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Abstract: It iswell-known in the combustion community that curvature effect in general
slows down flame propagation speeds because it smooths out wrinkled flames. However,
such a folklore has never been justified rigorously. In this paper, as the first theoretical
result in this direction, we prove that the turbulent flame speed (an effective burning
velocity) is decreasing with respect to the curvature diffusivity (Markstein number) for
shear flows in the well-known G-equation model. Our proof involves several novel and
rather sophisticated inequalities arising from the nonlinear structure of the equation. On
a related fundamental issue, we solve the selection problem of weak solutions or find the
“physical fluctuations” when the Markstein number goes to zero and solutions approach
those of the inviscid G-equation model. The limiting solution is given by a closed form
analytical formula.

1. Introduction

The curvature effect in turbulent combustion was first studied by Markstein [12], which
says that if the flame front bends toward the cold region (unburned area, point C in Fig. 1
below), the flame propagation slows down. If the flame front bends toward the hot spot
(burned area, point B in Fig. 1), it burns faster.

Below is an empirical linear relation proposed by Markstein [12] to approximate the
dependence of the laminar flame speed sl on the curvature (see also [13,15,16,18], etc):

sl = s0l (1 − d̃ κ). (1.1)

Here s0l , the mean value, is a positive constant. The parameter d̃ > 0 is the so called
Markstein length, which is proportional to the flame thickness. Themean curvature along
the flame front is κ .
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Fig. 1. Curvature effect
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Fig. 2. Level-set formulation of front propagation

In general, κ changes sign along a curved flame front. So amathematically interesting
and physically important question is:

Q1: How does the “averaged” flame propagation speed depend on the curvature term?
Of course, we first need to properly define an “averaged speed”, which is basi-

cally to average fluctuations caused by both the flow and the curvature. The theory of
homogenization provides such a rigorousmathematical framework in environments with
microscopic structures. In this paper, we employ the popular G-equation model in the
combustion community.

Let the flame front be the zero level set of a reference function G(x, t), where the
burnt and unburnt regions are {G(x, t) < 0} and {G(x, t) > 0}, respectively (see Fig. 2).
The velocity of ambient fluid V : Rn → R

n is assumed to be smooth, Zn-periodic and
incompressible (i.e. div(V ) = 0). The propagation of flame front obeys a simple motion
law: �vn = sl + V (x) · n, i.e., the normal velocity is the laminar flame speed (sl ) plus
the projection of V along the normal direction. This leads to the so-called G-equation,
a level-set PDE [14,16]:

Gt + V (x) · DG + sl |DG| = 0 in Rn × (0,+∞).
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Fig. 3. Average of fluctuations in the homogenization limit

Plugging the expression of the laminar flame speed (1.1) into the G-equation and
normalizing the constant s0l = 1, we obtain a mean curvature type equation

Gt + V (x) · DG + |DG| − d̃ |DG| div
(

DG

|DG|
)

= 0. (1.2)

Turbulent combustion usually involves small scales.As a simplifiedmodel,we rescale
V as V = V ( x

ε
) andwrite d̃ = dε. Here ε denotes the Kolmogorov scale (the small scale

in the flow). The diffusivity constant d > 0 is called the Markstein number. We would
like to point out that the dimensionless Markstein number is d · δL

ε
with δL denoting the

flame thickness [16]. In the thin reaction zone regime, δL = O(ε), see Eq. (2.28) and
Fig. 2.8 of [16]. Without loss of generality, let δL

ε
= 1. Then (1.2) becomes

Gε
t + V (

x

ε
) · DGε + |DGε | − d ε |DGε | div

(
DGε

|DGε |
)

= 0. (1.3)

Since ε � 1, it is natural to look at limε→0 Gε , i.e., the homogenization limit. If for
any p ∈ R

n , there exists a unique number Hd(p) such that the following cell problem
has (approximate) Zn-periodic viscosity solutions in Rn :

−d |p + Dw| div
(

p + Dw

|p + Dw|
)
+ |p + Dw| + V (y) · (p + Dw) = Hd(p), (1.4)

then standard tools in the homogenization theory imply that

lim
ε→0

Gε(x, t) = Ḡ(x, t) locally uniformly in R × [0,+∞).

Here Ḡ is the unique solution to the following effective equation, which captures the
propagation of the mean flame front (see Fig. 3 below).{

Ḡt + Hd(DḠ) = 0
Ḡ(x, 0) = G0(x) initial flame front.

(1.5)

Solution to the cell problem (1.4) formally describes fluctuations around the mean
flame front, i.e.,

G(x, t) = Ḡ(x, t) + εw(x,
x

ε
) + O(ε2),
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where for fixed location-time (x, t) and p = DḠ(x, t), w(x, ·) is a solution to (1.4)
with mean zero, i.e.,

∫ 1
0 w(x, y) dy = 0. The quantity Hd(p), if it exists, can be viewed

as the turbulent flame speed (sT (p)) along a given direction p. There is a consensus
in combustion literature that the curvature effect slows down flame propagation [17].
Heuristically, this is because the curvature term smooths out the flame front and reduces
the total area of chemical reaction [18]. However, this folklore has never been rigorously
justified mathematically. If the curvature term is replaced by the full diffusion (i.e., the
Laplacian�), a dramatic slow-down is proved in [10] for two dimensional cellular flows.
So in the G-equation setting, Question 1 can be formulated as

Q2: How does Hd(p) depend on the Markstein number d? In particular, is it decreasing
with respect to d?

We remark that the decrease of turbulent flame speed with respect to the Markstein
number has been experimentally observed (e.g., [5]).

1.1. Slow-down of flame propagation. For general V , we do not even know the existence
of Hd(p), i.e., the well-posedness of (1.4). In fact, given the counter-example in [3] for a
coercive mean curvature type equation, the cell problem (1.4) and the homogenization in
our non-coercive setting is very likely not well-posed in general. To avoid this existence
issue, as the first step to investigate the aboveQuestion 2, we consider the shear flow in
this paper:

V (x) = (v(x2), 0) for x = (x1, x2) ∈ R
2.

Here v : R → R is a smooth periodic function. Then for p = (γ, μ) ∈ R
2, the cell

problem (1.4) is reduced to the following ODE:

− dγ 2w′′

γ 2 + (μ + w′)2
+

√
γ 2 + (μ + w′)2 + γ v(y) = Hd(p) in R. (1.6)

It is then easy to show that there exists a unique number Hd(p) such that the ODE (1.6)
has a C2 periodic solution. Throughout this paper, we denote w as the unique solution
satisfying that w(0) = 0. To simplify notations, we omit the dependence of w on d. The
following is our main result.

Theorem 1.1. Assume that v = v(y) is not a constant function. Then
(1) Hd(0,±μ) = |μ|;
(2) (Major Part). If γ �= 0,

∂ Hd(p)

∂d
< 0.

So Hd is strictly decreasing with respect to the Markstein number d > 0.
(3) limd→0+ Hd = H0. Here H0(p) is the unique number (effective Hamiltonian)

such that the following inviscid equation admits periodic viscosity solutions
√

γ 2 + (μ + w
′
0)

2 + γ v(y) = H0(p) in R.

(4) limd→+∞ Hd = |p| + γ
∫ 1
0 v(y) dy and limd→+∞ w = 0 uniformly in R.
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Proofs for (1), (3) and (4) are simple. The real challenge is to prove the major part
(2). A key step in our proof is to establish a highly sophisticated class of inequalities,
see Lemma 2.3 (the discrete version) and Theorem 2.1 (a specific continuous version).
Some calculations in high dimensions will be presented in Sect. 2.2 when the ambient
fluid is near rest.

It might be tempting to think that there exists an explicit formula of Hd(p) since (1.6)
is “just” an ODE. However, this is not the case. For example, let us look at a simpler cell
problem associated with the 1-d viscous Hamilton–Jacobi equation arising from large
deviations and quantum mechanics:

−d w′′ + |p + w′|2 + G(y) = H(p, d) in R.

Here the potentialG is a smooth periodic function and H (p, d) is the unique number such
that the above equation has C2 solutions. The viscous effective Hamiltonian H(p, d)

actually determines the spectrum of the 1-d Schrödinger operator (Lu = −du′′ + Gu)
and it is closely related to the inverse scattering solution of the KdV equation [11]. We
want to remark that the strict decreasing of H(p, d) with respect to d can be easily
established in any dimension. See (2.13) in Remark 2.1.

1.2. Selection of physical fluctuations as d → 0+. To have a more complete picture, it
is also interesting to ask what is the limit of solutions of (1.6) as d → 0+ (the vanishing
curvature limit). When d = 0, equation (1.3) becomes the inviscid G-equation

Gε
t + V (

x

ε
) · DGε + |DGε | = 0.

It is proved in [4,19] independently that there exists a unique H0(p) such that the
corresponding cell problem

|p + Dw| + V (y) · (p + Dw) = H0(p) in Rn (1.7)

admits a periodic (approximate) viscosity solution. This implies that

lim
ε→0

Gε(x, t) = Ḡ(x, t) locally uniformly in R × [0,+∞).

As in the curvature case, here Ḡ is the unique solution to the following effective equation,
which captures the propagation of the mean flame front:{

Ḡt + H0(DḠ) = 0
Ḡ(x, 0) = G0(x) initial flame front.

The formal two-scale expansion says that

Gε(x, t) = Ḡ(x, t) + εw(x,
x

ε
) + O(ε2),

where the fluctuation w(x, ·) is a solution to (1.7) with p = DḠ(x, t) for fixed (x, t).
Nevertheless, solutions to (1.7) are in general not unique even up to a constant. This
motivates

Q3: which solution to (1.7) is the physical solution that captures the fluctuation of flame
front?
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One natural approach is to look at the limit of solutions to (1.4) (if it exists uniquely)
as d → 0. The limit is, however, very challenging and unknown in general. In this paper,
we identify the limit for the Eq. (1.6) under some non-degeneracy conditions.

It is easy to show that as d → 0+, the solution w to (1.6), up to a subsequence,
converges to a periodic viscosity solution w0 of√

γ 2 + (μ + w
′
0)

2 + γ v(y) = H0(p) in R. (1.8)

When γ = 0, w = w0 ≡ 0. Without loss of generality, we set γ = 1 in this section and
denote

H0(μ) = H0(p).

Without loss of generality, in this section, we also assume that

max
R

v = 0.

1.2.1. Uniqueness case. If |μ| ≥ ∫ 1
0

√
(1 − v)2 − 1 dy, H(μ) ≥ 1 is the unique number

such that

|μ| =
∫ 1

0

√
(H(μ) − v(y))2 − 1 dy.

Also, the inviscid Eq. (1.8) has a unique solution up to a constant, i.e.,

w0(x) = (sign(μ))

∫ x

0

√
(H(μ) − v(y))2 − 1 dy − μx + c

for some c ∈ R since w′
0 + μ cannot change signs. Accordingly, by w(0) = 0,

lim
d→0+

w = (sign(μ))

∫ x

0

√
(H(μ) − v(y))2 − 1 dy − μx .

1.2.2. Non-uniqueness case. When |μ| <
∫ 1
0

√
(1 − v)2 − 1 dy, Hd(μ) = 1. The lim-

iting problem is more interesting since solutions to the inviscid Eq. (1.8) are not unique
if the set

M0 = {x ∈ [0, 1)| v(x) = max
R

v = 0}

has multiple points. For example, assume that xi ∈ M0 for i = 1, 2. Choose xμ,i ∈
(xi , xi + 1) such that

∫ xμ,i

xi

√
(1 − v)2 − 1 dy −

∫ xi+1

xμ,i

√
(1 − v)2 − 1 dy = μ.

Then

wi (x) =

⎧⎪⎪⎨
⎪⎪⎩

∫ x
xi

√
(1 − v(y))2 − 1 dy − μx, ∀x ∈ [xi , xμ,i ]∫ xμ,i

xi

√
(1 − v(y))2 − 1 dy − ∫ x

xμ,i

√
(1 − v(y))2 − 1 dy − μx,

∀x ∈ [xμ,i , xi + 1]
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(extended periodically) are both viscosity solutions to (1.8) andw1−w2 is not a constant.
So a very interesting problem is to identify the solution selected by the limiting process,
i.e., the physical fluctuation associated with the inviscid G-equation model. Hereafter,
we assume that

M0 is finite and v′′(x) is distinct for x ∈ M0. (1.9)

Choose the unique x̄ ∈ M0 such that

−v′′(x̄) = min
x∈M0

{−v′′(x)}.

Choose xμ ∈ (x̄, x̄ + 1) such that

∫ xμ

x̄

√
(1 − v)2 − 1 dy −

∫ x̄+1

xμ

√
(1 − v)2 − 1 dy = μ.

Clearly, such xμ is unique. The following is our selection result.

Theorem 1.2.

lim
d→0+

w = w0(x) − w0(0) uniformly in R.

Here

w0(x) =

⎧⎪⎨
⎪⎩

∫ x
x̄

√
(1 − v)2 − 1 dy − μx, ∀x ∈ [x̄, xμ]∫ xμ

x̄

√
(1 − v)2 − 1 dy − ∫ x

xμ

√
(1 − v)2 − 1 dy − μx,

∀x ∈ [xμ, x̄ + 1].
(1.10)

We would like to point out that selection problems of similar spirit have been studied
for the vanishing viscosity limit ([1,2,7], etc), after which the viscosity solution was
originally named. In these references, the authors aim to identify limε→0+ vε . Here vε is
the unique smooth solution to

−ε�vε + H(p + Dvε, x) = H(p, ε) in Rn .

The most important case is the mechanical Hamiltonian H(p, x) = |p|2 + G(x) with a
potential function G. The limiting process resembles the passage from quantummechan-
ics to classical mechanics ([1,6]). The works [1,2] deal with some special cases in high
dimensions by employing advanced tools from dynamical systems and random perturba-
tions. Assumptions therein are very hard to check, however. The method in [7] is purely
1-d. Based on simple comparison principles of PDEs/ODEs, our arguments are simpler
and more robust. In particular, they can be easily extended to handle certain cases in
high dimensions. The rest of the paper contains the proofs of the main theorems.
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2. Proof of Theorem 1.1

Proof. (1) is trivial. Let us prove (2) which is the most difficult and interesting part. Fix
(γ, μ). Denote φ = μ+w′

γ
. Then φ is the unique periodic solution to

− dφ′

1 + φ2 +
√
1 + φ2 + v(y) = E(d) = Hd(p)

γ
in R

subject to
∫ 1
0 φ(x) dx = μ

γ
. To prove (2) is equivalent to showing that

E ′(d) < 0.

Due to the uniqueness of φ and E(d), their dependence on d is smooth. Taking derivative
on both sides of the above equation with respect to d, we obtain that

−d F ′ + b(x)F = E ′(d)(1 + φ2) + φ′,

where b(x) = 2dφ′φ
1+φ2 + φ

√
1 + φ2 and F(x) = φd(x), i.e., the derivative of φ with

respect to d. Clearly, F is periodic and has zero mean, i.e.,
∫
[0,1] F = 0. Note that v is

not constant is equivalent to saying the φ is not constant. Then (2) follows immediately
from Lemma 2.1.
(3) Integrating both sides of (1.6), we obtain:

Hd(p) =
∫ 1

0

√
γ 2 + (μ + w′)2 dy + γ

∫ 1

0
v(y) dy. (2.11)

So due to the convexity of s(t) = √
γ 2 + t2,

Hd(p) ≥ |p| + γ

∫ 1

0
v(y) dy.

Also, by maximum principle, we have that

Hd(p) ≤ |p| + max
R

γ v

and

max
R

|μ + w′| ≤ Hd(p) − min
R

γ v ≤ |p| + 2max
R

|γ v|.

Hence, up to a sequence, we may assume that

lim
d→0

Hd = H0 and lim
d→0+

w = w0 uniformly inR.

Then the stability of viscosity solution immediately implies that w0 is a continuous
periodic viscosity solution to

√
γ 2 +

(
μ + w

′
0

)2
+ γ v(y) = H0(p) inR.

Note that H0(p) is unique number such that the above equation has a periodic viscosity
solutions w0 although w0 might not be unique. See [8] for general cases.
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(4). If γ = 0, this is trivial. So we assume that γ �= 0. Note that estimates of Hd and
μ + w′ in (3) are independent of d. Since

w′′ = 1

dγ 2 (γ 2 + (μ + w′)2)
(√

γ 2 + (μ + w′)2 + v − Hd(μ)

)
,

we have that

max
R

|w′′| ≤ C

d

for a constant C independent of d. Due to the periodicity of w and w(0) = 0, it is
obvious that

lim
d→+∞ w = lim

d→+∞ w′ = 0 uniformly in R.

Combining with (2.11), (4) holds. �
Lemma 2.1. Let d > 0 and φ be a non-constant C1 periodic function. If the following
equation has a mean-zero, periodic solution F

−d F ′ + b(x)F = φ′ + α(1 + φ2) in R

for some α ∈ R and

b(x) = 2dφ′φ
1 + φ2 + φ

√
1 + φ2,

then

α < 0.

Proof. It suffices to prove this for d = 1. The proof for other d is similar. We can solve
F in terms of φ and α. Using F is periodic and mean zero (i.e., F(0) = F(1) and∫ 1
0 F(s) ds = 0), it is easy to obtain that

α = − eg(1)
∫ 1
0 φ′e−g(x) dx

∫ 1
0 eg(x) dx − (eg(1) − 1)

∫ 1
0 eg(x)

∫ x
0 φ′e−g(y) dydx

eg(1)
∫ 1
0 (1 + φ2)e−g(x) dx

∫ 1
0 eg(x) dx − (eg(1) − 1)

∫ 1
0 eg(x)

∫ x
0 (1 + φ2)e−g(y) dydx

.

Here

g(x) =
∫ x

0
b(y) dy = log(1 + φ2(x)) − log(1 + φ2(0)) +

∫ x

0
φ
√
1 + φ2 dx .

In particular, g(1) = ∫ 1
0 φ

√
1 + φ2 dx . The denominator is obviously positive. Hence

α < 0 is equivalent to proving the inequality

eg(1)
∫ 1

0
φ′e−g(x) dx

∫ 1

0
eg(x) dx > (eg(1) − 1)

∫ 1

0
eg(x)

∫ x

0
φ′e−g(y) dydx

for every non-constant C1 periodic function φ. Denote that

h(x) =
∫ x

0
φ
√
1 + φ2 dy.
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Then it is equivalent to showing that

eh(1)
∫ 1

0

φ′

1 + φ2 e−h(x) dx
∫ 1

0
(1 + φ2)eh(x) dx

> (eh(1) − 1)
∫ 1

0
(1 + φ2)eh(x)

∫ x

0

φ′

1 + φ2 e−h(y) dy

Write λ(φ) = arctan φ. Using integration by parts and φ(0) = φ(1), we have that

L H S = eh(1)
(

λ(φ(1))e−h(1) − λ(φ(1)) +
∫ 1

0
λ(φ)e−h(x)φ

√
1 + φ2 dx

) ∫ 1

0
(1 + φ2)eh(x) dx .

and the RHS is

RH S = (eh(1) − 1)
(∫ 1

0 λ(φ)(1 + φ2) dx − λ(φ(1))
∫ 1
0 (1 + φ2)eh(x) dx

)

+ (eh(1) − 1)
(∫ 1

0 (1 + φ2)eh(x)
∫ x
0 λ(φ)e−h(y)φ

√
1 + φ2 dydx

)
.

By Fubini Theorem,

∫ 1

0
(1 + φ2)eh(x)

∫ x

0
λ(φ)e−h(y)φ

√
1 + φ2 dydx

=
∫ 1

0
λ(φ)e−h(x)φ

√
1 + φ2

∫ 1

x
(1 + φ2)eh(y) dydx .

Then L H S−RH S is A + B − C for

A(φ) = eh(1)
∫ 1

0
λ(φ)e−h(x)φ

√
1 + φ2

∫ x

0
(1 + φ2)eh(y) dydx,

B(φ) =
∫ 1

0
λ(φ)e−h(x)φ

√
1 + φ2

∫ 1

x
(1 + φ2)eh(y) dydx .

and

C(φ) = (eh(1) − 1)
∫ 1

0
λ(φ)(1 + φ2) dx .

If h(1) = 0, then A + B − C = A + B ≥ 0 since sλ(s) ≥ 0. Cleary, “ = 0′′ if and only
if φ ≡ 0. So we assume that

h(1) �= 0.

Also, note that for φ̃(x) = −φ(−x), the correspsonding

b̃(x) = 2φ̃′φ̃
1 + φ̃2

+ φ̃

√
1 + φ̃2 = −b(−x)

and F̃(x) = −F(−x) satisfies that

−F̃ ′ + b̃(x)F̃ = φ̃′ + α(1 + φ̃2).
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Hence, without lost of generality, we may further assume that

h(1) > 0.

Denote φ+ = max{φ, 0} and φ− = min{φ, 0}. Aso write

h±(x) =
∫ x

0
φ±

√
1 + φ2± dy.

Note that h(x) = h+ + h−. Now let us prove the following lemma. �
Lemma 2.2. We have that

A(φ) + B(φ) − C(φ) ≥ eh−(1) (A(φ+) + B(φ+) − C(φ+)) .

The equality holds if only if φ ≥ 0, i.e., φ− = 0.

Proof. Clearly

A(φ) ≥ eh(1)
∫ 1
0 λ(φ+)e−h(x)φ+

√
1 + φ2

+
∫ x
0 (1 + φ2

+)e
h(y) dydx

= eh(1)
∫ 1
0 λ(φ+)e−h+(x)φ+

√
1 + φ2

+
∫ x
0 (1 + φ2

+)e
h+(y)eh−(y)−h−(x) dydx

≥ eh−(1) A(φ+), since h−(x) ≤ h−(y) for x ≥ y.

Also,

B(φ) ≥ ∫ 1
0 λ(φ+)e−h(x)φ+

√
1 + φ2

+
∫ 1

x (1 + φ2
+)e

h(y) dydx

= eh−(1)
∫ 1
0 λ(φ+)e−h+(x)φ+

√
1 + φ2

+
∫ 1

x (1 + φ2
+)e

h+(y)eh−(y)−h−(1)e−h−(x) dydx

≥ eh−(1) B(φ+) since 0 ≥ h−(y) ≥ h−(1) for all y ∈ [0, 1]
and

C(φ) ≤ (eh(1) − 1)
∫ 1
0 λ(φ+)(1 + φ2

+) dx

= (eh(1)−1)
(eh+(1)−1)

C(φ+)

≤ eh−(1)C(φ+).

Obviously, for all inequalities to hold, we must have h− ≡ 0 and φ− ≡ 0. �
Now let us continue the proof of Lemma 2.1. Since h(1) > 0, that φ is not constant

implies φ+ is not constant either. By a small perturbation like φ+ + ε, we may assume
that φ+ > 0 in computations below. Then h+ is strictly increasing. After changing of
variables h+(x) → x and writing ψ(h+(x)) = φ+(x) and T = h+(1), we obtain that

A(φ+) = AT,ψ = eT
∫ T

0
λ(ψ)e−x

∫ x

0

√
1 + ψ2

ψ
ey dydx,

B(φ+) = BT,ψ =
∫ T

0
λ(ψ)e−x

∫ T

x

√
1 + ψ2

ψ
ey dydx



526 J. Lyu, J. Xin, Y. Yu

and

C(φ+) = CT,ψ = (eT − 1)
∫ T

0
λ(ψ)

√
1 + ψ2

ψ
dx .

So

AT,ψ + BT,ψ − CT,ψ = eT
∫ T

0
λ(ψ)e−x

∫ x

0

√
1 + ψ2

ψ
ey dydx

+
∫ T

0
λ(ψ)e−x

∫ T

x

√
1 + ψ2

ψ
ey dydx

− (eT − 1)
∫ T

0
λ(ψ)

√
1 + ψ2

ψ
dx .

Let M = max[0,T ] ψ = max[0,1] φ+ > 0. According to Theorem 2.1 by taking f (x) =
λ(ψ) = arctan(ψ), g(y) = 1

sin y , L = arctan(M) and θ = 1√
1+M2

, we have that√
1+ψ2

ψ
= g( f ) and

AT,ψ + BT,ψ − CT,ψ ≥ 1
2
√
1+M2

∫
[0,T ]2 |λ(ψ(x)) − λ(ψ(y))|2 dxdy

= 1
2
√
1+M2

∫
[0,1]2 |λ(φ+(x)) − λ(φ+(y))|2 J (x)J (y) dxdy

> 0 since φ+ is not constant.

Here J (x) = φ+(x)
√
1 + φ2

+. Combining with Lemma 2.2, A(φ) + B(φ) − C(φ) > 0.
�

2.1. The key inequalities. Given n ∈ N. Let {bik}1≤i,k≤n and {b̃ik}1≤i,k≤n be two given
sequences of positive numbers satisfying that for all i, k

i∑
l=1

bil +
n∑

l=i

b̃il =
n∑

l=k

blk +
k∑

l=1

b̃lk = c.

Here c is a constant independent of i and k. Also,

min{ min
1≤k≤i≤n

bik, min
1≤i≤k≤n

b̃ik} ≥ τ > 0. (2.12)

Lemma 2.3. Assume that L > 0 and g ∈ C((0, L]) satisfies

g′(a) ≤ −θ for some θ ≥ 0.

Then

n∑
i=1

ai

i∑
k=1

g(ak)bik +
n∑

i=1

ai

n∑
k=i

g(ak)b̃ik ≥ c
n∑

i=1

ai g(ai ) +
θτ

2

∑
1≤i,k≤n

(ai − ak)
2.

for all (a1, a2, . . . , an) ∈ (0, L]n. Here τ is from (2.12). Moreover, if θ > 0, the equality
holds if and only if a1 = a2 = · · · = an.
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Proof. By approximation, we may assume that θ > 0. For convenience, denote

W (a1, a2, . . . , an) =
n∑

i=1

ai

i∑
k=1

g(ak)bik +
n∑

i=1

ai

n∑
k=i

g(ak)b̃ik

and

H(a1, a2, . . . , an) = c
n∑

i=1

ai g(ai ) +
θτ

2

∑
1≤i,k≤n

(ai − ak)
2.

It suffices to show that for any fixed r ∈ (0, L),

min[r,L]n
(W − H) = 0

and the minimum is attained when all ai are the same.
Choose (â1, â2, â3, ..ân) ∈ [r, L]n such that

W (â1, â2, â3, ..ân) − H(â1, â2, â3, ..ân) = min[r,L]n
(W − H).

Assume that â j = max1≤i≤n{âi }. If â j = r , then â1 = â2 = · · · = ân = r and we are
done. So let us assume that

â j > r.

Then

Wa j − Ha j ≤ 0 at (â1, â2, â3, ..ân).

Here we include < 0 since â j might be equal to L . Accordingly,

∑ j
k=1 g(âk)b jk +

∑n
k= j g(âk)b̃ jk

+g′(â j )
∑n

k= j âkbk j + g′(â j )
∑ j

k=1 âk b̃k j

≤ c(g(â j ) + â j g′(â j )) + 2
∑

k �= j θτ(â j − âk)

On the other hand, since g′ ≤ −θ < 0, we also have that

∑ j
k=1 g(âk)b jk +

∑n
k= j g(âk)b̃ jk

+g′(â j )
∑n

k= j âkbk j + g′(â j )
∑ j

k=1 âk b̃k j

≥ c(g(â j ) + â j g′(â j )) + 2
∑

k �= j θτ(â j − âk).

Hence all equalities should hold and â1 = â2 . . . = ân follows from that g is strictly
decreasing. Then W (â1, â2, â3, ..ân) − H(â1, â2, â3, ..ân) = 0. �

Now we are ready to state a specific continuous version for our purpose.
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Theorem 2.1. Let T > 0 and f ∈ C([0, T ]) be a continuous positive function. Suppose
that g ∈ C1((0, L]) for L = max[0,T ] f .
(1) If g′ ≤ −θ for some θ ≥ 0, then

eT
∫ T
0 f (x)e−x

∫ x
0 g( f (y))ey dydx +

∫ T
0 f (x)e−x

∫ T
x g( f (y))ey dydx

≥ (eT − 1)
∫ T
0 f (x)g( f (x))) dx + θ

2

∫
[0,T ]2 | f (x) − f (y)|2 dxdy.

(2) If If g′ ≥ θ for some θ ≥ 0, then

eT
∫ T
0 f (x)e−x

∫ x
0 g( f (y))ey dydx +

∫ T
0 f (x)e−x

∫ T
x g( f (y))ey dydx

≤ (eT − 1)
∫ T
0 f (x)g( f (x))) dx − θ

2

∫
[0,T ]2 | f (x) − f (y)|2 dxdy.

Proof. (1) For n ∈ N , let xi = iT
n for i = 1, 2, .., n. Note that for i, k = 1, 2, 3, . . . n,

i∑
l=1

eT −xi+xl +
n∑

l=i

exl−xi = eT+ T
n − 1

e
T
n − 1

=
n∑

l=k

eT −xl+xk +
k∑

l=1

exk−xl .

Then desired inequality in (1) follows fromLemma 2.3 andRiemann sum approximation

by taking ai = f (xi ), c = eT+ T
n −1

e
T
n −1

, τ = 1,

bik = eT −xi+xk and b̃ik = exk−xi for 1 ≤ i, k ≤ n.

(2) follows immediately from (1) by considering −g. �
Remark 2.1. Similar to the proof of Theorem 1.1, (1) in the above Theorem 2.1 also
implies that the one dimensional viscous effective Hamiltonian H(p, d) given by the
cell problem

−d w′′ + H(p + w′) + G(x) = H(p, d) in R

is strictly decreasing with respect to the diffusivity d > 0 for a non-constant function
G, and a strictly convex function H : R → R. Here we choose f = p +w′ and g = 1

H ′
after suitable translations. It remains an interesting problem whether this is also true in
high dimensions. For the special case H(p) = 1

2 |p|2, using integration by parts, it is
easy to derive that

∂ H(p, d)

∂d
= −

∫
Tn |Dwd |2e−wd dx∫

Tn e−wd dx
≤ 0 (2.13)

and “=” holds if and only if G is a constant. Here wd represents the derivative of w with
respect to d. On the other hand, if H is non-convex, then (2) in the above Theorem 2.1
implies that for some p, H(p, d) could be strictly increasing with respect to d.
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2.2. Calculations in high dimensions in perturbative cases. Consider the case of weak
flow or δV for 0 ≤ δ � 1. Let p ∈ R

n be a unit vector satisfying the Diophantine
condition, i.e., there exist β, C > 0 such that

|p · �k| ≥ C

|�k|β for all �k ∈ Z
n\{0}.

Owing to [9], when δ is small enough, the cell problem (1.4) has a viscosity solution.
Formally, we can write the solution as

w = δw1 + δ2w2 + O(δ3)

and the constant (turbulent flame speed)

Hd(p) = |p| + δα1(p) + δ2α2(p) + O(δ3). (2.14)

By comparing coefficients of δ and δ2, w1 and w2 are determined by inhomogeneous
linear equations. They can be solved in terms of Fourier series. For example,w1 satisfies

−d(�w1 − p · D2w1 · p) + p · Dw1 + p · V = α1(p).

The equation for w2 is more messy. Applying Fredholm alternatives to both equations,
we have that

α1(p) = p ·
∫
Tn

V dx = p · λ0

and

α2(p) = 1

2

∫
Tn

|Dw1|2 dx = 1

2

∑
�k∈Zn\{0}

|p · λ�k |2|�k|2
d2(|�k|2 − |p · �k|2)24π2 + |p · �k|2 ,

where λ�k ∈ C
n are Fourier coefficients of V , i.e., V = ∑

�k∈Zn λ�kei2π �k·x . Clearly, Hd(p)

is strictly decreasing with respect to d. The approximation of Hd(p) (2.14) can actually
be proved easily through maximum principles of viscosity solutions, i.e., evaluating at
where w − δw1 − δ2w2 attains maximum/minimum values.

3. Proof of Theorem 1.2

Let us first prove some lemmas. Recall that

M0 = {x ∈ [0, 1)| v(x) = max
R

v = 0}.

See Sect. 1.2.2 (non-uniqueness case) for the range of μ, defintions of x̄ and xμ and
other assumptions like (1.9).

Lemma 3.1. Assume that M0 = {x̄}, i.e., it contains a single element. Then

lim
d→0+

Hd(μ) − 1

d
= −√−v′′(x̄).
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Proof. Since M0 has only one element, 1 − v > 1 in (x̄, x̄ + 1). Then it is easy to see
that periodic viscosity solutions to√

1 + (μ + w
′
0)

2 + v(y) = 1 in R

are unique up to a constant. Hence, since w(0) = 0,

lim
d→0+

w = w0(x) − w0(0) uniformly in R. (3.15)

Here w0 is given by (1.10). Fix δ > 0 and denote

uδ,±(x) =
⎧⎨
⎩

∫ x
x̄

√
(1 − (1 ± δ)v)2 − 1 dy for x ≥ x̄

∫ x̄
x

√
(1 − (1 ± δ)v)2 − 1 dy for x ≤ x̄ .

Apparently,

uδ,−(x) < u0(x) = w0(x) + μx < uδ,+(x) for x ∈ [xμ − 1, xμ]\{x̄}
and uδ,−(x̄) = u0(x̄) = uδ,+(x̄) = 0. See the left picture on Fig. 4. Denote

eδ = min
x=xμ or xμ−1

{u0(x) − uδ,−(x), uδ,+(x) − u0(x)} > 0.

and

ud,δ,±(x) = w(x) − w(x̄) + μ(x − x̄) ± 1

2
eδ.

Clearly, by (3.15), when d is small enough, there exist xd,δ,± ∈ (xμ − 1, xμ) such that

ud,δ,+(xd,δ,+) − uδ,+(xd,δ,+) ≥ ud,δ,+(x) − uδ,+(x) for all x ∈ (xμ − 1, xμ)

and

ud,δ,−(xd,δ,−) − uδ,−(xd,δ,−) ≤ ud,δ,−(x) − uδ,−(x) for all x ∈ (xμ − 1, xμ).

Hence maximum principle implies that

− du
′′
δ,+

1 + (u
′
δ,+)

2
+

√
1 + (u

′
δ,+)

2 + v ≤ Hd(μ) at xd,δ,+.

So

− du
′′
δ,+

1 + (u
′
δ,+)

2
≤ Hd(μ) − 1 + δv ≤ Hd(μ) − 1 at xd,δ,+.

Sending d → 0 first and then δ → 0, we derive that xd,δ,+ → x̄ and

lim inf
d→0+

Hd(μ) − 1

d
≥ −√−v′′(x̄).

By looking at xd,δ,−, similarly, we can obtain that

lim sup
d→0+

Hd(μ) − 1

d
≤ −√−v′′(x̄).

Hence we finish the proof. �
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xO

uδ,+

uδ,−
u0

x̄ xμxμ − 1
xO x

ũ0

Fig. 4. Left: graphes of uδ,± and u0. Right: Turning points

Remark 3.1. The above proof based on comparison and maximum principle actually
also shows that for any subsequence {dm} → 0, if

lim
dm→0+

w(x) = w̃0(x)

and ũ0 = μx + w̃0(x) has turning point at some x ′ ∈ M, i.e. there exists a τ > 0 such
that (see the right picture on Fig. 4)

ũ0(x) − ũ0(x ′) =
⎧⎨
⎩

∫ x
x ′

√
(1 − v)2 − 1 dy for x ∈ [x ′, x ′ + τ ]

∫ x ′
x

√
(1 − v)2 − 1 dy for x ∈ [x ′ − τ, x ′],

then

lim
m→+∞

Hdm (μ) − 1

dm
= −√−v′′(x ′).

Lemma 3.2. Suppose that w̃ is a periodic viscosity solution to the inviscid equation
√
1 + (μ + w̃′)2 + v = 1 in R.

Then x0 ∈ R is a turning point of ũ(x) = μx + w̃ if and only if ũ(x) attains local
minimum at x0.

Proof. “⇒” is obvious. We only need to show that any local minimum point x0 must be
a turning point. By the definition of viscosity solutions,

1 + v(x0) ≥ 1.

So v(x0) = 0 and x0 ∈ M0. Choose τ > 0 such that (x0, x0 + τ) ∩ M0 = ∅ and
ũ′(x0 + τ) = p + w̃′(x0 + τ) > 0. Then we must have that

ũ′(y) > 0 for any y ∈ (x0, x0 + τ) where ũ′ exists.

Otherwise there will be a local mimimum point in (x0, x0 + τ). Note that any local
minimum point belongs toM0. This will contradict to the choice of τ . Accordingly,

ũ′ =
√

(1 − v)2 − 1 in (x0, x0 + τ).



532 J. Lyu, J. Xin, Y. Yu

Similarly, we can show that for some τ ′ > 0,

ũ′ = −
√

(1 − v)2 − 1 in (x0 − τ ′, x0).

�
Proof of Theorem 1.2. Step 1: We first show that

lim inf
d→0+

Hd(μ) − 1

d
≥ −√−v′′(x̄). (3.16)

In fact, let h(x) be a smooth periodic function satisfying that h(x̄) = 0 and h(x) > 0
for x /∈ x̄ + Z. For ε > 0, denote

vε(x) = v(x) − εh(x)

and Hd,ε(p) from the cell problem (1.6) with γ = 1 and v replaced by vε . It is easy to
see that

Hd(μ) ≥ Hd,ε(μ).

Choose ε small enough such that

|μ| <

∫ 1

0

√
(1 − vε)2 − 1 dx .

Clearly, maxR vε = 0 and the maximum is only obtained at x̄ + Z. Then (3.16) follows
immediately from Lemma 3.1.

Step 2: Suppose ũ = μx + w̃ is the limit of a subsequence of μx + w as d → 0.
Combining with the above Remark 3.1 and assumption (1.9), (3.16) implies that ũ can
only have a turning point at x̄ . Owing to Lemma 3.2, ũ does not have local minimum
points in (x̄, x̄ +1). Together with |μ| <

∫ 1
0

√
(1 − v)2 − 1 dx , it is easy to see that there

exists a unique xμ ∈ (x̄, x̄ + 1) such that ũ is increasing in (x̄, xμ) and is decreasing in
(xμ, x̄ + 1). Hence w̃ must be uniquely given by the formula (1.10). �
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