA
Ag i AP —5 APS.

are defined by

Ay = 00 + 90"
Ny=T 5+ 70,

(26.4)

(26.5)

(26.6)

(26.7)

(26.8)

(26.9)

(26.10)

(26.11)
(26.12)

(26.13)
(26.14)

Remark 26.1. By definition, Ay and Az preserve the type, but we do not know whether
Ay maps AP? to AP? i.e., there is no obvious reason why it should preserve the type.
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26.2 Hodge star operator

For a real oriented Riemannian manifold of dimension n, the Hodge star operator is a map-
ping

x: AP — A"TP (26.15)
defined by
a A8 = gar(a, B)dVy, (26.16)
for o, 8 € AP, where dVj, is the oriented Riemannian volume element. Note that
x2 = (=1)P P [d,,. (26.17)
The Hodge star operator yields an explicit formula for d*.
Proposition 26.2. On a Riemannian manifold (M, g), for a € QP (M), we have
o = (=) 5 gk, (26.18)

Proof. For a € QP(M), and 8 € QP71 (M), we compute

/M<Oz,d5)dV:/Mdﬁ/\*a
:/M<d(ﬁ/\*a)+(—1)pﬁ/\d*a)

= / (=P PN B A %k d * (26.19)
M

= / (B, (=1)"PHDH 4 d % a)dV
M

= /Mw,d*a)czv.

]

If M is a complex manifold of complex dimension m = n/2, and g is a Hermitian metric,
then the Hodge star extends to the complexification

x: AP C — A*™ P ®C. (26.20)
Proposition 26.3. We have
x 0 AP — A"TONTP, (26.21)

Proof. This is easily seen to hold on C", therefore it holds any any point of a Hermitian
manifold (it is not a differential operator). O
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Therefore the operator
¥ AP — ATTPRTE (26.22)
defined by
ko= *Q (26.23)
is a C-antilinear mapping and satisfies
a AN%B = ga(a, B)dV,. (26.24)
for a, 5 € A ® C.
Proposition 26.4. The L?*-adjoints of d, 0, a9 are given by

d"=—xd % (26.25)
0" =—% 0 % (26.26)
9 =—%0 %, (26.27)
Proof. The dimension of an almost complex manifold is even, so know that d* = — x dx.

Taking a conjugate of this equation yields the first formula. Apply the first formula to
d =0+ 0, we have

F+0 =d"=—5ds=—%0%—%0 % (26.28)
Considering the degrees of the operators on the right hand side yields the last 2 formulas. [

Corollary 26.5. On a Hermitian manifold, we have

Ag% = %Ay (26.29)
Proof. We compute on A%,
Ag% = (00 + 09 )% = (—=0%0 — 0%0%)% = —%0%0% 4 (—1)F19%0 (26.30)
On the other hand,
¥Ag = ¥(—%0%0 — 0%x0%) = (—1)"10%0 — x0%0%. (26.31)
O
27 Lecture 27
27.1 Serre duality
Letting
HP9(M, g) = {a € AP9|Aza = 0}, (27.1)
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Hodge theory tells us that

HES(M) = HP(M, g), (27.2)

is finite-dimensional, and that
APt =HPY(M, g) ® Im(Az) (27.3)
= HPY(M, g) & Im(d) & Im(d), (27.4)

with this being an orthogonal direct sum in L2
Corollary 27.1. Let (M, J) be a compact complex manifold of complex dimension n. Then

HPU(M) 2 (H2P"(M))*, (27.5)

and therefore
VM) =b""P" (M) (27.6)

Proof. From Corollary [26.5] the mapping * preserves the space of harmonic forms, and is
invertible. The result then follows from Hodge theory. The dual appears since the operator
* is C-antilinear. O]

27.2 The Laplacian on a Kahler manifold
Let L denote the mapping
L : AP9 — APTLatl (27.7)
given by L(a) = w A a, where w is the Kéhler form. Define
A=L*: AP? — AP~1aTT (27.8)
Proposition 27.2. If (M, J.g) is Kdhler then
A, 0] =40, [A, ] = —id", [A,d] = —(d°)* (27.9)
[L,0"] =10, [L,d ] = —id, [L,d"] = —d". (27.10)

Proof. Note that the second identity is the conjugate of the first. Therefore, if the first
identity is true,

A, d]=[A0+38] =[N3+ [N, =id —id* = (—i(d—))* = —(d°)7, (27.11)

then the third identity follows. The last three identities are just the adjoints of the first
three.

So to prove all of these identities, we only need to prove the first. To prove the first
identity, one proves this for C" with the standard Ké&hler form. The proof is a 2 page
calculation, and is left as an exercise. Then for an arbitrary Kahler manifold, the identity
follows by using Kéhler normal coordinates at any point, and the fact that the identity only
depends on the metric and its first derivatives at the point. O
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On a Kéhler manifold, we have the following very special occurrence.

Proposition 27.3. For a € T'(AP9), if (M, J, g) is Kdhler, then
Agoa =200 = 2A50.
Proof. We first show that
Apg = Ap + Ag.
To see this

Ap=dd" +d'd==(0+08)(0"+08 )+ (0" +0 )+ 9)

=00+ 00 +00 +00+00 +9 0+ 00" +00

=Ny + A5+ 00 +0 0+ 00" + 0.
Using Proposition 27.2]

i(00" +8°9) = A, 9] + [A, 9]0
— O(AD — OA) + (A — ON)D
= OND — OND = 0.

(27.12)

(27.13)

(27.14)

(27.15)

The sum of the last two terms in (27.14)) also vanishes, just by taking the conjugate of the

above computation, and (27.13)) follows.
To finish the proof, we show that

Ay = Ay
To see this, we again use Proposition [27.2] to compute
iAy = i00* +i0*0 = O(—[A, d]) — [A, 9]0
= 00N\ — OND — NI + OAO.
Also, we compute

iAg =00 +1id 0 = I([A,d]) + [A, 9]0
— JND — DOA + AID — OAD
— JAD + DA — NDD — HAD,

from which (27.16|) follows.

(27.16)

(27.17)

(27.18)

]

Using Hodge theory, we get the following structure on the cohomology of a Kéahler man-

ifold.
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Proposition 27.4. If (M, J,g) is a compact Kdihler manifold, then

H*(M,C)= @ HZ(M), (27.19)
ptq=k
and
HZY(M) = HEP (M), (27.20)
Consequently,
(M) = ) (M) (27.21)
pt+q=k
I M) = bTP(M). (27.22)

Proof. This follows because if a harmonic k-form is decomposed as

d=gP0 4 P b o P g0, (27.23)
then
0= A =205¢"" + 2A5¢" 1 + - 4 2A50" P + 2A5¢0%P, (27.24)
therefore
AzpPFF =0, (27.25)
for k=0...p.
Next,
Az = Npo, (27.26)
so conjugation sends harmonic forms to harmonic forms. O]

This yields a topologicial obstruction for a complex manifold to admit a Kahler metric:

Corollary 27.5. If (M, J, g) is a compact Kdihler manifold, then the odd Betti numbers of
M are even.

Consider the action of Z on C?\ {0}
(21, 22) = 2(21, 29). (27.27)

This is a free and properly discontinuous action, so the quotient (C?\ {0})/Z is a manifold,
which is called a primary Hopf surface. A primary Hopf surface is diffeomorphic to S* x S3,
which has b' = 1, therefore it does not admit any Kéhler metric.
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27.3 Lefschetz decomposition
We will not prove this completely here, but just motivate by the following brief discussion.

Proposition 27.6. On a Kahler manifold, we have
[L,Ag] =0, [A,Ay] =0. (27.28)
Proof. Since Ay is self-adjoint, these identities are equivalent. Next, we have
[L,d] = 0. (27.29)
To see this, for any «,
d(La) =d(w A a) =w A da = L(da), (27.30)
since the Kahler form w is closed. By taking adjoints, we have
[A,d*] =0. (27.31)
Then we use Proposition to compute

AAy = Add* + Ad*d
— dAd* — (d°)*d* + d*A\d

27.32
= AgA — (d°d + dd°)*.
But the operators d and d¢ anti-commute, so we are done. O

This proposition implies that the operators L and A map harmonic forms to harmonic
forms. This yields an extra decomposition on cohomology called the Lefschetz decomposition,
which we do not have time to discuss further here.

27.4 The Hodge diamond
The following picture is called the Hodge diamond:

h0,0
hl,O ho,l
h2’0 hl’l h0,2
0 .. : . Bom. (27.33)
hn,n—2 hn—i,n—l hn—?,n
hvn— 1 hn—l,n
hrn

Reflection about the center vertical is conjugation. Reflection about the center horizontal is
Hodge star. The composition of these two operations, or rotation by 7, is Serre duality.
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