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Abstract

G-equations are popular level set Hamilton-Jacobi nonlinear partial dif-
ferential equations (PDEs) of first or second order arising in turbulent
combustion. Characterizing the effective burning velocity (also known
as the turbulent burning velocity) is a fundamental problem there. We
review relevant studies of the G-equation models with a focus on both
the existence of effective burning velocity (homogenization), and its
dependence on physical and geometric parameters (flow intensity and
curvature effect) through representative examples. The corresponding
physical background is also presented to provide motivations for math-
ematical problems of interest.

The lack of coercivity of Hamiltonian is a hallmark of G-equations.
When either the curvature of the level set or the strain effect of fluid
flows is accounted for, the Hamiltonian becomes highly non-convex and
nonlinear. In the absence of coercivity and convexity, PDE (Eulerian)
approach suffers from insufficient compactness to establish averaging
(homogenization). We review and illustrate a suite of Lagrangian tools,
most notably min-max (max-min) game representations of curvature
and strain G-equations, working in tandem with analysis of streamline
structures of fluid flows and PDEs. We discuss open problems for
future development in this emerging area of dynamic game analysis
for averaging non-coercive, non-convex, and nonlinear PDEs such as
geometric (curvature-dependent) PDEs with advection.
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1. Introduction

Turbulent combustion is employed in practically all mobile and sta-
tionary power generation devices because turbulence increases the mass
consumption rate of reactants to values much greater than laminar
flames can achieve. This in turn increases the heat release rate and
thus power available from a gas turbine combustor, reciprocating pis-
ton engine, or rocket motor of a given size. Few combustion engines
would function without the increase in mixing and burning rates caused
by turbulence. A fundamental and most practically important property
of a turbulent flame in a pre-mixture of reactants is how the effective
propagation speed (sT , also called turbulent flame speed) is affected
by turbulence intensity among other factors including local flame front
curvature, hydrodynamic strain, combustor geometry, thermal expan-
sion, heat losses, and turbulence energy spectrum [12, 89, 35]. Most
of our understanding of these effects to date in combustion science has
been developed from the so-called “flamelet” models that presume the
existence of a continuous flame sheet that is wrinkled by turbulence
and thereby affecting the flame area which in turn affects the mass
consumption rates. The local consumption rate per unit area corre-
sponds to the propagation rate of a planar front in the same mixture.

A well-known flamelet type model in turbulent combustion is the
so called G-equation [75, 112, 111, 89], which takes the following form:

Gt + sl |DG|+ V (x) ·DG = 0. (1.1)

Here G = G(x, t) ∈ C(Rn × (0,∞),R) is a reference function whose
zero level set {x ∈ Rn| G(x, t) = 0} represents flame front at time t;
{x ∈ Rn| G(x, t) > 0} is the unburned area and {x ∈ Rn| G(x, t) < 0}
the burned area; V ∈ C(Rn,Rn) is the velocity field of the ambient
fluid (e.g. blowing wind in a wild fire or stirring a mixture of air and
gasoline inside car engines), see Fig. 1 below; D the spatial gradient.
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Figure 1: Level set modeling of flame propagation.

The motion of the flame front is driven by chemical reaction represented
by the so called laminar flame speed sl (or local burning velocity) and
the ambient fluid. Hence the flame front obeys the motion law:

vn⃗ = sl + V (x) · n⃗, (1.2)

i.e., the front speed vn⃗ in the normal direction n⃗ is the laminar flame
speed (sl) plus the projection of fluid velocity V along the normal. The
sl might not be a constant in general, and its geometric or physical
modeling leads to different types of G-equations.

The ratio of flame thickness and Kolmogorov scale (the small scale
in fluid flows below which dissipation dominates) determines different
combustion regions. G-equation is most suited in the so called corru-
gated flamelet regime where the ratio is less than one [89]. Below we
derive G-equation, assuming that the G function and the flame front
are smooth. Fix t > 0 and a point x on the flame front Γt. Let x(s)
be the flame propagation route starting from x(t) = x for s ≥ t. Then
G(x(s), s) = 0 and the motion law (1.2) implies that

ẋ(s) = vn⃗(s) n⃗(s) = (sl + V (x(s)) · n⃗(s)) n⃗(s), (1.3)

where n⃗(s) is the outward normal vector of Γs at x(s) that can be
expressed as n⃗(s) = DG(x(s), s)/|DG(x(s), s)|. By chain rule:

0 =
dG(x(s), s)

ds
= Gt +DG · ẋ(s) = 0.
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Plugging in (1.3) immediately gives G-equation (1.1), which was for-
mally introduced by Williams [112, 111] in 1985 although the above
derivation and an earlier form of G-equation first appeared in Mark-
stein’s work [75] in 1964. Also, we note that the G-equation model and
crystal growth front propagation model served as two major sources in
the systematic mathematical development of the level-set method by
Osher and Sethian [88].

Two observations are in order.

(1) The reference function G(x, t) has no physical meaning except
its zero level set (called nonreactive in combustion literature). Solutions
to G-equations are in general not C1 although the equation is derived
under smoothness assumptions. Mathematically, the solutions need to
be defined in the sense of viscosity solutions whose basic definition and
backgrounds are in section 2 providing mathematical foundation of level
set equations. In particular, the choice of different reference functions
does not impact the zero level set. Precisely speaking, if both G̃ and
G are solutions to equation (1.1) subject to

{x ∈ Rn| G̃(x, 0)} = {x ∈ Rn| G(x, 0)}

then
{x ∈ Rn| G̃(x, t) = 0} = {x ∈ Rn| G(x, t) = 0}

for all t > 0. An intuitive way to understand this is that G is a solution
if and only if G̃ = f(G) is also a solution for any differentiable function
f : R → R satisfying f ′ > 0. See [26, 43] for rigorous proofs.

(2) In more comprehensive combustion models, fluid velocity and
chemical transport are determined by a coupled system of Navier-
Stokes and reaction-diffusion-advection equations, which is called the
direct method. A flamelet approach based on G-equations neglects
the effects of thermal expansion (and so the above two-way coupling
between the flame and turbulent flow field) as well as heat losses but
may retain curvature and strain dependence on sl in the G-equation
formulation. In the simplified setting of G-equation, the fluid velocity
(turbulent flow field) is prescribed with the focus to understand how
the flame propagates in an ambient fluid. Such an approach is known
as passive modeling, making it more feasible to theoretically study (so
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called “pencil and paper”) or compute the impacts of significant fac-
tors in combustion, e.g., flow perturbation, flame intensity and flame
stretch. That the passive modeling may yield physically meaningful
results has been demonstrated by experiments [94, 99, 1] that employ
aqueous autocatalytic chemical reactions rather than gaseous flames
because the thermal expansion and heat loss effects are absent in the
aqueous mixtures.

To initiate a practical simulation of G-equation for turbulent flows,
solutions of Navier-Stokes equations are often computed first to set up
the velocity field V . For numerical approximations of G-equations and
applications in combustion, we refer to [124, 88, 87, 70, 56, 65, 61]
among others.

1.1. Different types of G-equations

In general, the local burning velocity sl depends on flame stretch
[89]:

sL = (s0L − d s0L κ+ d n⃗ · S · n⃗)+. (1.4)

See section 2.6 in [89] for a formal derivation of relevant expressions
from the reaction-diffusion-advection equations. Here

• s0L is a positive constant representing the laminar flame speed
of the un-stretched flame. The positive part (a)+ = max{a, 0} is im-
posed to avoid negative laminar flame speed since materials cannot
be “unburned”. This correction usually is not explicitly mentioned in
combustion literature since, by default, the laminar flame speed is al-
ways assumed to be non-negative there. However mathematically, large
positive curvature κ or negative strain rate n⃗ ·S · n⃗ could occur as time
evolves. Hence it is necessary to explicitly add (·)+ if physical validity is
taken into consideration in the modeling of flame propagation [124, 9];

• the expression −d s0Lκ + d n⃗ · S · n⃗ represents the correction due
to flame stretching. The constant d is the Markstein length which
is proportional to laminar flame thickness. Intuitively speaking, the
local burning velocity is affected by chemical reactions (or burning
temperature) and heat release that are related to the surface area of
the flame front. Suppose that a smooth hypersurface in Rn is moving
in the velocity field V . Then the front surface stretch rate is

1

σ

dσ

dt
= div(V )− n⃗ · S · n⃗.
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Here σ is the surface element area. The derivation of the above formula
could be found in [76, 70].

The first correction term − d s0L κ in (1.4) describes the curvature
effect [74, 75, 89], where

κ = div

(
DG

|DG|

)
is the mean curvature of the flame surface.

The second correction term d n⃗ ·S · n⃗ in (1.4) quantifies the straining
effect on the flame from the flow [76, 70]. The normal vector n⃗ at the
flame surface points in the direction of the unburned region, and

S =
DV + (DV )⊤

2

is called the strain rate tensor.
For convenience, we set the constant

s0L = 1

throughout this paper.
If (1.4) is plugged into the equation (1.1), the general G-equation

is a 2nd order quasilinear parabolic equation:

Gt +H(D2G,DG, x) = 0, (1.5)

where the associated Hamiltonian is

H(M, p, x) =

(
|p| − d

(
trM − p ·M · p

|p|2
− p · S · p

|p|

))
+

+ V (x) · p

for (M, p) ∈ Sn×n×(Rn\{0}). At p = 0, following [32], H(M, 0, x) is set
to 0 for subsolutions and 2dn||A|| for supersolutions. Here Sn×n is the
space of n× n real symmetric matrices. Note that H is monotonically
non-increasing with respect to M , non-coercive (H ̸→ +∞ as |p| →
+∞ if |V | > 1) and non-convex with respect to the p variable if d > 0.

For simplicity, we will treat curvature and strain terms separately.
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1.1.1. Inviscid G-equation (d = 0)

In the basic setting, the local burning velocity sl is taken to be
a constant (sl = s0L = 1), i.e., ignore the curvature effect and strain
rate by letting d = 0. The corresponding G-equation is then a first-
order convex but in general non-coercive (if |V | > 1) Hamilton-Jacobi
equation (HJE):

Gt + |DG|+ V (x) ·DG = 0.

In this situation, the laminar flame speed could depend on locations,
i.e., sl = a(x) for some positive function a(x). A notable example is
the celebrated Rothermel surface fire spread model for forest fire [3],
where a(x) depends on the landscape (uphill or downhill) and the types
of plants there. Due to diffusion in a numerical scheme or artificial
viscosity to stabilize computation [58, 45, 87], it is of interest to assess
such effects by considering the viscous version of G-equation:

−d∆G+Gt + |DG|+ V (x) ·DG = 0, (1.6)

where the Laplacian term mimics numerical diffusion. The Laplacian
term is also found to be relevant for representing the effect of thermal
relaxation under transverse heat diffusion in the preheat zone of a wrin-
kled front [29, 45]. Moreover, the viscous G-equation (1.6) is adopted
for dynamic modeling of large eddy simulation of turbulent premixed
combustion in homogeneous isotropic turbulence in [45]. Surprisingly,
such a second order regularization at any small d > 0 acts as a singular
perturbation drastically altering the effective burning velocity, see [69]
for a mathematical proof and [45] for numerical observations based on
Fig. 1 therein.

1.1.2. Curvature G-equation

Geometry on the flame front provides a phenomenological way to
describe the change of temperature along the flame front, that impacts
the rate of chemical reactions and hence the local burning speed. In-
tuitively, it says that if the flame front bends toward the cold region
(un-burned area, point C in Fig. 2 below), the flame propagation slows
down. If the flame front bends toward the hot spot (burned area, point
B in Fig. 2), it burns faster.

There is a vast literature in turbulent combustion literature dis-
cussing the impact of curvature effect. Below is the most recognized
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Figure 2: Curvature effect: faster burn at B (bending towards hot region) than C.

empirical linear relation first proposed by Markstein [74, 75] (see also
[89]):

sl = s0L(1− d κ)+. (1.7)

Here the strain rate term in (1.4) is ignored. This correction leads to
a mean curvature type equation with advection:

Gt +

(
1− d div

(
DG

|DG|

))
+

|DG|+ V (x) ·DG = 0. (1.8)

This equation has both non-convex and non-coercive nature. Moreover,
due to the presence of the physical cut-off ()+, this quasilinear parabolic
equation is highly degenerate, causing non-existence of effective burning
velocity in 3D flows (see a later section).

1.1.3. Strain G-equation

By setting s0L = 1, the expression for laminar speed is

sL = (1 + d n⃗ · S · n⃗)+. (1.9)

This leads to a nonconvex-noncoercive first order HJE:

Gt +

(
1 + d

DG · S(x) ·DG

|DG|

)
+

|DG|+ V (x) ·DG = 0. (1.10)
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Figure 3: A classical (left) vs. an effective (right, dashed) planar front by averaging
an oscillatory flame front (right, solid).

Nonconvex first order Hamilton-Jacobi equations first appeared in zero
sum two-person differential games [53, 39]. The strain G-equation pro-
vides a natural physical example. Although there is a large volume of
combustion literature investigating the strain rate effect, there is not
much mathematical work studying the above PDE, a nonconvex HJE
with physical meaning.

1.2. Turbulent burning velocity and homogenization of G-equation

Effective burning velocity (a.k.a turbulent flame speed) is one of
the most fundamental quantities in turbulent combustion. Roughly
speaking, it is the flame propagation speed after averaging the fluctu-
ations around the mean flame front. Establishing its existence rig-
orously has in general remained an open problem. Below are two
equivalent perspectives to describe it from the G-equation. Fix a
unit direction p ∈ Rn. Assume that the initial flame front is planar
{x ∈ Rn| G(x, 0) = x} = {x ∈ Rn| p ·x = 0}. Due to the motion of the
ambient fluid, the flame front wrinkles as time evolves, see Fig. 3.

• Perspective 1: The mean flame front is still planar and might
eventually propagate with a steady speed sT (p).

Mathematically, this implies that

G(x, t) ≈ p · x+ v(x)− t sT (p), (1.11)

where the right hand side is an approximate travelling wave solution
of the G-equation. The sT (p), if it exists, is the effective Hamiltonian
sT (p) = H(p), see Fig. 3, associated with the G-equation (a first or
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second order HJE), defined in a nonlinear eigenvalue problem (a.k.a
cell or corrector problem [66, 40]):

H(D2v, p+Dv, x) = (or ≈)H(p) in Rn (1.12)

where v is called a corrector (eigenfunction), and H̄ the eigenvalue.
Here ≈ refers to approximate solutions when exact solutions do not
exist. See section 2 for more details.

In general, the speed H(p) is direction p dependent or anisotropic.
Moreover, except in some simple cases (e.g., 2D shear flows), there is
no closed form formula of H. If H(p) exists, we have:

H(p) = − lim
t→∞

G(x, t)

t
, (1.13)

where G is the solution to the corresponding equation (1.1) subject to
G(x, 0) = p ·x. The above formula can be used to numerically compute
H(p), see [90, 56, 70].

• Perspective 2: In combustion literature and experiments, the
ratio sT/sl is measured by the ratio between the surface area of the
wrinkled flame front and the flat one (unwrinkled). According to (11)
and (12) in [58], the turbulent flame speed at time t is approximately
the volume average:

uT (t) =

∫
[0,1]n

sl|DG(x, t)| dx.

when the flow field V is 1-periodic, incompressible with mean zero, see
also [23] for relevant discussions. Integrating (1.1) over x gives:∫

[0,1]n
sl|DG(x, t)| dx = −

∫
[0,1]n

Gt(x, t) dx.

Then the time average of uT is

1

t

∫ t

0

uT (s) ds = −

∫
[0,1]n

(G(x, t)− p · x) dx
t

∼
t ≫ 1

−

∫
[0,1]n

G(x, t) dx

t
.

As noted in [58], an open problem is whether the time average of uT

converges to a constant as t ↑ ∞, or the validity of the spatially av-
eraged version of (1.13). A computational example in [58] based on
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Figure 4: Averaging fluctuations around a general flame front.

solutions of Navier-Stokes equations for the flow velocity V showed the
convergence of the time-averaged uT .

The existence of H(p) usually leads to the following full homoge-
nization result in the single small scale situation [41]. Denote by ϵ the
Kolmogorov scale. Change variables

x → x

ϵ
, V (x) → V

(x
ϵ

)
and d → d ϵ

and denote by Gϵ(x, t) the corresponding solution to (1.1) with the
prescribed initial flame front G(x, 0) = g(x). Then

lim
ϵ→0

Gϵ(x, t) = Ḡ(x, t),

where Ḡ(x, t) solves an effective equationḠt +H(DḠ) = 0

Ḡ(x, 0) = g(x).

Following standard notations, we write sT (p) = H(p). The effective
equation says that the averaged flame front will propagate with speed

vn⃗ = H(n⃗)

along its normal direction n⃗. See Fig. 4 for an illustration.

We shall focus on the following two topics closely related to a central
theme in combustion (how fast can it burn ? ).
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(1) Proving the existence of H(p) under physically meaningful as-
sumptions. This is equivalent to finding solutions or approximate solu-
tions of the form (1.11), which reduces to studying cell problems in ho-
mogenization theory of HJE [66, 40]. Due to the lack of coercivity from
a large flow, standard PDE methods are insufficient. The Lagrangian
approaches are introduced, especially game theoretic methods in the
presence of non-convexity from curvature and flame stretching effects.

(2) Studying qualitative and quantitative properties of H(p) be-
yond existence, a mathematical topic of physical impact. Below are
two issues addressed in a large body of combustion literature through
theoretical or empirical approaches.

I. Dependence of the turbulent burning velocity on flow intensity.
Precisely speaking, scale the flow field V to AV by a positive constant
A and inquire about the growth behavior of H(p) as A → +∞. This
is one of the major approaches to speed up flame propagation within a
combustion vessel.

II. Understanding how the turbulent burning velocity relies on the
curvature and strain effect. In particular, an important problem in
turbulent combustion is whether adding the curvature correction will
decrease the prediction of the turbulent burning velocity. This is equiv-
alent to asking whether H is a monotonically decreasing function of the
Markstein length (or Markstein number) d in (1.4) that mainly depends
on the type of burning fuel.

Tackling I and II often calls for challenging analysis of the underly-
ing dynamical systems (e.g. on flow geometry and asymptotics), which
can be made precise without making general assumptions by studying
specific flows with physical origin. The two common candidates to start
with are shear flows and two dimensional (2D) cellular flows. Even for
2D shear flow where the PDE under study basically reduces to ODE,
the associated mathematical questions could be highly non-trivial when
curvature terms are involved. In the next step to analyze 3D flows, we
choose a well-known example, the Arnold-Beltrami-Childress (ABC)
flow [7, 34, 48, 28], a steady solution to the 3D Euler equation with
chaotic yet non-ergodic streamlines. The integrable case of the ABC
flow is the 2D cellular flow (a.k.a. BC flow). Recent progress in con-
structing ballistic orbits [120, 77, 56] is necessary to address issue I for
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the inviscid G-equation in the ABC flow.

For curvature and strain G-equations, our integrated Lagrangian
and Eulerian methodology established first for the inviscid G-equation
continues to shine in a two-player game framework in the non-convex
setting. Even though the classical Euler-Lagrange duality via Legendre
transform is missing, the success of our blended Lagrangian-Eulerian
analysis points to a subtle and hidden duality for future research to
explore in geometric PDEs and flows. On the other hand, for the
curvature G-equations in three and higher dimensions, the averaging
(homogenization) breaks down in large enough intensity shear flows
[79], indicating a non-convex phenomenon that an existence proof for
the effective burning speed through volume preserving (incompressible)
flows is dimension and flow dependent.

• Outline of the paper. In section 2, we review the basics of
viscosity solutions and homogenization theory. In sections 3-4, we dis-
cuss different types of G-equations, present theoretical and numerical
results for the basic and curvature G-equations based on control and
two-player game representations as well as PDE methods. Section 5
gives a two-player differential game and PDE analysis for the strain
G-equation. Section 6 revisits other passive scalar flame propagation
models related to G-equation. Section 7 is a brief overview of stochas-
tic homogenization and multi-scale modeling of the basic G-equation in
turbulent combustion. Conclusions are in section 8. The open problems
appear along the way.

2. Preliminary: Viscosity Solutions and Homogenization

For reader’s convenience, we will review some basic concepts and
techniques about viscosity solutions and homogenization theory most
relevant to problems discussed in this paper. See [32, 38, 104, 37] for
more details.

Consider a general second order Hamilton-Jacobi equation (HJE)

ut +H(D2u,Du, u, x) = 0 on Rn × (0,∞). (2.1)

Here the Hamiltonian H = H(M, p, z, x) is a function defined on
(M, p, z, x) ∈ Sn×n × Rn × R × Rn, where Sn×n is the set of n × n
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symmetric matrices. We say that the Hamiltonian H is coercive in
the gradient variable p if for any fixed K ≥ 0,

lim
|p|→+∞

min
|M |+|z|+|x|≤K

H(M, p, z, x) = +∞.

Definition 2.1. An upper-semicontinuous function u(x, t) defined on
Rn × (0,∞) is called a viscosity subsolution of (2.1) if for any ϕ ∈
C2(Rn × (0,∞)) and any point (x0, t0) ∈ Rn × (0,∞), when

0 = ϕ(x0, t0)− u(x0, t0) ≤ ϕ(x, t)− u(x, t)

holds for (x, t) in a neighborhood of (x0, t0), we have

ϕt(x0, t0) +H(D2ϕ(x0, t0), Dϕ(x0, t0), ϕ(x0, t0), x0) ≤ 0.

Definition 2.2. An lower-semicontinuous function u(x, t) defined on
Rn × (0,∞) is called a viscosity supersolution of (2.1) if for any ϕ ∈
C2(Rn × (0,∞)) and any point (x0, t0) ∈ Rn × (0,∞), when

0 = ϕ(x0, t0)− u(x0, t0) ≥ ϕ(x, t)− u(x, t)

holds for (x, t) in a neighborhood of (x0, t0), we have

ϕt(x0, t0) +H(D2ϕ(x0, t0), Dϕ(x0, t0), ϕ(x0, t0), x0) ≥ 0.

Definition 2.3. A continuous function u(x, t) defined on Rn × (0,∞)
is called a viscosity solution of (2.1) if it is both a viscosity subsolution
and a viscosity supersolution.

Similarly, we can define viscosity subsolutions, supersoltutions and
solutions for steady state equations

H(D2u,Du, u, x) = 0 on U, (2.2)

where U is an open subset of Rn.
Moreover, we say that (2.2) has approximation solutions if for any

δ > 0, there is a continuous function uδ(x, t) that satisfies the following
inequality in the viscosity sense

−δ ≤ H(D2uδ, Duδ, uδ, x) ≤ δ on Rn × (0,∞). (2.3)
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The notion of viscosity solutions provides a rigorous mathematical
framework to describe the correct “physical” solution of the correspond-
ing equations (2.1 ) or (2.2) when classical solutions might not exist.
Important examples include first order HJ equations or second order
degenerate elliptic equations arising from control theory or front prop-
agation problems in applications. Heuristically, the name comes from
the vanishing viscosity method. To stabilize the equation numerically,
an artificial viscosity term is added to the equation although often with-
out clear physical meanings. Precisely speaking, given h > 0, let uh be
a smooth solution (if it exists) to

−h∆uh + uh
t +H(D2uh, Duh, uh, x) = 0 on Rn × (0,∞)

with given initial data uh(x, 0) = g(x). Then it is natural to expect
that uh converges to the correct physical solution of (2.1) as h → 0
(vanishing viscosity). In fact, using maximum principle, it is not hard
to prove that if

lim
h→0

uh(x, t) = u(x, t) locally uniformly in Rn × (0,∞),

then u is the viscosity solution to (2.1) subject to u(x, 0) = g(x). Simi-
lar limiting process can also be carried out for the steady case (2.2) with
given boundary data u on ∂U . Although this vanishing viscosity limit
is intuitively clear, the existence of viscosity solutions is usually es-
tablished by Perron’s method that is more convenient. Under suitable
assumptions, uniqueness of viscosity solutions holds with prescribed
initial data or boundary data. We refer to [32] for more details.

Next we review the basics of homogenization of nonlinear equations
that started from [66]. In our context, assume that H = H(M, p, x) is
periodic in x and consider the solution uϵ to the oscillatory equation{

uϵ
t +H

(
ϵD2uϵ, Duϵ, x

ϵ

)
= 0 in Rn × (0,∞)

uϵ(x, 0) = g(x).
(2.4)

when the underlying environment has small scale ϵ > 0. Here we
omit the dependence on the u variable for convenience. Under proper
assumptions, it can be shown [66, 41] that

lim
ϵ→0

uϵ(x, t) = u(x, t) locally uniformly in Rn × (0,∞). (2.5)
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Here u(x, t) is the unique continuous viscosity solution to the effective
equation {

ūt +H(Dū) = 0

ū(x, 0) = g(x).
(2.6)

The above limiting process is called homogenization. Given p ∈ Rn,
the effective Hamiltonian H(p) : Rn → R is the unique number such
that the following cell (corrector) problem

H(D2v, p+Dv, x) = H(p) in Rn (2.7)

has a continuous Zn-periodic viscosity solution (or approximate solu-
tions in the sense of (2.3)) v(x), which is called a corrector. Here
we would like to stress that the solution v in general might not be
unique even up to an additive constant. When the original Hamil-
tonian H is from front propagation problems, the effective Hamilto-
nian H has a clear physical meaning of effective propagation speeds in
the corresponding setting. For the mechanical Hamiltonian H(p, x) =
1
2
|p|+ V (x), the effective Hamiltonian and the associated cell problem

have helped construct quasi-modes of Schördinger operators via various
quantization procedures [42].

If the existence of the cell problem can be established (i.e., ex-
istence of effective Hamiltonian), then the convergence (2.5) usually
follows from the perturbed test function method [40, 41]. Moreover,
comparison principle implies that if the initial value u(x, 0) = p · x,
then

− lim
t→+∞

u(x, t)

t
= H(p) for all x ∈ Rn. (2.8)

Technically speaking, the key part is to establish the existence of the
cell problem (2.7). Below is the mechanism first introduced in [66, 41]:
for λ > 0, let vλ be the unique periodic viscosity solution of

λ vλ +H(D2vλ, p+Dvλ, x) = 0 in Rn.

Then show that

− lim
λ→0

λ vλ(x) = a constant for x ∈ Rn.
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This constant, if it exists, is the effective Hamiltonian H(p). To prove
the above, it suffices to show that the oscillation of vλ is uniformly
bounded:

max
x,y∈Rn

|vλ(x)− vλ(y)| ≤ C (2.9)

for a constant C independent of λ. The standard approach to prove
the uniform bound is to derive equi-continuity of vλ(x) for λ ∈ [0, 1]
(e.g. uniform Hölder continuity [66]). Then v = limλ→0(vλ(x)− vλ(0))
(up to a subsequence if necessary) is a solution to the cell problem.

However, when H is not coercive in the gradient variable p or is
only degenerate elliptic in the Hessian variable M , like the curvature
G-equation, the equi-continuity is usually not valid. There appears
no systematic way to obtain (2.9). Customized methods based on the
structure of equations are often needed, often relying on approximate
solutions of the cell problem (2.7) in the sense of (2.3).

From numerical point of view [37], the effective equation can be
used to approximate the original oscillatory equation (2.4) where the
computation is very expensive in order to resolve the small scale ϵ.
Of course, one has to first compute the effective Hamiltonian H(p),
which can be viewed as some sort of nonlinear averaging of the original
Hamiltonian. However, even for simple cases likeH(p, x) = 1

2
|p|2+V (x)

orH(p, x) = a(x)|p|, the effective Hamiltonian does not have close-form
formulas except in 1D. Various numerical schemes [90, 70, 56] have been
developed to compute H(p) based on the large time limit (2.8).

Understanding nontrivial analytic properties of the effective Hamil-
tonian is extremely challenging and often requires deep tools beyond
standard PDE techniques. Such kinds of problems have been stud-
ied for decades in the areas of first passage percolation in probability
theory, stable norm/β-functions in geometry, and dynamical systems,
which are essentially effective Hamiltonian in the corresponding con-
text. We refer to [105] and reference therein for more discussion about
such connections. Nevertheless, there are not much relevant works in
the PDE literature. See [55, 106] for recent progress in this direction.
In particular, it is surprising to see that local properties of H could
be dramatically different from the original Hamiltonian. For example,
when n = 2, for generic potential function V , the effective Hamiltonian
H(p) associated with H(p, x) = 1

2
|p|2 + V (x) is piece-wise 1D for p in
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a dense open set U ⊂ R2 ([122]).
Finally, we would like to mention that there is a large body of litera-

ture and active research on homogenization of scalar conservation laws
and Hamilton-Jacobi PDEs in random environments, see [110, 102, 92]
for early works. It is an interesting question to explore how stochastic
modelling of turbulent flows V in practical situations is related to typ-
ical mathematical assumptions in stochastic homogenization. In this
survey paper, we will mainly focus on the periodic setting, with the
stochastic aspects of G-equation briefly reviewed in section 7.

3. Inviscid G-equation: the Basic Case

LetG(x, t) be the unique viscosity solution to the inviscid G-equation{
Gt + |DG|+ V (x) ·DG = 0 on Rn × (0,∞),

G(x, 0) = g(x).
(3.1)

As a solution to a convex HJE, G(x, t) has a control formula [38]:

G(x, t) = inf
α∈At

g(ξα(t)). (3.2)

Here At is the set of measurable functions α = α(s) : [0, t] → B1(0)
and ξα is the Lipschitz continuous curve satisfying{

ξ̇α(s) = −V (ξα(s)) + α(s) for a.e. s ∈ [0, t]

ξα(0) = x.

See [38] for connections between general convex Hamilton-Jacobi equa-
tions and control theory. We define the following reachability notion.

Definition 3.1. Given x, y ∈ Rn, we say that y is reachable from x
within time T if there exists a Lipchitz continuous curve ξ : [0, T ] → Rn

such that ξ(0) = x, ξ(T ) = y and |ξ̇(s)+V (ξ(s))| ≤ 1 for a.e. s ∈ [0, T ].

Then we have the following one-sided bound.

Lemma 3.2. Suppose that u is a viscosity subsolution to

|Du|+ V (x) ·Du ≤ C in Rn

for some fixed constant C. If y is reachable from x within time T , then

u(x) ≤ u(y) + CT.
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Proof: For convenience, we may assume that u and the curve ξ
connecting x and y are both C1. Then

du(ξ(t))

dt
= Du · ξ̇ ≥ −V (ξ) ·Du− |Du| ≥ −C.

Hence

u(y)− u(x) =

∫ T

0

du(ξ(t))

dt
≥ −CT.

3.1. Homogenization of invicid G-equation

For convenience, we assume that the flow field V is Zn-periodic, C1

and incompressible (i.e., div(V ) = 0). The incompressiblity assumption
can be relaxed. Meanwhile, it is easy to give examples of smooth V
where homogenization fails. The following homogenization result of
inviscid G-equation was proved independently in [116] and [21] through
distinct methods. For ϵ > 0, let Gϵ(x, t) be the solution to{

Gϵ
t + |DGϵ|+ V

(
x
ϵ

)
·DGϵ = 0 on Rn × (0,∞)

Gϵ(x, 0) = g(x).
(3.3)

Theorem 3.3.

lim
ϵ→0

Gϵ(x, t) = Ḡ(x, t) locally uniformly on Rn × (0,∞).

Here Ḡ is the unique viscosity solution to the effective equation{
Ḡt +H(DḠ) = 0 on Rn × (0,∞),

Ḡ(x, 0) = g(x).
(3.4)

H(p) ∈ C(Rn, [0,∞)) is a convex positive homogeneous function of
degree one and satisfies the enhancement property, i.e., H(p) ≥ |p|.

3.1.1. Sketch of proof.

As mentioned in the previous section, the key is to prove the exis-
tence of periodic solution or approximate solution to the cell problem
for any given vector p ∈ Rn:

|p+Dv|+ V (x) · (p+Dv) = H(p) in Rn.
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Below we present the method in [116] with a slightly refined version in
[119].

Step 1: Consider the λ-auxiliary equation for λ > 0:

λ vλ + | p+Dvλ|+ V (x) · ( p+Dvλ) = 0.

The goal is to show that

lim
λ→0

λ vλ(x) = constant uniformly on Rn.

This will follow immediately if we can establish the uniform bounded-
ness of the oscillation:

max
x,y∈Rn

|vλ(x)− vλ(y)| ≤ C

for a constant C independent of λ. Due to the lack of coercivity, the
standard uniform Lipschitz continuity estimate of vλ is not available.
To overcome that, we consider

v̄(x) = lim sup
y→x, λ→0

λ vλ(y).

Then routine argument shows that v̄ is an upper-semicontinuous solu-
tion to

|Dv̄|+ V (x) ·Dv̄ ≤ 0.

Integrating over the unit cube Q1 = [0, 1]n on both sides leads to∫
Q1

|Dv̄| dx = 0.

Accordingly, |Dv̄| ≡ 0 and v̄(x) = constant that is denoted by v∗.

Step 2: For x ∈ Rn, set

v(x) = lim inf
y→x, λ→0

λ vλ(y).

Due to the convexity of the Hamiltonian H(p, x) = |p|+ V (x) · p with
respect to p, hλ(x) = −vλ is a viscosity subsolution to

−λhλ + | p−Dhλ|+ V (x) · ( p−Dhλ) ≤ 0.
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Note that this is in general not true for viscosity solutions of non-
convex HJ equations. Similar to Step 1, lim supλ→0 λhλ(x) = −v(x) is
a constant. Hence v(x) = constant that is denoted by v∗.

Obviously, v∗ ≤ v∗. It suffices to prove that

v∗ ≥ v∗

By choosing a suitable subsequence of λ, this follows from the next step
and Lemma 3.2.

Step 3: It is easy to see that for any x ∈ Rn, there exist y ∈ Rn,
r > 0 and T > 0 such that for every pair (x′, y′) ∈ Br(x)×Br(y), y

′ is
reachable from x′ within time T .

Remark 3.4. The above method and conclusion can be easily extended
to the time dependent case where V = V (x, t) and is periodic in (x, t).
The key is to recover step 1, i.e. showing that the limsup is a constant.
The other parts are similar. In fact, assume that v̄(x, t) is periodic in
both time and space and a viscosity subsolution to

v̄t + |Dv̄|+ V (x, t) ·Dv̄ ≤ 0 on Rn × R.

As in the previous step 1, integrating with respect to both x and t on
Q1× [0, 1] leads to Dv̄ = 0, i.e., v̄ is constant in x. Then vt ≤ 0, which
implies that v̄ is also constant in t due to the periodicity in t.

3.1.2. Optimal Convergence Rate O(ϵ)

We expect to obtain the optimal convergence rate O(ϵ) if the initial
data g is Lipschitz continuous:

|Gϵ(x, t)− Ḡ(x, t)| ≤ O(ϵ). (3.5)

This O(ϵ) optimal convergence rate has been established in [105] for
general coercive convex Hamilton-Jacobi equations. See [105] and ref-
erences therein for other important works in this topic.

Below we list the main steps with details left to the interested read-
ers to explore. It is enough to prove this for (x, t) = (0, 1).

Step 1: For x, y ∈ Rn, define a distance function

d(x, y) = the minimum time to reach y from x.
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See [81, 22] for some interesting estimates about d(x, y) although we
only need d(x, y) < ∞ for our purpose. Note that d might not be
continuous due to the lack of coercivity.

Step 2: This is the key step. Owing to [13] and the correspond-
ing connections elaborated in [105], there exists a continuous function
d̄(x, y) such that ∣∣∣ϵd(0, x

ϵ

)
− d̄(0, x)

∣∣∣ ≤ Cϵ|x|

for a constant C independent of ϵ. We want to point out that to
establish the upper bound ϵd

(
0, x

ϵ

)
≤ d̄(0, x) + Cϵ|x| is not very hard.

The main difficulty is to verify the other direction that relies on a
surprising and beautiful cutting lemma (Lemma 2 in [13]). Then (3.5)
should follow by establishing connection between (3.2) and the control
formulation of the solution to the effective equation (3.4) in [81].

3.2. Explicit formula of H(p) in 2D shear flows

For 2D shear flow V (e.g., the flow within a slot burner), we obtain
the explicit formula ofH(p). Let V (x1, x2) = (0, f(x1)) for a continuous
periodic function f : R → R. Given p = (a, b), the corresponding cell
problem reduces to the ODE:√

(a+ v′(y))2 + b2 + b f(y) = H(p),

where v : R → R is a periodic Lipschitz continuous function. Then

|a+ v′(y)| =
√

(H(p)− b f(y))2 − b2.

It is not hard to derive that

(1) when |a| ≤
∫ 1

0

√
(M − bf(y))2 − b2 dy,

H(p) = M = |b|+max
R

b f ;

(2) when |a| >
∫ 1

0

√
(M − b f(y))2 − b2 dy, H is given by the fol-

lowing implicit formula

|a| =
∫ 1

0

√
(H(p)− b f(y))2 − b2 dy.

The computation is similar to that in [66] for H(p, x) = |p|2 +W (x).
The detail is left to interested readers.
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3.3. Growth law of H(p) in 2D cellular flows

In general, the behavior of H(p) as a function of p is quite com-
plicated and does not possess any formula in closed form. Here we
focus on how H(p) depends on the large flow intensity, an extensively
studied issue in combustion literature. Precisely speaking, for A > 0,
let V (x) → AV (x) and consider the corresponding H(p,A) in the cell
problem:

|p+Dv|+ AV (x) · (p+Dv) = H(p,A) in Rn.

Question 1. What is the growth pattern of H(p,A) as A → +∞ ?

To derive meaningful result, we need to look at physically interesting
examples of V . The first is a 2D Hamiltonian flow, the cellular flow
with a typical form:

V (x1, x2) = (−Hx2 , Hx1).

Here the stream functionH = sinx1 sinx2. As mentioned before, this is
an integrable form (after suitable rotation) of the ABC flow [7, 34, 48],
a steady periodic solution to the 3D Euler equation. Using (2.8) and
the control formulation (3.2), it was proved in [117] that for any unit
vector p ∈ R2

Aπ(|p1|+ |p2|)
2 logA+ C2

≤ H(p,A) ≤ Aπ(|p1|+ |p2|)
2 logA+ C1

. (3.6)

Here C1 and C2 are two constants independent of A and p. Below is
an interesting question:

Question 2. Does there exist a constant C such that∣∣∣∣H(p,A)− Aπ(|p1|+ |p2|)
2 logA+ C

∣∣∣∣ ≤ O(Aα)

for some α ∈ [0, 1)?

This question is closely related to identifying the curvature effect
discussed in a later section.
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In numerical computation [58] and physical modeling [29, 45] of
G-equation, a viscosity term is often added (explicitly or implicitly),
which leads to the viscous G-equation:

−d∆G+ |DG|+ AV (x) ·DG = 0.

Accordingly, a natural question is to identify the effect of viscosity term
in lieu of the curvature term. Let H(d, p, A) be the unique constant
such that the corresponding cell problem

−d∆v + |p+Dv|+ AV (x) · (p+Dv) = H(d, p, A) in Rn

has a periodic solution v. Due to the presence of the ∆v, the existence
of H(d, p, A) is well-known (see [41] for instance). Surprisingly, it turns
out that the viscosity term will dramatically slow down the effective
burning velocity. Precisely speaking, it was proved in [69] that

Theorem 3.5. For fixed d > 0 and V (x1, x2) = (−Hx2 , Hx1) with
H = sinx1 sinx2,

sup
A≥0

H(d, p, A) ≤ Cd |p|

for a constant Cd depending only on d.

Below is the outline of the proof. Integrating both sides of the above
cell problem gives

H(d, p, A) =

∫
Tn

|p+Dv| dx.

Accordingly, we need to derive a uniform L1 bound of Dv. This is done
in two steps:

Step 1: Consider periodic solution T of the linear equation

−d∆T + AV (x) · (p+DT ) = 0 in Rn.

It was first established that L1 norms of D v and DT are comparable:

1

C
||DT ||L1(T2) ≤ ||D v||L1(T2) ≤ C||DT ||L1(T2)

for a constant C independent of A.
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Step 2: Prove that the L1 norm of Dv is uniformly bounded

||DT ||L1(T2) ≤ C.

This is achieved by (1) carefully using interior decay estimates of ||DT ||L2

established in [85] and (2) delicate estimates of ||DT ||L1 near the bound-
ary {H = 0}, especially near corners, via suitable change of variables.

3.4. Growth law of H(p) in the ABC flow and Kolmogorov flow

In three dimensional (3D) incompressible flows, due to the presence
of chaotic structures, it becomes much more challenging to analyze
the dependence of H(p,A) on A. The following asymptotic result was
proved in [118]:

Theorem 3.6.

limA→+∞ sT (p,A)/A = maxσ∈Λ
∫
Tn p · V (x) dσ

= maxξ̇=V (ξ) lim supT→+∞ ξ(T ) · p/T.

where Λ is the collection of all Borel probability measures on Tn which
are invariant under the flow ξ̇ = V (ξ).

Below is a basic question.

Question 3. For a given 3D periodic incompressible flow, determine
whether

lim
A→+∞

sT (p,A)

A
> 0 (3.7)

or equivalently whether H(p,A) grows linearly with respect to A.

This seemingly simple problem is in general very challenging when
n ≥ 3 since it requires to identify the long time behavior of trajectories
of ξ̇ = V (ξ) that usually has chaotic structures. In particular, to
prove the linear growth might need to find unbounded trajectories with
predictable long time behavior (e.g. periodic or quasi-periodic when
projected on the flat torus Tn). For example, if there is a periodic
trajectory with a rotation vector not perpendicular to p, then (3.7)
holds.
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Now let us turn to a well-known example of 3D incompressible flow
introduced by Arnold, Beltrami and Childress, the so called ABC flow
[7, 34, 48]. For x = (x1, x2, x3) ∈ R3,

V (x) = (A sinx3 + C cosx2, B sinx1 + A cosx3, C sinx2 +B cosx1),

where A, B and C are three positive constants. Note that the param-
eter A here is not the flow intensity. If one of them is zero, the flow is
up to a π/4 rotation the integrable cellular flow. The ABC flow is a
periodic steady solution of the Euler equation. In fact, the ABC flow
satisfies the Beltrami property (∇ = ( ∂

∂x1
, ∂
∂x2

, ∂
∂x3

) denotes the gradient
operator):

∇× V := curl(V ) = V.

Using the following identity in vector calculus

(V · ∇)V = ∇ 1

2
|V |2 − V × (∇× V ),

we have that the second term on the right hand side vanishes and

Vt + (V · ∇)V = (V · ∇)V = −∇P and ∇ · V = 0,

where the pressure P = −1
2
|V |2. Hence ABC flow is a steady state of

the 3D incompressible Euler equation in fluid mechanics, see [34, 48]
for more discussion of its dynamic properties.

In the symmetric case A = B = C = 1, the existence of non-
contractable periodic orbits (in the sense stated precisely below) has
been proved by using symmetry of the flow [120]:

Theorem 3.7. There exists t0 > 0 and a solution X(t) = (x(t), y(t), z(t))
to the 1-1-1 ABC flow system such that for each t ∈ R we have

X(t+ t0) = X(t) + (2π, 0, 0).

Then Y (t) = (z(t), x(t), y(t)) and Z(t) = (y(t), z(t), x(t)) are clearly
also solutions and satisfy

Y (t+ t0) = Y (t) + (0, 2π, 0) and Z(t+ t0) = Z(t) + (0, 0, 2π).
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The Kolmogorov flow with more chaotic phase space [28] is:

V (x, y, z) = (sin z, sinx, sin y), (3.8)

for which similar ballistic orbits exist [56], e.g. those that extend along
each coordinate direction. See Fig. 5 for an illustration of two such
orbits extending in a spiral manner in the x direction. For related
studies, we refer to [77, 56].

Thanks to the control formula (3.2), an immediate corollary is that
in the 1-1-1 ABC and Kolmogorov flows, the effective burning velocity
grows linearly with respect to the flow intensity A, i.e.,

lim
A→+∞

H(p,A)

A
> 0 for all unit vector p ∈ R3.

Moreover for p along a coordinate direction [56],

2π

t0
A+

2π

t0∥V ∥∞
≤ H(p,A) ≤ ∥V · p∥∞ A+ 1. (3.9)

With numerical estimates of period values t0 from the 1-1-1 ABC and
Kolmorogov flows, the following inequalities [56] follow from (3.9):

1.942A+ 0.793 ≤ H ≤ 2A+ 1, (1-1-1 ABC);

0.414A+ 0.239 ≤ H ≤ A+ 1, (Kolmogorov).

• Connection with the Weinstein Conjecture

To find non-contractible periodic orbits for general Beltrami flows is
much more difficult and is closely related to the well known Weinstein
conjecture due to the relation between Beltrami and Reeb vector fields
(see [78] for instance). Given a Beltrami flow V (x), we can define a
one-form on the flat torus T3:

a = V (x) · dx.

Since curl(V ) = λV for a constant λ ̸= 0 (Beltrami property),

a ∧ da = λ |V (x)|2dx1 ∧ dx2 ∧ dx3.
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Figure 5: Ballistic orbits, periodic (modulo 2π) along x-direction, in 1-1-1 ABC
(left) and Kolmogorov (right) flows.

Accordingly, V
|V |2 is a Reeb vector field if V is nowhere vanishing. Owing

to a celebrated result of Taubes [103], V has at least one unbounded
periodic orbit with certain rotation vector q, which implies that

lim
A→+∞

H(p,A)

A
> 0, if p · q ̸= 0.

However, this is not enough to obtain linear growth along every unit
direction. Note that Taubes’ result does not apply to the 1-1-1 ABC
flow that has critical points.

4. Curvature G-equation

Recall the curvature G-equation:

Gt +

(
1− d div

(
DG

|DG|

))
+

|DG|+ V (x) ·DG = 0. (4.1)

A fundamental question is to understand how the curvature term influ-
ences the prediction of the effective burning velocity. The first step is
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to rigorously establish the existence of effective burning velocity. Pre-
cisely speaking, given a unit direction p ∈ Rn, let G(x, t) be the unique
solution toGt +

(
1− d div

(
DG
|DG|

))
+
|DG|+ V (x) ·DG = 0

G(x, 0) = p · x.
(4.2)

Question 4. Does there exist constant H(p) such that

− lim
t→+∞

G(x, t)− p · x
t

= H(p) uniformly for x ∈ Rn ? (4.3)

Due to the presence of curvature term, this question is much harder
than the inviscid case (d = 0).

First, let us review some literature related to the homogenization of
mean curvature type equations. In other applications such as crystal
growth (e.g. freezing or melting of ice in pure liquid [64]), the curvature
effect is also considered and the motion law is given by (without the
drift term V · n⃗ and ()+ correction)

vn⃗ = a(x)− dκ

for a continuous positive Zn-periodic function a(x). The above formula
is known as the Gibbs-Thomson relation. The ()+ is not needed in
crystal growth since both freezing and melting could occur. Below is
the associated equation

ut +

(
a(x)− d div

(
Du

|Du|

))
|Du| = 0 in Rn × (0,∞). (4.4)

• When a(x) and Da(x) satisfy the following coercivity condition

min
Rn

{a2 − (n− 1)d|Da|} > 0,

the existence of effective propagation speed (a corresponding form of
4.3) and full homogenization have been proved in all dimensions [67] ;

• When n = 2, homogenization was proved in [18] for all positive
a(x) by a geometric approach. See [15] for a survey on relevant meth-
ods. Moreover, counterexamples are constructed there when n ≥ 3.
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See [31, 68, 24, 33, 52, 51, 54, 60] and the references therein for
other related works and mathematical models.

The proofs in [67, 18] rely heavily on the coercivity of HJE in the
gradient variable. A new approach needs to be developed to deal with
the curvature G-equation where coercivity is lost when the flow inten-
sity |V | exceeds the local burning velocity s0L = 1, which is the typical
scenario in turbulent combustion.

4.1. Existence of Average Flame Speeds in Cellular Flows

Let V : R2 → R2 be the steady two dimensional cellular flow, e.g,
V (x) = A (DH(x))⊥ with stream function H(x1, x2) = sin(x1) sin(x2)
and flow intensity A > 0. Below is the main theorem proved in [50].

Theorem 4.1. For any unit vector p ∈ R2 and initial data G(x, 0) =
p · x, there exists a positive number HA(p) such that∣∣G(x, t)− p · x+HA(p)t

∣∣ ≤ C in R2 × [0,∞), (4.5)

holds for solution G(x, t) of the curvature G-equation (4.1) with a con-
stant C depending only on d and V . In particular, this implies that

− lim
t→∞

G(x, t)

t
= H(p) locally uniformly for x ∈ R2.

The effective Hamiltonian HA(p) corresponds to the effective burn-
ing velocity (turbulent flame speed) in the physics literature [112, 93,
89]. The inequality (4.5) says that to leading order, the solution of
curvature G-equation (4.1) from the planar initial data p · x develops
into a traveling front p · x−HA(p)t.

• Sketch of proof. Our proof combines PDE methods with a
dynamical analysis of the Kohn-Serfaty deterministic game character-
ization [62, 63] of (4.1) while utilizing the streamline structure of the
cellular flow. To the best of our knowledge, this is the first time that a
Lagrangian method has been used to prove homogenization of second
order PDEs. For reader’s convenience, we will briefly review key ideas,
tools and steps in the proof. Let us look for a solution to (4.1) of the
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form p · x−HA(p)t+ v(x), where v is the corrector which satisfies the
following equation (a.k.a. cell problem) upon substitution:(

1− d div

(
p+Dv

|p+Dv|

))
+

|p+Dv|+ V (y) · (p+Dv) = HA(p) (4.6)

subject to 2π-periodic boundary condition in y. The spatial variable
of (4.6) is renamed y from the original x, since (4.6) becomes an inde-
pendent problem that relates the flow velocity to a large scale constant
HA in the direction p. One may view (4.6) as a nonlinear eigenvalue
problem with v an eigenfunction (v± const. still a solution) and HA(p)
an eigenvalue for any given unit vector p.

As in [66], we start with a modified (a.k.a. discount) cell problem:

λ v+

(
1− d div

(
p+Dv

|p+Dv|

))
+

|p+Dv|+V (y) · (p+Dv) = 0, (4.7)

for a parameter λ > 0, so that the existence and uniqueness of solution
v = vλ to (4.7) is known by Perron’s method [32]. Also comparison
principle applies to (4.7) where we evaluate maximum of vλ(x) to find:

max
x∈R2

|λ vλ(x)| ≤ 1 + max
R2

|V |. (4.8)

Our goal is to show that there exists a positive constant HA(p) such
that

lim
λ→0

λ vλ(x) = −HA(p) uniformly on R2, (4.9)

thereby (4.6) follows in the λ ↓ 0 limit with further estimate on vλ.

In the next two subsections, we explain the main ideas for proving
(4.9) while omitting the subscript A for simplicity. Let C be a constant
depending only on d and V . A key inequality we shall establish is:

max
x, y ∈[−π,π]2

|vλ(x)− vλ(y)| ≤ C, (4.10)

which implies the constant limit of (4.9). Due to the curvature term
and non-coercivity in the discount cell problem (4.7), it is not clear that
the equi-continuity of vλ, a standard yet stronger estimate than (4.10),
even holds. Our strategy is: (1) establishing one-way reachability from

30



the associated game dynamics, (2) leveraging a minimum value prin-
ciple (Eulerian) to compensate for the lack of full reachability. The
proof coherently integrates Lagrangian and Eulerian thinking. It turns
out that the game trajectory under player I’s strategy more or less re-
verses the propagation route of flame, hence a generalized method of
characteristics is at work.

4.2. Two-Player Game Representation and Analysis

The deterministic game representation of Kohn-Serfaty [62] applies
to (4.1) on R2 as follows. Consider the discrete dynamical system
{xn}Nn=1 ⊂ R2 associated with the game starting from x0 = x. For
n = 0, 1, 2, .., N − 1, |η⃗n| ≤ 1 and bn ∈ {−1, 1},{

xn+1 = xn + τ
√
2d bn η⃗n + τ 2 η⃗⊥n − τ 2 V (xn)

x0 = x.

Player I controls direction via η⃗n and player II controls sign via bn. Let
g = g(x) be a final payoff function. Player I (II) aims to minimize
(maximize) g(xN). If both players proceed optimally, the value func-
tion u(x,Nτ 2) := g(xN), converges to a solution of (4.1) with initial
data g(x): limNτ2→t,τ→0 u(x,Nτ 2) = G(x, t). See Remark 4.7 for high
dimensional version of the game.

Remark 4.2. We shall derive inequalities from one-way reachability
in the flow −V (x) via game trajectories {xn}Nn=1. A typical scenario to
get an upper bound of the game value is for player I to devise a strategy
so that the game trajectory, starting at a point P , ends at a point Q in
a desired region U in N moves despite any strategy of player II. Then

u(P,Nτ 2) ≤ g(Q) ≤ max
q∈U

g(q).

4.2.1. Reachability of Game Trajectory In and Across Cells

The one-way reachability property of the game dynamics in the
interior of cellular flow, whose quarter-cell with streamline is shown in
Fig. 6 (left). The quarter cell Q = [0, π] × [0, π] has core Qµ = {x ∈
Q| H(x) > µ} and boundary region

Γµ = {x = (x1, x2) ∈ R2| min{|x1|, |x2|, |x1 − π|, |x2 − π|} < µ}.

for µ ∈ (0, 1]. Note that Qµ is −V flow invariant.
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O π

π
Q

flow of −V (x) Qµ and Γµ

ΓµQµ

π

π

O

Figure 6: Flow lines of −V (left), two domains in the analysis (right): Qµ and Γµ

Lemma 4.3. Let µ ∈ (0, 1), then the level curve {x ∈ Q| H(x) = µ} is
reachable from P1 ∈ Qµ within time T1 depending only on V . Each
point P2 ∈ {x ∈ Q| H(x) = µ} is reachable from P1 within time
C(1 + | log µ|) for a constant C depending only on V .

The proof is based on construction of a game trajectory in Fig. 7.
The reachability is only one way. If P1 is near the center of Q where
H(P1) is close to 1 and the curvature on the level curve there exceeds
1, it is NOT reachable from P2. This is different from the inviscid case
(d = 0) where any two points are mutually reachable.

The game trajectory can go across the quarter-cell boundary and
reach any adjacent quarter-cell. More precisely,

Lemma 4.4. There exists µ0 > 0 and T0 > 0 depending only on d and
V such that the set Q2µ0 is reachable from each point x ∈ Γµ0 within
time T0.

The crucial part of Lemma 4.4 is that if the game trajectory is in the
outside portion of the quarter cell boundary layer Γµ0 ∩Qc, it can pass
the boundary and go inside Q, as shown in Fig. 8, where S := (0, 1)2,
Wα,δ := [−α, α]× [δ, 1− δ], for α > 0 and δ ∈ (0, 1

2
). The proof relates

an inward optimal game trajectory with the outward motion of the zero
level set through a PDE comparison argument.
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Figure 7: a game trajectory (in red) of Lemma 4.3

S

Ω

Wα,δ

Figure 8: Game trajectory reaching a large enough interior region Ω ⊂ S = (0, 1)2

from a thin rectangular boundary layer Wα,δ = [−α, α]× [δ, 1− δ].
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Based on Lemma 4.4, one can further show that all quarter cells of
cellular flow are reachable by a game trajectory starting from one of
them within a finite travel time, which leads to

Lemma 4.5. Let G(x, t) be the unique solution of (4.1) with G(x, 0) =
p · x. There exist positive constants β and C depending only on d and
V such that for all (x, t) ∈ R2 × [0,∞),

G(x, t)− p · x ≤ −β t+ C (4.11)

and

max
x∈R2

λ vλ(x) < −β

2
+ λC. (4.12)

The inequality (4.11) follows from estimating travel times of game
trajectories across cells. The inequality (4.12) comes from constructing
a super-solution to a time-dependent variant of the discount cell prob-
lem (4.7) via the inequality (4.11) where t corresponds to 1/λ in (4.12).
Applying inequality (4.12), we have from Eq. (4.7) for λ < β/(4C):(

1− d div

(
p+Dvλ
|p+Dvλ|

))
+

|p+Dvλ|+V (y) · (p+Dvλ) ≥ β/4 (4.13)

implying the minimum principle: the minimum value of uλ := p ·x+vλ
in a domain can only be attained on its boundary.

Next we combine minimum principle with one-way reachability of
the game trajectory to prove inequality (4.10). First by (4.7)-(4.8),
u = uλ is a viscosity sub-solution of the stationary G-equation:(
1− d div

(
Duλ

|Duλ|

))
+

|Duλ|+ V (y) · (Duλ) = 1 + max
[−π,π]2

|V |(y) := α

(4.14)
for which the following inequality holds:

uλ(x0) ≤ max
y∈S̄

uλ(y) + αT0 (4.15)

if a bounded set S is reachable from x0 via a game trajectory within
time T0, and S is invariant under −V flow. To see (4.15), consider
w := uλ − α t so that w is a sub-solution of G-equation (4.1) with
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initial data G(x, 0) = uλ. By Remark 4.2 and comparison principle,
uλ(x0) − αT0 ≤ G(x0, N τ 2) ≤ maxy∈S̄ uλ(y). Note that if the game
trajectory reaches S before time T0, then player I can just choose η⃗ =
0 that makes the trajectory flow within S until T0 due to the flow-
invariance of S.

By Lemma 4.3 and (4.15), for each point x ∈ ∂Qµ and each point
y ∈ Qµ, uλ(x) ≥ uλ(y)− Cµ for some constant Cµ > 0. Accordingly,

min
x∈∂Qµ

uλ(x) ≥ max
x∈Qµ

uλ(x)− Cµ.

By minimum principle: minx∈∂Qµ uλ(x) = minx∈Qµ
uλ(x), and so:

max
x∈Qµ

uλ(x)− min
x∈Qµ

uλ(x) = max
x,y∈Qµ

|uλ(x)− uλ(y)| ≤ Cµ. (4.16)

With the help of minimum principle and more delicate analysis, similar
estimates hold over the cell boundary and in other quarter cells, and so
the key inequality (4.10) holds. Theorem 4.1 follows with a sub/super
solution argument [50].

4.3. Existence of H for two dimensional (2D) incompressible flows

The proof for the case of cellular flow in the last subsection can
be modified to establish the existence of H(p) for a large class of 2D
incompressible flows [50], for example, if V = D⊥H for a smooth peri-
odic stream function H that has finitely many non-degenerate critical
points whose flow struture is well described in [8]. Also, the constant
local burning velocity can be replaced by a positive, continuous and
periodic function a(x).

Question 5. Does (4.3) hold for all 2D periodic incompressible flows?

4.4. Bifurcation of effective burning velocity in 3D shear flows

A natural question is whether our robust approach for 2D incom-
pressible flows can be extended to 3D flows. Surprisingly, the effective
burning velocity ceases to exist when the flow intensity surpasses a
threshold value (bifurcation) for general 3D shear flows, the simplest
class of 3D incompressible flows. Meanwhile, the existence of effective
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burning velocity for 2D shear flows can be easily established by PDE
methods. The methods in this section mainly rely on PDE approaches.
It is not clear to us how to interpret it by 3D game theory (see Remark
4.7).

Assume that f is a Lipschitz continuous function satisfying

{x ∈ R2 : f(x) = max
R2

f} = Z2, {x ∈ R2 : f(x) = min
R2

f} = Z2 + q⃗

(4.17)
for some q⃗ ∈ Rn. Here we do not pursue the optimal assumptions on
f . Consider the 3D shear flow

V (x) = (0, 0, Af(x′)),

for x = (x′, x3) ∈ R3 and x′ ∈ R2, the constant A > 0 represents the
flow intensity. Then equation (4.2) is reduced tovt +

(
1− d div p+Dv√

p23+|p′+Dv|2

)
+

√
p23 + |p′ +Dv|2 + Ap3f(x

′) = 0,

v(x′, 0) = 0

(4.18)
for G(x, t) = v(x′, t) + p · x and p = (p′, p3) ∈ R3 and p′ ∈ R2.

For any p ∈ R3 with p3 ̸= 0, denote by SH the set of all A ≥ 0 such
that

lim
t→∞

−G(x, t)

t
= H(p,A) for all x ∈ R3. (4.19)

for a constant H(p,A).
For λ > 0, let vλ be the periodic continuous viscosity solution to

the discount λ-problem on R2:

λvλ+

(
1− d div

p+Dvλ√
p23 + |p′ +Dvλ|2

)√
p23 + |p′ +Dvλ|2+Ap3f(x

′) = 0.

Then (4.19) is equivalent to

lim
λ→0

λ vλ(x
′) = H(p,A), for x′ ∈ R2.

The following result is proved in [79]:
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Theorem 4.6. For any p ∈ R3 with p3 ̸= 0,

SH(p) = [0, A0(p)]

for a constant A0(p) that is continuous with respect to p and A0(sp) =
A0(p) for any s > 0.

Consequently, Ā = minp∈R3 A0(p) is the bifurcation value for the
full homogenization of the corresponding curvature G-equation with
uniformly continuous initial data.

Below, we explain how to characterize the bifurcation value A0(p).
Consider the cell problem without ()+ cutoff:(
1− d div

p+Dṽ√
p23 + |p′ +Dṽ|2

)√
p23 + |p′ +Dṽ|2+Ap3f(x

′) = H̃(p,A).

(4.20)
By the Bernstein technique, it can be shown that, unlike the physical

cut-off case, for any given p ∈ R3, there exists a constant H̃(p,A) such
that the above equation always has a C2,α periodic solution ṽ = ṽ(x).

This can be viewed as a special case of [67]. Moreover, H̃(p,A)−F (p)A
is strictly decreasing for A ≥ 0 and F (p) = maxx′∈R2(p3f(x

′)).

Apparently, if H̃(p,A) ≥ AF (p), the ṽ is also a solution to the
equation with physical cut-off:(
1− d div

p+Dṽ√
p23 + |p′ +Dṽ|2

)
+

√
p23 + |p′ +Dṽ|2+Ap3f(x

′) = H̃(p,A).

Then A ∈ SH(p) and

lim
t→∞

−G(x, t)

t
= H̃(p,A).

Characterization of A0(p). For fixed p ∈ R3, the bifurcation
value A0(p) is the unique number such that

H̃(p,A0(p)) = F (p)A0(p). (4.21)

Moreover,

H(p,A) = H̃(p,A) for A ∈ [0, A0(p)].
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Hereafter, we reviewed main ideas of the proof. For convenience,
we assume that maxR2 f = 0 and p3 = 1. Then F (p) = 0.

Step 1: Using comparison principle, we can deduce that the set sH
is either [0,∞) or [0, A0(p)] for a positive constant A0(p).

Step 2: We need to show that when A is large enough, H̃(p,A) < 0.
The main idea is that if that is not true, then we can construct a radial
symmetric function v(x) = g(|x|) satisfying(

1− d div
p+Dv√

1 + |p′ +Dv|2

)√
1 + |p′ +Dv|2 ≥ 1 for r ≤ |x| ≤ 2r

for small r or equivalently in terms of g : [r, 1
2
] → R

√
1 + (g′)2 − d

(
g′′

1 + (g′)2
+

g′

r

)
≥ 1 for r ∈ (r0, 3r0).

Both are in the viscosity sense. Moreover, g(2r)− g(r) ≥ 1. This will
lead to a contradiction when r is small due to the presence of the term
g′

r
on the left hand side. We note in passing that for the 2D shear flow,

such a term is absent.

Step 3: Finally we need to verify the characterization (4.21), which
will provide the continuous dependence on p. It suffices to show that

if limλ→0 λvλ(x) = 0, then H̃(p,A) = 0. This can be done in two steps.
Let uλ(x) = vλ(x) + p′ · x.

Step 3.1 Employing estimates of minimal surface type equations
established in [100], we can show that as λ → 0, uλ − uλ(0) in R2\Z2

locally uniformly converges to a function u that is a C2,α solution to(
1− d div

Du√
1 + |Du|2

)√
1 + |Du|2 + Af(x′) = 0 in R2\Z2.

Step 3.2 Using integration by parts through suitable test functions,
the isolated singularities Z2 are proved to be removable at least in the
viscosity sense. As a result, comparing with the cell problem without

cutoff (4.20) leads to H̃(p,A) = 0.
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Remark 4.7. The Kohn-Serfaty game can be naturally extended to
higher dimensions [62]. Consider the three dimensional (3D) case. For
k ≥ 1, at the k-th step, let τ be the time step size.

1. Player I chooses three vectors uk, vk and wk such that they are
mutually perpendicular and |uk| = |vk| = |wk| ≤ 1.

2. Player II chooses bk = ±1 and ck = ±1 to replace (vk,wk) by
(bkvk, ckwk).

3. Update: Xk = Xk−1 + τ
√
2d (bkvk + ckwk) + τ 2uk − τ 2V (Xk−1).

The above generalization is based on the following fact: given a
symmetric matrix S and mutually orthogonal unit vectors u, v and q,

u · S · u+ v · S · v + q · S · q = tr(S).

The other parts are similar to the 2D case. A major difficulty of the 3D
game is that it is hard for play I to design a strategy to move between
orbits of ξ̇ = −V (ξ) due to the lack of topological restrictions. It is not
clear to us if the bifurcation phenomenon in shear flows is typical for
3D flows.

The following question is the first step towards understanding the
role of game theory in 3D flows.

Question 6. Can we find a game theoretic interpretation of the failure
of homogenization in 3D shear flows?

Unlike shear flows, turbulent 3D flows often have swirl structures
(eddies), which help mix things well. Accordingly, an interesting and
challenging problem is:

Question 7. If V is the ABC flow, do we have

SH(p) = [0,∞)

for all p ∈ R3?
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4.5. Impact of curvature on effective burning velocity

A significant problem in the combustion literature is to understand
how the curvature term impacts the prediction of the burning velocity.
There is a consensus that curvature slows down flame propagation [93].
Heuristically, this is because the curvature term smooths out the flame
front and reduces the total area of chemical reaction. Under the G-
equation model, this is equivalent to showing that the effective burning
velocity H is decreasing with respect to the Markstein number d, which
has been observed in combustion experiments [25] and numerical com-
putations [58, 61]. We would like to point out that different Markstein
number is achieved by mixture of different fuels in experiments [25]. To
establish it rigorously from curvature G-equation is challenging. Below
we look at shear flows and 2D cellular flows.

4.5.1. Decrease with respect to the Markstein number in shear flows

The following is the first mathematically rigorous result in this di-
rection obtained in [72] for two dimensional shear flows.

Theorem 4.8. Let V (x) = (0, f(x′)) for x = (x1, x
′) ∈ R2 and f is a

non-constant periodic continuous function. Then for any fixed vector
p = (p1, p2) ∈ R2 with p2 ̸= 0 and h(d) = H(p, d),

h′(d) ≤ 0 for d > 0

and
h′(d) < 0 when d is close to 0.

In particular, this implies that

H(P, d) < H(P, 0).

Sketch of proof. For 2D shear flows, the effective burning velocity
H(p, d) always exists and

H(p, d) = max
{
H̃(p, d), F (p)

}
.

If d is small, H(p, d) = H̃(p, d). Here F (p) = maxx′∈R(p2f(x
′)) and

H̃(p, d) is from (4.20) without ()+ correction. Hence it is enough to
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show that for fixed unit vector p, H̃(p, d) is strictly decreasing with
respect to d

Step 1 For convenience, write

E(d) = H̃(p, d).

Without loss of generality, we may assume that p2 = 1. Then the cell
problem is reduced to an ODE satisfied by ϕ(x′) = p1+ ṽ′(x′) for x′ ∈ R

− dϕ′

1 + ϕ2
+
√

1 + ϕ2 + f(x′) = E(d).

Taking derivative on both sides with respect d, we obtained a linear
ODE satisfied by F = ϕd,

−dF ′(x′) + b(x′)F = E ′(d)(1 + ϕ2) + ϕ′

Here b(x′) = 2dϕ′ϕ
1+ϕ2 + ϕ

√
1 + ϕ2.

Step 2: Due to the periodicity of F , E ′(d) can be expressed by
complicated integrations involving ϕ and ϕ′. Then E ′(d) < 0 can be
proved by establishing the following delicate inequality

eT
∫ T

0
f(t) e−t

∫ t

0
g(f(s)) es ds dt+

∫ T

0
f(t) e−t

∫ T

t
g(f(s)) es ds dt

≥ (eT − 1)
∫ T

0
f(t)g(f(t))) dt+ θ

2

∫
[0,T ]2

|f(t)− f(s)|2 dt ds.

for any continuous positive function f ∈ C([0, T ]) and g ∈ C1((0, L])
for L = max[0,T ] f satisfying g′ ≤ −θ for some θ ≥ 0.

Step 3: To prove the above inequality, we look at a suitable discrete
form where the question is reduced to finding maximum points of func-
tions of finitely many variables. Hence the conclusion can be derived
by the simple fact that the gradient vanishes at maximum points.

Note that the proofs in [72] heavily depend on 1D (or x′ ∈ R).
Hence a natural question is

Question 8. Consider 3D shear flow V (x1, x2, x3) = (0.0, f(x1, x2))

and the associated E(d) = H̃(p, d) for p = (p′, 1) ∈ R3. Do we have

E ′(d) < 0

for d > 0 and non-constant f?
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Figure 9: Comparison of the homogenized Hamiltonian function in the cellular
flow amplitude A without curvature (H(p, 0, A), blue line-star) and with curvature
(H(p, 0.1, A), red dashed-line-circle) by a finite difference method [70].

4.5.2. Slow down in two dimensional cellular flows

In case of 2D cellular flow, numerical computation at d = 0.1 and
different values of A (Fig. 9) suggests that for fixed flow intensity

H(p, d, A) < H(p, 0, A) (4.22)

and the gap
H(p, 0, A)−H(p, d, A)

increases as A increases.
It remains a very interesting question to prove (4.22) rigorously.

Due to the lack of smooth solutions, we cannot take the derivative of
the equation to track the change with respect to d as for the shear flows,
i.e., the PDE method in the previous section does not work. Accord-
ingly, the only available tool we have is the game theory interpretation.
However, to prove (4.22) might require accurate analysis of the game
trajectory, which is very difficult, in particular, given the hidden non-
linear stochastic nature of the game. One hopes that when the flow
intensity A gets large (the typical scenario in turbulent combustion),
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the subtle curvature effect might be amplified and become easier to
capture. Thus, a more realistic question is

Question 9. Do we have

lim inf
A→∞

(H(p, 0, A)−H(p, d, A)) > 0 ?

Or do we actually have the limit equal to ∞?

We can show that H(p, d, A) also grows like O(A/ logA) as in the
inviscid case (d = 0). Hence, finding the constant (if it exists) in
Question 2 seems relevant.

5. Strain G-equation

Recall that G-equation with a strain term has the following form:

Gt +

(
1 + d

DG · S(x) ·DG

|DG|2

)
+

|DG|+ V (x) ·DG = 0, (5.1)

where S = DV+(DV )⊤

2
is the strain rate tensor. This is a non-coercive

and non-convex Hamilton-Jacobi equation (HJE). We again consider
the existence of effective burning velocity and its dependence on the
constant d and flow intensity. It is well-known that solutions to non-
convex first-order Hamilton-Jacobi equations can be interpreted by de-
terministic two-person differential games [53], which will play impor-
tant roles in our analysis.

5.1. Shear flows

Consider the n+ 1-dimensional shear flow

V (x) = (0, 0, ..., 0, f(x′))

for x = (x′, xn+1) ∈ Rn+1 and x′ ∈ Rn. Then for p = (p′, 1) ∈ Rn+1,
the corresponding cell problem is reduced to(

1 +
d(p′ +Dv) ·Df

1 + |p′ +Dv|2

)
+

√
1 + |p′ +Dv|2 + f(x′) = H(p′, d).
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First, let H̃(p′, d) be the effective Hamiltonian when the ()+ correction
is absent:(

1 +
d(p′ +Dṽ) ·Df

1 + |p′ +Dṽ|2

)√
1 + |p′ +Dṽ|2 + f(x′) = H̃(p′, d).

The existence follows directly from [66]. Since Df = 0 when f attains
maximum, it is easy to see that for all d ≥ 0

min
p′∈Rn

H̃(p′, d) ≥ 1 + max
Rn

f.

Hence ṽ is also a solution to(
1 +

d(p′ +Dṽ) ·Df

1 + |p′ +Dṽ|2

)
+

√
1 + |p′ +Dṽ|2 + f(x′) = H̃(p′, d).

Accordingly, H̃(p′, d) = H(p′, d), i.e., the cell problems with or without
the ()+ corrections are the same for shear flows. Hence we write(

1 +
d(p′ +Dv) ·Df

1 + |p′ +Dv|2

)√
1 + |p′ +Dv|2 + f(x′) = H(p′, d). (5.2)

Here the corresponding Hamiltonian is

H(P, y) =
√
1 + |P |2 + dP ·Df(y)√

1 + |P |2

for (P, y) ∈ Rn × Rn. Note that H is not convex in the P variable.
When n = 1, H is quasiconvex is P , which however is not true when
n ≥ 2.

An interesting question is how the presence of the strain rate term
impacts the value of effect burning velocity H. Numerical results show
that H is decreasing with respect to the Markstein number d [58].
This is consistent with the following theorem that says that for two
dimensional shear flows, it reduces the value of H(p′, d)

Theorem 5.1. Assume that n = 1 and fix p′ ∈ R. Then H(p′, d) is
strictly decreasing with respect to d ≥ 0 when H(p′, d) > 1 +maxR f =
minp∈Rn H(p, d).
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Proof: For simplicity, write E(d) = H(p′, d) and u(x) = p′x + v(x)
for x ∈ R. Then(

1 +
du′f ′

1 + |u′|2

)√
1 + |u′|2 + f(x′) = E(d). (5.3)

Suppose that E(d) > 1 + maxR f . Note that for fixed x ∈ R, the
Hamiltonian is

H(p, x) =
√

1 + p2 +
dpf ′(x)√
1 + p2

for (p, x) ∈ R×R. Then the derivative of H with respect to p has the
form:

Hp(p, x) =
p√

1 + p2
+

df ′(x)

(
√

1 + p2)3
=

p(1 + p2) + df ′(x)

(
√
1 + p2)3

.

Apparently, for fixed x, there exists a unique p = p(x) such that
Hp(p(x), x) = 0. Then H attains minimum at p = p(x) and Hp(p, x) <
0 when p < p(x) and Hp(p, x) > 0 when p > p(x). Thus H−1 is a well
defined smooth function on either (−∞, p(x)] or [p(x),∞). Since

min
p∈R

H(p, x) ≤ H(0, x) = 1 < E(d)− f(x),

we have either

u′(x) > max{0, p(x)} for a.e. x ∈ R

or
u′(x) < min{0, p(x)} for a.e. x ∈ R.

Therefore u must be smooth due to the strict monotonicity of H on
either side of p = p(x). Without loss of generality, we assume that

u′(x) > max{0, p(x)} for all x ∈ R.

Then for fixed x

Hp(u
′(x), x) > 0 and u′(x) = H−1(E(d)− f(x), x).
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Here for fixed x, H−1(·, x) is the inverse map of H(·, x) for p ≥ p(x).
Let g(x) = u′(x) > 0. Taking derivative of (5.3) with respect to d says
that

Hp(g(x), x)gd +
gf ′√
1 + g2

= E ′(d).

Since h(x) = 1
g(1+g2)

> 0 and

Hp(g(x), x) =
g√

1 + g2
(1 + dh(x)f ′(x)) > 0,

we have that

gd =
E ′(d)− gf ′√

1+g2

Hp

.

Thanks to
∫ 1

0
gd(x) dx = 0,

E ′(d)

∫ 1

0

1

Hp(g(x), x)
dx =

∫ 1

0

gf ′√
1+g2

Hp

dx.

Then
gf ′√
1+g2

Hp

=
f ′(x)

1 + dh(x)f ′(x)

So

∫ 1

0

gf ′√
1+g2

Hp

dx =

∫ 1

0

f ′(x)

1 + dh(x)f ′(x)
dx

=

∫ 1

0

f ′(x)

1 + dh(x)f ′(x)
dx−

∫ 1

0

f ′(x) dx

= −
∫ 1

0

dh(x)(f ′(x))2

1 + dh(x)f ′(x)
dx < 0.

Question 10. Does Theorem 5.1 hold for n = 2 (or 3D shear flows) ?
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5.2. 2D cellular flows

Let
V (x) = (−Hx2 , Hx1) (5.4)

for x = (x1, x2) ∈ R2 and H = sinx1 sinx2. The corresponding strain

tensor is S =

(
−Φ 0
0 Φ

)
for Φ(x) = cosx1 cosx2. The strain G-

equation with linear initial data then takes form ofGt +
(
1− AdΦ(x)

|Gx1 |
2−|Gx2 |

2

|DG|2

)
+
|DG|+ AV (x) ·DG = 0

G(x, 0) = p · x.
(5.5)

Here A ≥ 0 represents the flow intensity. We expect the existence of ef-
fective burning velocity for cellular flows to be established by a strategy
similar to that in section 4 using two-player differential game (revisited
in subsection 5.3): (1) first prove some one way reachability, and then
(2) use the minimum value principle to take care of the other direction.
The argument will be simpler for the strain G-equation due to the de-
terministic nature of its game dynamics valid in all dimensions. On the
other hand, compared with the curvature G-equation, one analytical
disadvantage of the strain G-equation is the lack of clear connection
between the value of the strain term and the geometric structure of the
streamlines.

Question 11. Does the effective burning velocity exist in (5.5) for
general incompressible periodic flows in all dimensions?

Expressing the associated Hamiltonian

H(p, x) =

(
1− AdΦ(x)

|p1|2 − |p2|2

|p|2

)
+

|p|+ AV (x) · p

in a min-max or max-min form of differential game (see (5.6) or (5.7)
in subsection 5.3) is not easy. It is helpful to first consider a simplified
Hamiltonian such as

H̃(p, x) = (|p| − AdΦ(x)(|p1| − |p2|))+ + AV (x) · p
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when applying a game theory interpretation and then employ compar-
ison principle to control solutions to the strain G-equation.

For mathematical interest, let us also consider the equation without
“ + ” correction{

G̃t +
(
1− AdΦ(x)

|G̃x1 |
2−|G̃x2 |

2

|DG̃|2

)
|DG̃|+ AV (x) ·DG̃ = 0

G̃(x, 0) = p · x.

Then it was proved in [119] that there are different ranges of A in terms
of the existence and non-existence of effective Hamiltonian. This is
quite different from the strain G-equation where the existence of effec-
tive burning velocity is expected to hold for all A > 0 . For simplicity,
we state the result for p = e1 = (1, 0) below.

Theorem 5.2. There exists 0 < A0 < A1 such that
(i) (Homogenization and propagation range) If A ∈ [0, A0) for A0 =

1
dmaxx∈Rn ||S(x)|| , then the effective Hamiltonian

lim
t→∞

−G̃(x, t)

t
= H(e1, A) for all x ∈ R2

exists and is positive. The proof is similar to that of the basic case
(sl = 1) [116].

(ii) (Homogenization and trapping range) There exists A1 > 0 such
that when A ≥ A1,

lim
t→∞

−G̃(x, t)

t
= 0 for all x ∈ R2.

The proof is based on a very delicate analysis of the game dynamics (in
subsection 5.3) and the streamline structure of cellular flow.

(iii) (Intermediate non-homogenization range) There exists A ∈
[A0, A1) such that the effective Hamiltonian does not exist, i.e.,

lim
t→∞

−G̃(x, t)

t
, if it exists, depends on x.

More precisely, the limit (if it exists) is non-positive when x is very
close to integer points Z2 and is positive when x is away from those
integers points.
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5.3. Two-person differential game for 1st order nonconvex HJEs

We revisit the two person zero sum differential game representa-
tion for first order non-convex Hamilton-Jacobi equations (HJEs) [53]
based on notations and formulations from [39]. For simplicity, we only
consider HJEs for front propagation:{

ut +H(Du, x) = 0, on Rn × (0,∞),

u(x, 0) = g(x),

and refer to [39] for general HJEs. The equations in [39] are formulated
as terminal value problems. To be consistent with other parts of the
paper, we adopt the initial value problem. Assume that

H(−p, x) = max
y∈Y

min
z∈Z

{f(x, y, z) · p} for all (x, p) ∈ Rn × Rn (5.6)

or

H(−p, x) = min
z∈Z

max
y∈Y

{f(x, η, µ) · p} for all (x, p) ∈ Rn × Rn. (5.7)

Here Y and Z are subsets of Rn. We also set
(1) M(t) as the set of measurable functions [0, t] → Y ;
(2) N(t) as the set of measurable functions [0, t] → Z;
(3) Γ(t) as the set of strategies of player I, i.e, non-anticipating

mappings α : N(t) → M(t) satisfying that for all s < t and z, z̃ ∈ N(t):{
z(s) = z̃(s) for a.e. 0 ≤ s ≤ t

implies that α(z)(s) = α(z̃)(s) for a.e. 0 ≤ s ≤ t;

(4) ∆(t) as the set of strategies of player II, i.e., non-anticipating map-
pings β : M(t) → N(t) satisfying that for all s < t and y, ỹ ∈ M(t):{

y(s) = ỹ(s) for a.e. 0 ≤ s ≤ t

implies that β(y)(s) = β(ỹ)(s) for a.e. 0 ≤ s ≤ t.

Given t > 0 and (y(s), β) ∈ M(t) × α(t) or (z(s), α) ∈ N(t) × β(t),
let x = x(s) : [0, t] → R2 be a Lipschitz continuous curve satisfying
x(0) = x and
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(i) if at each time s, player I moves first by choosing y(s) and player
II chooses a corresponding strategy β, then

ẋ(s) = f(x(s), y(s), β(y)(s)) for a.e s ∈ (0, t);

(ii) if at each time s, player II moves first by choosing z(s) at each
time s and player I chooses a corresponding strategy α, then

ẋ(s) = f(x(s), α(z)(s), z(s)) for a.e t ∈ (0, t).

In both situations, player I wants to minimize the final payoff g(x(t))
and player II aims to maximize g(x(t)). Assume that both players play
optimally, Theorem 4.1 in [39] says that

u(x, t) = sup
β∈∆(t)

inf
y∈M(t)

{g(x(t))} if (5.6) holds

or
u(x, t) = inf

α∈Γ(t)
sup

z∈N(t)

{g(x(t))} if (5.7) holds.

In particular, if H satisfies the Issacs condition [53]:

max
y∈Y

min
z∈Z

{f(x, y, z) · p} = min
z∈Z

max
y∈Y

{f(x, η, µ) · p},

then
sup

β∈∆(t)

inf
y∈M(t)

{g(x(t))} = inf
α∈Γ(t)

sup
z∈N(t)

{g(x(t))},

which says that the game value is the same regardless which player
moves first as long as both of them play optimally.

Compared with the curvature G-equation, the strain G-equation has
advantages (first order with a game formula in Rn) and disadvantages
(harder to discern useful strategies for estimates and leverage stream-
line properties in the flow). A reasonable first step towards the open
question in subsection 5.2 via the differential game here is to look at
flows where some knowledge of streamlines is available, such as cellular
flows in 2D, ABC and Kolmogorov flows in 3D.
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6. Other Passive Scalar Combustion Models

In this section, we briefly review two other ways to model the tur-
bulent flame speeds based on the following reaction-diffusion-advection
(RDA) equation

Tt + V (x) ·DT = d∆T +
1

τr
f(T ),

T (x, 0) = T0(x), x ∈ Rn, (6.1)

where T represents the reactant temperature, D is the spatial gra-
dient operator, V (x) is a prescribed fluid velocity, d is the molecu-
lar diffusion constant, f is a nonlinear function and τr is the reaction
time scale. Among different nonlinearities, a popular choice is Fisher-
Kolmogorov-Petrovsky-Piskunov (FKPP) reaction. A prototypical ex-
ample is f(T ) = T (1− T ), see [114] for more details. The reaction
term f corresponds to the L1 term sl|Du| in G-equation model.

1. In (6.1), the effective burning velocity along any unit vector
p ∈ Rn is the minimal spreading speed c∗p from nonnegative initial data.
Similar to G-equation, two active research topics are (1) the existence
of c∗p and (2) how it depends on the flow intensity if V is scaled to
AV (x). We refer to [47, 46, 113, 114, 30, 10, 97, 83, 17, 86, 84, 115,
98, 126, 11, 82, 127, 96, 95, 80, 71, 109] and references therein, among
others. A comparison between (6.1) and G-equation was studied in
[118].

2. An inviscid model was derived [73] from (6.1) with KPP reaction
in the scaling regime

κ = d ϵ, τr = ϵ and V = V
( x

ϵα

)
for α ∈ (0, 1) and a small ϵ > 0 by assuming that the flame thickness
is much smaller than the turbulence scale. Then the turbulent flame
speed along direction p is given by

cT (p) = inf
λ>0

f ′(0) +H(pλ)

λ
.

Here H(p) is the effective Hamiltonian associated with the following
cell problem: for each p ∈ Rn, there is a unique number H(p) such that
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the inviscid quadratic Hamilton-Jacobi equation below has a periodic
viscosity solution w(x) ∈ C0,1(Tn)

d |p+Dw|2 + V (x) · (p+Dw) = H(p) in Rn. (6.2)

We refer to [36] and [117] for comparison with the G-equation model.

If the flame is burning through a material at rest (i.e. V = 0) and
f(r) = 1

ϵ
g( r

ϵ
) for a suitable non-negative function g ∈ C1

0(0, 1), the
reaction-diffusion equation (6.1) tends to an interesting free boundary
problem as ϵ → 0 ([20])ut −∆u = 0 in {u > 0}

|Du| = 1 in ∂{u > 0}.
(6.3)

Existence and regularity of the solution u have been studied in [20]
among others. Moreover, this singular limit and the corresponding ho-
mogenization problem has been considered in [16, 17] for a generalized
version when (6.3) has an advection term in the homogeneous media.
Also, see [19] for a survey on other scaling related to the stationary
version of the above equation and phase transition problems.

7. Basic Stochastic G-equation

The existence of average front speeds in the basic G-equation

Gt + |DG|+ V (x, ω) ·DG = 0, (7.1)

with a stochastic incompressible vector field V (x, ω) (where ω is the
random sampling variable) has been studied via homogenization [81,
22, 14]. Theoretical and numerical studies in physics and engineering
literature include [121, 101, 57, 27, 58, 124] among others.

Due to lack of compactness, stochastic flows or random media have
extreme behavior and cause additional difficulty on the large scale so
that homogenization can fail even in the coercive and convex Hamilton-
Jacobi equations ([115], chapter 4 and references therein). Hence tech-
nical assumptions on the random field are needed. Stochastic homog-
enization of Hamilton-Jacobi equation in several space dimensions was
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first proved in [102] and [92] in the coercive, convex and stationary
ergodic setting. The strategy is to first find suitable subadditive quan-
tities, then apply the sub-additive ergodic theorem instead of relying
on corrector problems to obtain an effective quantity (often equal to
the dual of the effective Hamiltonian), and finally recover the effective
Hamiltonian via duality. In statistical mechanics, such a method was
developed in the study of first passage percolation through the con-
nectivity function to establish the existence of limiting shapes [59, 2],
which can be viewed as a discrete propagation problem associated with
the Hamiltonian H(p, x) = a(x, ω)|p|. This method, however, does not
work for a non-convex Hamilton-Jacobi equation that requires com-
pletely different approaches and might fail in general [125, 44]. To the
best of our knowledge, the only available method to homogenize non-
convex Hamilton-Jacobi equations under the general stationary ergodic
setting is to first identify the shape of the effective Hamiltonian and
then build customized correctors [5, 6, 49, 91]. When i.i.d type as-
sumptions are imposed, approaches from first passage percolation can
be used [4, 44]. We would like to mention that the periodic setting is a
special case of the general stationary ergodic situation, but periodicity
is on the opposite side of decorrelation.

7.1. Homogenization Analysis
As in the case of periodic flows, the control formulation and the

reachability concept play an essential role. The key quantity is the
minimal travel time τ(x, y, ω) for the control trajectory ξα(s) to con-
nect two points x = ξα(0) and y = ξα(τ). In two dimensions, the
incompressible flow is given by V = (−Ψy,Ψx), Ψ a stream function.
Under stationarity, ergodicity, and a third order moment condition of Ψ
(i.e. E[|Ψ(0)|3] < +∞), the scaled τ(0, r y, ω) as a function of r ∈ R is
sub-additive, and r−1 τ(0, r y, ω) converges at large r to a deterministic
function q = q(y) almost surely by the sub-additive ergodic theorem
[81]. Then homogenization similar to Theorem 3.3 holds with probabil-
ity one based on the control formula (3.2). The effective Hamiltonian
is recovered from q̄ by duality (Legendre transform):

H̄(p) = sup{p · y : y ∈ Rd, q̄(y) = 1}. (7.2)

That H̄ being convex and homogeneous of degree one follows from
(7.2), as it is the supremum of a family of linear functions of p.
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In dimensions higher than two, results in [81] extend under certain
assumptions of τ(x, y, ω) when |x−y| diverges. Through a refined anal-
ysis of τ and its long time behavior along a selected random sequence
of times, [22] removed these assumptions and proved homogenization
under V = V (x, ω) being stationary, ergodic, divergence free and zero
mean. The sub-additive techniques extend to problems involving time-
dependent flows. For space-time flows V = V (t, x, ω), with a quantita-
tive estimate of reachability of any two points by a controlled path, [14]
proved the almost sure homogenization of (7.1) under uniform bound
(supt,x,ω V < ∞), stationarity, finite time decorrelation, small mean,
Lipschitz continuity and incompressibility. As in periodic flows of sec-
tion 3, the reachability under control in the stochastic flows is both
ways for any two points. The relatively strict finite time decorrelation
assumption in [14] has been relaxed to allow the infinite temporal range
of dependence of the space-time flow V in a recent work [123] based on
a non-autonomous sub-additive theorem.

The travel time approach in [81, 22] is fully Lagrangian and by-
passes the corrector problem entirely. It relies on duality to come back
to H̄. The duality is lost however in a non-convex Hamilton-Jacobi
equation (e.g. when the strain rate is considered in G-equation), and
it is open what would replace duality for a fully Lagrangian (corrector
free) method to work.

Question 12. Can homogenization be established for strain G-equation
for some interesting stochastic flows? A basic example is 3D random
shear flow.

7.2. Formal Analysis, Numerical and Physical Experiments

Formal renormalization group and scaling analysis [121, 27] for the
basic stochastic G-equation (7.1) showed that H̄ = H̄(A) scales as
O(A/

√
logA) at large A for a random incompressible flow of the form

AV (x, t, ω) in three dimensions. In aqueous autocatalytic chemical
reaction experiments on four different multi-scale flows, namely Hele-
Shaw, capillary wave, Taylor-Couette, and vibrating-grid flows [94, 99,
1], the theory [121] and a sub-linear power law fit reach good agreement
with measurements in the range of flow intensities scaled by sl (denoted
by u′/sl, u

′ := A is the flow intensity) in Fig. 10.
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Figure 10: Comparison of propagation speeds (sT /sl) of wrinkled aqueous autocat-
alytic reaction fronts in Hele-Shaw, capillary wave, Taylor-Couette and vibrating-
grid flows [1, 94, 99] along with a prediction by [121] and a sublinear power-law fit
(applied only to data at u′/sl > 2) in the range [0.1, 1000] of scaled flow intensity.

In view of the asymptotic law O(A/ logA) in BC (cellular) flows
[118] and the law O(A) in ABC and Kolmogorov flows [120, 56], we
see that the presence of continuously many scales in stochastic flow
[121, 27] indicates the absence of structures such as closed streamlines
(in BC/cellular flows) and ballistic orbits (in ABC and Kolmogorov
flows) as a plausible explanation of the O(A/

√
logA) enhancement. A

rigorous study awaits to be carried out to discover the mathematics of
this long-standing random phenomenon.

Curvature dependence of flame speeds remain an active research
topic in combustion science today [61]. With the increasing concern
of global warming, new combustion systems aim specifically to reduce
or eliminate greenhouse gas emissions. Since carbon dioxide is a key
greenhouse factor, fuels without carbon content, such as hydrogen and
ammonia, are promising alternatives yet with new challenges such as
widened range of flammability, high flame speed and low activation en-
ergy for ignition [107]. In [61], premixed flames subject to turbulent
disturbances and harmonic oscillation are studied experimentally and
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computationally. These flames come from mixtures of methane/hy-
drogen/air and are stabilized on an oscillating holder to consistently
produce harmonic wrinkles for studying curvature effects. The direct
numerical simulations are also conducted for a range of flow intensities.
The turbulent flame speed and the Markstein length are characterized
via the basic G-equation as a reduced order model. A power law relat-
ing turbulent flame speed to the ensemble-averaged flame curvature in
the curved flame regions is observed in [61].

Likewise, flow induced flame stretch, a fundamental quantity mea-
suring the rate of change of flame surface area, continues to receive
attention from experimental measurements to direct simulations, see
[108] and references therein.

8. Conclusions

We have reviewed mathematical tools for averaging (homogenizing)
level-set G-equations arising in turbulent combustion. As curvature
and flame stretch effects are included, the G-equations become non-
convex and non-coercive. We showed how to leverage Lagrangian ideas
(e.g. reachability of control and game trajectories) to compensate for
the lack of compactness in the Eulerian (viscosity solution) framework
to prove the existence and analyze qualitative properties of average
flame speeds in prototypical (shear, BC, ABC and Kolmogorov) flows.
We discussed growth laws of flame speeds as flow intensities become
large based on the streamline structures of the ambient fluid flows. We
explored physical background, and proposed open problems for further
research in this emerging area of game theoretic analysis of non-convex
and non-coercive geometric PDEs in complex advection.
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