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1 Lecture 1

1.1 Example of R2n = Cn

Remark 1.1. For now we will denote
√
−1 by i. However, later we will not do this, because

the letter i is sometimes used as an index.

We consider R2n and denote the coordinates as x1, y1, . . . , xn, yn. Letting zj = xj + iyj

and z̄j = xj − iyj, define complex one-forms

dzj = dxj + idyj,

dz̄j = dxj − idyj,

and complex tangent vectors

∂/∂zj = (1/2)
(
∂/∂xj − i∂/∂yj

)
,

∂/∂z̄j = (1/2)
(
∂/∂xj + i∂/∂yj

)
.

Note that

dzj(∂/∂zk) = dz̄j(∂/∂z̄k) = δjk,

dzj(∂/∂z̄k) = dz̄j(∂/∂zk) = 0.
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The standard complex structure J0 : TR2n → TR2n on R2n is given by

J0(∂/∂x
j) = ∂/∂yj, J0(∂/∂y

j) = −∂/∂xj,

which in matrix form is written

J0 = diag

{(
0 −1
1 0

)
, . . . ,

(
0 −1
1 0

)}
. (1.1)

Next, we complexify the tangent space T ⊗ C, and let

T (1,0)(J0) = span{∂/∂zj, j = 1 . . . n} = {X − iJ0X,X ∈ TpR2n} (1.2)

be the i-eigenspace and

T (0,1)(J0) = span{∂/∂z̄j, j = 1 . . . n} = {X + iJ0X,X ∈ TpR2n} (1.3)

be the −i-eigenspace of J0, so that

T ⊗ C = T (1,0)(J0)⊕ T (0,1)(J0). (1.4)

The map J0 also induces an endomorphism of 1-forms by

J0(ω)(v1) = ω(J0v1).

Since the components of this map in a dual basis are given by the transpose, we have

J0(dxj) = −dyj, J0(dyj) = +dxj.

Then complexifying the cotangent space T ∗ ⊗ C, we have

Λ1,0(J0) = span{dzj, j = 1 . . . n} = {α− iJ0α, α ∈ T ∗
pR2n} (1.5)

is the i-eigenspace, and

Λ0,1(J0) = span{dz̄j, j = 1 . . . n} = {α + iJ0α, α ∈ T ∗
pR2n} (1.6)

is the −i-eigenspace of J0, and

T ∗ ⊗ C = Λ1,0(J0)⊕ Λ0,1(J0). (1.7)

We note that

Λ1,0 = {α ∈ T ∗ ⊗ C : α(X) = 0 for all X ∈ T (0,1)}, (1.8)

and similarly

Λ0,1 = {α ∈ T ∗ ⊗ C : α(X) = 0 for all X ∈ T (1,0)}. (1.9)
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We define Λp,q ⊂ Λp+q ⊗ C to be the span of forms which can be written as the wedge
product of exactly p elements in Λ1,0 and exactly q elements in Λ0,1. We have that

Λk ⊗ C =
⊕

p+q=k

Λp,q, (1.10)

and note that

dimC(Λ
p,q) =

(
n

p

)
·
(
n

q

)
. (1.11)

Note that we can characterize Λp,q as those forms satisfying

α(v1, . . . , vp+q) = 0, (1.12)

if more than p if the vj-s are in T (1,0) or if more than q of the vj-s are in T (0,1).
Finally, we can extend J : Λk ⊗ C → Λk ⊗ C by letting

Jα = ip−qα, (1.13)

for α ∈ Λp,q, p+ q = k.
In general, J is not a complex structure on the space Λk

C for k > 1. Also, note that if
α ∈ Λp,p, then α is J-invariant.

1.2 Cauchy-Riemann equations

Let f : Cn → Cm. Let the coordinates on Cn be given by

{z1, . . . zn} = {x1 + iy1, . . . , xn + iyn}, (1.14)

and coordinates on Cm given by

{w1, . . . wm} = {u1 + iv1, . . . , um + ivm} (1.15)

Write

TR(Cn) = span{∂/∂x1, . . . ∂/∂xn, ∂/∂y1, . . . ∂/∂yn}, (1.16)

TR(Cm) = span{∂/∂u1, . . . ∂/∂um, ∂/∂v1, . . . ∂/∂vm}. (1.17)

Then the real Jacobian of

f = (f 1, . . . f 2m) = (u1 ◦ f, u2 ◦ f, . . . , v2m ◦ f). (1.18)

in this basis is given by

JRf =


∂f1

∂x1 . . . ∂f1

∂yn

... . . .
...

∂f2m

∂x1 . . . ∂f2m

∂yn

 (1.19)
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Definition 1.2. A differentiable mapping f : Cn → Cm is pseudo-holomorphic if

f∗ ◦ J0,Cn = J0,Cm ◦ f∗. (1.20)

That is, the differential of f commutes with J0.

We have the following characterization of pseudo-holomorphic maps.

Proposition 1.3. A mapping f : Cm → Cn is pseudo-holomorphic if and only if the Cauchy-
Riemann equations are satisfied, that is, writing

f(z1, . . . zm) = (f1, . . . , fn) = (u1 + iv1, . . . un + ivn), (1.21)

and zj = xj + iyj, for each j = 1 . . . n, we have

∂uj
∂xk

=
∂vj
∂yk

∂uj
∂yk

= − ∂vj
∂xk

, (1.22)

for each k = 1 . . .m, and these equations are equivalent to

∂

∂z̄k
fj = 0, (1.23)

for each j = 1 . . . n and each k = 1 . . .m

Proof. First, we consider m = n = 1. We compute(
∂f1
∂x1

∂f1
∂y1

∂f2
∂x1

∂f2
∂y1

)(
0 −1
1 0

)
=

(
0 −1
1 0

)( ∂f1
∂x1

∂f1
∂y1

∂f2
∂x1

∂f2
∂y1

)
, (1.24)

says that (
∂f1
∂y1

− ∂f1
∂x1

∂f2
∂y1

− ∂f2
∂x1

)
=

(
− ∂f2

∂x1 − ∂f2
∂y1

∂f1
∂x1

∂f1
∂y1

)
, (1.25)

which is exactly the Cauchy-Riemann equations. In the general case, rearrange the coordi-
nates so that (x1, . . . , xm, y1, . . . , ym) are the real coordinates on R2m and (u1, . . . , un, v1, . . . , vn),
such that the complex structure J0 is given by

J0(R2m) =

(
0 −Im
Im 0

)
, (1.26)

and similarly for J0(R2n). Then the computation in matrix form is entirely analogous to the
case of m = n = 1.

Finally, we compute

∂

∂z̄k
fj =

1

2

( ∂

∂xk
+ i

∂

∂yk

)
(uj + ivj) (1.27)

=
1

2

{ ∂

∂xk
uj −

∂

∂yk
vj + i

( ∂

∂xk
vj +

∂

∂yk
uj

)}
, (1.28)

the vanishing of which again yields the Cauchy-Riemann equations.
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From now on, if f is a mapping satisfying the Cauchy-Riemann equations, we will just
say that f is holomorphic.

For any differentiable f , the mapping f∗ : TR(Cn) → TR(Cm) extends to a mapping

f∗ : TC(Cn) → TC(Cm). (1.29)

Consider the bases

TC(Cn) = span{∂/∂z1, . . . ∂/∂zn, ∂/∂z1, . . . ∂/∂zn}, (1.30)

TR(Cm) = span{∂/∂w1, . . . ∂/∂wm, ∂/∂w1, . . . ∂/∂wm}. (1.31)

The matrix of f∗ with respect to these bases is the complex Jacobian, and is given by

JCf =



∂f1

∂z1
· · · ∂f1

∂zn
∂f1

∂z1
· · · ∂f1

∂zn

... · · · ...
... · · · ...

∂fm

∂z1
· · · ∂fm

∂zn
∂fm

∂z1
· · · ∂fm

∂zn

∂f
1

∂z1
· · · ∂f

1

∂zn
∂f

1

∂z1
· · · ∂f

1

∂zn

... · · · ...
... · · · ...

∂f
m

∂z1
· · · ∂f

m

∂zn
∂f

m

∂z1
. . . ∂f

m

∂zn
,


(1.32)

where (f 1, . . . , fm) = f now denotes the complex components of f . This is equivalent to
saying that

df j =
∑
k

∂f j

∂zk
dzk +

∑
k

∂f 1

∂zk
dzk. (1.33)

Notice that (1.32) is of the form

JCf =

(
A B
B A

)
(1.34)

which is equivalent to the condition that the complex mapping is the complexification of a
real mapping.

What we have done here is to embed

HomR(R2n,R2m) ⊂ HomC(C2n,C2m), (1.35)

where C-linear means with respect to i (not J0), via(
A B
C D

)
7→ 1

2

(
A+D + i(C −B) A−D + i(B + C)
A−D − i(B + C) A+D − i(C −B)

)
. (1.36)

Notice that if f is holomorphic, the condition that f∗ commutes with J0 says that the real
Jacobian must have the form

(f∗)R =

(
A −B
B A

)
. (1.37)
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This corresponds to the embeddings

HomC(Cn,Cm) ⊂ HomR(R2n,R2m) ⊂ HomC(C2n,C2m), (1.38)

where the left C-linear is with respect to J0, via

A+ iB 7→
(
A −B
B A

)
7→
(
A+ iB 0

0 A− iB

)
. (1.39)

Note that since the latter embedding is just a change of basis, if m = n, then

det(JR) = det(A+ iB) det(A− iB) = | det(A+ iB)|2 ≥ 0, (1.40)

which implies that holomorphic maps are orientation-preserving. Note also that f is holo-
morphic if and only if

f∗(T
(1,0)) ⊂ T (1,0). (1.41)

Notice that if f is anti-holomorphic, which is the condition that f∗ anti-commutes with
J0, then the real Jacobian must have the form

(f∗)R =

(
A B
B −A

)
. (1.42)

This corresponds to the embeddings

HomC(C
n,Cm) ⊂ HomR(R2n,R2m) ⊂ HomC(C2n,C2m) (1.43)

via

A+ iB 7→
(
A B
B −A

)
7→
(

0 A+ iB
A− iB 0

)
. (1.44)

We see that f is anti-holomorphic if and only if

f∗(T
(1,0)) ⊂ T (0,1). (1.45)

Note that if f is antiholomorphic, then is it holomorphic with respect to the complex struc-
ture −J0 on the domain (but still J0 on the range).

Note that we can decompose f∗ = fC
∗ + fA

∗ , where

fC
∗ =

1

2
(f∗ − Jf∗J) (1.46)

fA
∗ =

1

2
(f∗ + Jf∗J) , (1.47)

and fC
∗ is holomorphic, while fA

∗ is anti-holomorphic. In block matrix form, this just says
that (

A B
C D

)
=

1

2

(
A+D B − C
C −B A+D

)
+

1

2

(
A−D B + C
B + C D − A

)
. (1.48)
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2 Lecture 2

2.1 Cauchy’s formula in one complex variable

For now, just consider f : U → C, where U ⊂ C is an open set. Assume that f , as a
mapping from R2 → R2, is differentiable. This means that, for each z ∈ U , there exists a
linear mapping Lz : R2 → R2 such that

lim
h→0

∥f(z + h)− f(z)− Lzh∥
∥h∥

= 0. (2.1)

This implies that the partial derivatives of f exist. Conversely, if the partial derivatives
exists and are continuous at z, then the mapping Lz exists.

We say that f is holomorphic in U if it is C1 and satisfies the Cauchy-Riemann equations.
Writing f = u+ iv, then Cauchy-Riemann equations are

∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x
⇐⇒ ∂

∂z̄
f = 0, (2.2)

Note that the linear mapping L is given by

L =

(∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

)
=

(
∂u
∂x

− ∂v
∂x

∂v
∂x

∂u
∂x

)
. (2.3)

If we consider h as a complex number, then f being holomorphic is equivalent to

lim
h→0

∥f(z + h)− f(z)− ∂f
∂z
h∥

∥h∥
= 0. (2.4)

Definition 2.1. We say that f is complex analytic in U if for each z0 ∈ U , there exists a
power series expansion

f(z) =
∞∑
k=0

ak(z − z0)
k, (2.5)

which converges absolutely and uniformly in a disc ∆(z0, ϵ) around z0, for some ϵ > 0.

Proposition 2.2 (Cauchy-Pompieu Formula). Let Ω ⊂ C be a bounded domain in C with
C1 boundary. For z ∈ Ω and f ∈ C1(Ω), we have

f(z) =
1

2πi

∫
∂Ω

f(w)dw

w − z
+

1

2πi

∫
Ω

∂f(w)

∂w̄

dw ∧ dw̄
w − z

, (2.6)

where the boundary has the counterclockwise orientation.

Proof. The 1-form

η =
1

2πi

f(w)dw

w − z
, (2.7)
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satisfies

dη = − 1

2πi

∂f

∂w̄

dw̄ ∧ dw
w − z

. (2.8)

Apply Stokes’ Theorem to the annular domain Ω \∆(z, ϵ), to get∫
∂(Ω\∆(z,ϵ))

η =

∫
Ω\∆(z,ϵ)

dη. (2.9)

The left hand side of (2.9) is ∫
∂Ω

η −
∫
∂∆(z,ϵ)

η, (2.10)

and the right hand side of (2.9) is ∫
Ω

dη −
∫
∆(z,ϵ)

dη, (2.11)

since dη is obviously in L1(Ω). A calculation shows that the inner boundary integral limits
to f(z), and the error term in the solid integral goes to 0 as ϵ → 0. For details, see [GH78,
page 3].

Proposition 2.3. Let U be an open set in C. Then f is holomorphic in U if and only if f
is complex analytic in U .

Proof. If f is holomorphic in U the Cauchy-Pompieu formula in a small disc ∆ = ∆(z0, ϵ)
yields for z ∈ ∆,

f(z) =
1

2πi

∫
∂∆

f(w)dw

w − z
. (2.12)

Then expand

1

z − w
=

1

z − z0 + z0 − w
=

1

w − z0

1

1− z−z0
w−z0

(2.13)

=
1

w − z0

∞∑
k=0

(
z − z0
w − z0

)k

, (2.14)

with the sum converging absolutely and uniformly in any smaller disc. So the above yield
the power series expansion

f(z) =
∞∑
k=0

(
1

2πi

∫
∂∆

f(w)dw

(w − z0)k+1

)
(z − z0)

n, (2.15)

which also converges absolutely and uniformly in any smaller disc.
For the converse, if f has a power series expansion, then each term in the power series

satisfies the Cauchy integral formula without solid integral. So then f does also by uniform
convergence. So we have

∂

∂z
f(z) =

∂

∂z

(
1

2πi

∫
∂∆

f(w)dw

w − z

)
=

1

2πi

∫
∂∆

f(w)

(
∂

∂z

1

w − z

)
dw = 0. (2.16)

For more details, see [GH78, page 4].
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Definition 2.4. We wil let Ω ⊂ C be a bounded domain with C1 boundary. If u is holo-
morphic in an open set Ω, then we write u ∈ O(Ω).

First, let’s recall the basic result about differentiating under an integral.

Proposition 2.5. Let

f(z) =

∫
Ω

a(z, w)dw ∧ dw. (2.17)

(Note this notation does not mean that f is holomorphic in z or that a is holomorphic as a
function of 2 variables!). Assume that

1. a(z, w) ∈ L1(Ω), in the w variable.

2. ∂a
∂z

and ∂a
∂z

exist for all z, for almost every w ∈ Ω.

3.
∣∣∂a
∂z

∣∣+ ∣∣∂a
∂z

∣∣ ≤ h(w), where h ∈ L1(Ω).

Then

∂f

∂z
=

∫
Ω

∂

∂z

(
a(z, w)

)
dw ∧ dw (2.18)

∂f

∂z
=

∫
Ω

∂

∂z

(
a(z, w)

)
dw ∧ dw. (2.19)

Proof. Recall that

∂f

∂z
=

1

2

( ∂
∂x

− i
∂

∂y

)
. (2.20)

The real part of the left hand side of (2.18) is

Re
(∂f
∂z

)
=

1

2

(∂Ref
∂x

+
∂Imf

∂y

)
(2.21)

The real part of the right hand side of (2.18) is∫
Ω

1

2

(∂Re(a(x+ iy, w))

∂x
+
∂Im(a(x+ iy, w))

∂y

)
dw ∧ dw. (2.22)

Therefore we can consider real-valued functions, and prove for partials with respect to the
real variables x and y. We have that

∂f

∂x
(x, y) = lim

δ→0

f(x+ δ, y)− f(x, y)

δ
(2.23)

For δ ̸= 0, consider

f(x+ δ, y)− f(x, y)

δ
=

∫
Ω

a(x+ δ + iy, w)− a(x+ iy, w)

δ
dw ∧ dw. (2.24)
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By the mean value theorem, given δ > 0, there exists x′ on the line segment from (x, y) to
(x+ δ, y) such that

a(x+ δ + iy, w)− a(x+ iy, w) =
∂a

∂x
(x′ + iy, w)δ, (2.25)

so ∣∣∣a(x+ δ + iy, w)− a(x+ iy, w)

δ

∣∣∣ ≤ ∣∣∣∂a
∂x

(x′ + iy, w)
∣∣∣

≤
∣∣∣∂a
∂z

(x′ + iy, w)
∣∣∣+ ∣∣∣∂a

∂z
(x′ + iy, w)

∣∣∣ ≤ |h(w)|.
(2.26)

We can do this for any sequence δn → 0, so the result follows from Lebesgue’s dominated
convergence theorem. The proof for the other derivative (2.19) is similar.

We next go through several corollaries of the Cauchy-Pompieu formula; see [Hör90, Chap-
ter 1] for more details.

Corollary 2.6. Let K ⊂ Ω be a compact subset. Then there exist constant Ck, depending
only upon K and Ω such that

sup
z∈K

∣∣∣( ∂
∂z

)k
u(z)

∣∣∣ ≤ Ck∥u∥L1(Ω), (2.27)

for all u ∈ O(Ω).

Proof. Choose a ψ ∈ C∞
0 (Ω) (compact support) such that ψ ≡ 1 in a neighborhood of K. If

u ∈ O(Ω), then

∂

∂z
(ψu) = u

∂

∂z
ψ. (2.28)

Now we apply (2.6) to ψu in Ω to get

ψ(z)u(z) =
1

2πi

∫
Ω

u(w)
∂ψ(w)

∂w

dw ∧ dw̄
w − z

, (2.29)

Now consider

a(z, w) = u(w)
∂ψ(w)

∂w

1

w − z
, (2.30)

If z ∈ K, then |w− z| > δ > 0, since the support of ∂ψ/∂w is at a positive distance from K.
So using Proposition 2.5, we can differentiate under the integral as many times as we like,
and obtain ( ∂

∂z

)k
(ψu(z)) =

1

2πi

∫
Ω

u(w)
∂ψ(w)

∂w

( ∂
∂z

)k( 1

w − z

)
dw ∧ dw̄ (2.31)

If z ∈ K, then ψu is equal to u in a neighborhood of z, so (2.27) follows.

12



Corollary 2.7. If un ∈ O(Ω) and un → u converges uniformly to u in the C0 norm as
n→ ∞ on compact subsets, then u ∈ O(Ω).

Proof. Let K ⊂ Ω, be a compact subset. Then given ϵ > 0, there exist N such that

sup
z∈K

|um(z)− un(z)| < ϵ, (2.32)

for m,n ≥ N . The difference um − un ∈ O(Ω). Corollary 5.11 implies that

sup
z∈K

∣∣∣ ∂
∂z

(um − un)(z)
∣∣∣ ≤ Cϵ. (2.33)

This says that ∂un/∂z converges uniformly on K. But ∂un/∂z = 0, so the real partial
derivatives ∂un/∂x and ∂un/∂y converge uniformly. It is an elementary result that if a
sequence of functions converges uniformly, and the derivatives converge uniformly, then
the limit of the derivatives is the derivative of the limit. This implies that u ∈ C1 and
∂u/∂z = limn→∞ ∂un/∂z = 0.

Corollary 2.8. If un ∈ O(Ω) and |un| is uniformly bounded on every compact subset K ⊂ Ω,
then some subsequence unj

converges uniformly on compact subsets to a limit u ∈ O(Ω).

Proof. Corollary 5.11 yield a uniform bound on derivatives of un on any compact subset.
By Arzela-Ascoli Theorem, some subsequence converges to a limit u uniformly on compact
subsets. Then the previous corollary yields that u ∈ O(Ω).

3 Lecture 3

3.1 The ∂-equation in domains in C
Theorem 3.1. If Ω ⊂ C is any bounded domain, then H0,1

∂
(Ω) = 0.

Recall that

H0,1

∂
(Ω) =

Ker{∂ : Λ0,1 → Λ0,2}
Im{∂ : Λ0,0 → Λ0,1}

, (3.1)

where these are spaces of C∞ forms. Since n = 1, Λ0,2 = {0}. So ω ∈ Ker{∂ : Λ0,1 → Λ0,2}
just means that ω = gdz for g ∈ C∞(Ω). Also, f ∈ Λ0,0 is just a function, and ∂f = ∂f

∂z
dz.

So the theorem is equivalently stated as the following.

Theorem 3.2. If Ω ⊂ C is any bounded domain, and g ∈ C∞(Ω), then there exists g ∈
C∞(Ω) with ∂

∂z
f = g.

Our goal of this lecture is to prove this result. If we want to solve ∂
∂z
f = g, it is natural

to guess that

f(z) =
1

2πi

∫
Ω

g(w)dw ∧ dw̄
w − z

, (3.2)
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is a solution. However, letting a(z, w) = g(w)/(w − z), we have

∂a(z, w)

∂z
= g(w)

−1

(w − z)2
, (3.3)

so the assumptions of Proposition 2.5 are NOT satisfied, so we cannot directly differentiate
under the integral sign! Another problem is that g is only assumed to be in C∞(Ω), so it is
not in L1(Ω) and (3.2) is not necessarily defined. We first give a preliminary result, with a
stronger assumption on g.

Proposition 3.3. If g ∈ C1(Ω) then the function

f(z) =
1

2πi

∫
Ω

g(w)dw ∧ dw̄
w − z

, (3.4)

satisfies f ∈ C1(Ω) and ∂f/∂z = g in Ω.

Proof. We fix a point z0 ∈ Ω. Choose a C∞ cutoff function ψ ∈ C∞
0 (Ω) such that ψ = 1 on

a neighborhood V ⊂ Ω containing z0. We then write f = f1 + f2, where

f1(z) =
1

2πi

∫
Ω

ψ(w)g(w)dw ∧ dw̄
w − z

(3.5)

f2(z) =
1

2πi

∫
Ω

(1− ψ(w))g(w)dw ∧ dw̄
w − z

. (3.6)

For z in a small neighborhood of z0, the integrand in f2 does not have a singularity. We can
therefore differentiate under the integral sign to see that ∂f2/∂z = 0. So we just need to
prove that ∂f1/∂z = g in V . Since ψ has compact support, we can extend ψg to all of C,
and write

f1(z) =
1

2πi

∫
C

ψ(w)g(w)dw ∧ dw̄
w − z

(3.7)

=
1

2πi

∫
C

ψ(ξ + z)g(ξ + z)dξ ∧ dξ̄
ξ

, (3.8)

where we used the change of variables w = ξ + z. Note that

∂(ψ(ξ + z)g(ξ + z))

∂z
=
∂(ψ(ξ + z)g(ξ + z))

∂ξ
(3.9)

∂(ψ(ξ + z)g(ξ + z))

∂z
=
∂(ψ(ξ + z)g(ξ + z))

∂ξ̄
. (3.10)

This shows that the z and z partials of the integrand are uniformly in L1, so we can differ-
entiate under the integral sign, to obtain

∂f1(z)

∂z
=

1

2πi

∫
C

∂(ψ(ξ + z)g(ξ + z))

∂ξ̄

dξ ∧ dξ̄
ξ

(3.11)

=
1

2πi

∫
C

∂(ψ(w)g(w))

∂w

dw ∧ dw
w − z

. (3.12)

Now apply the Cachy-Pompieu formula in a very large ball in C, to conclude the right hand
side is equal to ψ(z)g(z) which is g(z) if z ∈ V .
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This result does not directly help us in proving Theorem 4.2. But notice that in the
proof, we also proved the following result.

Proposition 3.4. If g ∈ C∞
c (Ω), then there exists f ∈ C∞(C) such that ∂f/∂z = g.

Proof. Above, we proved that there is a solution f ∈ C1(C), but the same argument allows
us to differentiate f1 infinitely many times, provided g is infinitely differentiable.

Now we can prove a special case of Theorem 4.2.

Proposition 3.5. If Ω = ∆(z, r) is a disc in C, then H0,1

∂
(Ω) = 0.

Proof. Take a sequence 0 < r1 < r2 < · · · < r such that limj→∞ ri = r. Let 0 ≤ ψk ∈
C∞

0 (∆(z, rk+1)) and ψk ≡ 1 on ∆(z, rk). Then gk = ψkg ∈ C∞
0 (∆(z, rk+1), and by Proposition

3.4, we can find fk ∈ C∞(C) such that ∂fk = gk, which is equal to g in ∆(z, rk).
Now there is no reason that the sequence fk will converge to a limit, so we need to modify

as follows. We claim that we can choose fk so that

sup
z∈∆(z,rk−1)

|fk+1(z)− fk(z)| ≤ 2−k. (3.13)

Given f2, the difference f3 − f2 is holomorphic in ∆(z, r1). So there exists a polynomial P2

such that

sup
z∈∆(z,r1)

|f3(z)− f2(z)− P2(z)| ≤ 2−2. (3.14)

So we redefined f3 to be f3 − P2. We then proceed by induction. Given fk, the difference
fk+1 − fk is holomorphic in ∆(z, rk−1), so we can find a polynomial Pk+1 such that

sup
z∈∆(z,rk−1)

|fk+1(z)− fk(z)− Pk+1(z)| ≤ 2−k, (3.15)

and we redefine fk+1 to be fk+1 − Pk1 .
The sequence of functions fk will be a Cauchy sequence in any disc ∆(z, r′), when r′ < r.

So there exists a uniform limit f . Fixing any m, then f − fm is then a uniform limit of
holomorphic functions in ∆(z, rm−1), so is holomorphic by Corollary 2.7, and the convergence
is in C1 of any compact subset. So we can differentiate to show that

∂fm/∂z → ∂f/∂z = g, (3.16)

and the proof is finished.

To prove for a general domain, we require the following result.

Theorem 3.6 (Runge’s approximation Theorem, first version). Let K ⊂ C be a compact
subset, and f ∈ O(U) for some open set U with K ⊂ U . Given any ϵ > 0, there exists a
rational function fϵ with

sup
z∈K

|f(z)− fϵ(z)| < ϵ, (3.17)

and such that poles of fϵ are contained in C \K.
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Proof. The proof is from [Sar07, Theorem IX.15], we just give an outline. From elementary
arguments, there exists a contour γ : S1 → U \ K such that K ⊂ IntΓ ⊂ U , which has
winding number 1 around any point z0 ∈ K. Note that K might have several components,
so γ will also. Since the winding number is 1, by Cauchy’s Integral formula, we have

f(z) =
1

2πi

∫
γ

f(w)

w − z
dw (3.18)

for any z ∈ K. By dividing the plane into a sufficiently fine grid, we can assume that γ
is piecewise smooth and γ = γ1 + · · · γn, with each γj a line segment parallel to one of the
coordinate axes. Consider each term

fk(z) =
1

2πi

∫
γk

f(w)

w − z
dw (3.19)

We can approximate this arbitrarily closely with a Riemann sum Rk, which will be of the
form

c1
w1 − z

+ · · ·+ cl
wl − z

, (3.20)

where the wj are points on γk. Doing this for every γj, the proof is complete.

4 Lecture 4

4.1 Runge’s Theorem

Theorem 4.1 (Runge’s approximation Theorem, second version). Let K ⊂ C be a compact
subset, and f ∈ O(U) for some open set U with K ⊂ U . Let S ⊂ C \K which contains at
least one point from each connected component of C \ K. Given any ϵ > 0, there exists a
rational function fϵ with

sup
z∈K

|f(z)− fϵ(z)| < ϵ, (4.1)

and such that poles of fϵ are contained in S. If C \ K is connected, the rational functions
can be taken to be polynomials.

Proof. The proof is from [Sar07, Theorem IX.17]. In the proof of Theorem 3.6, each term in
the approximation was of the form c/(w − z), where w ∈ γ. Now choose a picewise linear
path α from w to any point w0 in the same connected component of C \K. Choose points
wi on α so that

|wi−1 − wi| < dist(γ,K). (4.2)

We show that any rational Rj−1 function with a pole only at wj−1 may be uniformly ap-
proximated on K by a rational function Rj with a poles only at wj. But this follows from
consdering the Laurent series expansion of Rj−1 centered at wj: Rj−1 is holomorphic in the
region U = C \ ∆(wj, |wj − wj−1|), so the Laurent series of Rj−1 centered at wj converges
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uniformly on compact subsets of U . Then we can approximate Rj−1 by a rational function
with a pole only at wj, uniformly on K, since K is a compact subset of U , which follows
from (4.2).

If C \ K is connected, by the above argument, we can move the pole of the rational
function Rj to a single point z0 so that K ⊂ ∆(0, |z0|). The Talyor series of Rj converges
uniformly on K, so we can approximate by the partial sums of the Taylor series.

Theorem 4.2. If Ω ⊂ C is any domain, and g ∈ C∞(Ω), then there exists f ∈ C∞(Ω) with
∂
∂z
f = g.

Proof. We choose a sequence of compact sets K1 ⊂ K2 ⊂ K3 ⊂ · · · , so that Kj ⊂ IntKj+1

and ∪Kj = Ω. Note that C\Ω ⊂ C\Kj, and we can assume that for large j, each component
of C \Kj contains a component of C \Ω. Let 0 ≤ ψj ∈ C∞

0 (Kj+1) and ψk ≡ 1 on Kj. Then
gj = ψjg ∈ C∞

0 (Kj+1), and by Proposition 3.4, we can find fj ∈ C∞(C) such that ∂fj = gj.
We claim that we can choose fj ∈ C∞(Ω) so that

sup
z∈Kj−1

|fj+1(z)− fj(z)| ≤ 2−j. (4.3)

We proceed by induction. Given fj, the difference fj+1 − fj is holomorphic in

U ≡ IntKj ⊃ K = Kj−1. (4.4)

We have C \Ω ⊂ C \Kj, so by Theorem 4.1, there exists a rational function Rj+1 such that
it poles are in C \ Ω and such that

sup
z∈Kj−1

|fj+1(z)− fj(z)−Rj+1(z)| ≤ 2−j, (4.5)

and we redefine fj+1 to be fj+1 − Pj−1.
The sequence of functions fj will be a Cauchy sequence in any subset Km for fixed m.

So there exists a limit f , with uniform convergence on compact subsets. Fixing any m,
then f − fm is then a uniform limit of holomorphic functions in Km−1, so is holomorphic by
Corollary 2.7, and the convergence is in C1 of any compact subset. So we can differentiate
to show that

∂fm/∂z → ∂f/∂z = g, (4.6)

and the proof is finished.

4.2 Meromorphic Functions

The above solution of the inhomogeneous Cauchy-Riemann equations has many corollaries.
We give some applications to the theory of meromorphic functions. References for this
section are [Hör90, Chapter 1] and [Eps91, Section 1.6].
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Definition 4.3. For a domain Ω ⊂ C, we say that f ∈ M(Ω), or f is meromorphic in Ω, if
there is an open covering Uj of Ω such that f |Uj

=
gj
hj
, where gj and hj are in O(Uj).

Note this is equivalent to saying that f has a Laurent series expansion near any z0 ∈ Ω
with only finitely many negative terms. That is we have

f(z) =
∞∑

k=−m

ak(z − z0)
k. (4.7)

The finite sum of the negative terms is called the principal part of f at z0. Note the set of
poles will be some discrete subset {wj} of Ω.

Theorem 4.4 (Mittag-Leffler). Let Ω be a domain in C and {wj} a discrete subset of Ω.
Let Pj be any principal sum at wj. Then there exists a meromorphic function h ∈ M(Ω)
such that the principal part of h at wj is Pj.

Proof. Let ψj be a cutoff function supported in a small neighborhood of wj which doesn’t
contain any other points in the discrete subset. Consider g =

∑
j ψjPj. Then ∂g/∂z̄ ∈

C∞(Ω). By Theorem 4.2, there exists a solution f ∈ C∞(Ω) of ∂f/∂z = ∂g/∂z̄. Then
h = g − f satisfies ∂h/∂z = 0, and the principal part of h at wj is Pj.

Definition 4.5. The order of f ∈ M(Ω) at z0 ∈ Ω is the least integer n such that the
coefficient an ̸= 0 in (4.7)

Theorem 4.6 (Weierstrass). Let Ω be a domain in C, {wj} a discrete subset of Ω, and
nj ∈ Z. Then there exists a meromorphic function f ∈ M(Ω) with the order of f at wj equal
to nj.

Proof. We cover Ω by discs Ui = ∆(zi, ri) such that each wi is contained in exactly one of
these discs. Define the function fi = (z − wj)

nj if wj ∈ Ui, and let fi = 1 if Ui doesn’t
contain any of the discrete points. On Ui ∩ Uj, let fij = fi/fj. Then fij ∈ O∗(Ui ∩ Uj)
is a non-vanishing holomorphic function. Since Ui ∩ Uj is simply-connected, we can define
gij = log fij. Note that gij ∈ O(Ui ∩ Uj) is only defined up to adding an integer multiple of
2πi. Since

fik =
fi
fk

=
fi
fj

fj
fk

= fijfjk, (4.8)

the gij satisfy on triple intersections Ui ∩ Uj ∩ Uk

gij − gik + gjk = 2πinijk, (4.9)

where nijk ∈ Z. The nijk satisfy the condition on intersections Ui ∩ Uj ∩ Uk ∩ Ul,

njkl − nikl + nijl − nijk = 0. (4.10)

So nijk ∈ H2(U,Z) defines a Čech 2-cocycle. Since U is a good cover of Ω, H2(U,Z) =
H2(Ω,Z). However, since Ω is a domain in C, it is in particular a non-compact 2-manifold,
so this latter group vanishes. Therefore, there exists integers nij such that

nijk = njk − nik + nij. (4.11)
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Now we define g′ij = gij − 2πinij, which now satisfy

g′ij − g′ik + g′jk = 0 (4.12)

Now choose a partition of unity ψi subordinate to Ui, and define

hi =
∑
j

g′ijψj, (4.13)

which satisfies hi ∈ C∞(Ui). On Ui ∩ Uj, we have

hi − hj =
∑
k

(g′ik − g′jk)ψk =
∑
k

g′ijψk = g′ij. (4.14)

We then have that

∂

∂z
(hi − hj) =

∂

∂z
g′ij = 0, (4.15)

So we can define h ∈ C∞(Ω) by letting

h|Ui
=
∂hi
∂z

(4.16)

By Theorem 4.2, we can solve the equation ∂f/∂z = h for f ∈ C∞(Ω). Then we redefine
h′i = hi − f . These now satisfy h′i ∈ O(Ui), and h

′
i − h′j = g′ij.

So going back to the above, we define f ′
i = e−h′

ifi. On overlaps, we now have

f ′
i

f ′
j

=
e−h′

ifi

e−h′
jfj

= e−h′
i+h′

j
fi
fj

= e−gij′
fi
fj

= e−gij
fi
fj

= 1, (4.17)

so the f ′
i patch together to define f ∈ M(Ω). Since we only multiplied the fi by a non-zero

holomorphic function, the order of f at wj is equal to nj.

Corollary 4.7. If f ∈ M(Ω), then there exists g, h ∈ O(Ω) such that f = g/h in all of Ω.

Proof. If f has poles of order nj at wj, then by the Weierstrass Theorem, there exists a
holomorphic function h ∈ O(Ω) which has a zero of order nj at wj. Then g = hf has no
poles so g ∈ O(Ω).

5 Lecture 5

5.1 Power series in several variables

We review some basic facts about power series in several variables. Some good references for
this material are [FG02, Chapter 1], [JP08, Chapter 1], or [KP02, Chapter 2.1], We write
a point z = (z1, . . . , zn). The open polydisc with polyradius r = (r1, . . . , rn) about a point
z0 = (z01 , . . . , z

0
n) is the set

∆(z0, r) = {z | |zj − z0j | < rj, j = 1 . . . n}. (5.1)
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We will let α = (α1, . . . , αn) ∈ Zn
+ denote a multi-index, where Z+ denotes the non-negative

integers. Define

zα = zα1
1 · · · zαn

n (5.2)

|z|α = |z1|α1 · · · |zn|αn (5.3)

α! = α1! · · ·αn! (5.4)

|α| = α1 + · · ·+ αn. (5.5)

Definition 5.1. The series
∑

α∈Zn
+
aα(z − z0)

α converges at z if some rearrangement con-

verges, that is, give some bijection ϕ : Z+ → (Z+)
n, the series

∞∑
j=0

aϕ(j)(z − z0)
ϕ(j) (5.6)

converges. The domain of convergence of the power series is the interior of the set of points
of convergence.

In 1 variable we know that domains of convergence are discs. Regions of convergence in
several variable can be more complicated.

Example 5.2. The domain of convergence of the series
∑∞

k=0 z
kwk is {(z, w) | |zw| < 1}.

Example 5.3 (Boas). The series
∑∞

n=1 z
nwn! converges in the 3 sets

U1 = {(z, w) | |w| < 1}, U2 = {(0, w)}, U3 = {(z, w) | |z| < 1 and |w| = 1}. (5.7)

Only U1 is an open set; the sets U2 and U3 are 1 dimensional, and are not domains. The
domain of convergence is U1.

Lemma 5.4 (Abel). If
∑

α aαz
α (centered at z = 0) converges at the point z′ then it con-

verges uniformly and absolutely for any point z of the form zj = ρjz
′
j where |ρj| < 1. Fur-

thermore, a point p belongs to the domain of convergence of the power series
∑

α aαz
α if and

only if there exists a neighborhood U of p, a constant C, and r < 1 such that |aαzα| ≤ Cr|α|

for all z ∈ U .

Proof. Since the series converges at the point z′, the terms must be bounded, so there exists
a constant C so that |aα||z′|α ≤ C. Let ρ = max{|ρ1|, . . . , |ρn|} < 1, and consider any point
z = (z1, . . . , zn) so that |zj| < ρ|z′j|. We then have

|aα||z|α ≤ |aα|ρ|α||z′|α ≤ Cρ|α|. (5.8)

So given an integer N > 0, we have

∑
|α|≤N

|aα||z|α =
N∑
j=0

∑
|α|=j

|aα||z|α

≤
N∑
j=0

∑
|α|=j

Cρj

(5.9)
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How many multi-indices of length j are there? This is counting the number of non-negative
integer solutions of

α1 + · · ·+ αn = j. (5.10)

To see this, let α′ = α1+1, then we are interested in the number of positive integer solutions
to

α′
1 + · · ·+ α′

n = j + n. (5.11)

So we have a total of j + n integers, dividing this up into n integers is the same as putting
n− 1 partitions somewhere in the spaces between them, so the number is(

j + n− 1

n− 1

)
. (5.12)

Continuing with the above calculation,

∑
|α|≤N

|aα||z|α ≤ C
N∑
j=0

(
j + n− 1

n− 1

)
ρj

= C
N∑
j=0

(j + n− 1)!

j!(n− 1)!
ρj

=
C

(n− 1)!

N∑
j=0

(j + n− 1)(j + n− 2) · · · (j + 1)ρj

≤ Cn

N∑
j=0

jnρj.

(5.13)

Applying the ratio test, we have

lim
j→∞

(j + 1)nρj+1

jnρj
= lim

j→∞

(
j + 1

j

)n

ρ = ρ, (5.14)

so the series converges provided ρ < 1.
If p belongs to the domain of convergence, then by definition the series converges in a

neighborhood of p. Then by the first part it converges in some polydisc around the origin
containing z, and we follow the first part of the proof.

Definition 5.5. We say that f is complex analytic in U if for each z0 ∈ U , there exists a
power series expansion

f(z) =
∑
α∈Zn

+

aα(z − z0)
α (5.15)

which converges absolutely and uniformly in a polydisc ∆(z0, ϵ̂) around z0, for some positive
polyradius ϵ̂.
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5.2 Cauchy’s formula in several complex variables

Basic reference are [GH78, Hör90, Nog16].

Definition 5.6. We say that f is holomorphic in U if it is C1(U) and satisfies the Cauchy-
Riemann equations,

∂f

∂zj
= 0, j = 1 · · ·n. (5.16)

Proposition 5.7. Let U be an open set in C. Then f is holomorphic in U if and only if f
is complex analytic in U .

Proof. Consider n = 2, the higher-dimensional case is similar. We assume that U =
∆(0, r1)×∆(0, r2) is a polydisc, and f ∈ C1(U). If f is holomorphic in U , then for fixed z1,
the slice f(z1, z2) is a 1-variable holomorphic function for z2 ∈ ∆(0, r2). This holds similarly
for the other variable, so the Cauchy-Pompieu formula applied twice yields

f(z1, z2) =
1

2πi

∫
|w2|=r2

f(z1, w2)dw

w2 − z2

=

(
1

2πi

)2 ∫
|w2|=r2

∫
|w1|=r1

f(w1, w2)dw

(w1 − z1)(w2 − z2)
.

(5.17)

For any (z01 , z
0
2) ∈ U , we expand

1

(w1 − z1)(w2 − z2)
=

1

w2 − z2

1

w1 − z01 + z01 − z1
=

1

w2 − z2

1

w1 − z01

1

1− z1−z01
w1−z01

(5.18)

=
1

w2 − z2

1

w1 − z01

∞∑
k=0

(
z1 − z01
w1 − z01

)k

(5.19)

=
1

(w1 − z01)(w2 − z02)

∞∑
l=0

(
z2 − z02
w2 − z02

)l ∞∑
k=0

(
z1 − z01
w1 − z01

)k

(5.20)

=
∞∑
k=0

∞∑
l=0

(z1 − z01)
k(z2 − z02)

l

(w1 − z01)
k+1(w2 − z02)

l+1
. (5.21)

We next show that we are justified in the last step. Let (z01 , z
0
2) ∈ ∆(0, r′1) × ∆(0, r′2) with

r′1 < r1 and r′2 < r2. Then we have |w1 − z01 | > r1 − r′1, and |w2 − z02 | > r2 − r′2. For
|z1 − z01 | < (r1 − r′1)/2 and |z2 − z02 | < (r2 − r′2)/2, we then have

|akl| =
∣∣∣ (z1 − z01)

k(z2 − z02)
l

(w1 − z01)
k+1(w2 − z02)

l+1

∣∣∣ ≤ 1

(r1 − r′1)(r2 − r′2)
2−k2−l, (5.22)

so the sum converges absolutely and uniformly in any smaller polydisc by Lemma 5.4. In-
terchanging the integration and summation in (5.17) then yields a power series expansion
for f .

The converse is similar to the 1-variable case. If f has a power series expansion, then
each term in the power series satisfies the Cauchy integral formula (5.17). So then f does
also by uniform convergence. Then we can differentiate under the integral to see that f is
holomorphic. For more details, see [GH78, page 6].
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Remark 5.8. Note that the integral in (5.17) is just over a 2-dimensional torus contained
in the boundary of the polydisc. The topological boundary of the polydisc is 3-dimensional,
but it is not a manifold, it is ∂(∆×∆) = S1 ×∆ ∪∆× S1, and these 2 sets intersect along
the torus.

Similar to the 1 variable case, we have the following corollaries. In the proofs, we just
consider the case of 2 dimensions, the higher dimensional cases are similar.

Corollary 5.9. If f is analytic at z0 then f is infinitely differentiable at z0 and

aα =
1

α!

∂|α|f(z0)

∂zα
=

1

α1!α2!

∂α1+α2f(z0)

∂zα1
1 ∂zα2

2

(5.23)

Corollary 5.10 (The maximum principle). Let Ω ⊂ Cn, and f ∈ O(Ω) ∩ C0(Ω). Then |f |
does not assume its maximum at an interior point unless f is constant.

Proof. Assume that |f | attains local maximum at some interior point z0 ∈ Ω. Since f is
holomorphic, it admits a power series expansion f(z0) =

∑
α aα(z − z0)

α which converges
uniformly in the closure of a polydisc ∆(z0, r) = ∆(z10 , r1) × ∆(z20 , r2). Write S1 × S1 =
∂∆(z10 , r1)× ∂∆(z20 , r2). Then |f(z)|2 ≤ |f(z0)|2 for z ∈ ∆(z0, r), so

|f(z0)|2 ≥
(

1

2π

)2 ∫
S1×S1

|f(z1, z2)|2dVS1×S1 =
∞∑

k,l=0

|akl|2r2k1 r2l2 ≥ |a00|2 = |f(z0)|2. (5.24)

This implies that akl is zero except for a00 and therefore f is constant.

Corollary 5.11. Let K ⊂ Ω be a compact subset. Then there exist constants C|α|, depending
only upon K and Ω such that

sup
z∈K

∣∣∣∂αf(z)
∂zα

∣∣∣ ≤ C|α| sup
z∈Ω

|f(z)|. (5.25)

for all u ∈ O(Ω).

Proof. Again, we just consider the case of 2 dimensions, the higher dimensional case is
similar. Fix (z01 , z

0
2) ∈ Ω, and let ∆(z0, (r1, r2)) ⊂ Ω be a polydisc. Then for (z1, z2) ∈

∆(z0, (r′1, r
′
2)) with r

′
1 < r1 and r′2 < r2, we have

f(z1, z2) =
∞∑

k,l=0

akl(z1 − z01)
k(z2 − z02)

l, (5.26)

where

akl =

(
1

2πi

)2 ∫
|w2|=r2

∫
|w1|=r1

f(w1, w2)dw

(w1 − z01)
k+1(w2 − z02)

l+1
. (5.27)

We then get Cauchy’s inequalities∣∣∣ ∂k+lf

∂zk1∂z
l
2

(z01 , z
0
2)
∣∣∣ = k!l!|akl| ≤

k!l!r1r2
(r1 − r′1)

k(r2 − r′2)
l

sup
w=(w1,w2),|w1|=r1,|w2|=r2

|f(w)|. (5.28)

The claim follows by covering K with finitely many polydiscs contained in Ω.
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The following corollaries are proved exactly as before.

Corollary 5.12. If un ∈ O(Ω) and un → u converges uniformly to u in the C0 norm as
n→ ∞ on compact subsets, then u ∈ O(Ω).

Corollary 5.13. If un ∈ O(Ω) and |un| is uniformly bounded on every compact subset K ⊂
Ω, then some subsequence unj

converges uniformly on compact subsets to a limit u ∈ O(Ω).

6 Lecture 6

6.1 The operators ∂ and ∂ in Cn

Using the coordinates

(z1, . . . , zn) = (x1 + iy1, . . . , xn + iyn), (6.1)

recall that that T 1,0 is spanned by

∂

∂zj
≡ 1

2

( ∂

∂xj
− i

∂

∂yj

)
, (6.2)

T 0,1 is spanned by

∂

∂z̄j
≡ 1

2

( ∂

∂xj
+ i

∂

∂yj

)
, (6.3)

Λ1,0 is spanned by

dzj ≡ dxj + idyj, (6.4)

and Λ0,1 is spanned by

dz̄j ≡ dxj − idyj, (6.5)

for j = 1 . . . n.
We define Λp,q ⊂ Λp+q ⊗ C to be the span of forms which can be written as the wedge

product of exactly p elements in Λ1,0 and exactly q elements in Λ0,1. We have that

Λk ⊗ C =
⊕

p+q=k

Λp,q. (6.6)

We define Ωk,Ωk
C,Ω

p,q to be the space of sections of Λk,Λk⊗C,Λp,q, respectively. So we have
that

Ωk ⊗ C =
⊕

p+q=k

Ωp,q. (6.7)

If α ∈ Ωp,q(U), then we can write

α =
∑
I,J

αI,Jdz
I ∧ dzJ , (6.8)
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where I and J are multi-indices of length p and q, respectively, and αI,J : U → C are
complex-valued functions.

The real operator d : Ωk
R → Ωk+1

R , extends to an operator

d : Ωk
C → Ωk+1

C (6.9)

by complexification.

Proposition 6.1. We have

d(Ωp,q) ⊂ Ωp+1,q ⊕ Ωp,q+1. (6.10)

Proof. Recall that

df j =
∑
k

∂f j

∂zk
dzk +

∑
k

∂f 1

∂zk
dzk. (6.11)

Applying d to (6.8), we obtain

dα =
∑
I,J

(∑
k

∂αI,J

∂zk
dzk +

∑
k

∂αI,J

∂zk
dzk
)
∧ dzI ∧ dzJ , (6.12)

and we are done.

We can therefore define operators

∂ : Ωk
C → Ωk+1

C (6.13)

∂ : Ωk
C → Ωk+1

C (6.14)

by

∂α =
∑
I,J,k

∂αI,J

∂zk
dzk ∧ dzI ∧ dzJ (6.15)

∂α =
∑
I,J,k

∂αI,J

∂zk
dzk ∧ dzI ∧ dzJ . (6.16)

using (9.17) and we have

∂|Ωp,q = ΠΛp+1,qd (6.17)

∂|Ωp,q = ΠΛp,q+1d. (6.18)

Corollary 6.2. We have d = ∂ + ∂ which satisfy

∂2 = 0, ∂
2
= 0, ∂∂ + ∂∂ = 0. (6.19)

Proof. The equation d2 = 0 implies that

0 = (∂ + ∂)(∂ + ∂) = ∂2 + ∂∂ + ∂∂ + ∂
2
. (6.20)

If we plug in a form of type (p, q) the first term is of type (p+ 2, q), the middle terms are of
type (p + 1, q + 1), and the last term is of type (p, q + 2). Since (9.17) is a direct sum, the
claim follows.
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6.2 Dolbeault cohomology

Definition 6.3. Let U ⊂ Cn be a domain. For 0 ≤ p, q ≤ n, the (p, q) Dolbeault cohomology
group is

Hp,q

∂
(U) =

{α ∈ Ωp,q(U)|∂α = 0}
∂(Ωp,q−1(U))

, (6.21)

where the forms have C∞ regularity.

The Dolbeault cohomology groups enjoy the following functorality properties.

Proposition 6.4. Let U ⊂ Cm, V ⊂ Cn,W ⊂ Cl be domains. Let f : U → V be a C1

mapping which is holomorphic, that is

f∗ ◦ J0 = J0 ◦ f∗. (6.22)

Then there are induced mappings

f ∗ : Hp,q(V ) → Hp,q(U). (6.23)

If g : V → W is C1 holomorphic, then so is g ◦ f : U → W and

(g ◦ f)∗ = f ∗ ◦ g∗ : Hp,q(W ) → Hp,q(U). (6.24)

In particular, if f is a biholomorphism (one-to-one, onto, with holomorphic inverse), then
the Dolbeault cohomologies of U and V are isomorphic.

Proof. The equation (6.22) implies that

f ∗ : Ωp,q(V ) → Ωp,q(U). (6.25)

To see this, let αp,q ∈ Ωp,q(V ), then for vectors X1, . . . , Xp+q we have

f ∗αp,q(X1, . . . , Xp+q) = αp,q(f∗X1, . . . , f∗Xp+q) (6.26)

Note that if X ∈ T 1,0(U), then JUX = iX, so then

JV f∗X = f∗JUX = f∗iX = if∗X, (6.27)

therefore f∗X ∈ T 1,0(V ). Similarly, if X ∈ T 0,1(X) then f∗X ∈ T 0,1(V ). If more than p of
the Xj are of type (1, 0) or more than q of the Xj are of type (1, 0), then the same is true
for the f∗Xj, and the claim follows.

We also know that the exterior derivative commutes with pullback,

dU ◦ f ∗ = f ∗ ◦ dV . (6.28)

This is equivalent to

(∂U + ∂U) ◦ f ∗ = f ∗ ◦ (∂V + ∂V ) (6.29)
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If we plug in αp,q ∈ Ωp,q(V ), we have 2 equations

∂U ◦ f ∗αp,q = f ∗ ◦ ∂V αp,q (6.30)

∂U ◦ f ∗αp,q = f ∗ ◦ ∂V αp,q (6.31)

The second equation implies that f ∗ induces a well-defined mapping on cohomology f ∗ :
Hp,q(V ) → Hp,q(U) by the following. If [αp,q] ∈ Hp,q(V ) is represented by a form αp,q, such
that ∂V α

p,q = 0, then we have

∂Uf
∗αp,q = f ∗∂V α

p,q = f ∗0 = 0, (6.32)

so we can define f ∗[αp,q] = [f ∗αp,q], that is, map to the cohomology class of the pullback of
any representative form. To see that this is well-defined,

f ∗(αp,q + ∂V β
p,q−1) = f ∗αp,q + f ∗∂V β

p,q−1 = f ∗αp,q + ∂Uf
∗βp,q−1, (6.33)

so we have

[f ∗(αp,q + ∂V β
p,q−1)] = [f ∗αp,q + ∂Uf

∗βp,q−1] = [f ∗αp,q]. (6.34)

The next part follows since

(g ◦ f)∗ = f ∗ ◦ g∗ (6.35)

holds on the level of forms. Finally, if f is a pseudo-biholomorphism, then f−1 exists and is
pseudo-holomorphic, so we have

f ◦ f−1 = idV , f−1 ◦ f = idU , (6.36)

and the induced mappings on cohomology satisfy

f ∗ ◦ (f−1)∗ = idHp,q(U), (f−1)∗ ◦ f ∗ = idHp,q(V ), (6.37)

Definition 6.5. A form α ∈ Ωp,0(U) is holomorphic if ∂α = 0.

Remark 6.6. We only talk about forms of type (p, 0) being holomorphic, we never call a
(p, q)-form holomorphic if q > 0. Also, we have (trivially)

Hp,0(U) = {α ∈ Ωp,0(U) | α is holomorphic}. (6.38)

Proposition 6.7. A p-form α ∈ Ωp,0(U) is holomorphic if and only if it can be written as

α =
∑
|I|=p

αIdz
I , (6.39)

where the αI : U → C are holomorphic functions.
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Proof. We have

∂α =
∑

|I|=p,k

∂αI

∂zk
dzk ∧ dzI . (6.40)

So ∂α = 0 if and only if the αI are holomorphic.

Remark 6.8. So for U ⊂ Cn a domain, dimCH
p,0(U) = ∞ is always infinite-dimensional for

0 ≤ p ≤ n, in particular because any polynomial function in the z-variables is holomorphic.

Example 6.9. Let’s review the case of a domain U ⊂ C. First, H0,0

∂
(U) = O(U). The-

orem 4.2 shows that H0,1

∂
(U) = {0}. The space H1,0

∂
(U) consists of holomorphic 1-forms,

but since n = 1, any holomorphic 1-form is of the form f(z)dz, where f ∈ O(U). So
H1,0

∂
(U) ∼= O(U). Finally,

H1,1

∂
(U) =

Ker ∂ : Ω1,1 → Ω1,2

Image ∂ : Ω1,0 → Ω1,1
=

gdz ∧ dz
(∂f/∂z)dz ∧ dz

= {0}, (6.41)

which also follows from Theorem 4.2.

7 Lecture 7

7.1 The ∂-equation for (0, 1)-forms and Hartogs’ Theorem

A reference for this section is [HL84, Section 1.2]. For n ≥ 2, and g ∈ Ω0,1(U), the equation
∂f = g is not always solvable. This follows from (9.30): applying ∂ yields a compatibility
condition ∂g = 0. The following is in sharp contrast to the case n = 1.

Proposition 7.1. Let g ∈ Ω0,1
0 (Cn) (compact support) have C∞ regularity and satisfy ∂g =

0. Then there exists a smooth f ∈ Ω0
0(Cn) (also having compact support) with ∂f = g.

Furthermore, f ≡ 0 on the unbounded component of Cn \ supp(g).
Proof. We write g =

∑n
j=1 gjdz

j. Define

f(z1, . . . , zn) =
1

2πi

∫
C

g1(w, z2, . . . , zn)

w − z1
dw ∧ dw. (7.1)

The integral is defined since g1 has compact support. Make the change of variable ξ = w−z1,
and we can write f as

f(z1, . . . , zn) =
1

2πi

∫
C

g1(ξ + z1, z2, . . . , zn)

ξ
dξ ∧ dξ̄. (7.2)

This shows that we can differentiate under the integral sign to conclude that f has C∞

regularity. Furthermore,

∂f(z1, . . . , zn)

∂z1
=

1

2πi

∫
C

∂g1(ξ + z1, z2, . . . , zn)

∂z1
1

ξ
dξ ∧ dξ̄

=
1

2πi

∫
C

∂g1(ξ + z1, z2, . . . , zn)

∂ξ̄

1

ξ
dξ ∧ dξ̄

=
1

2πi

∫
C

∂g1(w, z2, . . . , zn)

∂w

1

w − z1
dw ∧ dw = g1(z1, . . . , zn),

(7.3)
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by the Cauchy-Pompieu formula applied to a large ball containing the support of g. The
condition that ∂g = 0 means that

0 =
n∑

j=1

n∑
k=1

∂gj
∂zk

dzk ∧ dzj, (7.4)

so

∂gj
∂zk

=
∂gk
∂zj

(7.5)

for all 1 ≤ j, k ≤ n. Then differentiating (7.6) for j ≥ 2, we obtain

∂f(z1, . . . , zn)

∂zj
=

1

2πi

∫
C

∂g1(ξ + z1, z2, . . . , zn)

∂zj
1

ξ
dξ ∧ dξ̄

=
1

2πi

∫
C

∂gj(ξ + z1, z2, . . . , zn)

∂z1
1

ξ
dξ ∧ dξ̄

=
1

2πi

∫
C

∂gj(w, z2, . . . , zn)

∂w

1

w − z1
dw ∧ dw = gj(z1, . . . , zn).

(7.6)

So the equation ∂f = g is satisfied everywhere. Finally, since g has compact support, it fol-
lows that f is holomorphic on the complement of a large ball Br(0) containing the support of
g. But (7.1) shows that f vanishes when max{|z2|, . . . , |zn|} > r. Therefore f is a holomor-
phic function on Cn\Br(0) which vanishes on the open subset V = {max{|z2|, . . . , |zn|} > r}.
By unique continuation, f ≡ 0 on the unbounded component of Cn \ supp(g).

Theorem 7.2 (Hartogs). Let n ≥ 2, U a domain, and K ⊂ U a compact subset of U such
that U \K is connected. Then if u ∈ O(U \K), there exists ũ ∈ O(U) with ũ|U\K = u.

Proof. Let 0 ≤ χ ∈ C∞
0 (U) and χ ≡ 1 on K. Define g = ∂(χ · u). Since

∂(χu) = u∂(χ) + χ∂(u) = u∂(χ) + 0, (7.7)

we see that g extends smoothly to U , that is, g ∈ Ω0,1
0 (U), and ∂g = 0. By Proposition 7.1,

there exists f ∈ C∞
0 (Cn) with ∂f = g. So then we let ũ = (1− χ)u+ f . This satisfies

∂f̃ = −g + ∂(f) = 0, (7.8)

so ũ ∈ O(U). Let V denote the unbounded component of the complement of the support of
χ. Since supp(g) ⊂ supp(χ), from Proposition 7.1, we have that f ≡ 0 in V , so ũ = u in
U ∩ V . But since U \K is connected and V ∩ (U \K) ̸= ∅, we have ũ = u in U \K from
unique continuation.

Example 7.3. For example, point singularities are removable for n ≥ 2. Even polydics are
removable: if u is holomorphic on ∆ \∆′, where ∆′ ⊂ ∆ are polydiscs with ∆′ ⊂ ∆, then u
extends to a holomorphic function on ∆. Same for Br1(0) ⊂ Br2(0) with r1 < r2.
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7.2 Dolbeault cohomology of a polydisc

Some references for this section are [GH78, Section 0.2] or [Nog16, Section 3.6].

Proposition 7.4. If U = ∆(r) is polydisc (with some radii allowed to be infinite), and
ω ∈ Ωp,q(U) satisfies ∂ω = 0 for q ≥ 1, then given any polyradius s < r, there exists
η ∈ Ωp,q−1(∆(r)) with ∂η = ω satisfied in ∆(s).

Proof. Step 1: reduce to case of Ω0,q. If ω ∈ Ωp,q(U),

ω =
∑

|I|=p,|J |=q

ωIJdz
I ∧ dzJ . (7.9)

Define

ωI =
∑
|I|=p

ωIJdz
j. (7.10)

Then ωI ∈ Ω0,q, and ∂ωI = 0. If ωI = ∂ηI , then

∂(dzI ∧ ηI) = (−1)pdzI ∧ ∂ηI = (−1)pdzI ∧ ωI , (7.11)

and we are done with Step 1.
Step 2. Given s < r, if ω ∈ Ω0,q(∆(r)) and ∂ω = 0 in ∆(r), then there exists η ∈

Ω0,q−1(∆(r)) with ∂η = ω satisfied in ∆(s). Choose cutoff functions 0 ≤ χj(t) ≤ 1 so that

χi(t) =

{
1 t ≤ sj

0 t ≥ rj
. (7.12)

We begin with q = 1. Note that ω ∈ Ω0,1(∆(r)), but it does not have compact support, so
we proceed differently than in the proof of Proposition 7.1. Write

ω =
∑
k

ωkdz
k, (7.13)

and define

η1(z
1, . . . , zn) =

1

2πi

∫
|wj |≤rj

χ1(w1)ωj(w
1, z2, . . . , zn)

w1 − z1
dw1 ∧ dw1. (7.14)

Then ∂η1/∂z
1 = χ1ω1, and we have

∂η1 =
∑
l

∂η1
∂zl

dzl = χ1ω1dz
1 +

∑
j>1

∂η1
∂zj

dzj. (7.15)

That is, we have solved the dz1-term, modulo terms involving dzj for j > 1 (we have not
even used the fact that ∂ω = 0 yet!) Next, we consider the case

ω =
∑
k>1

ωkdz
k, (7.16)
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Since ∂ω = 0, this tells us that ∂ω2/∂z
1 = 0. Next, we define

η2(z
1, . . . , zn) =

1

2πi

∫
|w2|≤r2

χ2(w2)ω2(z
1, w2, z3, . . . , zn)

w2 − z2
dw2 ∧ dw2. (7.17)

Then ∂η2/∂z
2 = χ2ω2 and ∂η2/∂z

1 = 0, so we have

∂η2 =
∑
l

∂η2
∂zj

dzj = χ2ω2dz
2 +

∑
j>2

∂η2
∂zj

dzj. (7.18)

Assume that we can solve all the terms involving dzk for k ≤ l, and

ω =
∑
k>l

ωkdz
k. (7.19)

Since ∂ω = 0, this tells us that ∂ωl+1/∂z
j = 0 for j ≤ l. Then we define

ηl+1(z
1, . . . , zn) =

1

2πi

∫
|wl+1|≤rl+1

χl+1(wl+1)ωl+1(z
1, . . . , wl+1, . . . , zn)

wl+1 − zl+1
dwl+1 ∧ dwl+1. (7.20)

Then ∂ηl+1/∂z
l+1 = χl+1ωl+1 and ∂ηl+1/∂z

j = 0 for j ≤ l, so we have

∂ηl+1 =
∑
j>l

∂ηl+1

∂zj
dzj = χl+1ωl+1dz

l+1 +
∑
j>l+1

∂ηl+1

∂zj
dzj. (7.21)

By induction, we are done with the case of q = 1.
Next, consider the case of q = 2. Then

ω =
∑
1≤k<l

ωkldz
k ∧ dzl =

∑
1<l

ω1ldz
1 ∧ dzl +

∑
1<k<l

ωkldz
k ∧ dzl. (7.22)

Define η =
∑

1<k η1kdz
k, where

η1k(z
1, . . . , zn) =

1

2πi

∫
|w1|≤r1

χ1(w
1)ω1k(w

1, z2, . . . , zn)

w1 − z1
dw1 ∧ dw1. (7.23)

Then η1k solves ∂η1k/∂z
1 = χ1ω1k. So then

∂η =
∑
1<k

∂η1k
∂zl

dzl ∧ dzk =
∑
1<k

χ1ω1kdz
1 ∧ dzk +R (7.24)

where R doesn’t include any dz1-s. So we have solved the terms in ω involving dz1-s. We
next assume that ω is of the form

ω =
∑
1<k<l

ωkldz
k ∧ dzl =

∑
2<l

ω2ldz
2 ∧ dzl +

∑
2<k<l

ωkldz
k ∧ dzl. (7.25)
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Let η =
∑

2<k η2kdz
k where

η2k =
1

2πi

∫
|w2|≤r2

χ2(w
2)ω2k(z

1, w2, z3, . . . zn)

w2 − z2
dw2 ∧ dw2. (7.26)

Then ∂η2k/∂z
2 = χ2ω2k. Furthermore, since ∂ω = 0, ∂η2k/∂z

1 = 0. So then

∂η =
∑
2<k

∂(η2kdz
k) =

∑
2<k

∑
2≤l

∂η2k
∂zl

dzl ∧ dzk =
∑
2<k

χ2ω2kdz
2 ∧ dzk +R, (7.27)

where R only has terms dzk ∧ dzl for k, l ≥ 3. So we have solved as the term in ω having
dz1-s or dz2-s. By a similar induction argument as in the q = 1 case, we can solve all terms
in this manner. The case of q > 2 is similar, and details left as an exercise.

Theorem 7.5. If U = ∆(r) is polydisc (with some radii allowed to be infinite), then
Hp,q

∂
(U) = {0} for q ≥ 1.

Proof. Choose a monotone increasing sequence of polyradii r1 < r2 < . . . with limj→∞ rj = r.
Given ω ∈ Ω0,q(∆(r), by Step 2, we can find ηj ∈ Ω0,q−1(∆(r)) with ∂ηj = ω on ∆(rj). We
do not know that the sequence ηj will converge. However, ∂(ηj+1−ηj) = 0 in ∆(rj). If q ≥ 2,
then by Step 2, we can find βj+1 ∈ Ω0,q−2(∆(rj)) solving ∂(βj+1) = ηj+1− ηj in ∆(rj−1). We
then consider the sequence η′j+1 = ηj+1 − ∂(βj+1). Then η

′
j+1 ∈ Ω0,q−2(∆(rj) and

∂(η′j+1) = ∂ηj+1 − ∂
2
(βj+1) = ω (7.28)

in ∆(rj−1), and this new sequence now obviously converges to a solution η ∈ Ω0,q(∆(r) with
∂η = ω in ∆(r).

If q = 1, then we prove exactly like we did in the case of n = 1, by approximating the
difference ηj+1 − ηj by a polynomial Pj+1 to obtain a sequence so that

sup
z∈K

|ηj+1(z)− ηj(z)| < 2−j, (7.29)

and we obtain a sequence converging on compact subsets to a solution.

Remark 7.6. Using Laurent series instead of polynomials, a similar proof works to prove
that Theorem 7.5 also holds for products ∆∗(r1)×· · ·×∆∗(rk)×∆(rk+1)×· · ·∆(rk+l), that
is, we can allow punctured 1-dimensional disks. With a lot more work, one can also show
that Theorem 7.5 holds for Ω1 × · · · ×Ωn with Ωj ⊂ C are domains. Note the result is NOT
true for a punctured polydisc ∆(0, r) \ {0} for n ≥ 2, but we cannot prove that yet.

Remark 7.7. Theorem 7.5 also holds for a ball B(0, r) ⊂ Cn. However, this is difficult to
prove directly. One could use the Bochner-Martinelli kernel instead of the Cauchy kernel to
prove Proposition 7.4. Then one would also need to prove that the B(0, r) is a Runge domain,
that is, O(B(0, r)) can be approximated by holomorphic polynomials uniformly on compact
subsets. However, it seems actually easier to prove this more generally for any pseudoconvex
domain (using Hörmander’s L2 methods), and then show that B(0, r) is pseudoconvex.
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8 Lecture 8

8.1 Almost complex manifolds

Definition 8.1. An almost complex manifold is a real manifold with an endomorphism
J : TM → TM satisfying J2 = −Id.

The following lemma shows that we can always take J to be standard at any point.

Lemma 8.2. Let J : R2n → R2n be a linear mapping satisfying J2 = −Id. Then there exists
an invertible matrix A such that A−1JA = JEuc.

Proof. For X ∈ R2n, define

(a+ ib)X = aX + bJX. (8.1)

Then R2n becomes an n-dimensional complex vector space. Let X1, . . . , Xn be a complex
basis. Then X1, JX1, . . . , Xn, JXn is a basis of R2n as a real vector space, and J is obviously
standard in this basis.

Remark 8.3. The Newlander-Nirenberg Theorem deals with the following question: when
can we make J standard in a neighborhood of a point? As we will see shortly, this cannot
possibly be true for an arbitrary almost complex structure; there is an integrability condition
which must be satisfied.

All of the linear algebra we discussed above in Cn can be done on an almost complex
manifold (M,J). We can decompose

TM ⊗ C = T 1,0 ⊕ T 0,1, (8.2)

where

T 1,0 = {X − iJX,X ∈ TpM} (8.3)

is the i-eigenspace of J and

T 0,1 = {X + iJX,X ∈ TpM} (8.4)

is the −i-eigenspace of J .
The map J also induces an endomorphism of 1-forms by

J(ω)(v1) = ω(Jv1).

We then have

T ∗ ⊗ C = Λ1,0 ⊕ Λ0,1, (8.5)

where

Λ1,0 = {α− iJα, α ∈ T ∗
pM} (8.6)
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is the i-eigenspace of J , and

Λ0,1 = {α + iJα, α ∈ T ∗
pM} (8.7)

is the −i-eigenspace of J .
Next, we can define Λp,q ⊂ Λp+q ⊗C to be the span of forms which can be written as the

wedge product of exactly p elements in Λ1,0 and exactly q elements in Λ0,1. We have that

Λk ⊗ C =
⊕

p+q=k

Λp,q (8.8)

decomposes as a direct sum.

Remark 8.4. This gives a necessary topological obstruction for existence of an almost
complex structure: the bundle of complex k-forms must decompose into to a direct sum of
subbundles as in (8.8).

We can extend J : Λk ⊗ C → Λk ⊗ C by letting

Jα = ip−qα, (8.9)

for α ∈ Λp,q, p+ q = k. Note we can also extend J to k-forms by

Jα(X1, . . . , Xk) = α(JX1, . . . , JXk). (8.10)

Exercise 8.5. Check that these two definitions of J on k-forms agree.

Definition 8.6. A triple (M,J, g) where J is an almost complex structure, and g is a
Riemannian metric is almost Hermitian if

g(X, Y ) = g(JX, JY ) (8.11)

for all X, Y ∈ TM . We also say that g is compatible with J .

Proposition 8.7. Given a linear J with J2 = −Id on R2n, and a positive definite inner
product g on R2n which is compatible with J , there exist elements {X1, . . . Xn} in R2n so that

{X1, JX1, . . . , Xn, JXn} (8.12)

is an ONB for R2n with respect to g.

Proof. We use induction on the dimension. First we note that if X is any unit vector, then
JX is also unit, and

g(X, JX) = g(JX, J2X) = −g(X, JX), (8.13)

so X and JX are orthonormal. This handles n = 1. In general, start with any X1, and let
W be the orthogonal complement of span{X1, JX1}. We claim that J : W → W . To see
this, let X ∈ W so that g(X,X1) = 0, and g(X, JX1) = 0. Using J-invariance of g, we see
that g(JX, JX1) = 0 and g(JX,X1) = 0, which says that JX ∈ W . Then use induction
since W is of dimension 2n− 2.
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Definition 8.8. To an almost Hermitian structure (M,J, g) we associate a 2-form

ω(X, Y ) = g(JX, Y ) (8.14)

called the Kähler form or fundamental 2-form.

This is indeed a 2-form since

ω(Y,X) = g(JY,X) = g(J2Y, JX) = −g(JX, Y ) = −ω(X, Y ). (8.15)

Furthermore, since

ω(JX, JY ) = ω(X, Y ), (8.16)

this form is a real form of type (1, 1). That is, ω ∈ Γ(Λ1,1
R ), where Λ1,1

R ⊂ Λ1,1 is the real
subspace of elements satisfying ω = ω.

In Euclidean space (R2n, J0, gEuc), the fundamental 2-form is

ωEuc =
i

2

n∑
j=1

dzj ∧ dzj. (8.17)

We note the following formula for the volume form:(
i

2

)n

dz1 ∧ dz1 ∧ · · · ∧ dzn ∧ dzn = dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn (8.18)

Note that this defines an orientation on Cn, which we will refer to as the natural orientation.
Note also that

ωn
Euc = n! · dx1 ∧ dy1 ∧ · · · ∧ dxn ∧ dyn. (8.19)

Proposition 8.9. If (M,J) is almost complex, then dim(M) is even and M is orientable.

Proof. If M is of real dimension m, and admits an almost complex structure, then

(det(J))2 = det(J2) = det(−I) = (−1)m, (8.20)

which implies that m is even. We will henceforth write m = 2n. Next, let g be any
Riemannian metric on M . Then define

h(X, Y ) = g(X, Y ) + g(JX, JY ). (8.21)

Then h(JX, JY ) = h(X, Y ) is J-invariant, so (M,J, h) is almost Hermitian. We then
consider the fundamental 2-form

ω(X, Y ) = h(JX, Y ). (8.22)

This is a form of type (1, 1), so ωn ∈ Λn,n
R

∼= Λ2n
R is a top degree 2n-form. It is nowhere-

vanishing since at any point x ∈ M by Proposition 8.7 we can assume that both Jx = JEuc

and gx = gEuc, so ω
n(x) ̸= 0 by (8.19). Therefore, ω gives a globally defined orientation on

M .
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Example 8.10. For example, RPn does not admit any almost complex structure, since it is
non-orientable for n even.

Definition 8.11. A smooth mapping between f : M → N between almost complex mani-
folds (M,JM) and (N, JN) is pseudo-holomorphic if

f∗ ◦ JM = JN ◦ f∗ (8.23)

We have a useful characterization of pseudo-holomorphic mappings.

Proposition 8.12. A mapping f :M → N between almost complex manifolds (M,JM) and
(N, JN) is pseudo-holomorphic if and only if

f∗(T
1,0(M)) ⊂ T 1,0(N), (8.24)

if and only if

f ∗(Λ1,0(N)) ⊂ Λ1,0(M). (8.25)

8.2 Complex manifolds

We next define a complex manifold.

Definition 8.13. A complex manifold of dimension n is a smooth manifold of real dimension
2n with a collection of coordinate charts (Uα, ϕα) covering M , such that ϕα : Uα → Cn and
with overlap maps ϕα ◦ ϕ−1

β : ϕβ(Uα ∩ Uβ) → ϕα(Uα ∩ Uβ) satisfying the Cauchy-Riemann
equations.

Example 8.14. Since holomorphic mappings are orientation-preserving by (1.40), any com-
plex manifold is necessarily orientable. For example, RPn does not admit any complex
structure. Note that we knew from Example 8.10 above that there is no almost complex
structure.

Complex manifolds have a uniquely determined compatible almost complex structure on
the tangent bundle:

Proposition 8.15. In any coordinate chart, define Jα : TMUα → TMUα by

J(X) = (ϕα)
−1
∗ ◦ J0 ◦ (ϕα)∗X. (8.26)

Then Jα = Jβ on Uα ∩ Uβ and therefore gives a globally defined almost complex structure
J : TM → TM satisfying J2 = −Id.

Proof. On overlaps, the equation

(ϕα)
−1
∗ ◦ J0 ◦ (ϕα)∗ = (ϕβ)

−1
∗ ◦ J0 ◦ (ϕβ)∗ (8.27)

can be rewritten as

J0 ◦ (ϕα)∗ ◦ (ϕβ)
−1
∗ = (ϕα)∗ ◦ (ϕβ)

−1
∗ ◦ J0. (8.28)
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Using the chain rule this is

J0 ◦ (ϕα ◦ ϕ−1
β )∗ = (ϕα ◦ ϕ−1

β )∗ ◦ J0, (8.29)

which is exactly the condition that the overlap maps satisfy the Cauchy-Riemann equations.
Obviously,

J2 = (ϕα)
−1
∗ ◦ J0 ◦ (ϕα)∗ ◦ (ϕα)

−1
∗ ◦ J0 ◦ (ϕα)∗

= (ϕα)
−1
∗ ◦ J2

0 ◦ (ϕα)∗

= (ϕα)
−1
∗ ◦ (−Id) ◦ (ϕα)∗ = −Id.

The next proposition follows from the above discussion on Cauchy-Riemann equations.

Proposition 8.16. If (M,JM) and (N, JN) are complex manifolds, then f : M → N is
pseudo-holomorphic if and only if is a holomorphic mapping in local holomorphic coordinate
systems.

Definition 8.17. An almost complex structure J is said to be a complex structure if J is
induced from a collection of holomorphic coordinates on M .

Proposition 8.18. An almost complex structure J is a complex structure if and only if
for any x ∈ M , there is a neighborhood U of x and a pseudo-holomorphic mapping ϕ :
(U, J) → (Cn, J0) which has non-vanishing Jacobian at x. Equivalently, there exist n pseudo-
holomorphic functions f j : U → C, j = 1 . . . n, with linearly independent differentials at x.

Proof. By the inverse function theorem, ϕ gives a coordinate system in a possible smaller
neighborhood of of x. The overlap mappings are pseudo-holomorphic mappings with respect
to J0, so they satisfy the Cauchy-Riemann equations, and are therefore holomorphic. The
components of ϕ are functions f j, j = 1 . . . n with linearly independent differentials, and
conversely, ϕ = (f 1, . . . , fn) is a local coordinate system.

Proposition 8.19. A real 2-dimensional manifold admits an almost complex structure if
and only if it is oriented.

Proof. We have already proved the forward direction. Let M2 be any oriented surface, and
choose any Riemannian metric g on M . Then ∗ : Λ1 → Λ1 satisfies ∗2 = −Id, and using
the metric to identify Λ1 ∼= TM , we obtain an endomorphism J : TM → TM satisfying
J2 = −Id, which is an almost complex structure.

Remark 8.20. In this case, any such J is necessarily a complex structure. This is equivalent
to the problem of existence of isothermal coordinates, we will prove this soon.
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9 Lecture 9

9.1 The Nijenhuis tensor

When does an almost complex structure arise from a true complex structure? To answer
this question, we define the following tensor associated to an almost complex structure.

Proposition 9.1. The Nijenhuis tensor of an almost complex structure defined by

N(X, Y ) = 2{[JX, JY ]− [X, Y ]− J [X, JY ]− J [JX, Y ]} (9.1)

is in Γ(T ∗M ⊗ T ∗M ⊗ TM) and satisfies

N(Y,X) = −N(X, Y ), (9.2)

N(JX, JY ) = −N(X, Y ), (9.3)

N(X, JY ) = N(JX, Y ) = −J(N(X, Y )). (9.4)

Proof. Given a function f :M → R, we compute

N(fX, Y ) = 2{[J(fX), JY ]− [fX, Y ]− J [fX, JY ]− J [J(fX), Y ]}
= 2{[fJX, JY ]− [fX, Y ]− J [fX, JY ]− J [fJX, Y ]}
= 2{f [JX, JY ]− (JY (f))JX − f [X, Y ] + (Y f)X

− J(f [X, JY ]− (JY (f))X)− J(f [JX, Y ]− (Y f)JX)}
= fN(X, Y ) + 2{−(JY (f))JX + (Y f)X + (JY (f))JX + (Y f)J2X}.

Since J2 = −I, the last 4 terms vanish. A similar computation proves that N(X, fY ) =
fN(X, Y ). Consequently, N is a tensor. The skew-symmetry in X and Y (9.2) is obvious,
and (9.3) follows easily using J2 = −Id. For (9.4)

N(X, JY ) = −N(JX, J2Y ) = N(JX, Y ), (9.5)

and

N(X, JY ) = 2{[JX, J2Y ]− [X, JY ]− J [X, J2Y ]− J [JX, JY ]}
= 2{−[JX, Y ]− [X, JY ] + J [X, Y ]− J [JX, JY ]}
= 2J{J [JX, Y ] + J [X, JY ] + [X, Y ]− [JX, JY ]}
= −2J{N(X, Y )}.

(9.6)

Proposition 9.2. For a C1 almost complex structure J ,

NJ ∈ Γ
({(

Λ2,0 ⊗ T 0,1)⊕
(
Λ0,2 ⊗ T 1,0

)}
R

)
. (9.7)

Consequently, if dim(M) = 2n, then the Nijenhuis tensor has n2(n − 1) independent real
components. In particular, if n = 1, then NJ ≡ 0.
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Proof. If we complexify, just using (9.2), we have

NJ ∈ Γ((Λ2 ⊗ TM)⊗ C))

= Γ
((

Λ2,0 ⊕ Λ0,2 ⊕ Λ1,1
)
⊗
(
T 1,0 ⊕ T 0,1)

)
.

(9.8)

But (9.3) says that the Λ1,1 component vanishes. So we have

NJ ∈ Γ
((

Λ2,0 ⊕ Λ0,2
)
⊗
(
T 1,0 ⊕ T 0,1)

)
. (9.9)

Using (9.4), for X ′, Y ′ ∈ Γ(TM), we have

NJ(X
′ − iJX ′, Y ′ − iJY ′)

= NJ(X
′, Y ′)−NJ(JX

′, JY ′)− iNJ(JX
′, Y ′)− iNJ(X

′, JY ′)

= NJ(X
′, Y ′) +NJ(X

′, Y ′) + iJNJ(X
′, Y ′) + iJNJ(X

′, Y ′)

= 2NJ(X
′, Y ′) + 2iJNJ(X

′, Y ′),

(9.10)

which lies in T 0,1. This shows that the Λ2,0 ⊗ T 1,0 component vanishes, so the Λ0,2 ⊗ T 0,1

component also vanishes, and (9.7) follows since NJ is a real tensor.

We have the following local formula for the Nijenhuis tensor.

Proposition 9.3. In local coordinates, the Nijenhuis tensor is given by

N i
jk = 2

2n∑
h=1

(Jh
j ∂hJ

i
k − Jh

k ∂hJ
i
j − J i

h∂jJ
h
k + J i

h∂kJ
h
j ) (9.11)

Proof. We compute

1

2
N(∂j, ∂k) = [J∂j, J∂k]− [∂j, ∂k]− J [∂j, J∂k]− J [J∂j, ∂k]

= [J l
j∂l, J

m
k ∂m]− [∂j, ∂k]− J [∂j, J

l
k∂l]− J [J l

j∂l, ∂k]

= I + II + III + IV.

The first term is

I = J l
j∂l(J

m
k ∂m)− Jm

k ∂m(J
l
j∂l)

= J l
j(∂lJ

m
k )∂m + J l

jJ
m
k ∂l∂m − Jm

k (∂mJ
l
j)∂l − Jm

k J
l
j∂m∂l

= J l
j(∂lJ

m
k )∂m − Jm

k (∂mJ
l
j)∂l.

The second term is obviously zero. The third term is

III = −J(∂j(J l
k)∂l) = −∂j(J l

k)J
m
l ∂m. (9.12)

Finally, the fourth term is

III = ∂k(J
l
j)J

m
l ∂m. (9.13)

Combining these, we are done.
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Definition 9.4. If J is an almost complex structure of class C1 satisfying NJ ≡ 0, then we
say that J is integrable.

Corollary 9.5. If (M,J) arises from a complex structure, then J is integrable.

Proof. In local holomorphic coordinates J = J0 is a constant tensor, and N(J) = 0 follows
from Proposition 9.3.

Next, we have an alternative characterization of the vanishing of the Nijenhuis tensor.

Proposition 9.6. For an almost complex structure J the Nijenhius tensor N(J) = 0 if and
only if for any 2 vector fields X, Y ∈ Γ(T 1,0), their Lie bracket [X, Y ] ∈ Γ(T 1,0).

Proof. To see this, if X and Y are both sections of T 1,0 then we can write X = X ′ − iJX ′

and Y = Y ′ − iJY ′ for real vector fields X ′ and Y ′. The commutator is

[X ′ − iJX ′, Y ′ − iJY ′] = [X ′, Y ′]− [JX ′, JY ′]− i([X ′, JY ′] + [JX ′, Y ′]). (9.14)

But this is also a (1, 0) vector field if and only if

[X ′, JY ′] + [JX ′, Y ′] = J [X ′, Y ′]− J [JX ′, JY ′], (9.15)

applying J , and moving everything to the left hand side, this says that

[JX ′, JY ′]− [X ′, Y ′]− J [X ′, JY ′]− J [JX ′, Y ′] = 0, (9.16)

which is exactly the vanishing of the Nijenhuis tensor.

9.2 The operators ∂ and ∂

Recall that on any almost complex manifold (M,J), we can define Λp,q ⊂ Λp+q ⊗ C to be
the span of forms which can be written as the wedge product of exactly p elements in Λ1,0

and exactly q elements in Λ0,1. We have that

Λk ⊗ C =
⊕

p+q=k

Λp,q. (9.17)

We define Ωk,Ωk
C,Ω

p,q to be the space of sections of Λk,Λk ⊗ C,Λp,q, respectively. The real
operator d : Ωk

R → Ωk+1
R , extends to an operator

d : Ωk
C → Ωk+1

C (9.18)

by complexification.

Proposition 9.7. For a C1 almost complex structure J

d(Ωp,q) ⊂ Ωp+2,q−1 ⊕ Ωp+1,q ⊕ Ωp,q+1 ⊕ Ωp−1,q+2, (9.19)

and NJ = 0 if and only if

d(Ωp,q) ⊂ Ωp+1,q ⊕ Ωp,q+1. (9.20)
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if and only if

d(Ω1,0) ⊂ Ω2,0 ⊕ Ω1,1 (9.21)

if and only if

d(Ω0,1) ⊂ Ω1,1 ⊕ Ω0,2 (9.22)

Proof. Let α ∈ Ωp,q, and write p+ q = r. Then we have the basic formula

dα(X0, . . . , Xr) =
∑

(−1)jXjα(X0, . . . , X̂j, . . . , Xr)

+
∑
i<j

(−1)i+jα([Xi, Xj], X0, . . . , X̂i, . . . , X̂j, . . . , Xr).
(9.23)

This is easily seen to vanish if more than p + 2 of the Xj are of type (1, 0) or if more than
q + 2 are of type (0, 1), and (9.19) follows.

Next, assume that (9.22) is satisfied. Let α ∈ Ω0,1, then

dα(X, Y ) = X(α(Y ))− Y (α(X))− α([X, Y ]) (9.24)

then implies that if both X and Y are in T 1,0 then so is their bracket [X, Y ]. Proposition 9.6
implies that N(J) ≡ 0. Conversely, if N(J) ≡ 0, then we can reverse the steps in this
argument to obtain (9.22). Equation (9.21) is just the conjugate of (9.22).

Recall that if α ∈ Ωk and β ∈ Ωl then

d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ. (9.25)

The formula (9.20) then follows from this.

If NJ = 0, we can therefore define operators

∂ : Ωk
C → Ωk+1

C (9.26)

∂ : Ωk
C → Ωk+1

C (9.27)

using (9.17) and

∂|Ωp,q = ΠΛp+1,qd (9.28)

∂|Ωp,q = ΠΛp,q+1d. (9.29)

Corollary 9.8. For a C1 almost complex structure J with NJ = 0, d = ∂ + ∂ which satisfy

∂2 = 0, ∂
2
= 0, ∂∂ + ∂∂ = 0. (9.30)

Proof. The equation d2 = 0 implies that

0 = (∂ + ∂)(∂ + ∂) = ∂2 + ∂∂ + ∂∂ + ∂
2
. (9.31)

If we plug in a form of type (p, q) the first term is of type (p+ 2, q), the middle terms are of
type (p + 1, q + 1), and the last term is of type (p, q + 2). Since (9.17) is a direct sum, the
claim follows.
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10 Lecture 10

Recall that for n = 1, any almost complex structure J satisfies NJ = 0, so there is no
integrability condition. Let’s look at various forms of the equations.

10.1 Real form of the equations

We just look in an open set in real coordinates (x, y), and then we have

J =

(
a(x, y) b(x, y)
c(x, y) d(x, y)

)
. (10.1)

The only condition is

−I = J2 =

(
a2 + bc b(a+ d)
c(a+ d) bc+ d2

)
(10.2)

If we assume that J is not too far from J0, then b ∼ −1 and c ∼ 1, so we must have

a+ d = 0, a2 + bc = −1. (10.3)

Note that since b ∼ −1, we can solve c = −(1+ a2)/b, but we won’t need to do this now. So
we just consider

J =

(
a(x, y) b(x, y)
c(x, y) −a(x, y)

)
. (10.4)

We want to find a pseudo-holomorphic mapping

ϕ : (U, J) → (C, J0) (10.5)

which has non-vanishing Jacobian at 0. So we want to solve

ϕ∗ ◦ J = J0 ◦ ϕ∗ (10.6)

If we write

ϕ(x, y) =

(
u(x, y)
v(x, y)

)
, (10.7)

then the pseudoholomorphic condition is(
ux uy
vx vy

)(
a b
c −a

)
=

(
0 −1
1 0

)(
ux uy
vx vy

)
(10.8)

which yields the 4 equations

aux + cuy = −vx bux − auy = −vy
avx + cvy = ux bvx − avy = uy

. (10.9)
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This looks like 4 first-order equations for 2 unknown functions, so one wouldn’t expect a
solution. However, the first two equations imply the second two:

avx + cvy = a(−aux − cuy) + c(−bux + auy) = (−a2 − bc)ux = ux, (10.10)

and

bvx − avy = b(−aux − cuy) + a(bux − auy) = (−bc− a2)uy = uy, (10.11)

using the condition that a2 + bc = −1.

Example 10.1. Let’s now do an example. Consider

J =

(
2x −1

1 + 4x2 −2x

)
. (10.12)

We have

J2 =

(
2x −1

1 + 4x2 −2x

)(
2x −1

1 + 4x2 −2x

)
=

(
−1 0
0 −1

)
, (10.13)

so this is indeed an almost complex structure.

From (10.9), the pseudoholomorphic equations are

2xux + (1 + 4x2)uy = −vx (10.14)

−ux − 2xuy = −vy. (10.15)

If a sufficiently smooth solution exists, then we have vxy = vyx, which yields

(2xux + (1 + 4x2)uy)y = −(ux + 2xuy)x (10.16)

This can be rewritten as

uxx + 4xuxy + (1 + 4x2)uyy + 2uy = 0. (10.17)

By inspection, we find that u = x is obviously a solution. We then return to the pseudo-
holomorphic equations, and find that

vx = −2x, vy = 1, (10.18)

so we can choose v = −x2 + y. So our solution is ϕ = (u, v) = (x, y − x2). The Jacobian
at the origin is clearly non-degenerate, so we have found a holomorphic coordinate system.
Note that the mapping ϕ : R2 → C is defined everywhere. It is injective: if we have
(x1, y1 − x21) = (x2, y2 − x22) then the first component says that x1 = x2 and the second
component then implies that y1 = y2. It is also surjective: given any (u, v) ∈ C, we let
x2 = u, and then we need to solve y − u2 = v, which obviously has a solution y = −u2 + v.
Thus we have found that

ϕ : (R2, J) → (C, J0) (10.19)

is a global biholomorphism! Note that any function of the form f(x, y) = h(x + i(y − x2)),
where h is a holomorphic function with respect to J0, is then holomorphic for J0, for example

f(x, y) = ex(cos(y − x2) + i sin(y − x2)). (10.20)

43



10.2 Complex form of the equations

In the basis {∂/∂x, ∂/∂y} we have J of the form

J =

(
a(x, y) b(x, y)
c(x, y) −a(x, y)

)
(10.21)

satisfying a2 + bc = −1. Using (1.36) to change to the complex basis {∂/∂z, ∂/∂z}, then we
have

J =
1

2

(
i(c− b) 2a+ i(b+ c)

2a− i(b+ c) −i(c− b)

)
(10.22)

For a complex valued function w, the equation ∂Jw = 0 is ΠΛ0,1dw = 0, which is

0 = dw + iJdw = wzdz + wzdz + iJ(wzdz + wzdz)

= wzdz + wzdz + iwzJdz + iwzJdz.
(10.23)

Note that we need to use J : Λ1 → Λ1 here, which is the transpose matrix of the above J .
So we have

0 = wzdz + wzdz +
i

2
wz(i(c− b)dz + (2a+ i(b+ c))dz) +

i

2
wz((2a− i(b+ c))dz − i(c− b)dz)

=
(
wz +

1

2
(b− c)wz +

1

2
(2ai+ b+ c)wz

)
dz +

(
wz +

1

2
(2ai− b− c)wz +

1

2
(c− b)wz

)
dz.

(10.24)

Let’s look only at the second equation which is(
1 +

1

2
(c− b)

)
wz = −1

2
(2ai− b− c)wz. (10.25)

If b − c ̸= 2, which is certainly the case if J is close to J0, then the leading coefficient is
non-zero, and we can divide to get

wz = −2ai− b− c

2 + c− b
wz (10.26)

Note that the first equation is(
1 +

1

2
(b− c)

)
wz = −1

2
(2ai+ b+ c)wz. (10.27)

If 2ai− b− c ̸= 0, then we can divide to get

wz = − 2 + b− c

2ai+ b+ c
wz. (10.28)

I claim these are the same equation. For this, we would need

2ai− b− c

2 + c− b
=

2 + b− c

2ai+ b+ c
, (10.29)
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which yields

(2ai− b− c)(2ai+ b+ c) = (2 + c− b)(2 + b− c), (10.30)

which is

−4a2 − (b+ c)2 = 4− (c− b)2. (10.31)

Expanding this out

−4a2 − b2 − 2bc− c2 = 4− c2 + 2bc− b2, (10.32)

which is true since a2 + bc = −1!

Definition 10.2. The equation

wz − µ(z, z)wz = 0 (10.33)

is called the Beltrami equation.

10.3 Method of characteristics

This is a general method for solving linear PDE by solving nonlinear ODEs, we just explain
for the Beltrami equation. Let’s solve the nonlinear ODE

∂z

∂s
= −µ(z, s), z(0) = w. (10.34)

The solution will depend on the independent variable s and the initial conditions w, call the
solution Φ(s, w), and we write

z = Φ(s, w). (10.35)

By the implicit function theorem, we can write w = w(z, s) in a neighborhood of (s, w) =
(0, 0), provided that ∂Φ

∂w
|0,0 ̸= 0. But this is

∂Φ

∂w

∣∣∣
0,0

= lim
h→0

Φ(0, h)− Φ(0, 0)

h
= 1. (10.36)

So we have

z = Φ(s, w(z, s)). (10.37)

Taking the partial derivative of (10.37) with respect to z yields

1 =
∂Φ

∂w

∂w

∂z
. (10.38)

Taking the partial derivative of (10.37) with respect to s yields

0 =
∂Φ

∂s
+
∂Φ

∂w

∂w

∂s
, (10.39)
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which is

0 = −µ(z, s) +
(∂w
∂z

)−1∂w

∂s
, (10.40)

which is the Beltrami equation upon letting s = z.
Let’s return to Example (10.1), and solve using this method. Recall

J =

(
2x −1

1 + 4x2 −2x

)
=

(
a b
c −a

)
. (10.41)

So we need to solve the Beltrami equation with

µ = −2ai− b− c

2 + c− b
= −4xi+ 1− 1− 4x2

2 + 1 + 4x2 + 1
= −xi− x2

1 + x2
=

x

i+ x
. (10.42)

Since x = (z + z)/2, we have

µ(z, z) =
z + z

2i+ z + z
. (10.43)

Let’s solve the ODE

dz

ds
= −µ(z, s), z(0) = w. (10.44)

For our example, this is

dz

ds
= − z + s

2i+ z + s
. (10.45)

To solve this, let’s make a change of variables p = z + s. Then

dp

ds
− 1 = − p

2i+ p
, (10.46)

which gives

dp

ds
= 1− p

2i+ p
=

2i

2i+ p
, (10.47)

or

(2i+ p)dp = 2ids, (10.48)

which integrates to

2ip+
1

2
p2 = 2is+ C, (10.49)

which is

2i(z + s) +
1

2
(z + s)2 = 2is+ C. (10.50)
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Our initial conditions are z(0) = w, so we get

2i(z + s) +
1

2
(z + s)2 = 2is+ 2iw +

1

2
w2. (10.51)

This is

w2 + 4iw − 4iz − (z + s)2 = 0 (10.52)

Using the quadratic formula and letting s = z yields

w = −2i+
√

−4 + 4iz + (z + z)2, (10.53)

and we take the branch of the square root satisfying
√
−4 = 2i. Note that this does not

agree with the above method, but this is because the initial conditions are different. The
above solution satisfies w(z, 0) = z, but the solution found in the previous section was

w = z − ix2 = z − i

4
(z + z)2, (10.54)

which satisfies w(z, 0) = z − i
4
z2.

11 Lecture 11

11.1 Another example

This example will be crucial in proving convergence in the analytic case, and is called a
Cauchy majorant.

Proposition 11.1. For ρ > 0, and C > 0, let

µ∗ = C
( 1

1− (z + z)ρ−1
− 1
)
= C

z + z

ρ− z − z
. (11.1)

which is analytic in the polydisc P (ρ) = {(z, z) | |z| < ρ/2, |z| < ρ/2}. Then there is a
solution w∗ of the Beltrami equation w∗

z − µ∗(z, z)w∗
z = 0 satisfying w∗(z, 0) = z which is

analytic in some polydisc P (ρ′) for some ρ′ > 0.

Proof. We use the method of characteristics from the previous example: solve the ODE

dz

ds
= −µ∗(z, s) (11.2)

with initial condition z(0) = w. Note, by scaling the coordinates, without loss of generaliity,
we can assume that ρ = 1. So we need to solve the ODE

dz

ds
= −C z + s

1− z − s
, z(0) = w. (11.3)
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Letting p = z + s, and the equation becomes

dp

ds
= 1− Cp

1− p
=

1− (C + 1)p

1− p
, p(0) = w. (11.4)

This is separable, so we rewrite as

1− p

1− (C + 1)p
· dp = ds (11.5)

We can write
1− p

1− (C + 1)p
=

1

C + 1

(
1 +

C

1− (C + 1)p

)
. (11.6)

So the equation is (
1 +

C

1− (C + 1)p

)
= (C + 1)ds (11.7)

Integrating yields

p− C

C + 1
log(1− (C + 1)p) = (C + 1)s+ C1. (11.8)

Plugging in the initial conditions gives

p− C

C + 1
log(1− (C + 1)p) = (C + 1)s+ w − C

C + 1
log(1− (C + 1)w). (11.9)

In terms of z, this is

z − C

C + 1
log(1− (C + 1)(z + s)) = Cs+ w − C

C + 1
log(1− (C + 1)w). (11.10)

Rewrite this as

w − C

C + 1
log(1− (C + 1)w) = z − Cs− C

C + 1
log(1− (C + 1)(z + s)). (11.11)

Near (z, s) = (0, 0), the right hand side is an analytic function. If we let

f(w) = w − C

C + 1
log(1− (C + 1)w) (11.12)

Then f is analytic near w = 0. Also,

f ′(0) = 1 + C ̸= 0. (11.13)

By the holomorphic inverse function theorem, f−1 exists and is analytic near 0; see [Pal91,
Theorem VIII.1.8]. So then we have

w = f−1
(
z − Cs− C

C + 1
log(1− (C + 1)(z + s))

)
(11.14)

is analytic. Setting s = z̄, we have

w = f−1
(
z − Cz − C

C + 1
log(1− (C + 1)(z + z))

)
(11.15)

which is analytic. Note also that

w(z, 0) = f−1
(
z − C

C + 1
log(1− (C + 1)z)

)
= f−1(f(z)) = z, (11.16)

so the correct initial conditions are satisfied.
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11.2 Equivalence of J and µ

The following proposition gives another way to think about almost complex structures for
n = 1.

Proposition 11.2. If J is defined in an open set U which induces the standard orientation
on U , then there exists a unique complex valued function µ : U → B(0, 1) ⊂ C so that

T 0,1
J = {v + µv | v ∈ T 0,1

J0
} ⊂ TCU. (11.17)

Explicitly, if

J =

(
a b
c −a

)
, (11.18)

with a2 + bc = −1, then

µ =
2ai− b− c

2 + c− b
. (11.19)

Conversely, given a function µ : U → B(0, 1) ⊂ C, writing µ = f + ig, there is a uniquely
determined almost complex structure J given by

J =
1

1− f 2 − g2

(
2g −(1 + f)2 − g2

g2 + (1− f)2 −2g

)
(11.20)

which has T 0,1
J given by the above.

Proof. Given any such J , then we have previously defined

T 0,1
J = {X ∈ TCU | JX = −iX} = {X ′ + iJX ′ | X ∈ TRU}. (11.21)

We next claim that the projection π : T 0,1
J → T 0,1

J0
is a complex linear isomorphism. These

are two 1-dimensional complex subspaces of the 2-dimensional space TU ⊗ C, so there is a
complex linear projection mapping, which is given by

X ′ + iJX ′ 7→ X ′ + iJX ′ + iJ0(X
′ + iJX ′) = (X ′ − J0JX

′) + i(J + J0)X
′. (11.22)

Since both spaces are 1-dimensional, and π is complex linear, it is an isomorphism provided
it is not the zero map. Obviously, from (11.22), if J ̸= −J0 then it is not the zero mapping.
We may therefore write T 0,1

J as a graph over T 0,1
J0

. To do this, we compute like last time:
using (1.36) to change to the complex basis {∂/∂z, ∂/∂z}, then we have

J =
1

2

(
i(c− b) 2a+ i(b+ c)

2a− i(b+ c) −i(c− b)

)
. (11.23)

Then a basis for the 1-dimensional space T 0,1
J is given by

∂

∂z
+ iJ

( ∂
∂z

)
=

∂

∂z
+
i

2

(
i(b− c)

∂

∂z
+ (2a+ i(b+ c))

∂

∂z

)
(11.24)

=
(
1 +

c− b

2

) ∂
∂z

+
1

2
(2ai− b− c)

∂

∂z
. (11.25)
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From this, we find that

µ =
2ai− b− c

2 + c− b
, (11.26)

as claimed. Using a2 + bc = −1, we compute

|µ|2 = 4(−1− bc) + (b+ c)2

(2 + c− b)2
=

2 + b− c

−2 + b− c
. (11.27)

To show that |µ| < 1, we use the orientation condition. Notice that the condition bc =
−1− a2 says that bc < 0, so there are 2 components to the set of almost complex structures,
determined by the sign of b: if b < 0, then this is the component inducing the standard
orientation. In this case, we have

2 + b− c

−2 + b− c
< 1 (11.28)

is equivalent to

2 + b− c > −2 + b− c, (11.29)

which is obviously true.
Next, given any such function µ, we define

T 0,1
µ = span

{ ∂

∂z
+ µ

∂

∂z

}
. (11.30)

Define

T 1,0
µ = span

{ ∂

∂z
+ µ

∂

∂z

}
. (11.31)

We claim that T 1,0
µ ∩ T 0,1

µ = {0}. To see this, if the intersection was non-zero, then there
would exist α ∈ C so that

∂

∂z
+ µ

∂

∂z
= α

( ∂
∂z

+ µ
∂

∂z

)
. (11.32)

This clearly implies that α = µ and then |µ|2 = 1. But we have assumed that |µ| < 1, so
the claim follows. To find the corresponding almost complex structure J , we must have

∂

∂z
+ µ

∂

∂z
= X ′ + iJX ′, (11.33)

for some real tangent vector X ′. We then write the real and imaginary parts of the left hand
side:

∂

∂z
+ µ

∂

∂z
=

1

2

( ∂
∂x

+ i
∂

∂y

)
+ (f + ig)

1

2

( ∂
∂x

− i
∂

∂y

)
=

1

2

(
(1 + f)

∂

∂x
+ g

∂

∂y

)
+
i

2

(
g
∂

∂x
+ (1− f)

∂

∂y

)
.

(11.34)
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So we must have

J
(
(1 + f)

∂

∂x
+ g

∂

∂y

)
= g

∂

∂x
+ (1− f)

∂

∂y
, (11.35)

and since J2 = −Id,

J
(
g
∂

∂x
+ (1− f)

∂

∂y

)
= −

(
(1 + f)

∂

∂x
+ g

∂

∂y

)
. (11.36)

A simple change of basis computation shows that

J =
1

1− f 2 − g2

(
2g −(1 + f)2 − g2

g2 + (1− f)2 −2g

)
. (11.37)

This gives another way to understand the Beltrami equation. Given µ : U → C with
|µ| < 1, then since

T 0,1
µ = span

{ ∂

∂z
+ µ

∂

∂z

}
, (11.38)

a function w : U → C is holomorphic if and only if( ∂
∂z

+ µ
∂

∂z

)
w = 0, (11.39)

or

wz + µwz = 0, (11.40)

which is exactly the Beltrami equation. We can just completely forget about the matrix
version of J , and parametrize almost complex structures by a single function µ : U → B(0, 1).

Remark 11.3. This proposition also shows us that the regularity of J : U → GL(2,R) is
the same as the regularity of µ : U → B(0, 1). That is, J is Ck,α, C∞, Cω if and only if µ is
also.

Remark 11.4. The complex structures inducing the reversed orientation correspond |µ| > 1
together with the point at infinity, which corresponds to the complex structure −J0.

12 Lecture 12

12.1 The Beltrami equation: analytic case

Now we consider the Beltrami equation

wz = µ(z, z)wz (12.1)
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Assuming µ is analytic, we have a convergent power series expansion

µ(z, z) =
∑
j,k

µjk̄z
jzk =

∞∑
l=0

∑
j+k=l

µjk̄kz
jzk =

∞∑
l=0

µl. (12.2)

Using Lemma 8.2, we can make the ACS standard at the origin, which implies that µ0 = 0,
that is, µ has no constant term. We also write

w =
∑
j,k

wjk̄z
jzk =

∞∑
l=0

∑
j+k=l

wjk̄z
jzk =

∞∑
l=0

wl. (12.3)

We want to find a holomorphic coordinate system, so we make the assumption that w0 = 0
and w1 = z.

We then have

wz =
∞∑
l=2

∂zwl (12.4)

wz = 1 +
∞∑
l=2

∂zwl. (12.5)

We then want to solve

wz =
∞∑
l=2

∂zwl = µwz =
( ∞∑

l=1

µl

)(
1 +

∞∑
k=2

∂zwk

)
=
( ∞∑

l=1

µl

)
+

∞∑
l=2

∑
j+k=l,j≥1,k≥2

µj∂zwk.

(12.6)

We then find the recursion relation

∂zwl+1 = µl +
∑

j+k=l+1,j≥1,k≥2

µj∂zwk. (12.7)

Note that in the sum on the right hand side, we must have k ≤ l, so this in indeed a recursion
relation, provided that we can solve for wl+1.

Fixing l, the right hand side is just a homogeneous polynomial of degree l in the variables
z and z. In general, if fl =

∑
j+k=l,j≥0,k≥0 hjk̄z

jzk, then

Fl+1 =
∑

j+k=l,j≥0,k≥0

1

k + 1
hjk̄z

jzk+1 (12.8)

is a homogeneous polynomial of degree l + 1, which satisfies ∂zF = f .

Remark 12.1. Notice that our “inverse” of the ∂-operator on homogeneous polynomials of
degree l does not contain any terms proportional to zl+1. Our inverse operator is unique with
this condition. If we had not imposed this condition, one could have chosen wl = l!zl+O(z),
in which case our series would definitely not converge! Also, if we view our series as a power
series in 2 complex variables, then formally w(z, 0) = z exactly because of this choice of
inverse to ∂.
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Proposition 12.2. The coefficients wjk̄ for j+ k = l are a polynomial of degree l− 1 in the
µpq̄ for p+ q < l with all coefficients non-negative rational numbers.

Proof. Let us examine the first few steps of the iteration. We have w00 = 1, w10 = 1, and
w01̄ = 0. The term w2 is determined by

∂zw2 = µ1 = µ10̄z + µ01̄z, (12.9)

so

w2 = µ10̄zz +
1

2
µ01̄z

2, (12.10)

so

w20̄ = 0, w11̄ = µ10̄, w02̄ =
1

2
µ01̄. (12.11)

To illustrate, let’s do one more step. The term w3 is determined by

∂zw3 = µ2 + µ1∂zw2 = µ20̄z
2 + µ11̄zz + µ02̄z

2 + (µ10̄z + µ01̄z)(µ10̄z)

= µ20̄z
2 + (µ11̄ + µ2

10̄)zz + (µ02̄ + µ01̄µ10̄)z
2.

(12.12)

so

w3 = µ20̄z
2z +

1

2
(µ11̄ + µ2

10̄)zz
2 +

1

3
(µ02̄ + µ01̄µ10̄)z

3. (12.13)

so

w30̄ = 0, w20̄ = µ20̄, w12̄ =
1

2
(µ11̄ + µ2

10̄), w03̄ =
1

3
(µ02̄ + µ01̄µ10̄), (12.14)

and the claim is evidently true.
To do the general case, we prove by induction: assume the claim is true up to for 0, . . . , l,

and we prove for l + 1. Recall that

∂zwl+1 = µl +
∑

j+k=l+1,j≥1,k≥2

µj∂zwk. (12.15)

By induction, the coefficients of wk for k ≤ l are polynomials with non-negative coefficients
in the µpq̄ with p+ q̄ < k < l, so that ∂zwk is also of this form. Then since

µj =
∑
k+l=j

µkl̄z
kzl, (12.16)

any term µj∂zwk is also a polynomial in the µkl̄ with non-negative coefficients.
To get wl+1, recall that if fl =

∑
j+k=l,j≥0,k≥0 hjkz

jzk, then

Fl+1 =
∑

j+k=l,j≥0,k≥0

1

k + 1
hjkz

jzk+1 (12.17)

is a homogeneous polynomial of degree l+1, which satisfies ∂zF = f . Clearly, this preserves
non-negativity of the coefficients, and we are done.
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Theorem 12.3. If µ(z, z) is analytic in the closed polydisc |z| ≤ ρ, |z| ≤ ρ, there there exists
a unique solution of the Beltrami equation

wz = µ(z, z)wz (12.18)

which is analytic in the polydisc |z| < ρ′, |z| < ρ′ for some ρ′ > 0, and satisfies the Cauchy
data

w(z, 0) = z. (12.19)

Proof. By assumption, the series

µ =
∑
j,k

µjk̄z
jzk (12.20)

converges for any point in the polydisc

P (ρ) = {(z, z) | |z| < ρ, |z| < ρ}, (12.21)

with uniform convergence in the polydisc P (ρ′), for any ρ′ < ρ. So for any (z, z) ∈ P (ρ′),
there exists a constant C > 0 so that

|µjk̄z
jzk| < C (no summation). (12.22)

Choosing (z, z) = (ρ′, ρ′), this implies that

|µjk̄| < C(ρ′)−j−k. (12.23)

To simplify notation, let’s call ρ′ by ρ. Then we define

µ∗ = C
( 1

1− (z + z)ρ−1
− 1
)
= C

z + z

ρ− z − z
, (12.24)

which is analytic in the polydisc P (ρ) = {(z, z) | |z| < ρ, |z| < ρ}. We have

µ∗ = C
∑
j≥1

(z + z)jρ−j = C
∑

(k,l) ̸=(0,0)

ρ−k−l (k + l)!

k!l!
zkzl. (12.25)

Since the multinomial coefficients are at least 1, we therefore have

|µjk̄| ≤ Cρ−j−k ≤ (j + k)!

j!k!
ρ−j−k = µ∗

jk̄. (12.26)

Recall from Proposition 11.1 that there is a solution w∗ of the Beltrami equation for µ∗

satisfying w(z, 0) = z which is analytic in P (ρ′) for some ρ′ > 0. Write the power series
expansion for w∗ as

w∗(z, z) =
∑

(j,k)̸=(0,0)

w∗
jk̄z

jzk. (12.27)
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Recall that our formal power series solves

wjk̄ = Pjk̄(µ∗∗̄), (12.28)

where Pjk̄ is a polynomial with positive coefficients depending only upon µpq̄ for p+q < j+k.
Since w∗ is an analytic solution of the Beltrami equation with µ∗, we must also have

w∗
jk̄ = Pjk̄(µ

∗
∗∗̄), (12.29)

where Pjk̄ is the same polynomial since µ∗(0, 0) = 0 and w∗(z, 0) = z. We then estimate

|wjk̄| = |Pjk̄(µ∗∗̄)| ≤ Pjk̄(|µ∗∗̄|) ≤ Pjk̄(µ
∗
∗∗̄) = w∗

jk̄. (12.30)

The inequalities hold since Pjk̄ is a polynomial with real non-negative coefficients, and using
(12.26). This shows that our power series is majorized by the power series of w∗, which implies
that the power series for w also converges in the open polydisc P (ρ′), by the comparison
test.

13 Lecture 13

13.1 Reduction to the analytic case

In the subsection, we will discuss a method of Malgrange, which transforms the smooth
case into the analytic case [Mal69], [Nir73, Section I.4]. We want to change coordinates
ξ = ξ(z, z) so that such that our solution of the Beltrami equation in the z-coordinates

wz + µ(z, z)wz (13.1)

transforms into another Beltrami equation,

Wξ̄ + Ũ(ξ, ξ̄)Wξ = 0, (13.2)

with Ũ analytic. Note that we want a real change of coordinates, so if we write ξ = ξ1 + iξ2,
we need

det

(
∂ξ1
∂x

∂ξ1
∂y

∂ξ2
∂x

∂ξ2
∂y

)
(0, 0) ̸= 0. (13.3)

As we know, after a change of basis, this is

det

(
∂ξ
∂z

∂ξ
∂z

∂ξ̄
∂z

∂ξ̄
∂z

)
(0, 0) =

∣∣∣∂ξ
∂z

(0, 0)
∣∣∣2 − ∣∣∣∂ξ

∂z
(0, 0)

∣∣∣2 ̸= 0. (13.4)

Write

w(z, z) = W (ξ(z, z), ξ̄(z, z)) (13.5)

µ(z, z) = U(ξ(z, z), ξ̄(z, z)). (13.6)

55



Then

∂w

∂z
=
∂W

∂ξ

∂ξ

∂z
+
∂W

∂ξ̄

∂ξ̄

∂z
(13.7)

∂w

∂z
=
∂W

∂ξ

∂ξ

∂z
+
∂W

∂ξ̄

∂ξ̄

∂z
. (13.8)

So the Beltrami equation becomes

∂W

∂ξ

∂ξ

∂z
+
∂W

∂ξ̄

∂ξ̄

∂z
= −U(ξ, ξ̄)

(∂W
∂ξ

∂ξ

∂z
+
∂W

∂ξ̄

∂ξ̄

∂z

)
, (13.9)

which we can write as

∂W

∂ξ̄
= −

(
∂ξ
∂z

+ U(ξ, ξ̄)∂ξ
∂z

∂ξ̄
∂z

+ U(ξ, ξ̄)∂ξ̄
∂z

)
∂W

∂ξ
, (13.10)

which is another Beltrami equation with a new right hand side

Ũ(ξ, ξ̄) =
ξz + U(ξ, ξ̄)ξz
ξ̄z + U(ξ, ξ̄)ξ̄z

. (13.11)

Let us try to find the coordinates so that

∂

∂ξ
Ũ(ξ, ξ̄) = 0. (13.12)

Then then new Ũ will be anti-holomorphic and therefore analytic by the Cauchy integral
formula. From the chain rule, we have

∂

∂ξ
=
∂z

∂ξ

∂

∂z
+
∂z

∂ξ

∂

∂z
, (13.13)

and we have

∂

∂ξ
Ũ(ξ, ξ̄) =

∂

∂ξ

(ξz + U(ξ, ξ̄)ξz
ξ̄z + U(ξ, ξ̄)ξ̄z

)
=
(
zξ∂z + zξ∂z

)(ξz + U(ξ, ξ̄)ξz
ξ̄z + U(ξ, ξ̄)ξ̄z

)
.

(13.14)

By the inverse function theorem, we have(
zξ zξ̄
zξ zξ̄

)
=

(
ξz ξz̄
ξ̄z ξ̄z̄

)−1

=
1

|ξz|2 − |ξz|2

(
ξ̄z̄ −ξz̄
−ξ̄z ξz

)
, (13.15)

so

zξ =
1

|ξz|2 − |ξz|2
ξ̄z̄ (13.16)

zξ =
−1

|ξz|2 − |ξz|2
ξ̄z. (13.17)
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We therefore have

∂

∂ξ
Ũ(ξ, ξ̄) =

1

|ξz|2 − |ξz|2
(ξ̄z̄∂z − ξ̄z∂z)

(ξz + U(ξ, ξ̄)ξz
ξ̄z + U(ξ, ξ̄)ξ̄z

)
. (13.18)

If we multiply through by the leading factor, we want to solve

0 = (ξ̄z̄∂z − ξ̄z∂z)
(ξz + U(ξ, ξ̄)ξz
ξ̄z + U(ξ, ξ̄)ξ̄z

)
(13.19)

but keep in mind that we need to find a solution with |ξz|2(0, 0)−|ξz|2(0, 0) ̸= 0. Converting
the U(ξ, ξ̄) term back to the (z, z) coordinates, we have

0 = (ξ̄z̄∂z − ξ̄z∂z)
(ξz + µ(z, z)ξz
ξ̄z + µ(z, z)ξ̄z

)
. (13.20)

The equation (13.20) is quasilinear of the form

F (D2ξ,Dξ, ξ, z, z) = 0. (13.21)

Definition 13.1. The linearization of F at a function ξ is given by

F ′
ξ(h) =

d

dt
F (D2(ξ + th), D(ξ + th), ξ + th, z, z)

∣∣∣
t=0
. (13.22)

The linearization is too complicated to write down in general, but the following is all
that we really need.

Proposition 13.2. Assuming µ ∈ C1, then the linearization of F at ξ = z is

F ′
z(h) = ∂z

(
hz + µ(hz − h̄z − µh̄z)

)
+ h̄z̄µz − h̄zµz. (13.23)

If µ(0, 0) = 0, then we have

F ′
z(h)(0, 0) =

1

4
∆h+ c1hz + c2h̄z + c3hz + c4h̄z. (13.24)

for some constants c1, c2, c3, c4. If µ has sufficiently small C1,α, norm then F ′
z is an elliptic

operator with Hölder coefficients bounded in Cα.

Proof. We write out

F (D2(ξ + th), D(ξ + th), ξ + th, z, z) (13.25)

=
(
(ξ + th)z̄∂z − (ξ + th)z∂z

)((ξ + th)z + µ(z, z)(ξ + th)z

(ξ + th)z + µ(z, z)(ξ + th)z

)
. (13.26)

Letting ξ = z, this becomes

F (D2(z + th), D(z + th), z + th, z, z) (13.27)

=
(
(1 + th̄z̄)∂z − th̄z∂z

)(thz + µ(z, z̄)(1 + thz)

(1 + th̄z) + µ(z, z)th̄z

)
. (13.28)
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We also see that

F ′
z(h) = ∂z

(
hz + µ(hz − h̄z − µh̄z)

)
+ h̄z̄µz − h̄zµz. (13.29)

Noting that

∂2h

∂z∂z
=

1

2

( ∂
∂x

− i
∂

∂y

)( ∂
∂x

+ i
∂

∂y

)
h =

1

4
∆h, (13.30)

the proposition follows from this.

We next need the inverse function theorem in Banach spaces.

Lemma 13.3. Let F : B1 → B2 be a C1-map between two Banach spaces such that F (x) =
F (0)+L (x)+Q(x), where the operator L : B1 → B2 is linear and Q(0) = 0. Assume that

1. L is an isomorphism with inverse T satisfying ∥T∥ ≤ C1,

2. there are constants r > 0 and C2 > 0 with r < 1
3C1C2

such that

(a) ∥Q(x)− Q(y)∥B2 ≤ C2 · (∥x∥B1 + ∥y∥B1) · ∥x− y∥B1 for all x, y ∈ Br(0) ⊂ B1,

(b) ∥F (0)∥B2 ≤ r
3C1

.

Then there exists a unique solution to F (x) = 0 in B1 such that

∥x∥B1 ≤ 3C1 · ∥F (0)∥B2 . (13.31)

Proof. Writing x = Tf , we can write the equation F (x) = 0 as

F (0) + f + Q(Tf) = 0, (13.32)

that is

f = −Q(Tf)− F (0). (13.33)

So we would like to find a fixed point of the operator S : B2 → B2 defined by

Sf = −Q(Tf)− F (0). (13.34)

We next claim that under the assumptions, S is a contraction mapping from Br/C1(0) ⊂ B2.
To see this, we compute

∥Sf1 − Sf2∥B2 = ∥Q(Tf1)− Q(Tf2)∥B2

≤ C2(∥Tf1∥B1 + ∥Tf2∥B1)(∥Tf1 − Tf2∥B1

≤ C2(2C1r/C1)C1∥f1 − f2∥B2 ≤
2

3
(∥f1 − f2∥B2).

(13.35)

58



We then let f0 = 0, and define fj+1 = Sfj. If n ≥ m, we have

∥fn − fm∥B2 ≤
n∑

j=m+1

∥fj − fj−1∥B2

=
n∑

j=m+1

∥Sj−1f1 − Sj−1f0∥B2

≤
n∑

j=m+1

(2
3

)j−1

∥f1 − f0∥B2

≤ (2/3)m

1− 2/3
∥f1 − f0∥B2 .

(13.36)

The right hand side limits to 0 as m → ∞. This proves that the sequence fj is a Cauchy
sequence in the Banach space B2, which therefore converges to a limit f∞. Since S is
continuous, we therefore have

Sf∞ = S lim
j→∞

fj = lim
j→∞

Sfj = lim
j→∞

fj+1 = f∞. (13.37)

Take m = 1 in (13.36) to get

∥fn − f1∥B2 ≤ 2∥f1 − f0∥B2 = 2∥f1∥B2 (13.38)

Letting n→ ∞ yields

∥f∞∥B2 − ∥f1∥B2 ≤ ∥f∞ − f1∥B2 ≤ 2∥f1∥B2 . (13.39)

Then x∞ = Tf∞ is a solution to F (x∞) = 0 and

∥x∞∥B1 ≤ C1∥f∞∥B2 ≤ 3C1∥F (0)∥B2 (13.40)

which implies (13.31). If x is any solution satisfying (13.31), then letting f = L x, we
estimate

∥f∥B2 ≤
1

C1

∥x∥B1 ≤
1

C1

3C1
r

3C1

=
r

C1

(13.41)

and uniqueness then follows from (13.35).

Remark 13.4. In the above statment, Q is a nonlinear operator. But it is easy to see
that the result also holds if Q is linear, but with sufficiently small operator norm satisfying
∥Q∥ < ∥T∥.

Back to our problem, we define

B1 = C2,α
0 (B1(0)) = {u ∈ C2,α(B1(0)) | u = 0 on ∂B1(0)} (13.42)

B2 = C0,α(B1(0)) (13.43)

F (h) = F (z + h) (13.44)

L (h) = F ′
z(h) (13.45)

Q(h) = F (z + h)− F (z)− F ′
z(h) = F (h)− F (0)− L (h). (13.46)
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By scaling the coordinates z = ϵz′, and letting w′(z′, z′) = w(ϵz′, ϵz′), then we have

w′
z′ = µ(ϵz′, ϵz′)w′

z′ . (13.47)

So by choosing ϵ small, we can assume that

∥µ∥C1,α(B(0,1)) < Cϵ1+α. (13.48)

From Proposition 20.2 we see that L is an elliptic operator. The mapping T : C0,α → C2,α
0

is defined to be the unique solution to the Dirichlet problem

L (Tf) = f in B(0, 1), T f = 0 on ∂B(0, 1). (13.49)

From basic elliptic theory, there exists a constant C so that

∥Tf∥C2,α(B(0,1)) ≤ C∥f∥C0,α(B(0,1)). (13.50)

This constant will be uniformly bounded for sufficiently small ϵ since the elliptic estimates
only depend upon the C0,α norm of the coefficients. (Note: since L differs from the Laplacian
by lower order terms, it actually suffices to just invert the Laplacian, but we invert L here
for simplicity; more on this later.) We need to estimate

Q(h2)− Q(h2) = F (z + h2)− F ′
z(h2)− (F (z + h1)− F ′

z(h1)). (13.51)

Consider f(t) = F (z+ th2 + (1− t)h1). Since F (z+ h) = F̃ (D2h,Dh, h, z), where F̃ is a C1

function of these variables, then using the fundamental theorem of calculus

F (z + h2)− F (z + h1) = f(1)− f(0) =

∫ 1

0

f ′(t)dt (13.52)

We note that

f ′(t) =
d

ds
F (z + sh2 + (1− s)h1)|s=t =

d

ds
F (z + th1 + (1− t)h2 + s(h2 − h1))|s=0

= F ′
z+th1+(1−t)h2

(h2 − h1).
(13.53)

This gives the expression

Q(h2)− Q(h1) =
(∫ 1

0

F ′
z+th1+(1−t)h2

(h2 − h1)dt
)
− F ′

z(h2 − h1)

=
(∫ 1

0

(F ′
z+th1+(1−t)h2

− F ′
z)dt

)
(h2 − h1).

(13.54)

We next claim that for any y and h, we have the estimate

∥(F ′
z+h − F ′

z)y∥C0 ≤ C∥h∥C2∥y∥C2 . (13.55)

To see this, note the linearized operator is of the form

F ′
u(h) =

d

dt
F (u+ th)|t=0

= aij(D2u,Du, u, z)Dijh+ bi(D2u,Du, u, z)Dih+ c(D2u,Du, u, z)Dih.
(13.56)
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If F̃ (D2h,Dh, h, z) is C2 as in the D2h,Dh, h variables, and continuous in the z variable,
then the coefficients aij, bi, c are C1 as functions of D2u,Du, u, and we have for example

c(D2(z + h), D(z + h), z + h, z) = c(D2z,Dz, z, z) +O(|D2h|+ |Dh|+ |h|), (13.57)

so the estimate (13.55) follows. This implies the quadratic estimate for the C0-norm.
For the Hölder norm, similar to the above arguments, we see that any y and h, we have

the estimate

∥(F ′
z+h − F ′

z)y∥Cα ≤ C∥h∥C2,α∥y∥C2,α , (13.58)

provided that F̃ is C2,α in the D2h,Dh, h variables and Hölder continuous in the z variable.
This finishes the quadratic estimate.

Also, by taking ϵ sufficiently small, we can always arrange so that condition (b) is satisfied.
The implicit function theorem yields a solution h with

∥h∥C2,α(B(0,1)) = o(ϵ), (13.59)

as ϵ→ 0. Obviously, we have

|h(0)| = o(ϵ), |∇h|(0) = o(ϵ), (13.60)

as ϵ→ 0. Then if ϵ is sufficiently small, then condition (13.4) will also be satisfied.

Remark 13.5. The minimal regularity required in the above argument is µ ∈ C1,α. One
can actually get away with only assuming µ ∈ C0,α, but one needs a different method to see
this.

14 Lecture 14

A reference for this section in [Tay11, page 376].

14.1 Relation with isothermal coordinates

Given a Riemannian metric g, recall the isomorphism

♭ : TM → T ∗M (14.1)

defined by ♭(X)(Y ) = g(X, Y ), with inverse # : T ∗M → TM .

Proposition 14.1. For n = 1, an oriented conformal structure (M, [g]) is equivalent to
an almost complex structure J : TM → TM . More precisely, given a conformal class [g]
and an orientation, choose a Riemannian metric g ∈ [g]. Then the Hodge star operator
∗g : T ∗M → T ∗M satisfies ∗2g = −1, and then J = #g ◦∗g ◦ ♭g is an almost complex structure
which is compatible with g (it is an isometry with respect to g). Conversely, given an almost
complex structure J : TM → TM , choose any Riemannian metric g compatible with J , and
we map J → [g], with the complex orientation.
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Proof. Choose any representative g of the conformal class [g]. The Hodge star operator is
an isometry on 1-forms uniquely defined by

α ∧ ∗gβ = g(α, β)dVg, (14.2)

where dVg is the oriented volume element. Then ∗g : T ∗M → T ∗M satisfies ∗2 = −Id, so the
mapping #g ◦ ∗g ◦ ♭g is an almost complex structure. This is clearly conformally invariant,
since if g̃ = fg, then dVg̃ = fdVg, and g̃(α, β) = f−1g(α, β).

Conversely, given an almost complex structure J , we know this determines an orientation.
Choose any non-zero 2-form compatible with this orientation, and call it dVg. Then we define
an inner product on 1-forms by

α ∧ J∗β = g(α, β)dVg, (14.3)

It is positive definite because by Lemma 8.2, at any point, we can assume that J is standard.
So there is a basis dx, dy of T ∗

pM such that Jdx = −dy. The complex orientation is dy ∧ dx.
Writing any form α = α1dx+ α2dy, we then have

α ∧ ∗α = (α1dx+ α2dy) ∧ (−α1dy + α2dx) = (|α1|2 + |α2|2)dy ∧ dx. (14.4)

Clearly, different choices of volume elements lead to conformally equivalent metrics. Note
also the mapping J∗ will be an isometry, so we have J = #g ◦ J∗ ◦ ♭g.

Remark 14.2. Instead of using the Hodge star and the sharp and flat operators, one could
argue directly as follows. Given an oriented conformal class [g] and a non-zero orientation
2-form ω, choose a Riemannian metric g ∈ [g] and scale ω so that it is the volume element
of g. Then define J : TM → TM by ω(X, JY ) = g(X, Y ). Then J is an almost complex
structure. Conversely, given J , then J determines the complex orientation, and let ω be any
non-zero 2-form compatible with this orientation. Then define g(X, Y ) = ω(X, JY ). The
proofs are entirely equivalent the above; see [Har90, Theorem 5.34].

Proposition 14.3. Given (M1, J1) and (M2, J2), choose any compatible Riemannian metrics
g1 on M1 and g2 on M2. Let ϕ :M1 →M2 be a local diffeomorphism. Then ϕ is holomorphic
if and only if ϕ is orientation-preserving and conformal.

Proof. The Cauchy-Riemann equations are

ϕ∗ ◦ J1 = J2 ◦ ϕ∗. (14.5)

Taking the dual of both sides yields

(J1)
∗ ◦ ϕ∗ = ϕ∗ ◦ (J2)∗. (14.6)

Since ∗1 is an isometry, we have J∗
1 = ∗1, and similarly J∗

2 = ∗2, so we have

∗1 ◦ ϕ∗ = ϕ∗ ◦ ∗2. (14.7)
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On M2, we have the equation

α ∧ ∗2β = g2(α, β)dV2, (14.8)

pulling this back under ϕ yields

(ϕ∗α) ∧ (ϕ∗ ◦ ∗2)β = (g2(α, β) ◦ ϕ)ϕ∗dV2. (14.9)

Using (14.7), this is

(ϕ∗α) ∧ (∗1 ◦ ϕ∗β) = (g2(α, β) ◦ ϕ)ϕ∗dV2. (14.10)

Since ϕ is a local diffomorphism, let’s replace α with ϕ∗α and β with ϕ∗β, and we obtain

α ∧ ∗1β = (g2(ϕ∗α, ϕ∗β) ◦ ϕ)ϕ∗dV2, (14.11)

but the left hand side is g1(α, β)dV1, so we conclude that ϕ∗g2 = eλg1, for some function
λ :M1 → R. For the converse, reverse the above argument.

Corollary 14.4. The problem of isothermal coordinates for a Riemannian metric g is equiva-
lent to solving the Beltrami equation for the almost complex structure determined by ∗g. That
is, solving the Beltrami equation wz = µwz in a neighborhood of a point p with dw(p) ̸= 0 is
equivalent to finding a coordinate system ϕ : U → R2 so that

ϕ∗g = eλ(x,y)(dx2 + dy2), (14.12)

for some function λ : ϕ(U) → R.

Proof. We know that a solution of the Beltrami equation wz = µ(z, z)wz is a holomorphic
function. As long as ∂zw(p) ̸= 0, then we know that

w : (U, J) → (C, J0) (14.13)

is a holomorphic coordinate system. From Proposition 14.3, w must be conformal and
orientation preserving. But the conformal class determined by J0 is the conformal class of
the Euclidean metric, so we have found isothermal coordinates.

Conversely, given an isothermal coordinate system ϕ : (U, [g]) → (R2, [gEuc]). Then [g]
induces a unique J , and by the above, ϕ must be pseudoholomorphic with respect to J , so
yields a solution of the Beltrami equation.

We can write down explicity the above in coordinates.

Proposition 14.5. Given g = gijdx
i ⊗ dxj, then

∗g =
±1√
det(g)

(
g12 −g11
g22 −g12

)
, (14.14)

depending upon choice of orientation. Consequently, if g̃ = fg, then ∗g̃ = ∗g. Conversely,
given any

J =

(
a b
c −a

)
, (14.15)
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with a2 + bc = −1, and a choice of volume form fdx1 ∧ dx2, we define a Riemannian metric
up to scaling by

g = ±f
(
−b a
a c

)
, (14.16)

for the sign choice which makes this positive definite.

Proof. We choose a coordinate system {x1, x2}, and write

g(∂i, ∂j) = gij. (14.17)

We then have

g(dxi, dxj) = gij, (14.18)

where gij are the components of the inverse matrix of gij. Also, we have

dVg =
√

det(g)dx1 ∧ dx2. (14.19)

In matrix form, we write

g =

(
g11 g12
g21 g22

)
, g−1 =

1

det(g)

(
g22 −g12
−g21 g11

)
. (14.20)

We write

∗dx1 = a11dx
1 + a21dx

2, ∗dx2 = a12dx
1 + a22dx

2, (14.21)

which in matrix form is just

∗ =

(
a11 a12
a21 a22

)
. (14.22)

We then have

dx1 ∧ ∗dx1 = dx1 ∧ (a11dx
1 + a21dx

2) = a21dx
1 ∧ dx2 (14.23)

dx1 ∧ ∗dx2 = dx1 ∧ (a12dx
1 + a22dx

2) = a22dx
1 ∧ dx2 (14.24)

dx2 ∧ ∗dx1 = dx2 ∧ (a11dx
1 + a21dx

2) = −a11dx1 ∧ dx2 (14.25)

dx2 ∧ ∗dx2 = dx2 ∧ (a12dx
1 + a22dx

2) = −a12dx1 ∧ dx2. (14.26)

On the other hand, by definition of the Hodge star operator, these must be equal to

g(dx1, dx1)dVg = g11
√

det(g)dx1 ∧ dx2 = g22√
det(g)

(14.27)

g(dx1, dx2)dVg = g12
√

det(g)dx1 ∧ dx2 = − g12√
det(g)

(14.28)

g(dx2, dx1)dVg = g21
√

det(g)dx1 ∧ dx2 = − g21√
det(g)

(14.29)

g(dx2, dx2)dVg = g22
√

det(g)dx1 ∧ dx2 = g11√
det(g)

. (14.30)
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Comparing these equations, we obtain

∗g =
±1√
det(g)

(
g21 −g11
g22 −g12

)
. (14.31)

This expression is obviously conformally invariant.
Conversely, given J and a volume element dV = fdx1 ∧ dx2, we define an inner product

by

g(α, β)dVg = α ∧ Jβ. (14.32)

We then have

g(dxi, dxj)dVg = gijfdx1 ∧ dx2, (14.33)

and by the above, we see that

g−1 =
1

f

(
c −a
−a −b

)
, (14.34)

so then

g = f

(
−b a
a c

)
. (14.35)

14.2 Reduction to harmonic functions

We have already solved the Beltrami equation using the Malgrange method, we will next
present an alternative proof using harmonic functions.

Proposition 14.6. If (M2, J) is a real 2-dimensional almost complex manifold with J of
class C2, then J is a complex 1-manifold.

Proof. As before, choose a compatible Riemannian metric g, and let ∗ be the Hodge star
operator with respect to the almost complex orientation. Then on 1-forms, J = ∗. Given
any point x in M , by Proposition 17.2, we need to find a function f : U → C where U is a
neighborhood of x satisfying ∂Jf = 0 in U , and ∂Jf(x) ̸= 0. This equation is

0 = ∂Jf = df + iJdf = df + i ∗ df. (14.36)

Let us write f = u+ iv, where u and v are real-valued. Then we need

0 = du+ idv + iJ(du+ idv) = (du− ∗dv) + i(dv + ∗du). (14.37)

Note that applying the Hodge star to du = ∗dv, results in dv = − ∗ du, so if we solve the
single equation

du = ∗dv, (14.38)
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then f = u+ iv will be pseudo-holomorphic. Note that

∂f = (du+ ∗dv) + i(dv − ∗du), (14.39)

so if du(x) ̸= 0, then ∂f(x) ̸= 0. To solve (14.38), we apply ∗d to get

∗d ∗ dv = δdv = ∆gv = 0. (14.40)

So if v is harmonic, then ∗dv is closed, and by the Poincaré Lemma, we can solve ∗dv = du
in any simply-connected neighborhood U of x. To summarize, we have reduced the problem
to finding a simply-connected neighborhood U of x, and a harmonic function v : U → R
with dv(x) ̸= 0.

15 Lecture 15

15.1 Inverse function theorem

Let’s state another version of the inverse function theorem for linear operators.

Lemma 15.1. Let F : B1 → B2 be a bounded linear mapping between two Banach spaces
such that F (x) = L (x)+Q(x), where L and Q are both bounded linear mappings. Assume
that

1. L is an isomorphism with bounded inverse T .

2. Q satisfies ∥Q∥ · ∥T∥ = δ < 1.

Then F is also an isomorphism and

∥F−1∥ ≤ 1

1− δ
∥T∥. (15.1)

Proof. Given f ∈ B2, we want to solve the equation Fx = f for a unique x ∈ B1 with a
bound ∥x∥B1 ≤ C∥f∥B2 . Writing x = Ty, then the equation we want to solve becomes

F (Ty) = (L + Q)(Ty) = f, (15.2)

or

y = f − Q(Ty) (15.3)

So we would like to find a fixed point of the operator S : B2 → B2 defined by

Sy = f − Q(Ty) (15.4)

We next claim that under the assumptions, S is a contraction mapping from B2 to B2. To
see this, we compute

∥Sy1 − Sy2∥B2 = ∥Q(Ty1)− Q(Ty2)∥B2

≤ ∥Q∥ · ∥Ty1 − Ty2∥B1

≤ ∥Q∥ · ∥T∥ · ∥y1 − y2∥B2 = δ∥y1 − y2∥B2 .

(15.5)
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where δ = ∥Q∥∥T∥ < 1 by assumption. We then let y0 = 0, and define yj+1 = Syj. If
n ≥ m, we have

∥yn − ym∥B2 ≤
n∑

j=m+1

∥yj − yj−1∥B2

=
n∑

j=m+1

∥Sj−1y1 − Sj−1y0∥B2

≤
n∑

j=m+1

δj−1∥y1 − y0∥B2

≤ δm

1− δ
∥y1 − y0∥B2 .

(15.6)

The right hand side limits to 0 as m → ∞, so the sequence yj is a Cauchy sequence in
the Banach space B2, which therefore converges to a limit y∞. Since S is continuous, we
therefore have

Sy∞ = S lim
j→∞

yj = lim
j→∞

Syj = lim
j→∞

yj+1 = y∞. (15.7)

Take m = 1 in (15.6) to get

∥yn − y1∥B2 ≤
δ

1− δ
∥y1 − y0∥B2 =

δ

1− δ
∥y1∥B2 (15.8)

Letting n→ ∞ yields

∥y∞∥B2 − ∥y1∥B2 ≤ ∥y∞ − y1∥B2 ≤
δ

1− δ
∥y1∥B2 . (15.9)

Then x∞ = Ty∞ is a solution to F (x∞) = f and

∥x∞∥B1 ≤ ∥T∥∥y∞∥B2 ≤
1

1− δ
∥T∥ · ∥f∥B2 , (15.10)

since y1 = S(y0) = S(0) = f , which implies (15.1). Finally, uniqueness then follows from
(15.5).

15.2 Harmonic Coordinates

The remaining ingredient we need is the following.

Theorem 15.2 (Harmonic coordinates of Sabitov-Shefel (1976) DeTurck-Kazdan (1981)).
If (Mn, g) is any Riemannian manifold with g of class Ck,α for k ≥ 1, and p ∈ M , then
there exists a coordinate system (x1, . . . , xn) defined in some neighborhood of p such that
∆g(xj) = 0 for j = 1, . . . , n, with xi of class C

k+1,α. If g is C∞ then so are xi. If g is real
analytic, then so are xi.
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Proof. We will prove the 2-dimensional case. The higher-dimensional case is identical. From
above, we have that in local coordinates {x, y},

∗ =
√

det(g)

(
−g21 −g22
g11 g12

)
. (15.11)

Let us write dv = v1dx+ v2dy, then

∗dv = (−g21v1 − g22v2)
√

det(g)dx+ (g11v1 + g12v2)
√
det(g)dy. (15.12)

Then we have

∗d ∗ dv =
1√

det(g)

(
∂2
(
(g21v1 + g22v2)

√
det(g)

)
+ ∂1

(
(g11v1 + g12v2)

√
det(g)

))
(15.13)

In local coordinates, the Laplacian therefore has the form

∆v =
1√

det(g)
∂i
(
gijuj

√
det(g)

)
. (15.14)

(This formula holds in any dimension). Expanding this out yields

∆v = gij∂i∂ju+ (∂ig
ij)uj + ∂i(log(

√
det(g)))gijuj. (15.15)

Jacobi’s formula for the determinant is

1

2
gpq∂igpq = ∂i(log(

√
det(g))), (15.16)

so we have

∆v = gij∂i∂ju+ (∂ig
ij)uj +

1

2
gpq∂igpqg

ijuj. (15.17)

So we can expand

∆v = ∆0u+Q(u), (15.18)

where

Q(u) = aij∂i∂ju+ bjuj (15.19)

aij = gij − δij (15.20)

bj = ∂ig
ij +

1

2
gpq∂igpqg

ij. (15.21)

Let us assume that g ∈ C1,α(B(0, 1)). Using normal coordinates (which are OK under this
regularity assumption: the geodesic equation has Cα coefficients), we have that gij(p) = δij
and ∂kgij(p) = 0. It follows that there exists a constant C so that

|gij(x)− δij| ≤ C|x|1+α (15.22)

|∂kgij(x)| ≤ C|x|α. (15.23)
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Consider the mapping ϕϵ : B(0, 1) → B(0, ϵ) defined by ϕϵ(x
′) = ϵx′. Then

ϕ∗
ϵg(x

′) = gij(ϵx
′)ϵ2dx′i ⊗ dx′j. (15.24)

So the metric gϵ = ϵ−2ϕ∗
ϵg has components (gϵ)ij = gij(ϵx

′) in the x′ coordinates. We then
have

|gijϵ (x′)− δij| ≤ Cϵ1+α|x′|1+α (15.25)

|∂kgijϵ (x′)| ≤ Cϵ1+α|x′|α. (15.26)

By assumption, there exists a constant C so that

|gij(x)− gij(y)| ≤ C|x− y|α, (15.27)

which implies that

|g′ij(x′)− g′ij(y
′)| ≤ Cϵα|x′ − y′|α. (15.28)

Also by assumption, there exists a constant C so that

|∂kgij(x)− ∂kgij(y) ≤ C|x− y|α, (15.29)

which implies that

|∂kg′ij(x′)− ∂kg
′
ij(y

′)| ≤ ϵ1+α|x′ − y′|α, (15.30)

Consequently, we have that

∥aijϵ ∥C1,α(B(0,1)) ≤ Cϵ1+α (15.31)

∥bijϵ ∥C0,α(B(0,1)) ≤ Cϵα. (15.32)

We then have that there exists a constant C so that

∥Q(f)∥C0,α(B(0,1)) = ∥aij∂i∂jf + bjfj∥C0,α(B(0,1))

≤ ∥aij∥C0,α(B(0,1)) · ∥∂i∂jf∥C0,α(B(0,1)) + ∥bj∥C0,α(B(0,1)) · ∥fj∥C0,α(B(0,1))

≤ Cϵα∥f∥C2,α(B(0,1)).

(15.33)

By standard elliptic theory, we know that

∆0 : C
2,α
0 (B1(0)) → C0,α(B1(0)) (15.34)

is an isomorphism with bounded inverse, that is, there exists a constant C so that if ∆0u = f
and u = 0 on the boundary, then

∥u∥C2,α(B1(0)) ≤ C∥f∥C0,α(B1(0)). (15.35)

So by Lemma 15.1 and (15.33), if ϵ is sufficiently small, then

∆gϵ : C
2,α
0 (B1(0)) → C0,α(B1(0)) (15.36)
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is an isomorphism, and there exists a constant C so that if ∆gϵu = f and u = 0 on the
boundary, then

∥u∥C2,α(B1(0)) ≤ C∥f∥C0,α(B1(0)). (15.37)

Therefore, there exists a solution of the equation

∆gϵ(h) = −∆gϵx, (15.38)

with h = 0 on the boundary of B1(0), where x is any coordinate function in the rescaled
coordinates. From (15.37), we have

∥h∥C2,α(B1(0)) ≤ C∥∆gϵx∥C0,α(B1(0)) ≤ ∥b1∥C0,α(B(0,1)) ≤ Cϵα. (15.39)

In particular,

|∂1hϵ(0)| ≤ ∥hϵ∥C1(B(0,1)) ≤ ∥hϵ∥C2,α(B(0,1)) ≤ Cϵα. (15.40)

So if ϵ is sufficiently small, ∂1(x+ hϵ)(0) = 1 + ∂1hϵ(0) ̸= 0, and we are done.
For higher regularity, we argue as follows. If g ∈ Ck,α then in particular g ∈ C1,α. By

the above, we can find C2,α harmonic coordinates {x1, x2}. We then write

0 = ∆xk = gij∂i∂jxk + bj. (15.41)

That is

gij∂i∂jxk = −bj ∈ Ck−1,α. (15.42)

The left hand side is an elliptic operator with Ck,α coefficients, so by elliptic regularity
arguments, xk ∈ Ck+2,α. If g ∈ C∞, the right hand side is also in C∞, so again by elliptic
regularity we see that xk ∈ Ck,α for any k ≥ 0, so xk ∈ C∞. For the real analytic case, there
is a general result that solutions of elliptic equations with real analytic coefficients are real
analytic.

Unfortunately, the trick in this subsection does not help us to solve the Newlander-
Nirenberg problem in higher dimensions. However, the method in the previous section can
be extended to the higher dimensional case, which we will discuss next.

Remark 15.3. The above methods require that µ ∈ C1,α. The Beltrami equation can be
solved locally for µ ∈ C0,α by inverting the ∂z operator using the Cauchy-Pompeiu formula.
However, this is a bit technical so we will omit. There are many great references for this
method, see for example [Spi79], [Ber58], [Ahl66].

The only “hard” analysis we used in the above proof is the following.

Theorem 15.4. The mapping ∆0 : C2,α
0 (B1(0)) → C0,α(B1(0)) is an isomorphism with

bounded inverse, that is, there exists a constant C so that if ∆0u = f and u = 0 on the
boundary, then

∥u∥C2,α(B1(0)) ≤ C∥f∥C0,α(B1(0)). (15.43)
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We just indicate how this is proved. Any solution is unique by the maximum principle.
There is actually an explicit integral formula for the solution

u =

∫
B1(0)

G(x, y)f(y)dxdy, (15.44)

where G(x, y) is the Green’s function defined by

G(x, y) =

{
1
2π

(
log |x− y| − log

(
|y||x− y/|y|2|

)
y ̸= 0

1
2π

log |x| y = 0
. (15.45)

Then one can just directly verify this is a solution if f ∈ C2,α(B1(0)), and directly verify the
estimate (15.43); see [GT01]. Our method above using the inverse function theorem only
needed to invert ∆0; we did not need to use any Schauder Theory for operators with variable
coefficients.

16 Lecture 16

16.1 Endomorphisms

Let EndR(TM) denotes the real endomorphisms of the tangent bundle.

Proposition 16.1. On an almost complex manifold (M,J), the bundle EndR(TM) admit
the decomposition

EndR(TM) = End+(TM)⊕ End−(TM) (16.1)

where the first factor on the left consists of endomorphisms I commuting with J ,

IJ = JI (16.2)

and the second factor consists of endomorphisms I anti-commuting with J ,

IJ = −JI (16.3)

Proof. Given J , we define

I+ =
1

2
(I − JIJ) (16.4)

I− =
1

2
(I + JIJ). (16.5)

Then

I+J =
1

2
(IJ − JIJ2) =

1

2
(IJ + JI),

and

JI+ =
1

2
(JI − J2IJ) =

1

2
(JI + IJ).
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Next,

I−J =
1

2
(IJ + JIJ2) =

1

2
(IJ − JI),

and

JI− =
1

2
(JI + J2IJ) =

1

2
(JI − IJ).

Clearly, I = I+ + I−. To prove it is a direct sum, if IJ = JI and IJ = −JI, then IJ = 0
which implies that I = 0 since J is invertible.

We write down the above in a basis. Choose a real basis {e1, . . . e2n} such that the
complex structure J0 is given by

J0 =

(
0 −In
In 0

)
, (16.6)

Then in matrix terms, the proposition is equivalent to the following decomposition(
A B
C D

)
=

1

2

(
A+D B − C
C −B A+D

)
+

1

2

(
A−D B + C
B + C D − A

)
. (16.7)

So we have that End+(TM) ∼= GL(n,C) ⊂ GL(2n,C) with(
A −B
B A

)
7→
(
A+ iB 0

0 A− iB

)
, (16.8)

and End−(TM) ∼= GL(n,C) ⊂ GL(2n,C) with(
A B
B −A

)
7→
(

0 A+ iB
A− iB 0

)
. (16.9)

16.2 The space of almost complex structures

We define

J (R2n) ≡ {J : R2n → R2n, J ∈ GL(2n,R), J2 = −I2n}. (16.10)

We next give some alternative descriptions of this space.

Proposition 16.2. The space J (R2n) is the homogeneous space GL(2n,R)/GL(n,C), and
thus

dim(J (R2n)) = 2n2. (16.11)
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Proof. We note that GL(2n,R) acts on J (R2n), by the following. If A ∈ GL(2n,R) and
J ∈ J (R2n),

ΦA : J 7→ AJA−1. (16.12)

Obviously,

(AJA−1)2 = AJA−1AJA−1 = AJ2A−1 = −I, (16.13)

and

ΦAB(J) = (AB)J(AB)−1 = ABJB−1A−1 = ΦAΦB(J), (16.14)

so is indeed a group action (on the left). Given J and J ′, there exists bases

{e1, . . . , en, Je1, . . . , Jen} and {e′1, . . . , e′n, J ′e′1, . . . , J
′e′n}. (16.15)

Define S ∈ GL(2n,R) by Sek = e′k and S(Jek) = J ′e′k. Then J
′ = SJS−1, and the action is

therefore transitive. The stabilizer subgroup of J0 is

Stab(J0) = {A ∈ GL(2n,R) : AJ0A−1 = J0}, (16.16)

that is, A commutes with J0. From (16.8) above, this is identified with GL(n,C).

Given J ∈ Jn, let J(t) : (−ϵ, ϵ) → J2n be a smooth path with J(0) = J , then differenti-
ation yields

−(I2n)
′ = (J ◦ J)′ = J ′ ◦ J + J ◦ J ′. (16.17)

So letting J ′(0) = I, we have that

IJ + JI = 0. (16.18)

Thus we can identify the tangent space at any J as

TJJ2n = {I ∈ End(Rn) |IJ + JI = 0}, (16.19)

the space of endomorphisms which anti-commute with J .

16.3 Graph over the reals

Next, we will give another description of J (R2n). Define

P(R2n) = {P ⊂ R2n ⊗ C = C2n | dimC(P ) = n,

P is a complex subspace satisfying P ∩ P = {0}}.

If we consider R2n⊗C, we note that complex conjugation is a well defined complex anti-linear
map R2n ⊗ C → R2n ⊗ C.
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Proposition 16.3. The space P(R2n) can be explicitly identified with J (R2n) by the follow-
ing. If J ∈ J (R2n) then let

R2n ⊗ C = T 1,0(J)⊕ T 0,1(J), (16.20)

where

T 0,1(J) = {X + iJX,X ∈ R2n} = {−i}-eigenspace of J. (16.21)

This an n-dimensional complex subspace of C2n, and letting T 1,0(J) = T 0,1(J), we have
T 1,0 ∩ T 0,1 = {0}.

For the converse, given P ∈ P(R2n), then P may be written as a graph over R2n⊗1, that
is

P = {X ′ + iJX ′ | X ′ ∈ R2n ⊂ C2n}, (16.22)

with J ∈ J (R2n), and

R2n ⊗ C = P ⊕ P = T 1,0(J)⊕ T 0,1(J). (16.23)

Proof. For the forward direction, we already know this. To see the other direction, consider
the projection map Re restricted to P

π = Re : P → R2n. (16.24)

We claim this is a real linear isomorphism. Obviously, it is linear over the reals. Let
X ∈ P satisfy π(X) = 0. Then Re(X) = 0, so X = iX ′ for some real X ′ ∈ R2n. But
X = −iX ′ ∈ P ∩ P , so by assumption X = 0. Since these spaces are of the same real
dimension, π has an inverse, which we denote by J . Clearly then, (16.22) is satisfied. Since
P is a complex subspace, given any X = X ′ + iJX ′ ∈ P , the vector iX ′ = (−JX ′) + iX ′

must also lie in P , so

(−JX ′) + iX ′ = X ′′ + iJX ′′, (16.25)

for some real X ′′, which yields the two equations

JX ′ = −X ′′ (16.26)

X ′ = JX ′′. (16.27)

applying J to the first equation yields

J2X ′ = −JX ′′ = −X ′. (16.28)

Since this is true for any X ′, we have J2 = −I2n.

Remark 16.4. We note that J 7→ −J corresponds to interchanging T 0,1 and T 1,0.

Remark 16.5. If we choose P = spanC{∂/∂xj, j = 1 . . . n}. Then P is an n-dimensional
complex subspace of C2n, and Re restricted to P is not an isomorphism, for example.

Remark 16.6. The above proposition embeds J (R2n) as a subset of the complex Grass-
mannian G(n, 2n,C). These spaces have the same dimension, so it is an open subset. Fur-
thermore, the condition that the projection to the real part is an isomorphism is generic, so
it is also dense.
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17 Lecture 17

17.1 Graphs over T 0,1(J0)

Above we viewed T 0,1(J) as a graph corresponding to the decomposition C2n = R2n ⊕ iR2n.
In the section we will instead view T 0,1(J) as a graph corresponding to the decomposition
C2n = T 0,1(J0)⊕ T 1,0(J0). This corresponds to a mapping

ϕ : T 0,1(J0) → T 1,0(J0), (17.1)

by writing

T 0,1(J) = {v + ϕv | v ∈ T 0,1(J0)}. (17.2)

Note we can view ϕ as an element of

Hom(T 0,1(J0), T
1,0(J0)) ∼= Λ0,1(J0)⊗ T 1,0(J0), (17.3)

so we will view ϕ as an element of the latter space. In “coordinates”, we can write

ϕ = ϕk
j̄dz

j ⊗ ∂

∂zk
, (17.4)

and we will view ϕk
j̄ as an n by n complex matrix. We define ϕ as a C-linear mapping

ϕ : T 1,0(J0) → T 0,1(J0), (17.5)

by

ϕ(v) = ϕ(v̄). (17.6)

Consider the mapping

ϕ+ ϕ : C2n → C2n, (17.7)

which in matrix form is

ϕ+ ϕ =

(
0 ϕ

ϕ 0

)
. (17.8)

Recall from (16.9) that this is the complexification of an R-linear mapping

Iϕ : R2n → R2n (17.9)

satisfying IϕJ0 + J0Iϕ = 0, which is given by

Iϕ =

(
Re(ϕ) Im(ϕ)
Im(ϕ) −Re(ϕ)

)
. (17.10)
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Proposition 17.1. If ϕ ∈ Λ0,1(J0)⊗T 1,0(J0), then ϕ determines an almost complex structure
if and only if Iϕ does not have −1 as an eigenvalue. The corresponding almost complex
structure is

Jϕ = (Id+ Iϕ)J0(Id+ Iϕ)
−1. (17.11)

Conversely, given J such that J0 + J is invertible, then J corresponds to a unique ϕ with
Id+ Iϕ invertible, which is given by

Iϕ = (J0 + J)−1(J0 − J). (17.12)

Proof. Given

ϕ ∈ Λ0,1(J0)⊗ T 1,0(J0) = HomC(T
0,1(J0), T

1,0(J0)), (17.13)

then

T 0,1(Jϕ) = {v + ϕv, v ∈ T 0,1(J0)} (17.14)

is an n-dimensional complex subspace of R2n ⊗ C. If X ∈ T 0,1
ϕ ∩ T 0,1

ϕ for a non-zero vector
X, then

X = v + ϕv = w + ϕw, (17.15)

where v ∈ T 0,1(J0) and w ∈ T 1,0(J0). This yields the equations

ϕw = v (17.16)

ϕv = w. (17.17)

This is equivalent the matrix ϕ+ ϕ having 1 as an eigenvalue with eigenvector (w, v). Since
ϕ + ϕ is matrix equivalent to Iϕ, this is equivalent to Iϕ having 1 as an eigenvalue. But if
IϕV = V , then

IϕJ0V = −J0IϕV = −J0V, (17.18)

that is J0V is an eigenvalue of Iϕ with eigenvalue −1. Next, any ṽ ∈ T 0,1(Jϕ) is written as

ṽ = v + ϕ(v)

= Re(v) +Re(ϕ(v)) + i(Im(v) + Im(ϕ(v)),
(17.19)

for v ∈ T 0,1(J0). We compute

Re(ϕ(v)) =
1

2

(
ϕ(v) + ϕ(v)

)
=

1

2

(
ϕ(v) + ϕ(v)

)
= (ϕ+ ϕ)

(v + v

2

)
= Iϕ(Re(v)).

(17.20)
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Next,

Im(ϕ(v)) =
1

2i

(
ϕ(v)− ϕ(v)

)
=

1

2i

(
ϕ(v)− ϕ(v)

)
= (ϕ+ ϕ)

(v − v

2i

)
= Iϕ(Im(v)).

(17.21)

Next, any element v ∈ T 0,1(J0) can be written as

v = X ′ + iJ0X
′, (17.22)

for X ′ ∈ R2n, so we have

ṽ = (Id+ Iϕ)X
′ + i(Id+ Iϕ)(J0X

′). (17.23)

But if ṽ ∈ T 0,1(Jϕ), we must have

Im(ṽ) = JϕRe(ṽ), (17.24)

which yields

(Id+ Iϕ)(J0X
′) = Jϕ(Id+ Iϕ)X

′. (17.25)

This implies that

Jϕ = (Id+ Iϕ)J0(Id+ Iϕ)
−1. (17.26)

The remainder of the proposition follows by solving this equation for Iϕ.

17.2 Complex form of the equations

We next discuss the following characterization of pseduo-holomorphic functions on an almost
complex manifold (which holds in any dimension).

Proposition 17.2. Let (M,J) be almost complex. Then the following are equivalent.

(i) f : (M,J) → (C, J0) is pseudo-holomorphic.

(ii) ∂Jf = 0.

(iii) Xf = 0 for all vector fields X ∈ Γ(T 0,1
J ).

Proof. Note that if we take any X ∈ Γ(TM ⊗ C)

(df + iJdf)(X) = Xf + idf(JX) = Xf + iJXf = (X + iJX)f (17.27)
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so we always have

∂Jf(X) = (ΠΛ0,1
J
df)(X) = (ΠT 0,1

J
X)f. (17.28)

If condition (ii) is satisfied, then (iii) follows immediately from (17.28) Conversely, if condition
(iii) is satisfied then taking X ∈ Γ(T 0,1

J ) and using (17.28), then

(ΠΛ0,1
J
df)(X) = 0 (17.29)

for all such X, which implies that condition (ii) is satisfied.
We next show that (ii) is equivalent to (i). If (ii) is satisfied, then

Jdf = idf. (17.30)

Recall that if u : M → R is a real-valued function, and X ∈ TM is a real tangent vector,
then there is a canonical identification

du(X) = u∗(X), (17.31)

where the right hand side is interpreted as a real number. So then if f = u + iv is a
complex-valued function, then we have for X ∈ TM ,

df(X) = u∗(X) + iv∗(X), (17.32)

and then we extend this to complex vectors by complex linearity. We plug in a complex
tangent vector to (17.30) to get

Jdf(X) = idf(X), (17.33)

which is (using the definition of J on 1-forms as the transpose)

df(JX) = idf(X). (17.34)

Using the above, we then write this as

(du+ idv)(JX) = i(du+ idv)(X) (17.35)

which is

(u∗ + iv∗)(JX) = i(u∗ + iv∗)(X). (17.36)

This yields the equations

u∗(JX) = −v∗(X), v∗(JX) = u∗(X). (17.37)

But as a real-valued function, we have

f =

(
u
v

)
, (17.38)
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so we can write f∗ in the form

f∗ =

(
u∗
v∗

)
. (17.39)

The equation f∗J = J0f∗ is then(
u∗
v∗

)
J =

(
u∗J
v∗J

)
=

(
0 −1
1 0

)(
u∗
v∗

)
=

(
−v∗
u∗

)
. (17.40)

Therefore (ii) implies (i). Reversing the above argument, we see that (i) implies (ii), and we
are done.

Next, we let J be a continuous almost complex structure on a open set U ⊂ R2n containing
the origin. Then J : U → Jn is a continuous function. Without loss of generality, we may
assume that J(0) = J0. Then (J0+J)(0) = 2J0 is invertible, so J0+J will also be invertible
in some possibly smaller neighborhood V ⊂ U . Then by Proposition 17.1, we obtain a
unique

ϕj

k̄
: V → Hom(T 0,1(J0), T

1,0(J0)) ∼= Mat(n× n,C), (17.41)

where V is an open subset in R2n.

Proposition 17.3. If ϕj

k̄
defines an almost complex structure on V , then a function f : V →

C is pseudo-holomorphic if and only if

∂

∂zj
f + ϕk

j̄

∂

∂zk
f = 0 (17.42)

Proof. By Proposition 17.2, a function f is holomorphic if and only if Zf = 0 for all vector
fields Z ∈ Γ(T 0,1

ϕ ). A local basis for T 0,1
ϕ is given by

Zj̄ =
∂

∂zj
+ ϕk

j̄

∂

∂zk
, (17.43)

so we are done.

Remark 17.4. For n = 1, there is only 1 component µ = ϕ1
1̄, and the pseduo-holomorphic

condition is

∂

∂z
f + µ

∂

∂z
f = 0, (17.44)

which is of course the Beltrami equation.

79



18 Lecture 18

18.1 Integrability

We next interpret the vanishing of the Nijenhuis tensor as an equation on ϕ.

Proposition 18.1. The almost complex structure Jϕ is integrable, that is N(Jϕ) = 0, if and
only if

∂

∂zl
ϕj

k̄
− ∂

∂zk
ϕj

l̄
+ ϕm

k̄

∂

∂zm
ϕj

l̄
− ϕm

l̄

∂

∂zm
ϕj

k̄
= 0. (18.1)

Proof. By Proposition 9.6, the integrability equation is equivalent to [T 0,1
ϕ , T 0,1

ϕ ] ⊂ T 0,1
ϕ .

Writing

ϕ =
∑

ϕj

k̄
dzk ⊗ ∂

∂zj
, (18.2)

if Jϕ is integrable, then we must have[ ∂
∂zi

+ ϕ
( ∂

∂zi

)
,
∂

∂zk
+ ϕ
( ∂

∂zk

)]
∈ T 0,1

ϕ . (18.3)

This yields [ ∂
∂zi

, ϕl
k̄

∂

∂zl

]
+
[
ϕj
ī

∂

∂zj
,
∂

∂zk

]
+
[
ϕj
ī

∂

∂zj
, ϕl

k̄

∂

∂zl

]
∈ T 0,1

ϕ (18.4)

The first two terms are[ ∂
∂zi

, ϕl
k̄

∂

∂zl

]
+
[
ϕj
ī

∂

∂zj
,
∂

∂zk

]
=
∑
j

(∂ϕj

k̄

∂zi
−
∂ϕj

ī

∂zk

) ∂

∂zj
.

The third term is [
ϕj
ī

∂

∂zj
, ϕl

k̄

∂

∂zl

]
= ϕj

ī

( ∂

∂zj
ϕl
k̄

) ∂

∂zl
− ϕl

k̄

( ∂

∂zl
ϕj
ī

) ∂

∂zj
.

Both terms are in T 1,0(J0). For sufficiently small ϕ however, T 0,1
ϕ ∩ T 1,0(J0) = {0}, and

therefore (18.1) holds. The converse holds by reversing this argument.

We can also see directly that this is related to Proposition17.2 as follows. If there exists
a locally defined holomorphic function f , then taking the ∂-partial of (17.42) yields

∂2

∂zl∂zj
f +

∂

∂zl

(
ϕk
j̄

∂

∂zk
f
)
= 0. (18.5)

Intechanging j and l yields

∂2

∂zj∂zl
f +

∂

∂zj

(
ϕk
l̄

∂

∂zk
f
)

(18.6)
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If f is C2, then the mixed partials are equal, so subtracting these equations gives

∂

∂zl

(
ϕk
j̄

∂

∂zk
f
)
− ∂

∂zj

(
ϕk
l̄

∂

∂zk
f
)
= 0. (18.7)

Expanding this out( ∂

∂zl
ϕk
j̄ −

∂

∂zj
ϕk
l̄

) ∂

∂zk
f + ϕk

j̄

∂2

∂zl∂zk
f − ϕk

l̄

∂2

∂zj∂zk
= 0 (18.8)

The first 2 terms are good. Using (17.42), the last 2 terms are

ϕk
j̄

∂2

∂zk∂zl
f − ϕk

l̄

∂2

∂zk∂zj
= −ϕk

j̄

∂

∂zk

(
ϕp

l̄

∂

∂zp
f
)
+ ϕk

l̄

∂

∂zk

(
ϕp
j̄

∂

∂zp
f
)

(18.9)

= −ϕk
j̄

( ∂

∂zk
ϕp

l̄

) ∂

∂zp
f + ϕk

l̄

( ∂

∂zk
ϕp
j̄

) ∂

∂zp
f (18.10)

− ϕk
j̄ϕ

p

l̄

∂2f

∂zk∂zp
+ ϕk

l̄ ϕ
p
j̄

∂2f

∂zk∂zp
. (18.11)

The last 2 terms vanish from symmetry. So we have derived

0 =
( ∂

∂zl
ϕk
j̄ −

∂

∂zj
ϕk
l̄ − ϕp

j̄

∂

∂zp
ϕk
l̄ − ϕp

l̄

∂

∂zp
ϕp
j̄

) ∂

∂zk
f. (18.12)

If there exists n holomorphic functions with linearly independent differentials at the origin,
then this implies implies the integrability condition (18.1). This latter argument assumes
that there exists holomorphic coordinates, but nevertheless still gives the correct formula for
the Nijenhuis tensor.

18.2 The operator dc

For an almost complex structure J with NJ = 0, we know that

d = ∂ + ∂, (18.13)

and

∂2 = 0, ∂
2
= 0, ∂∂ + ∂∂ = 0. (18.14)

We can write these complex operators in the form

∂ =
1

2
(d− idc), ∂ =

1

2
(d+ idc). (18.15)

for a real operator dc : Ωp → Ωp+1 given by

dc = i(∂ − ∂), (18.16)

which satisfies

d2 = 0, ddc + dcd = 0, (dc)2 = 0. (18.17)
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We next have an alternative formula for dc. Recall that J : TM → TM induces a dual
mapping J : T ∗M → T ∗M , and we extended to J : Λr

C → Λr
C by

Jαp,q = ip−qαp,q, (18.18)

for a α a form of type (p, q). Notice that if αr ∈ Λr
C, then

J2αr = w · αr, where w · αr = (−1)rαr, (18.19)

since

J2αp,q = i2(p−q)αp,q = (−1)p−qαp,q = (1)p−q+2qαp,q = (−1)p+qαp,q. (18.20)

Proposition 18.2. For α ∈ Λr, we have

dcα = (−1)r+1JdJα. (18.21)

We also have

ddc = 2i∂∂ = (−1)r+1dJdJα. (18.22)

Proof. For α ∈ Λp,q, p+ q = r, we compute

JdJα = ip−qJdα = ip−qJ(∂α + ∂α) (18.23)

= ip−q(ip+1−q∂α + ip−q−1∂α) (18.24)

= i2(p−q)+1∂α + i2(p−q)−1∂α (18.25)

= (−1)p+q(i∂α− i∂α) = (−1)r+1dcα. (18.26)

For (18.22), using (18.14) we have

ddc = (∂ + ∂)i(∂ − ∂) = i(∂∂ + ∂
2 − ∂2 − ∂∂) = 2i∂∂. (18.27)

18.3 The analytic case

We assume that ϕk
j̄ is analytic. So there exists a power series expansion

ϕk
j̄ =

∑
I,J

(ϕk
j̄ )IJz

I z̄J . (18.28)

Let group these terms together by homogeneity and write

ϕk
j̄ =

∞∑
m=0

(ϕk
j̄ )m (18.29)
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where

(ϕk
j̄ )m =

∑
|I|+|J |=m

(ϕk
j̄ )IJz

I z̄J . (18.30)

We may assume that (ϕk
j̄ )0 = 0. We want to solve the equation

∂

∂zj
f + ϕk

j̄

∂

∂zk
f = 0. (18.31)

Let’s do the same for f , we write a formal power series

f =
∑
I,J

fIJz
I z̄J , (18.32)

and group these terms together by homogeneity and write

f =
∞∑

m=0

fm (18.33)

where

fm =
∑

|I|+|J |=m

fIJz
I z̄J . (18.34)

By subtracting a constant, we can also assume that f0 = 0. Expanding (18.31), we have

∂0(f1 + f2 + · · · ) + (ϕ1 + ϕ2 + · · · )(∂0f1 + ∂0f2 + · · · ) = 0. (18.35)

Grouping terms by homogeneity, we have

∂0f1 = 0

∂0f2 = −ϕ1∂0f1

∂0f3 = −ϕ1∂0f2 − ϕ2∂0f1
...

and we see that the general term is given by

∂fm
∂zj

= −
∑

k+l=m,k≥1,l≥1

(ϕp
j̄
)k
∂fl
∂zp

(18.36)

Proposition 18.3. If fj solves the above system for j = 1, . . . , q, then the expression

Hq+1 = −
∑

k+l=q+1,k≥1,l≥1

(ϕp
j̄
)k
∂fl
∂zp

dzj (18.37)

is a form of type (0, 1) with respect to J0, and satisfies ∂0Hq+1 = 0.
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Proof. We prove this by induction. For q = 1, we have ∂0f1 = 0, so f1 = cjz
j is a linear

holomorphic function. Then

H2 = −(ϕp
j̄
)1cpdz

j. (18.38)

For reasons of homogeneity, the integrability equation (18.1) tells us that

∂

∂zl
(ϕp

j̄
)1 −

∂

∂zj
(ϕp

l̄
)1 = 0, (18.39)

so H2 clearly satisfies ∂H2 = 0. So assume the system is satisfied for j = 1 . . . q. Then the
function f = f1 + · · ·+ fq satisfies

∂Jf = Hq+1 +O(|z|q+1) (18.40)

For the next step, we use the above fact that the integrability of J implies that the operator
∂J : Λ0,1(J) → Λ0,2(J) defined by ∂Jα = ΠΛ0,2(J)dα satisfies

∂J∂Jf = 0, (18.41)

for any function f . This yields

0 = ∂J(Hq+1 +O(|z|q+1) = ∂JHq+1 +O(|z|q). (18.42)

Note that for α ∈ Λ0,1(J), Jα = −iα, so from Proposition 18.2, we have that

∂Jα =
1

2
(d− idc)α =

1

2
(dα− iJdJα) =

1

2
(dα− Jdα). (18.43)

Expanding this, we obtain

∂Jα =
1

2
(dα− (J − J0 + J0)dα) =

1

2
(dα− J0dα)−

1

2
(J − J0)dα. (18.44)

From Proposition 17.1 above, the correspondence between ϕ and J is analytic, and ϕ = O(|z|)
implies that J − J0 = O(|z|) as z → 0. Now we plug in α = ∂Jf , and by assumption

0 = ∂J∂Jf = ∂J(Hq+1 +O(|z|q+1) =
1

2
(dHq+1 − J0dHq+1) +O(|z|q) (18.45)

= ∂0Hq+1 +O(|z|q). (18.46)

Proposition 18.4. For each 1 ≤ p <∞, there exists f =
∑p

j=1 fj satisfying ∂Jf = O(|z|p).

Proof. We prove this by induction. For p = 1, we can take f = cpz
p, and then

∂Jz
k = ∂0z

k +
i

2
(J − J0)dz

k = 0 +O(|z|). (18.47)
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Assume that we have found a solution for j = 1 . . . p. Let f =
∑p

j=1 fj, by the induction
assumption, we have

∂Jf = Hp+1 +O(|z|p+1), (18.48)

and by the above, we need to solve the equation

∂0fp+1 = Hp+1. (18.49)

From Proposition 19.4, Hp+1 satisfies ∂0Hp+1 = 0. Equivalently, we can write

Hp+1 = αj̄dz
j, (18.50)

where the coefficients satisfy

∂αj̄

∂zl
=
∂αl̄

∂zj
, j, l = 1, . . . , n. (18.51)

Define

fp+1 =

∫ 1

0

n∑
j=1

zjαj̄(z, tz̄)dt. (18.52)

Then we compute

∂fp+1

∂zk
=

∫ 1

0

(
αk̄(z, tz) +

n∑
j=1

zj
∂

∂zk

(
αj̄(z, tz̄)

))
dt

=

∫ 1

0

(
αk̄(z, tz) +

n∑
j=1

zj
∂αj̄

∂zk
(z, tz̄)t

)
dt

=

∫ 1

0

(
αk̄(z, tz) +

n∑
j=1

zj
∂αk̄

∂zj
(z, tz̄)t

)
=

∫ 1

0

d

dt

(
tαk̄(z, tz̄)

)
dt = αk̄(z, z̄).

(18.53)

We will discuss convergence next time.

19 Lecture 19

19.1 Convergence of formal power series solution

Last time, we constructed a formal power series solution. Today, we examine the solution in
more detail. We look at the procedure in Proposition 18.4 above. We had Hp+1 satisfying
∂0Hp+1 = 0. Writing

Hp+1 = αj̄dz
j, (19.1)

85



then the coefficients satisfy

∂αj̄

∂zl
=
∂αl̄

∂zj
, j, l = 1, . . . , n. (19.2)

Defining

fp+1 =

∫ 1

0

n∑
j=1

zjαj̄(z, tz̄)dt, (19.3)

then we showed that ∂0fp+1 = Hp+1.

Proposition 19.1. Writing Hp+1 = αj̄dz
j, where

αj̄ =
∑

|I|+|J |=p

αj̄IJ̄z
IzJ , (19.4)

and fp+1 =
∑

|I|+|J |=p+1 fIJ̄z
IzJ . Then the coefficients fIJ̄ are linear functions of the αj̄IJ̄

with non-negative coefficients.

Proof. We plug (19.4) into (19.3), and compute

fp+1 =

∫ 1

0

n∑
j=1

zj
∑

|I|+|J |=p

αj̄IJ̄z
I(tz)Jdt (19.5)

=
∑

j,|I|+|J |=p

αj̄IJ̄z
IzJzj

∫ 1

0

t|J |dt (19.6)

=
∑

j,|I|+|J |=p

1

|J |+ 1
αj̄IJ̄z

IzJzj, (19.7)

and we are done.

Remark 19.2. Our choice above is very important: there is a freedom to add an arbitrary
holomorphic homogeneous polynomial to fp+1, and our choice eliminates this ambiguity.

Now we return to solving the equation

∂

∂zj
f + ϕk

j̄

∂

∂zk
f = 0. (19.8)

We will now consider this as an equation in C2n with coordinates (z1, . . . , zn, z1, . . . , zn).
Note by the transformation zj 7→ −zj, we can assume the equation is of the form

∂

∂zj
f − ϕk

j̄

∂

∂zk
f = 0. (19.9)

Remark 19.3. Note that we cannot simply replace ϕ with −ϕ, since the integrability equa-
tion (18.1) is not preserved under this transformation.
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We have the homogeneous decompositions

f =
∞∑
j=1

fj, ϕ
k
j̄ =

∞∑
l=1

(ϕk
j̄ )l. (19.10)

We then found the recursive system

∂fq+1 = Hq+1, (19.11)

where

Hq+1 =
∑

k+l=q+1,k≥1,l≥1

(ϕp
j̄
)k
∂fl
∂zp

dzj (19.12)

satisfies ∂0Hq+1 = 0. Then we can solve ∂fq+1 = Hq+1 uniquely with the above proceudre,
where fq+1(z

1, · · · , zn, 0, · · · , 0) = 0 for q > 1. So once f1 = cjz
j is specified, then our

procedure gives a unique formal power series solution.
Write

(ϕk
j̄ )p =

∑
|I|+|J |=p

ϕk
j̄IJ̄z

IzJ . (19.13)

Proposition 19.4. The coefficients fIJ̄ when |I| + |J | = p are a polynomial function of
degree p − 1 in the ϕk

j̄KL̄
for |K| + |L| ≤ p − 1, with all coefficients non-negative rational

numbers. The polynomials are completely determined by the constants c1, . . . , cn.

Proof. Without loss of generality, assume that f1 = z1. Then the first nontrivial equation is

∂f2
∂zj

= (ϕp
j̄
)1
∂f1
∂zp

= (ϕ1
j̄)1 = ϕ1

j̄kz
k + ϕ1

j̄k̄z
k. (19.14)

Then

f2 = ϕ1
j̄kz

kzj +
1

2
ϕ1
j̄k̄z

jzk, (19.15)

so the claim is true for f2. Then we proceed by induction. So assume the claim is true for
f1, . . . , fp. Then the equation for fp+1 is

∂fp+1

∂zj
=

∑
k+l=p+1,k≥1,l≥1

(ϕp
j̄
)k
∂fl
∂zp

(19.16)

=
∑

k+l=p+1,k≥1,l≥1

∑
|I|+|J |=k

ϕp

j̄IJ̄

∂fl
∂zp

. (19.17)

From Proposition 19.1, we just need to show the claim is true for the coefficients on the right
hand side. Since l ≤ p in the sum, by induction the claim is true for the coefficients of fl.
The operator fl 7→ ∂fl/∂z

p obviously preserves non-negativity of the coefficients, so we are
done.
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19.2 Cauchy majorant method

By assumption, the series ∑
I,J

ϕk
j̄IJ̄z

IzJ . (19.18)

converges for any point in the polydisc

P (ρ) = {(z1, . . . , zn, z1, . . . , zn) | |zj| < ρ, |zj| < ρ, 1 ≤ j ≤ n}, (19.19)

with uniform convergence in the polydisc P (ρ′), for any ρ′ < ρ. In particular, for any point
(z1, . . . , zn, z1, . . . , zn) ∈ P (ρ′), there exists a constant C > 0 so that

|ϕk
j̄IJ̄z

IzJ | < C (no summation). (19.20)

Choosing the point zj = ρ′, zj = ρ′ for j = 1, . . . , n, this implies that

|ϕk
j̄IJ̄ | < C(ρ′)−(|I|+|J |). (19.21)

To simplify notation, let’s call ρ′ by ρ. Then we define

Φ(w) = C
( 1

1− wρ−1
− 1
)
=

Cw

ρ− w
(19.22)

which is analytic in the disc ∆(ρ) = {w ∈ C | |w| < ρ}. The power series of Φ(w) is given
by

Φ(w) = C
∞∑
j=1

ρ−jwj. (19.23)

Next, we let

Φ(z1, . . . , zn, z1, . . . , zn) = Φ(z1 + · · ·+ zn + z1 + · · ·+ zn). (19.24)

Using the multinomial theorem, we have the expansion

Φ(z1, . . . , zn, z1, . . . , zn) = C
∑

I,J ̸=(0,0)

ρ−(|I|+|J |) (|I|+ |J |)!
I!J !

zIzJ , (19.25)

which converges absolutely in the polydisc

P = {(z1, . . . , zn, z1, . . . , zn) | |zj| < ρ/2n, |zj| < ρ/2n}. (19.26)

That is, the power series coefficients of Φ(z1, . . . , zn, z1, . . . , zn) are given by

ΦIJ̄ = Cρ−(|I|+|J |) (|I|+ |J |)!
I!J !

, (19.27)
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with Φ00 = 0. Since the multinomial coeffients are at least 1, we have the inequality

|ϕj

k̄IJ̄
| < Cρ−(|I|+|J |) ≤ Cρ−(|I|+|J |) (|I|+ |J |)!

I!J !
= ΦIJ̄ . (19.28)

Next, we claim that Φk
j̄ = Φ determines an integrable almost complex structure. Note we

are viewing this as an n× n matrix will all entries equal. To see this, we use (18.1):

∂

∂zl
Φj

k̄
− ∂

∂zk
Φj

l̄
+ Φm

k̄

∂

∂zm
Φj

l̄
− Φm

l̄

∂

∂zm
Φj

k̄

=
∂

∂zl
Φ(z1 + · · ·+ zn + z1 + · · ·+ zn)− ∂

∂zk
Φ(z1 + · · ·+ zn + z1 + · · ·+ zn)

+
∑
m

∂

∂zm
Φ(z1 + · · ·+ zn + z1 + · · ·+ zn)−

∑
m

∂

∂zm
Φ(z1 + · · ·+ zn + z1 + · · ·+ zn)

= 0 + 0 = 0.

(19.29)

The equation for a holomorphic function with respect to Φ is

∂F

∂zj
= Φ(z1 + · · ·+ zn + z1 + · · ·+ zn)

∑
m

∂F

∂zm
. (19.30)

For all j = 1, . . . , n.
Let’s assume that we can find a solution Fk of (19.30) satisying the initial conditions

Fk(z
1, . . . , zn, 0, . . . 0) = zk, (19.31)

which is analytic in some polydisc |z| < ρ′, |z| < ρ′. Without loss of generality, we can
assume that k = 1. Then to finish the convergence proof, recall that our formal power series
solves

fIJ̄ = PIJ̄(ϕ
∗
∗), (19.32)

where PIJ̄ is a polynomial with non-negative coefficients depending only upon ϕ∗
∗KL for

|K|+ |L| < |I|+ |J |. Since F1 is an analytic solution of the Cauchy-Riemann equations with
respect to Φ, and the same initial conditions as f , we must also have

FIJ̄ = PIJ̄(ΦKL), (19.33)

where PIJ̄ is the same polynomial since Φ(0, 0) = 0 and F (z1, . . . , zn, 0, . . . 0) = z1 has the
same initial conditions as our formal power series solution. We then estimate

|fIJ̄ | = |PIJ̄(ϕ
∗
∗)| ≤ PIJ̄(|ϕ∗

∗|) ≤ PIJ̄(ΦKL̄) = FIJ̄ . (19.34)

The inequalities hold since PIJ̄ is a polynomial with real non-negative coefficients, and using
(19.28). This shows that our power series is majorized by the power series of F , which
implies that the power series for f converges in the open polydisc P (ρ′), by the comparison
test.
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19.3 Completion of convergence proof

To finish the convergence proof, we need to find solution of

∂F

∂zj
= Φ(z1 + · · ·+ zn + z1 + · · ·+ zn)

∑
m

∂F

∂zm
, (19.35)

for all j = 1, . . . , n, satisying the initial conditions

F (z1, . . . , zn, 0, . . . 0) = z1, (19.36)

and which is analytic in some polydisc around the origin in C2n.

Proposition 19.5. For any choice of (c1, . . . , cn) ∈ Cn, satisfying c1 + · · · + cn = 0, the
function F =

∑
ckz

k solves (19.35).

Proof. The function F obviously makes the left hand side of (19.35) vanish for any 1 ≤ j ≤ n.
The right hand side of (19.35) is Φ · (c1 + · · ·+ cn) = 0.

Next, let’s try and find a solution F+ of the form

F+(z
1, . . . , zn, z1, . . . , zn) = G(z1 + · · ·+ zn, z1 + · · ·+ zn). (19.37)

Let’s call z = z1 + · · · + zn, z = z1 + · · · + zn, and write G as a function of 2 variables
G = G(z, z). Then (19.35) becomes

∂G

∂z
= Φ(z + z)n

∂G

∂z
. (19.38)

This is just the Beltrami equation:

∂G

∂z
=
nC(z + z)

ρ− z − z

∂G

∂z
. (19.39)

But we have already found an analytic solution G for this equation, it is done in Propo-
sition 11.1 (only the constant C has changed to nC), which satisfies the initial condition
G(z, 0) = 0. So the corresponding solution of the n-dimensional problem satisfies

F+(z
1, . . . , zn, 0, . . . 0) = G(z1 + · · ·+ zn, 0) = z1 + · · ·+ zn. (19.40)

Using Proposition 19.5, we see that the function

F =
1

n

(
F+ + (z1 − z2) + (z1 − z3) + · · ·+ (z1 − zn)

)
(19.41)

is holomorphic with respect to Φ, is analytic in some polydisc P (ρ′), and satisfies the initial
conditions (19.36). This finishes the proof.
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20 Lecture 20

20.1 Reduction to the analytic case

In the subsection, we will discuss a method of Malgrange, which transforms the C2 case into
the analytic case [Mal69, Nir73]. In the z-coordinates, our holomorphic equation is

∂w

∂zj
+ ϕk

j̄

∂w

∂zk
= 0 (20.1)

We now view w as a vector-valued function to Cn. We want to change coordinates ξ = ξ(z, z)
so that such that our holomorphic equation transform into another holomorphic equation
with analytic coefficients. Write

w(z, z) = W (ξ(z, z), ξ̄(z, z)) (20.2)

ϕk
j̄ (z, z) = Uk

j̄ (ξ(z, z), ξ̄(z, z)). (20.3)

Then

∂w

∂zj
=
∂W

∂ξl
∂ξl

∂zj
+
∂W

∂ξ̄l
∂ξ̄l

∂zj
(20.4)

∂w

∂zj
=
∂W

∂ξl
∂ξl

∂zj
+
∂W

∂ξ̄l
∂ξ̄l

∂zj
. (20.5)

So the holomorphic equations become

∂W

∂ξl
∂ξl

∂zj
+
∂W

∂ξ̄l
∂ξ̄l

∂zj
+ Uk

j̄ (ξ(z, z̄), ξ̄(z, z))
(∂W
∂ξl

∂ξl

∂zk
+
∂W

∂ξ̄l
∂ξ̄l

∂zk

)
= 0. (20.6)

By inverting the matrix coefficients, this transforms into another holomorphic system of the
form

∂W

∂ξ̄j
+ Ũk

j̄ (ξ, ξ̄)
∂W

∂ξk
= 0 (20.7)

where Ũ is of the form

Ũk
j̄ =

((∂ξ̄∗
∂z∗

+ Up
∗
∂ξ̄∗

∂zp

)−1)q̄
j̄

(∂ξk
∂zq

+ Up
q̄

∂ξk

∂zp

)
. (20.8)

Let us try to find coordinates so that∑
j

∂

∂ξj
Ũk
j̄ (ξ, ξ̄) = 0. (20.9)

To find the coordinate system ξ, we must write out (20.9), and this becomes a second
order system for ξ as a function of the original z coordinates. From the chain rule, we have

∂

∂ξj
=
∂zl

∂ξj
∂

∂zl
+
∂zl

∂ξj
∂

∂zl
, (20.10)
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so (20.9) becomes

∑
j

(∂zl
∂ξj

∂

∂zl
+
∂zl

∂ξj
∂

∂zl

)((∂ξ̄∗
∂z∗

+ Up
∗
∂ξ̄∗

∂zp

)−1)q̄
j̄

(∂ξk
∂zq

+ Up
q̄

∂ξk

∂zp

)
. (20.11)

The inverse function theorem says that
∂z∗

∂ξ∗
∂z∗

∂ξ̄∗

∂z∗

∂ξ∗
∂z∗

∂ξ̄∗

 =


∂ξ∗

∂z∗
∂ξ∗

∂z∗

∂ξ̄∗

∂z∗
∂ξ̄∗

∂z∗


−1

. (20.12)

Making this substitution, and replacing Up
q̄ (ξ, ξ̄) = ϕp

q̄(z, z), we see that the equation (20.11)
is a quasilinear system of the form

F (D2ξ,Dξ, ξ, z, z) = 0. (20.13)

We recall the definition of the linearization.

Definition 20.1. The linearization of F at a function ξ is given by

F ′
ξ(h) =

d

dt
F (D2(ξ + th), D(ξ + th), ξ + th, z, z)

∣∣∣
t=0
. (20.14)

Proposition 20.2. Assuming ϕ ∈ C1, then the linearization of F at ξ = z is

F ′
z(h) = −1

4
∆h+ (ϕ+ ϕ2) ∗ ∇2h+ (∇ϕ+ ϕ ∗ ∇ϕ) ∗ ∇h. (20.15)

If ϕ(0) = 0, then we have

F ′
z(h)(0) =

1

4
∆h+∇ϕ ∗ ∇h. (20.16)

If ϕ has sufficiently small C1,α, norm then F ′
z is an elliptic operator with Hölder coefficients

bounded in Cα.

Proof. We use the following formula: if A(t) is a path of matrices, then

d

dt
A(t)−1 = −A−1 ◦ d

dt
A ◦ A−1. (20.17)

Let look at each term in (20.11)-(20.12). First, for ξ = z, we have
∂ξ∗

∂z∗
∂ξ∗

∂z∗

∂ξ̄∗

∂z∗
∂ξ̄∗

∂z∗


−1

=

(
In 0

0 In

)
. (20.18)
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Also,

d

dt


∂(z + th)∗

∂z∗
∂(z + th)∗

∂z∗

∂(z + th)
∗

∂z∗
∂(z + th)

∗

∂z∗


−1 ∣∣∣

t=0
= −


∂h∗

∂z∗
∂h∗

∂z∗

∂h̄∗

∂z∗
∂h̄∗

∂z∗

 . (20.19)

Next, we look at the last matrix. At ξ = z, we have

∂ξk

∂zq
+ Up

q̄

∂ξk

∂zp
= Up

q̄ δ
k
p = Uk

q̄ . (20.20)

The linearization of this term is

d

dt

(∂(z + th)k

∂zq
+ Up

q̄

∂(z + th)k

∂zp

)∣∣∣
t=0

=
∂hk

∂zq
+ Up

q̄

∂hk

∂zp
. (20.21)

Next, we look at the middle matrix. At ξ = z, we have((∂ξ̄∗
∂z∗

+ Up
∗
∂ξ̄∗

∂zp

)−1)q̄
j̄
= (In)

q̄
j . (20.22)

The linearization is

d

dt

((∂(z + th)
∗

∂z∗
+ Up

∗
∂(z + th)

∗

∂zp

)−1)q̄
j̄

∣∣∣
t=0

= −
(∂h̄q̄
∂zj

+ Up
j̄

∂h̄q̄

∂zp

)
(20.23)

Putting everything together, we obtain

F ′
z(h) =−

∑
j

(∂hl
∂zj

∂

∂zl
+
∂h̄l

∂zj
∂

∂zl

)(
δq̄
j̄
Uk
q̄

)
−
∑
j

∂

∂zj

(∂h̄q̄
∂zj

+ Up
j̄

∂h̄q̄

∂zp

)
Uk
q̄ (20.24)

−
∑
j

∂

∂zj
δq̄
j̄

(∂hk
∂zq

+ Up
q̄

∂hk

∂zp

)
(20.25)

= −
∑
j

(∂hl
∂zj

∂

∂zl
+
∂h̄l

∂zj
∂

∂zl

)
Uk
j̄ −

∑
j

∂

∂zj

(∂h̄q̄
∂zj

+ Up
j̄

∂h̄q̄

∂zp

)
Uk
q̄ (20.26)

−
∑
j

∂

∂zj

(∂hk
∂zj

+ Up
j̄

∂hk

∂zp

)
. (20.27)

This is of the form

F ′
z(h) = −1

4
∆h+∇h ∗ ∇U +∇2h ∗ U +∇h ∗ U ∗ ∇U +∇2h ∗ U2. (20.28)

At the origin, all of the terms with U vanish by assumption, so we have

F ′
z(h)(0) = −1

4
∆h+∇h ∗ ∇U (20.29)
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From the above discussion on coordinate changes, let ξ = ϵ−1z. If ξ ∈ B1(0) then
z ∈ Bϵ(0). With ϕk

j̄ (z, z) = Uk
j̄ (ϵ

−1z, ϵ−1z), then we have

Ũk
j̄ (ξ, ξ̄) = ϵ · ϵ−1 · Uk

j̄ (ξ, ξ̄) = Uk
j̄ (ξ, ξ̄). (20.30)

Note that

∥Ũ∥C0(B1(0)) = ∥ϕ∥C0(Bϵ(0)), (20.31)

But since ϕ ∈ C1(Bϵ(0)) ⊂ C1,α(Bϵ(0)), by the mean value theorem we have

|ϕ(x)− ϕ(y)| ≤ C|x− y|. (20.32)

Letting y = 0, since ϕ(y) = 0 by assumption, we have

|ϕ(x)| ≤ C|x|. (20.33)

Therefore, we have

∥Ũ∥C0(B1(0)) ≤ Cϵ. (20.34)

Next, with a slight abuse of notation, we have

∥∇Ũ∥C0(B1(0)) = sup
ξ∈B1(0)

∣∣∣∂Ũ(ξ, ξ̄)
∂ξ

∣∣∣+ ∣∣∣∂Ũ(ξ, ξ̄)
∂ξ̄

∣∣∣ (20.35)

= sup
ξ∈B1(0)

∣∣∣∂ϕ(ϵξ, ϵξ̄)
∂ξ

∣∣∣+ ∣∣∣∂ϕ(ϵξ, ϵξ̄)
∂ξ̄

∣∣∣ (20.36)

= ϵ sup
z∈Bϵ(0)

∣∣∣∂ϕ(z, z)
∂z

∣∣∣+ ∣∣∣∂ϕ(z, z)
∂z

∣∣∣ (20.37)

= ϵ · ∥∇ϕ∥C0(Bϵ(0)). (20.38)

Also, we compute

sup
x,y∈B1(0),x ̸=y

|∇Ũ(x)−∇Ũ(y)|
|x− y|α

= sup
x,y∈Bϵ(0),x ̸=y

ϵ∇zϕ(x, x̄)− ϵ∇zϕ(y, ȳ)

ϵ−α|x− y|α
(20.39)

= ϵ1+α sup
x,y∈Bϵ(0),x ̸=y

∇zϕ(x, x̄)−∇zϕ(y, ȳ)

|x− y|α
. (20.40)

Since the C1,α norm is the sum of these 3 parts, we can assume without loss of generality
that

∥ϕ∥C1,α(B1(0)) < ϵ. (20.41)

for any ϵ > 0.

Proposition 20.3. For ϵ sufficiently small, the linearized operator

F ′
z : C

2,α
0 (B1(0)) → C0,α(B1(0)) (20.42)

is invertible with bounded inverse (independent of ϵ), where the domain satisfies Dirichlet
boundary conditions.
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Proof. The leading term in F ′
z is just the vector Laplacian, which is completely uncoupled.

So by standard elliptic elliptic theory for the Laplacian (on functions), we know that the
leading term is invertible, with bounded inverse (with Dirichlet boundary conditions on each
component). We next show that for ϵ sufficiently small, F ′

z will be an arbitrarily small
perturbation of the Laplacian in operator norm. To see this, we write

F ′
z(h) = −1

4
∆h+Qh, (20.43)

where Q are the lower order terms. Let B1 = C2,α(B1(0))0 and B2 = C0,α(B1(0)). Recall
that for the Hölder norms, we have

∥fg∥Ck,α ≤ ∥f∥Ck,α · ∥g∥Ck,α , (20.44)

so we estimate

∥Qh∥B2 = ∥(ϕ+ ϕ2) ∗ ∇2h+ (∇ϕ+ ϕ ∗ ∇ϕ) ∗ ∇h∥B2 (20.45)

≤ (∥ϕ∥B2 + ∥ϕ∥2B2
) · ∥∇2h∥B2 + (∥∇ϕ∥B2 + ∥ϕ∥B2∥∇ϕ∥B2) · ∥∇h∥B2 (20.46)

≤ (ϵ+ ϵ2) · ∥h∥B1 . (20.47)

So the operator norm of Q is estimated

sup
0̸=h∈B1

∥Qh∥B2

∥h∥B1

≤ ϵ+ ϵ2. (20.48)

So by the above inverse function theorem, Lemma 15.1, F ′
z is also invertible with bounded

inverse if ϵ is sufficiently small.

Remark 20.4. Note that the above proof reduced everything to invertibility of the Laplacian
on functions, we did not need to quote any results about elliptic systems of PDEs.

Proposition 20.5. If ϵ is sufficiently small then

∥F (z)∥B2 < Cϵ. (20.49)

Proof. From the above computations, we have

F (z) =
∑
j

∂

∂zj
ϕk
j̄ , (20.50)

so we have

∥F (z)∥C0,α(B1(0)) ≤ C∥∇ϕ∥C0,α(B1(0)) ≤ C∥ϕ∥C1,α(B1(0)) ≤ Cϵ. (20.51)

95



21 Lecture 21

21.1 Inverse function theorem

To use the inverse function theorem, Lemma 13.3, it remains to verify the estimate on the
non-linear terms. Recall B1 = C2,α

0 (B1(0),R2n) and B2 = C0,α(B1(0),R2n). Note that F and
ξ are vector-valued, but for simplicity of notation in the following discussion, we will assume
they are scalar-valued. Let write our nonlinear operator as F : B1 → B2 as

F(ξ) = F (D2ξ,Dξ, ξ, z, z), (21.1)

where F : R4n2 ×R2n×R×B1(0) → R. Write these variables as (rij, pi, u, x). From (20.11),
we have that for any fixed x ∈ B1(0), F is analytic in the rij, pi, and u variables, and

F,∇r,p,uF,∇2
r,p,uF ∈ C0,α(R4n2 × R2n × R×B1(0)). (21.2)

Note that we are slightly abusing notation, since this is only true on the subset for which
the inverse matrix in (20.12) exists. Define

H : C2,α(B1(0),R) → C0,α(B1(0),R4n2 × R2n × R) (21.3)

by

u 7→ (∇2u,∇u, u). (21.4)

Then we can write

F(u) = G ◦H(u), (21.5)

where G : C0,α(B1(0),R4n2 × R2n × R) → C0,α(B1(0),R) is defined by

G(rij(x), pi(x), u(x)) = F (rij(x), pi(x), u(x), x). (21.6)

We want to show the estimate on the nonlinear terms

∥F(u2)−F(u1)−F ′
z(u2 − u1)∥B2 ≤ C(∥u1∥B1 + ∥u2∥B1) · ∥u1 − u2∥B1 . (21.7)

From the chain rule, we have

F ′
z(h) = G′

H(z) ◦H ′
z(h). (21.8)

But H is a bounded linear operator, because

∥H(u)∥C0,α = ∥(∇2u,∇u, u)∥C0,α ≤ ∥u∥C2,α . (21.9)

So if we show for a1, a2 ∈ C0,α(B1(0),R4n2 × R2n × R) that

∥G(a2)−G(a1)−G′
H(z)(a2 − a1)∥B2 ≤ C(∥a1∥C0,α + ∥a2∥C0,α) · ∥a2 − a1∥C0,α , (21.10)
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then since H is linear,

∥F(u2)−F(u1)−F ′
z(u2 − u1)∥B2 = ∥G ◦H(u2)−G ◦H(u1)−G′

H(z) ◦H ′
z(u2 − u1)∥B2

= ∥G ◦H(u2)−G ◦H(u1)−G′
H(z) ◦ (Hu2 −Hu1)∥B2

≤ C(∥H(u2)∥B2 + ∥H(u1)∥B2) · ∥H(u2)−H(u1)∥B2

≤ C ′(∥u2∥B2 + ∥u1∥B2) · ∥u2 − u1∥B2 .

(21.11)

So we just need to show an estimate on G. Again, the fact that the domain of G is
vector-valued functions doesn’t matter, so for simplicity, we just assume that we have
G : C0,α(B1(0),R) → C0,α(B1(0),R) where G(u(x)) = F (u(x), x), and F : R × B1(0) → R,
with

F, Fu, Fuu ∈ C0,α(R×B1(0)). (21.12)

The linearized operator of G at a function u0 is simply

G′
u0
(h) =

d

dt
F ((u0 + th)(x), x)|t=0 = Fu(u0(x), x)h. (21.13)

By considering the function G(u0 + u) instead, which satisfies the same properties as the
original G, we can assume that u0 = 0. We let

f(t) = G((1− t)u1 + tu2). (21.14)

The fundamental theorem of calculus says

f(1)− f(0) =

∫ 1

0

f ′(t)dt, (21.15)

which is

G(u2)−G(u1) =

∫ 1

0

G′
(1−t)u1+tu2

(u2 − u1)dt. (21.16)

We rewrite this as

G(u2)−G(u1)−G′
0(u2 − u1) =

∫ 1

0

(
G′

(1−t)u1+tu2
−G′

0

)
(u2 − u1)dt. (21.17)

So we need to prove the estimate

∥(G′
u −G′

0)h∥C0,α(B1(0)) ≤ C∥h∥C0,α(B1(0)) · ∥u∥C0,α(B1(0)). (21.18)

But we have

(G′
u −G′

0)h = (Fu(u(x), x)− Fu(0, x))h, (21.19)
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which implies

∥(G′
u −G′

0)h∥C0,α(B1(0)) ≤ ∥Fu(u(x), x)− Fu(0, x)∥C0,α(B1(0))∥h∥C0,α(B1(0)), (21.20)

and we just need to prove the estimate

∥Fu(u(x), x)− Fu(0, x)∥C0,α(B1(0)) ≤ C∥u∥C0,α(B1(0)). (21.21)

Now we let f(t) = Fu(tu(x), x). The fundamental theorem of calculus gives

Fu(u(x), x)− Fu(0, x) =

∫ 1

0

Fuu(tu(x), x)u(x)dt. (21.22)

First, we estimate the C0-norm

∥Fuu(tu(x), x)u(x)∥C0(B1(0)) ≤ ∥Fuu(tu(x), x)∥C0(B1(0))∥u(x)∥C0(B1(0))

≤ C∥u(x)∥C0(B1(0)),
(21.23)

as long as u is small enough so that u(x) is in the domain of definition of Fuu.
Next, we estimate the Cα semi norm. Note that

(f · g)(x)− (f · g)(y) = f(x)g(x)− f(y)g(y)

= f(x)g(x)− f(y)g(x) + f(y)g(x)− f(y)g(y)

≤ (f(x)− f(y))g(x) + f(y)(g(x)− g(y)),

(21.24)

which implies the estimate

[fg]α ≤ [f ]α∥g∥C0 + ∥f∥C0 [g]α. (21.25)

So we estimate

[Fuu(tu(x), x)u(x)]α ≤ [Fuu(tu(x), x)]α∥u∥C0 + ∥Fuu(tu(x), x)∥C0 [u]α. (21.26)

We have that

|Fuu(tu(x), x)− Fuu(tu(y), y))| ≤ [Fuu]α(|tu(x)− tu(y)|+ |x− y|)α (21.27)

≤ [Fuu]α(t[u]α|x− y|α + |x− y|)α ≤ C[Fuu]α, (21.28)

as long as [u]α is bounded. Putting all this together, we have

∥Fu(u(x), x)− Fu(0, x)∥C0,α(B1(0)) ≤ C∥Fuu(tu(x), x)u(x)∥C0,α(B1(0))

≤ C∥u∥C0,α(B1(0)).
(21.29)

Returning to our problem, we have

F(h) = F (z + h), (21.30)

satisfying

∥F(0)∥B2 ≤ Cϵ, (21.31)
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and F ′
0 : B1 → B2 is invertible with bounded inverse independent of ϵ, for sufficiently small ϵ.

Letting

F(h) = F(0) + F ′
0(h) +Q(h), (21.32)

we have proved that there exists a constant C so that

∥Q(x)− Q(y)∥B2 ≤ C2 · (∥x∥B1 + ∥y∥B1) · ∥x− y∥B1 (21.33)

So by Lemma 13.3, there exists a solution to F(h) = 0 satisfying

∥h∥B1 ≤ C∥F(0)∥B2 ≤ Cϵ. (21.34)

Then the vector-valued function zj + hj satisfies

∇i(z
j + hj) = δji +∇ihj, (21.35)

so for ϵ sufficiently small the Jacobian at 0 is invertible, and we have therefore found a
coordinate system.

21.2 Analyticity

We begin this subsection with the following observation.

Proposition 21.1. Let (M2, J) be an almost complex manifold, and f : M1 → M2 a C1

diffeomorphism. Then Nf∗J = f ∗NJ . Consequently, the equations of integrability are inde-
pendent of the coordinate system.

Proof. Recall the definition of the Nijenhuis tensor

N(X, Y ) = 2{[JX, JY ]− [X, Y ]− J [X, JY ]− J [JX, Y ]}. (21.36)

Let X, Y ∈ Γ(TM2). Then (f ∗J)(X) = f−1
∗ Jf∗X. Also, for a diffeomorphism, we have

f∗[X, Y ] = [f∗X, f∗Y ]; see [?]. Therefore

Nf∗J(X, Y ) = 2{[f−1
∗ Jf∗X, f

−1
∗ Jf∗Y ]− [X, Y ]

− f−1
∗ Jf∗[X, f

−1
∗ Jf∗Y ]− f−1

∗ Jf∗[f
−1
∗ Jf∗X, Y ]}

= 2{f−1
∗ [Jf∗X, Jf∗Y ]− f−1

∗ [f∗X, f∗Y ]− f−1
∗ J [f∗X, Jf∗Y ]− f−1

∗ J [Jf∗X, f∗Y ]}
= 2f−1

∗ {[Jf∗X, Jf∗Y ]− [f∗X, f∗Y ]− J [f∗X, Jf∗Y ]− J [Jf∗X, f∗Y ]}
= f−1

∗ NJ(f∗X, f∗Y ) = f ∗NJ .

(21.37)

By assumption, the complex structure J corresponding to ϕ is integrable, so by Propo-
sition 18.1, we have

∂

∂zl
ϕj

k̄
− ∂

∂zk
ϕj

l̄
+ ϕm

k̄

∂

∂zm
ϕj

l̄
− ϕm

l̄

∂

∂zm
ϕj

k̄
= 0. (21.38)
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Let f : U → V be the change of coordinates mapping from the ξ-coordinates to the z-
coordinates. Clearly f ∗J is associated to f ∗ϕ, and the above derivation shows that the
components of f ∗ϕ in the ξ-coordinates are given by Ũ . By Proposition 21.1, the integrability
condition is independent of coordinates, so we have that

∂

∂ξ̄l
Ũ j

k̄
− ∂

∂ξ̄k
Ũ j

l̄
+ Ũm

k̄

∂

∂ξm
Ũ j

l̄
− Ũm

l̄

∂

∂ξm
Ũ j

k̄
= 0. (21.39)

Above, we have found the coordinates ξ so that∑
j

∂

∂ξj
Ũk
j̄ (ξ, ξ̄) = 0. (21.40)

Now we view the coupled system (21.39)-(21.40) as an equation for Ũk
j̄ in the new ξ-

coordinates.

Proposition 21.2. If ∥Ũ∥C0 is sufficiently small, then the system (21.39)-(21.40) is an
overdetermined elliptic first-order system with analytic coefficients.

Proof. We need to linearize at Ũ , but under the assumptions, it is clearly equivalent to
proving ellipticity for the system

∂

∂zl
ϕj

k̄
− ∂

∂zk
ϕj

l̄
= 0 (21.41)∑

j

∂

∂zj
ϕk
j̄ = 0. (21.42)

For (ξ, ξ̄) a complex cotangent vector, the symbol is

ϕ 7→
(
ξ̄lϕ

j

k̄
− ξ̄k̄ϕ

j

l̄
,
∑
j

ξjϕ
k
j̄

)
(21.43)

If the right hand side vanishes, then we have

0 =
∑
k

ξkξ̄lϕ
j

k̄
−
∑
k

ξkξ̄k̄ϕ
j

l̄
= −|ξ|2ϕj

l̄
. (21.44)

So if ξ ̸= 0, then the symbol mapping is injective.

Remark 21.3. In other words, applying ∂/∂ξk to the first equations, and using the second
equation yields

− ∂

∂ξk
∂

∂ξ̄k
Ũ j

l̄
+

∂

∂ξk

(
Ũm
k̄

∂

∂ξm
Ũ j

l̄
− Ũm

l̄

∂

∂ξm
Ũ j

k̄

)
= 0, (21.45)

which is a determined second-order elliptic system, if ∥Ũ∥C0 is sufficiently small.

A classical result implies that Ũk
j̄ are then analytic functions in the ξ coordinates; see

[?]. So we have proved:

Theorem 21.4. If (M,J) satisfies J ∈ C1,α and J is an integrable complex structure, then
there exists a coordinate system defined in a neighborhood of any point such that J is real
analytic in these coordinates.

Remark 21.5. By more analysis of the Malgrange system, Hill-Taylor have reduced the
regularity assumption; [?]. For example, it suffices to assume J ∈ W 1,p, for p > 2n.

100



22 Lecture 22

This lecture was about presheaves, sheaves, morphisms of sheaves, and exact sequences of
sheaves.

23 Lecture 23

This lecture was about Čech cohomology, good covers, Dolbeault isomorphism.

24 Lecture 24

This lecture was about short exact sequences of sheaves and the resulting long exact sequence
in cohomology, without any assumption on existence of a good cover. We also showed that
the Čech cohomology is equivalent to the cohomology of a acyclic resolution. Discussion of
the exponential sequence.

25 Lecture 25

25.1 Kähler metrics

We next consider (M,J, g) where g is a Riemannian metric, and J is an almost complex
structure. We assume that g and J are compatible, that is,

g(X, Y ) = g(JX, JY ). (25.1)

The metric g is called an almost-Hermitian metric. If J is also integrable, then g is called
Hermitian.

To an almost Hermitian metric (M,J, g) we associate a 2-form

ω(X, Y ) = g(JX, Y ). (25.2)

This is indeed a 2-form since

ω(Y,X) = g(JY,X) = g(J2Y, JX) = −g(JX, Y ) = −ω(X, Y ). (25.3)

Since

ω(JX, JY ) = ω(X, Y ), (25.4)

this form is a real form of type (1, 1), and is called the Kähler form or fundamental 2-form.
In Euclidean space, this form is

ωEuc =
i

2

n∑
j=1

dzj ∧ dzj. (25.5)
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Definition 25.1. An almost Hermitian manifold (M, g, J) is Kähler if J is integrable and
dω = 0.

Proposition 25.2. An almost Hermitian manifold (M, g, J) is Kähler if and only if ∇J = 0.

Proof. This follows from the identity

2g((∇XJ)Y, Z) = −dω(X, JY, JZ) + dω(X, Y, Z) +
1

2
g(N(Y, Z), JX), (25.6)

which is true on any almost Hermitian manifold.
If (M, g, J) is Kähler, then the right hand sides vanishes, so J is parallel.
Conversely, if ∇J = 0. Then since ω(X, Y ) = g(JX, Y ), it follows that ω is parallel.

Then we recall that the exterior derivative d : Ωp → Ωp+1 can be written in terms of covariant
differentiation.

dω(X0, . . . , Xp) =

p∑
i=0

(−1)j(∇Xj
ω)(X0, . . . , X̂j, . . . , Xp), (25.7)

which follows immediately from the usual formula for the exterior derivative, and using
normal coordinates around a point. This shows that a parallel form is closed, so then (25.6)
implies that the Nijenhuis tensor vanishes.

25.2 Complex tensor notation

We extend g by complex linearity to a symmetric inner product on TM ⊗C. Choosing any
real basis of the form {X1, JX1, . . . , Xn, JXn}, let us abbreviate

Zα =
1

2

(
Xα − iJXα

)
(25.8)

Zα =
1

2

(
Xα + iJXα

)
, (25.9)

and define

gαβ = g(Zα, Zβ) (25.10)

gαβ = g(Zα, Zβ) (25.11)

gαβ = g(Zα, Zβ) (25.12)

gαβ = g(Zα, Zβ). (25.13)

Notice that

gαβ = g(Zα, Zβ) =
1

4
g(Xα − iJXα, Xβ − iJXβ)

=
1

4

(
g(Xα, Xβ)− g(JXα, JXβ)− i(g(Xα, JXβ) + g(JXα, Xβ))

)
= 0,
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since g is J-invariant, and J2 = −Id. Similarly,

gαβ = 0, (25.14)

Also, from symmetry of g, we have

gαβ = g(Zα, Zβ) = g(Zβ, Zα) = gβα. (25.15)

However, applying conjugation, since g is real we have

gαβ = g(Zα, Zβ) = g(Zα, Zβ) = g(Zβ, Zα) = gβα, (25.16)

which says that gαβ is a Hermitian matrix.
We repeat the above for the fundamental 2-form ω, and define

ωαβ = ω(Zα, Zβ) = igαβ = 0 (25.17)

ωαβ = ω(Zα, Zβ) = −igαβ = 0 (25.18)

ωαβ = ω(Zα, Zβ) = igαβ (25.19)

ωαβ = ω(Zα, Zβ) = −igαβ. (25.20)

The first 2 equations are just a restatement that ω is of type (1, 1). Also, note that

ωαβ = igαβ, (25.21)

defines a skew-Hermitian matrix.
On a complex manifold, the fundamental 2-form in holomorphic coordinates takes the

form

ω =
n∑

α,β=1

ωαβdz
α ∧ dzβ = i

n∑
α,β=1

gαβdz
α ∧ dzβ. (25.22)

Remark 25.3. Note that for the Euclidean metric, we have gαβ = 1
2
δαβ, so

ωEuc =
i

2

n∑
j=1

dzj ∧ dzj. (25.23)

Proposition 25.4. (M, g, J) is Kähler if and only if in any local holomorphic coordinate
system,

∂gαβ
∂zk

=
∂gkβ
∂zα

, (25.24)
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Proof. If (M, g, J) is Kähler, then

0 = dω = i
n∑

α,β=1

(dgαβ) ∧ dzα ∧ dzβ

= i
n∑

α,β=1

(∂gαβ + ∂gαβ) ∧ dzα ∧ dzβ

= i

n∑
α,β=1

{∑
k

(∂gαβ
∂zk

dzk
)
+
∑
k

(∂gαβ
∂zk

dzk
)}

∧ dzα ∧ dzβ

= i
n∑

α,β,k=1

∂gαβ
∂zk

dzk ∧ dzα ∧ dzβ + i
n∑

α,β,k=1

∂gαβ
∂zk

dzk ∧ dzα ∧ dzβ.

(25.25)

However, the first term is a form of type (2, 1), and the second term is a form of type (1, 2)
so both sums must vanish, which is equivalent to (25.24). The converse follows by reversing
the above calculation.

We also see that the Kähler condition on a Hermitian manifold is equivalent to ∂ω = 0,
which is also equivalent to ∂ω = 0, since ω is real.

25.3 Existence of local Kähler potential

We will prove the following very special property of Kähler metrics.

Proposition 25.5. If (M, g, J) is Kähler then for each p ∈ M , there exists an open neigh-
borhood U of p and a function u : U → R such that ω = i∂∂u.

Proof. Choose local homorphic coordinates zj around p. Then in a ball B in these coor-
dinates, since ω is a real closed 2-form, from the usual Poincaré lemma, there exists a real
1-form α such that ω = dα in B. Next, write α = α1,0 + α0,1 where α1,0 is a 1-form of type
(1, 0), and α0,1 is a 1-form of type (0, 1). Since α is real, α1,0 = α0,1. Next,

ω = dα = ∂α + ∂α

= ∂α1,0 + ∂α0,1 + ∂α1,0 + ∂α0,1
(25.26)

The first and last terms on the right hand side are forms of type (2, 0) and (0, 2), respectively.
Since ω is of type (1, 1), we must have ∂α0,1 = 0. Since we are in a ball in Cn, the ∂−Poincaré
Lemma says that there exists a function f : B → C such that α0,1 = ∂f in B. Substituting
this into (25.26), we obtain

ω = ∂∂f + ∂∂f = i∂∂(2Im(f)). (25.27)

Proposition 25.6. (M, g, J) is Kähler if and only if for each p ∈ M , there exists a holo-
morphic coordinate system around p such that

ω =
i

2

n∑
j,k=1

(δjk +O(|z|2)jk)dzj ∧ dzk, (25.28)

as |z| → 0.
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Proof. If this is true then dω(p) = 0 for any point p, so dω ≡ 0. Conversely, we can assume
that ω(p) = i

2

∑
j dz

j ∧ dzj. From Proposition 25.5, we can find u : B → R so that

u = c0 +Re(c1jz
j) +Re(c2ijz

izj + c2jkz
jzk) +O(|z|3), (25.29)

and ω = i∂∂u. But the first terms on the left hand side are in the kernel of the ∂∂-operator,
so by subtracting these terms, we can assume that

u = Re(c2jkz
jzk) +O(|z|3). (25.30)

Then since ω(p) = i
2

∑
j dz

j ∧ dzj, we have that

u =
1

2
|z|2 +Re{ajklzjzkzl + bjklz

jzkzl)}+O(|z|4). (25.31)

Consider the coordinate change

zk = wk +
∑

cklmw
lwm. (25.32)

This will eliminate the bjkl terms in the expansion of u, and the remaining cubic terms are
annihilated by the ∂∂-operator, so by subtracting those terms, we can arrange that

u =
1

2
|w|2 +O(|w|4), (25.33)

and (25.28) follows.

26 Lecture 26

26.1 L2 adjoints

For the real operator d : Λp → Λp+1, the formal L2-adjoint d∗ is defined by∫
M

⟨d∗α, β⟩dV =

∫
M

⟨α, dβ⟩dV, (26.1)

where α ∈ Ωp(M), and β ∈ Ωp−1(M), and where ⟨·, ·⟩ = g(·, ·), and dV is the oriented
Riemannian volume element.

The Riemannian inner product on forms extends by complex linearity to an inner product
on complex valued forms. For α and β be sections of Λk

C, we define the Hermitian inner
product of α and β to be

(α, β) = g(α, β). (26.2)

The formula (26.1) holds for complex valued forms. Replacing β with β, we have∫
M

⟨d∗α, β⟩dV =

∫
M

⟨α, dβ⟩dV. (26.3)
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But since d is a real operator, dβ = dβ, so we can write this as∫
M

(d∗α, β)dV =

∫
M

(α, dβ)dV. (26.4)

That is, d∗ is the L2 adjoint of d with respect to the Hermitian inner product.
We next want to compute the formal L2 adjoints of other operators. For

Γ(Λp.q) Γ(Λp,q+1),∂ (26.5)

the L2-Hermitian adjoint

Γ(Λp,q+1) Γ(Λp.q),∂
∗

(26.6)

is defined as follows. For α ∈ Γ(Λp,q+1) and β ∈ Γ(Λp,q), we have∫
M

(α, ∂β)dV =

∫
M

(∂
∗
α, β)dV, (26.7)

where dV denotes the Riemannian volume element. For

Γ(Λp.q) Γ(Λp+1,q),∂ (26.8)

the L2-Hermitian adjoint

Γ(Λp+1,q) Γ(Λp.q),∂
∗

(26.9)

is defined similarly.
The Hodge Laplacian is ∆H : Λp → Λp defined by

∆H = d∗d+ dd∗. (26.10)

We also have the following Laplacians on (p, q)-forms

∆∂ : Λp,q → Λp,q (26.11)

∆∂ : Λp,q → Λp,q. (26.12)

are defined by

∆∂ = ∂∗∂ + ∂∂∗ (26.13)

∆∂ = ∂
∗
∂ + ∂∂

∗
. (26.14)

Remark 26.1. By definition, ∆∂ and ∆∂ preserve the type, but we do not know whether
∆H maps Λp,q to Λp,q i.e., there is no obvious reason why it should preserve the type.
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26.2 Hodge star operator

For a real oriented Riemannian manifold of dimension n, the Hodge star operator is a map-
ping

∗ : Λp → Λn−p (26.15)

defined by

α ∧ ∗β = gΛp(α, β)dVg, (26.16)

for α, β ∈ Λp, where dVg is the oriented Riemannian volume element. Note that

∗2 = (−1)p(n−p)IdΛp . (26.17)

The Hodge star operator yields an explicit formula for d∗.

Proposition 26.2. On a Riemannian manifold (M, g), for α ∈ Ωp(M), we have

d∗α = (−1)n(p+1)+1 ∗ d ∗ ω. (26.18)

Proof. For α ∈ Ωp(M), and β ∈ Ωp−1(M), we compute∫
M

⟨α, dβ⟩dV =

∫
M

dβ ∧ ∗α

=

∫
M

(
d(β ∧ ∗α) + (−1)pβ ∧ d ∗ α

)
=

∫
M

(−1)p+(n−p+1)(p−1)β ∧ ∗ ∗ d ∗ α

=

∫
M

⟨β, (−1)n(p+1)+1 ∗ d ∗ α⟩dV

=

∫
M

⟨β, d∗α⟩dV.

(26.19)

If M is a complex manifold of complex dimension m = n/2, and g is a Hermitian metric,
then the Hodge star extends to the complexification

∗ : Λp ⊗ C → Λ2m−p ⊗ C. (26.20)

Proposition 26.3. We have

∗ : Λp,q → Λn−q,n−p. (26.21)

Proof. This is easily seen to hold on Cn, therefore it holds any any point of a Hermitian
manifold (it is not a differential operator).
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Therefore the operator

∗ : Λp,q → Λn−p,n−q, (26.22)

defined by

∗α = ∗α (26.23)

is a C-antilinear mapping and satisfies

α ∧ ∗β = gΛp(α, β)dVg. (26.24)

for α, β ∈ Λp ⊗ C.

Proposition 26.4. The L2-adjoints of d, ∂, ∂
∗
are given by

d∗ = −∗̄ d ∗̄ (26.25)

∂∗ = −∗̄ ∂ ∗̄ (26.26)

∂
∗
= −∗̄ ∂ ∗̄, (26.27)

Proof. The dimension of an almost complex manifold is even, so know that d∗ = − ∗ d∗.
Taking a conjugate of this equation yields the first formula. Apply the first formula to
d = ∂ + ∂, we have

∂∗ + ∂
∗
= d∗ = −∗̄ d ∗̄ = −∗̄ ∂ ∗̄ − ∗̄ ∂ ∗̄ (26.28)

Considering the degrees of the operators on the right hand side yields the last 2 formulas.

Corollary 26.5. On a Hermitian manifold, we have

∆∂ ∗̄ = ∗̄∆∂ (26.29)

Proof. We compute on Λk
C,

∆∂ ∗̄ = (∂
∗
∂ + ∂∂

∗
)∗̄ = (−∗̄∂∗̄∂ − ∂∗̄∂∗̄)∗̄ = −∗̄∂∗̄∂∗̄+ (−1)k+1∂∗̄∂ (26.30)

On the other hand,

∗̄∆∂ = ∗̄(−∗̄∂∗̄∂ − ∂∗̄∂∗̄) = (−1)k+1∂∗̄∂ − ∗̄∂∗̄∂∗̄. (26.31)

27 Lecture 27

27.1 Serre duality

Letting

Hp,q(M, g) = {α ∈ Λp,q|∆∂α = 0}, (27.1)
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Hodge theory tells us that

Hp,q

∂
(M) ∼= Hp,q(M, g), (27.2)

is finite-dimensional, and that

Λp,q = Hp,q(M, g)⊕ Im(∆∂) (27.3)

= Hp,q(M, g)⊕ Im(∂)⊕ Im(∂
∗
), (27.4)

with this being an orthogonal direct sum in L2.

Corollary 27.1. Let (M,J) be a compact complex manifold of complex dimension n. Then

Hp,q

∂
(M) ∼= (Hn−p,n−q

∂
(M))∗, (27.5)

and therefore

bp,q(M) = bn−p,n−q(M) (27.6)

Proof. From Corollary 26.5, the mapping ∗ preserves the space of harmonic forms, and is
invertible. The result then follows from Hodge theory. The dual appears since the operator
∗̄ is C-antilinear.

27.2 The Laplacian on a Kähler manifold

Let L denote the mapping

L : Λp,q → Λp+1,q+1 (27.7)

given by L(α) = ω ∧ α, where ω is the Kähler form. Define

Λ ≡ L∗ : Λp,q → Λp−1,q−1. (27.8)

Proposition 27.2. If (M,J.g) is Kähler then

[Λ, ∂] = i∂
∗
, [Λ, ∂] = −i∂∗, [Λ, d] = −(dc)∗ (27.9)

[L, ∂∗] = i∂, [L, ∂
∗
] = −i∂, [L, d∗] = −dc. (27.10)

Proof. Note that the second identity is the conjugate of the first. Therefore, if the first
identity is true,

[Λ, d] = [Λ, ∂ + ∂] = [Λ, ∂] + [Λ, ∂] = i∂
∗ − i∂∗ = (−i(∂ − ∂))∗ = −(dc)∗, (27.11)

then the third identity follows. The last three identities are just the adjoints of the first
three.

So to prove all of these identities, we only need to prove the first. To prove the first
identity, one proves this for Cn with the standard Kähler form. The proof is a 2 page
calculation, and is left as an exercise. Then for an arbitrary Kähler manifold, the identity
follows by using Kähler normal coordinates at any point, and the fact that the identity only
depends on the metric and its first derivatives at the point.
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On a Kähler manifold, we have the following very special occurrence.

Proposition 27.3. For α ∈ Γ(Λp.q), if (M,J, g) is Kähler, then

∆Hα = 2∆∂α = 2∆∂α. (27.12)

Proof. We first show that

∆H = ∆∂ +∆∂. (27.13)

To see this

∆H = dd∗ + d∗d = = (∂ + ∂)(∂∗ + ∂
∗
) + (∂∗ + ∂

∗
)(∂ + ∂)

= ∂∂∗ + ∂∗∂ + ∂∂
∗
+ ∂

∗
∂ + ∂∂

∗
+ ∂

∗
∂ + ∂∂∗ + ∂∗∂

= ∆∂ +∆∂ + ∂∂
∗
+ ∂

∗
∂ + ∂∂∗ + ∂∗∂.

(27.14)

Using Proposition 27.2,

i(∂∂
∗
+ ∂

∗
∂) = ∂[Λ, ∂] + [Λ, ∂]∂

= ∂(Λ∂ − ∂Λ) + (Λ∂ − ∂Λ)∂

= ∂Λ∂ − ∂Λ∂ = 0.

(27.15)

The sum of the last two terms in (27.14) also vanishes, just by taking the conjugate of the
above computation, and (27.13) follows.

To finish the proof, we show that

∆∂ = ∆∂ (27.16)

To see this, we again use Proposition 27.2, to compute

i∆∂ = i∂∂∗ + i∂∗∂ = ∂(−[Λ, ∂])− [Λ, ∂]∂

= ∂∂Λ− ∂Λ∂ − Λ∂∂ + ∂Λ∂.
(27.17)

Also, we compute

i∆∂ = i∂∂
∗
+ i∂

∗
∂ = ∂([Λ, ∂]) + [Λ, ∂]∂

= ∂Λ∂ − ∂∂Λ + Λ∂∂ − ∂Λ∂

= ∂Λ∂ + ∂∂Λ− Λ∂∂ − ∂Λ∂,

(27.18)

from which (27.16) follows.

Using Hodge theory, we get the following structure on the cohomology of a Kähler man-
ifold.
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Proposition 27.4. If (M,J, g) is a compact Kähler manifold, then

Hk(M,C) ∼=
⊕

p+q=k

Hp,q

∂
(M), (27.19)

and

Hp,q

∂
(M) ∼= Hq,p

∂
(M)∗. (27.20)

Consequently,

bk(M) =
∑

p+q=k

bp,q(M) (27.21)

bp,q(M) = bq,p(M). (27.22)

Proof. This follows because if a harmonic k-form is decomposed as

ϕ = ϕp,0 + ϕp−1,1 + · · ·+ ϕ1,p−1 + ϕ0,p, (27.23)

then

0 = ∆Hϕ = 2∆∂ϕ
p,0 + 2∆∂ϕ

p−1,1 + · · ·+ 2∆∂ϕ
1,p−1 + 2∆∂ϕ

0,p, (27.24)

therefore

∆∂ϕ
p−k,k = 0, (27.25)

for k = 0 . . . p.
Next,

∆∂ϕ = ∆∂ϕ, (27.26)

so conjugation sends harmonic forms to harmonic forms.

This yields a topologicial obstruction for a complex manifold to admit a Kähler metric:

Corollary 27.5. If (M,J, g) is a compact Kähler manifold, then the odd Betti numbers of
M are even.

Consider the action of Z on C2 \ {0}

(z1, z2) → 2k(z1, z2). (27.27)

This is a free and properly discontinuous action, so the quotient (C2 \ {0})/Z is a manifold,
which is called a primary Hopf surface. A primary Hopf surface is diffeomorphic to S1 ×S3,
which has b1 = 1, therefore it does not admit any Kähler metric.
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27.3 Lefschetz decomposition

We will not prove this completely here, but just motivate by the following brief discussion.

Proposition 27.6. On a Kähler manifold, we have

[L,∆H ] = 0, [Λ,∆H ] = 0. (27.28)

Proof. Since ∆H is self-adjoint, these identities are equivalent. Next, we have

[L, d] = 0. (27.29)

To see this, for any α,

d(Lα) = d(ω ∧ α) = ω ∧ dα = L(dα), (27.30)

since the Kähler form ω is closed. By taking adjoints, we have

[Λ, d∗] = 0. (27.31)

Then we use Proposition 27.2 to compute

Λ∆H = Λdd∗ + Λd∗d

= dΛd∗ − (dc)∗d∗ + d∗Λd

= dd∗Λ− (dc)∗d∗ + d∗(dΛ− (dc)∗)

= ∆HΛ− (dcd+ ddc)∗.

(27.32)

But the operators d and dc anti-commute, so we are done.

This proposition implies that the operators L and Λ map harmonic forms to harmonic
forms. This yields an extra decomposition on cohomology called the Lefschetz decomposition,
which we do not have time to discuss further here.

27.4 The Hodge diamond

The following picture is called the Hodge diamond:

h0,0

h1,0 h0,1

h2,0 h1,1 h0,2

...

hn,0 · · · ... · · · h0,n

...
hn,n−2 hn−1,n−1 hn−2,n

hn,n−1 hn−1,n

hn,n

. (27.33)

Reflection about the center vertical is conjugation. Reflection about the center horizontal is
Hodge star. The composition of these two operations, or rotation by π, is Serre duality.
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