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Abstract

G-equation is a popular level set model in turbulent combustion,
and becomes an advective mean curvature type evolution equation
when curvature of a moving flame in a fluid flow is considered:

Gt +

(
1− ddiv

(
DG

|DG|

))
+

|DG|+ V (x) ·DG = 0.

Here d > 0 is the Markstein number and the positive part ()+ is im-
posed to avoid a non-physical negative laminar flame speed. For sim-
plicity of presentation, we focus mainly on the case when V : R2 → R2

is the two dimensional cellular flow with Hamiltonian H = sinx1 sinx2

and amplitude A. Our main result is that for any unit vector p ∈ R2,
there exists a positive number H(p) such that if G(x, 0) = p · x, then∣∣G(x, t)− p · x+H(p)t

∣∣ ≤ C in R2 × [0,∞)

for a constant C depending only on on the Markstein number d and
the cellular flow amplitude A. The number H(p) corresponds to the
effective burning velocity in the physics literature. The non-coercivity
encountered here is one of the major difficulties for homogenization of
the mean curvature-type equations. To overcome it, we introduce a new
approach that combines PDE methods with a dynamical analysis of the
Kohn-Serfaty deterministic game characterization of the curvature G-
equation utilizing the streamline structure of cellular flows. Extension
to general two-dimensional incompressible flows is also discussed. In
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three dimensional incompressible flows, the existence of H(p) might
fail when the flow intensity exceeds a bifurcation value even for simple
shear flows [32].
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1 Introduction

G-equation is a well-known level-set model in turbulent combustion [40].
Precisely speaking, given a reference function G(x, t), let the flame front
be the zero level set {G(x, t) = 0} at time t, where the burnt and unburnt
regions are {G(x, t) < 0} and {G(x, t) > 0}, respectively. See Figure 1 below.
The velocity of ambient fluid V : Rn → Rn is assumed to be continuous and
Zn-periodic. The propagation of flame front obeys a simple motion law:

vn⃗ = sl + V (x) · n⃗,

i.e., the normal velocity is the laminar flame speed (sl) plus the projection
of V along the normal direction n⃗. This leads to the so–called G-equation,
a level-set PDE [40, 35, 33]:

Gt + V (x) ·DG+ sl |DG| = 0 in Rn × (0,+∞).

unburned 

fluid 

burned

fluid 

flame 

front 

 

 

G > 0  G(x,t)=0  G < 0 

 

 

 

 

 

Figure 1: Level-set formulation of front propagation.

In the simplest case when the laminar flame speed sl is a positive con-
stant, the above equation is called the inviscid G-equation, a non-coercive
convex Hamilton-Jacobi equation.

However, in general, sl is not constant along the flame front since the
burning temperature varies in different locations. In order to quantify tem-
perature difference, the curvature effect in turbulent combustion was first
introduced by Markstein [31], which says that if the flame front bends toward
the cold region (unburned area, point C in Figure 2 below), the flame prop-
agation slows down. If the flame front bends toward the hot spot (burned
area, point B in Figure 2), it burns faster.
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Figure 2: Curvature effect.

There is a vast turbulent combustion literature discussing the impact
of curvature effect. Below is the most recognized empirical linear relation
proposed by Markstein [31] to approximate the dependence of the laminar
flame speed sl on the curvature (see also [35]):

sl = s0l (1− d κ)+. (1.1)

Here s0l , the mean value, is a positive constant. Hereafter we set s0l = 1.
The parameter d > 0 is the so called Markstein length which is proportional
to the flame thickness. The mean curvature along the flame front is κ. The
positive part (a)+ = max{a, 0} is imposed to avoid negative laminar flame
speed since materials cannot be “unburned”. This correction usually is not
explicitly mentioned in combustion literature since, by default, the curvature
is always assumed to be small there. However, mathematically, large positive
curvature could occur as time evolves. Therefore it is necessary to explicitly
add this correction in theoretical study and numerical computations [45] if
the physical validity is taken into consideration in the modeling of flame
propagation.

Plugging the expression of the laminar flame speed (1.1) into the G-
equation and normalizing the constant s0l = 1, we obtain a mean curvature
type equation with advection:

Gt +

(
1− d div

(
DG

|DG|

))
+

|DG|+ V (x) ·DG = 0. (1.2)

We would like to mention that curvature G-equations served as some of the
first numerical examples in the development of level-set methods [37, 34,
33]. The rigorous mathematical foundation under the framework of viscosity
solution was established in [10, 16].

In general, κ changes sign along a curved flame front. So a mathemati-
cally interesting and physically important question is:
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Question 1: How does the “averaged” flame propagation speed depend on
the curvature term?

As the first step, the main purpose of this paper is to establish the
existence of a properly defined “averaged speed”, which is basically to aver-
age fluctuations caused by both the flow and the curvature. The theory of
homogenization provides such a rigorous mathematical framework in envi-
ronments with microstructures.

Turbulent combustion usually involves small scales. As a simplified
model, we rescale V as V = V (xϵ ) and replace d by d ϵ. Here ϵ denotes
the Kolmogorov scale (the small scale in the flow). The diffusivity constant
d > 0 is called the Markstein number. We would like to point out that the
dimensionless Markstein number is d · δL

ϵ with δL denoting the flame thick-
ness [35]. In the thin reaction zone regime, δL = O(ϵ), see Eq. (2.28) and
Fig. 2.8 of [35]. Without loss of generality, let δL

ϵ = 1. Then (1.2) becomes

∂Gϵ

∂t
+

(
1− d ϵdiv

(
DGϵ

|DGϵ|

))
+

|DGϵ|+ V
(x
ϵ

)
·DGϵ = 0. (1.3)

Since ϵ ≪ 1, it is natural to look at limϵ→0Gϵ, i.e., the homogenization
limit. If Gϵ(x, 0) = p ·x, the limit limϵ→0Gϵ(x, t) can be viewed as the flame
propagation under the effective burning velocity (also called “turbulent flame
speed” in physics literature) along a given direction p.

For general V , the effective burning velocity might not exist (see Remark
1.4). Moreover, a general V is unlikely to provide meaningful answers to del-
icate problems like Question 1. In this paper, we consider a two-dimensional
(2D) cellular flow that is frequently used in the mathematics and physics lit-
erature. See [11] for more physical motivations. For clarity of presentation,
we choose to work with the typical example

V (x) = A(DH)⊥ = A(− cosx2 sinx1, cosx1 sinx2).

Here H(x1, x2) = sinx1 sinx2 is the stream function and the positive con-
stant A represents the flow intensity. The following is our main theorem.

Theorem 1.1 Suppose that V = A(DH)⊥ for A > 0. For each ϵ > 0, let
Gϵ = Gϵ(x, t) ∈ C(R2 × [0,∞)) be the unique viscosity solution to equation
(1.3) on R2 × [0,∞) subject to Gϵ(x, 0) = p · x for a given p ∈ R2. Then

|Gϵ(x, t)− p · x+HA(p)t| ≤ Cϵ on R2 × [0,∞)

for a constant C depending only on d, V and |p|. Here HA ∈ C(R2\{0}, (0,∞))
is a continuous positive homogeneous function of degree one.
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Equivalently, if G(x, t) is the unique viscosity solution to equation (1.2)
on R2 × [0,∞) subject to G(x, 0) = p · x, then∣∣G(x, t)− p · x+HA(p)t

∣∣ ≤ C on R2 × [0,∞).

Remark 1.1 Our proof relies on establishing the existence of correctors to
the cell problem for every p ∈ R2:(

1− d div

(
p+Dv

|p+Dv|

))
+

|p+Dv|+ V (x) · (p+Dv) = H(p).

In general, the cell problem is sufficient to obtain the full homogenization
with any uniformly continuous initial data by Evans’ perturbed test function
method [15]. However, as it was first explicitly pointed out in [5], due to
the discontinuity of the mean curvature operator, the standard perturbed test
function method is not directly applicable. Roughly speaking, given a test
function ϕ(x, t) ∈ C∞(Rn × (0,∞)), let p = Dxϕ(x0, t0), it is not clear
whether

ϕ(x, t) + ϵv
(x
ϵ

)
is an approximate solution of equation (1.3) near (x0, t0) due to possible
vanishing gradients. The authors of [5] have introduced a mechanism to
implement a modified version of the perturbed test function method. See
also [2] for a different modified argument when the corresponding cell problem
has a classical solution. To avoid a lengthy paper, we will address this subtle
issue in a future publication. In view of our problem’s physical origin, it
would be an interesting project to study more detailed properties of HA(p)
(e.g., its anisotropy). See Remark 3.2.

Remark 1.2 We would like to point out that the small scales in the curva-
ture G-equation help flame propagation. In fact, it is not hard to see that
under equation (1.2), the flame front is stagnant if the initial burned region
is {x ∈ R2| G(x, 0) < 0} = {x ∈ [0, π]× [0, π]| H(x) > 1− r} and the initial
flame front is

{x ∈ R2| G(x, 0) = 0} = {x ∈ [0, π]× [0, π]| H(x) = 1− r}

when r is small enough. Nevertheless, after homogenization, the front moves
forward with a positive normal speed HA(p) along any given direction p.
The curvature term plays a subtle role of flame spreading when the cellular
flow corrugates the level set. Such a flow induced geometric mechanism is
absent in the invicid equation model (i.e. d = 0). The homogenization of
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the inviscid G-equation has been established independently in [7] and [41]
via completely different approaches for general incompressible flows in any
dimension.

Remark 1.3 As pointed out by a referee, a natural question is whether the
cut-off (·)+ in the governing equation is actually active (equal to zero) at
some point (x, t) during the evolution in the cellular flow. A direct numeri-
cal simulation suggests that the answer is positive over A ∈ (0, 45] at d = 0.1
where the H differs with and without the cutoff. That the cut-off is active is
clear in the case of three dimensional shear flows [32] where the homogeniza-
tion fails for large flow intensity with cut-off (·)+ and the homogenization
holds for all flow intensity without cut-off (·)+. See Remark 1.4 for more
details.

The major remaining question is to understand how the turbulent ve-
locity HA(p) depends on the Markstein number d and the flow intensity A.
There is a consensus in combustion literature that the curvature effect slows
down flame propagation [36]. Heuristically, this is because the curvature
term smoothes out the flame front and reduces the total area of chemical re-
action [37]. To the best of our knowledge, the first mathematically rigorous
result in this direction was obtained in [30] for shear flows. It was proved
that H is strictly decreasing with respect to the Markstein number d, which
is consistent with the experimental observation (e.g., [9]).

For the more complicated cellular flow, it is probably more convenient
to compare the growth law with respect to the flow intensity A. For the
inviscid case, a sharp growth law was establish in [42]: when d = 0, for
p = (p1, p2),

Aπ(|p1|+ |p2|)
2 logA+ C2

≤ HA(p) ≤
Aπ(|p1|+ |p2|)
2 logA+ C1

.

By refining the method and estimates in this paper, we conjecture that
it might be possible to show that when d > 0,

HA(p) = O

(
A

logA

)
.

More interestingly, in future work we plan to investigate:

Question 2: Does the presence of the curvature effect significantly re-
duce the prediction of the turbulent flame speed? More specifically, does
there exist a unit direction p such that

lim sup
A→+∞

HA(p) logA

A
<

π(|p1|+ |p2|)
2

?
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If the curvature term is replaced by full diffusion (i.e. the Laplacian ∆
without any correction), a dramatic slow-down (HA(p) uniformly bounded
in A) is proved in [29] for two dimensional (2D) cellular flows.

• Other works. In non-combustion practical suitations such as phase
transition (e.g. crystal growth) in material science [25, 12], the motion law
is given by (no drift term and ()+ correction)

vn⃗ = a(x)− dκ (1.4)

for a continuous positive Zn-periodic function a(x). The above formula is
known as the Gibbs-Thomson relation. The ()+ is not needed in crystal
growth since both freezing and melting could occur in the situation of ice
formation [25]. See ([27, 14, 6, 12, 5, 8, 18, 19, 2, 17], etc) and reference
therein for works regarding the homogenization or large time limit related
to (1.4). When a(x) satisfies a special coercivity condition, homogenization
has been proved in [27] for all dimensions. When n = 2, homogenization was
proved in [5] for all positive a(x) by a geometric approach. Moreover, the
authors have also constructed a counterexample in [5] when the dimension
n ≥ 3 for a positive a(x). See [4] for more discussions about geometric
approaches in homogenization. Due to the presence of the non-coercive
transport term V · DG, or a = a(x, n⃗) = 1 + V (x) · n⃗, our situation and
methods are very different from all these previous works. See Remark 3.3
for more discussions. Our result also holds when (1− dκ)+ is replaced by a
more general form (a(x)− dκ)+.

Remark 1.4 Like the invisicd G-equation case (d = 0), it is easy to con-
struct a smooth periodic V such that the effective speed does not exist, e.g.
let V (x) = K(x − P0) near P0 = (π2 ,

π
2 ) for a large number K > 0 and

equal to the cellular flow away from P0. We conjecture that our method
could be extended to cover general 2D smooth periodic incompressible flows
(div(V ) = 0). See Section 4 for more detailed discussions. When n ≥ 3, it
was proved in [32] that, for the shear flow V (x1, x2, x3) = (0, 0, Af(x1, x2)),
the effective burning velocity ceases to exist when the flow intensity A ex-
ceeds a bifurcation value. Note that when n = 2, the existence of effective
burning velocity can be established very easily for all shear flows since the
cell problem is reduced to an ODE and maximum principle immediately leads
to uniform bound of derivatives.

Question 3: Does Theorem 1.1 hold if V is a 3D physically meaningful
flow that possesses turbulent or chaotic structures, e.g. the Arnold-Beltrami-
Childress flow [11, 44]?
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• Outline of the paper. In section 2, for reader’s convenience, we
will go over the definition and comparison principle of viscosity solutions of
curvature type equations. The associated game theoretic interpretation from
[23] will be reviewed as well. In section 3, we prove Theorem 1.1 by a novel
approach combining Lagrangian (game dynamics) and Eulerian approaches
(PDE techniques). In section 4, we discuss how to extend our results and
methods to general 2D incompressible flows. Our approach also suggests a
possible general framework to tackle non-periodic settings (see Remark 4.1).
To help derive a reachability property in our proof, we show rigorously in the
Appendix a useful fact related to the consistency of viscosity and classical
solutions in front propagation.

2 Preliminary

In this section, V : Rn → Rn is assumed to be continuous and Zn-periodic.
Write

F (A, p) =

(
|p| − d

(
trA− p ·A · p

|p|2

))
+

for (A, p) ∈ Sn×n×(Rn\{0}). Here Sn×n is the space of n×n real symmetric
matrices. Following the definition in [13], let

F (A, p) =

{
F (A, p) if |p| ≠ 0

0 if |p| = 0
and F (A, p) =

{
F (A, p) if |p| ≠ 0

2dn||A|| if |p| = 0.

Here ||A|| is the largest absolute value of eigenvalues of A. Note that F and
F are lower semicontinuous and upper semicontinuous respectively. As it
was pointed out in [13], the definition at p = 0 is not really important as
long as the lower and upper continuity hold. This is because A will be zero
when p = 0 with the proper test function (see the proof of Theorem 2.1 for
instance). When n = 2,

trA− p ·A · p
|p|2

=
p⊥ ·A · p⊥

|p|2
.

Here p⊥ = (−p2, p1) if p = (p1, p2) ∈ R2\{0}.

2.1 Definition of viscosity solutions and comparison principle

We first introduce several definitions and terminologies.
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Let

LSC(Ω): the set of lower semicontinuous functions defined on Ω,

USC(Ω): the set of upper semicontinuous functions defined on Ω,

and

UC(Ω): the set of uniformly continuous functions defined on Ω.

Definition 2.1 Assume that G = G(x, t) ∈ USC(Rn×(0,∞)). G is called a
viscosity subsolution of equation (1.2) provided that given ϕ(x, t) ∈ C2(Rn×
(0,∞)), if

G(x0, t0)− ϕ(x0, t0) = max
Rn×(0,∞)

(G(x, t)− ϕ(x, t)),

then

ϕt(x0, t0) + F
(
D2ϕ(x0, t0), Dϕ(x0, t0)

)
+ V (x0) ·Dϕ(x0, t0) ≤ 0.

Definition 2.2 Assume that G = G(x, t) ∈ LSC(Rn × (0,∞)). G is called
a viscosity supersolution of equation (1.2) provided that given ϕ(x, t) ∈
C2(Rn × (0,∞)), if

G(x0, t0)− ϕ(x0, t0) = min
Rn×(0,∞)

(G(x, t)− ϕ(x, t)),

then

ϕt(x0, t0) + F
(
D2ϕ(x0, t0), Dϕ(x0, t0)

)
+ V (x0) ·Dϕ(x0, t0) ≥ 0.

Definition 2.3 G = G(x, t) ∈ C(Rn × (0,∞)) is called a viscosity solution
of equation (1.2) if it is both a viscosity subsolution and a viscosity superso-
lution. If the initial data G(x, 0) = g(x) is given, then we require that

lim
t→0

G(x, t) = g(x) locally uniformly for x ∈ Rn.

The following comparison principle for solutions can be proved by stan-
dard approaches ([10, 16, 13, 5]), which is a special case of Theorem 3.3 in
[5] . For the reader’s convenience, we provide a sketch of the proof. See the
proof of Theorem 3.3 in [5] (the long version) for more general operators.
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Theorem 2.1 Assume that V ∈ W 1,∞(Rn), g1, g2 ∈ UC(Rn) and g1 ≤ g2.
Suppose that for some T > 0, G1 = G1(x, t) ∈ USC(Rn × (0, T )) is a
viscosity subsolution of equation (1.2) and G2 = G2(x, t) ∈ LSC(Rn×(0, T ))
is a viscosity supersolution of equation (1.2). If both G1 and G2 are subject
to (for i = 1, 2):

lim
t→0

|Gi(x, t)− gi(x)| = 0 locally uniformly in Rn,

then
G1(x, t) ≤ G2(x, t) for all (x, t) ∈ Rn × [0, T ).

Proof: By considering 2
π arctan(G1) and 2

π arctan(G2), we may assume
that for i = 1, 2,

−1 ≤ Gi ≤ 1.

We argue by contradiction. If not, then

sup
(x,t)∈Rn×[0,T )

(G1(x, t)−G2(x, t)) > 0.

Let M = 4(||V ||W 1,∞(Rn) + 1) and

G̃i = e−MtGi.

Then G̃1 is a viscosity subsolution of

∂G̃1

∂t
+MG̃1 + F (D2G̃1, DG̃1) + V (x) ·DG̃1 = 0

and G̃2 is a viscosity supersolution of

∂G̃2

∂t
+MG̃2 + F (D2G̃2, DG̃2) + V (x) ·DG̃2 = 0

subject to limt→0 |G̃i(x, t)− gi(x)| = 0 locally uniformly in Rn.
We also have that

r = sup
(x,t)∈Rn×[0,T )

(G̃1(x, t)− G̃2(x, t)) > 0.

Now let
w(x, y, t) = G̃1(x, t)− G̃2(y, t)− Φρ,K,δ(x, y)

for some K, ρ, δ > 0 and

Φρ,K,δ(x, y, t) = ρ
(√

|x|2 + 1 +
√

|y|2 + 1
)
+K|x− y|4 + δ

T − t
.
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Step 1: It is easy to see that there exist ρ0, δ0 ∈ (0, 1) such that for all
ρ ≤ ρ0, δ ≤ δ0 and K ∈ N,

max
Rn×Rn×[0,T )

w(x, y, t) ≥ 1

2
sup

(x,t)∈Rn×[0,T )
(G̃1 − G̃2) =

r

2
.

Choose (x̄, ȳ, t̄) ∈ Rn × Rn × [0, T ) such that

w(x̄, ȳ, t̄) = max
Rn×Rn×[0,T )

w(x, y, t).

For simplicity, we omit the dependence of (x̄, ȳ, t̄) on ρ, K and δ.

Step 2 (avoiding the boundary t = 0): Due to |G̃i| ≤ 1, we have
that

Φρ,K,δ(x̄, ȳ, t̄) ≤ 2.

Since for i = 1, 2, gi ∈ UC(Rn), there exists K0 ∈ N independent of ρ and δ
such that t̄ > 0 when K ≥ K0.

Step 3 (plugging into the equation): Now we fix K = K0 and

δ = δ0. Write γ(x, y) = ρ
(√

|x|2 + 1 +
√

|y|2 + 1
)
. Owing to Theorem 8.3

and Remark 3.8 in [13], there exist a, b ∈ R, two n× n symmetric matrices
X and Y such that

a− b =
δ

(T − t)2
, X ≤ Y, ||X||+ ||Y || ≤ CK0|x̄− ȳ|2

and at point (x̄, ȳ, t̄)

a+MG̃1(x̄, t̄) + F (X +D2
xγ, p̄+Dxγ) + V (x̄) · (p̄+Dxγ) ≤ 0

b+MG̃2(ȳ, t̄) + F (Y −D2
yγ, p̄−Dyγ) + V (ȳ) · (p̄−Dyγ) ≥ 0

for p̄ = 4K0(x̄− ȳ)|x̄− ȳ|2. Since |D2
xγ|+ |D2

yγ|+ |Dxγ|+ |Dyγ| ≤ Cρ,

G̃1(x̄, t̄)− G̃2(ȳ, t̄) ≥
r

2
+K0|x̄− ȳ|4,

|p̄| ≤ 4K0|x̄− ȳ|3 and |V (x̄)− V (ȳ)| ≤
(
M

4
− 1

)
|x̄− ȳ|,

we derive that

F (X+D2
xγ, p̄+Dxγ)−F (Y −D2

yγ, p̄−Dyγ) ≤ −Mr

2
− δ0
(T − t̄)2

+Cρ. (2.1)
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Step 4: Let us look at the following two cases (up to a subsequence if
necessary).

Case 1: limρ→0 |x̄ − ȳ| = 0. Then both the gradient and the Hessian of
the test function go to zero, i.e.,

limρ→0 p̄ = 0

limρ→0X = limρ→0 Y = 0.

By (2.1), this implies 0 < −Mr
2 after sending ρ → 0, which is absurd.

Case 2: limρ→0 |x̄ − ȳ| ̸= 0. Without loss of generality, we may assume
that

lim
ρ→0

p̄ = p0 ̸= 0, lim
ρ→0

X = X0 and lim
ρ→0

Y = Y0.

Since F (A, p) is monotonically decreasing with respect to the symmetric
matrix A and X0 ≤ Y0, taking limit ρ → 0 on (2.1) leads to

0 ≤ F (X0, p0)− F (Y0, p0) ≤ −Mr

2
.

This is impossible. □

Corollary 2.1 Assume that g ∈ UC(Rn) and |g(x)| ≤ C(|x|+ 1) for some
positive constant C. Suppose that G = G(x, t) ∈ C(Rn×[0,∞)) is a viscosity
subsolution of equation (1.2) subject to G(x, 0) = g(x). Then there exists a
constant C̃ depending only on C, V and d such that

|G(x, t)| ≤ C̃(1 + |x|+ t) for all (x, t) ∈ Rn × [0,∞).

Proof: Let ϕ(x) = 2C
√

|x|2 + 1. Let

C1 = max
x∈Rn

∣∣F (D2ϕ(x), Dϕ(x)) + V (x) ·Dϕ(x)
∣∣ .

Then G1(x, t) = ϕ(x) + C1t is a viscosity supersolution to equation (1.2).
Hence by the comparison principle Theorem 2.1, we have that

G(x, t) ≤ G1(x, t) ≤ C̃(1 + |x|+ t)

for C̃ = max(2C,C1). A similar inequality holds in the other direction. □
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2.2 Game theory interpretation from [23]

In this section, let n = 2 and x ∈ R2. Fix the game step size parameter
τ > 0 and the number of steps N ∈ N.

For n ≥ 1, consider the discrete dynamical system {xn}Nn=1 ⊂ R2 associ-
ated with the game starting from x0 = x: for n = 0, 1, 2, .., N − 1{

xn+1 = xn + τ
√
2dbnηn + τ2η⊥n − τ2V (xn)

x0 = x,

where ηn ∈ B1(0) = {v ∈ R2| |v| ≤ 1} and bn ∈ {−1, 1}. Here for conve-
nience, compared to [23], we reverse the time that leads to −V instead of
V . Moreover, η⊥ = (−c, a) if η = (a, c) ∈ R2.

There are two players: player I and player II. In each step,

• Player I: First choose the direction ηn;

• Player II: Then choose the sign bn.

The sequence of positions {xk}Nk=0 is called a game trajectory associated
with (τ,N).

The goal of player I is to minimize g(xN ) and player II aims to maximize
g(xN ) .

A strategy Γ1 of player I refers to how player I chooses ηn based on
{x, ηi, bi| 1 ≤ i ≤ n−1} for n ≥ 1. Similarly, a strategy Γ2 of player II refers
to how player II chooses the sign bn based on {x, ηi, ηn, bi, | 1 ≤ i ≤ n − 1}
for n ≥ 1.

Assuming that both players play optimally. Write the value function of
player I as

uτ (x,Nτ2) = infimum of g(xN ). (2.2)

Then we have the following dynamic principle: for k ≥ 1,

uτ (x, kτ
2) = inf

|η|≤1
max
b=±1

uτ

(
x+ τb

√
2dη + τ2η⊥ − τ2V (x), (k − 1)τ2

)
.

(2.3)

For the standard mean curvature motion, player I can only choose unit
vectors. Here we basically allow player I to also choose ηn = 0, which
excludes the possibility of “unburning”. The consistency holds: for small τ ,

minη∈B1(0)
maxb=±1{τb

√
2dη ·Dϕ(x) + dτ2η ·D2ϕ(x) · η + τ2η⊥ ·Dϕ}

∈ −τ2[F (D2ϕ(x), Dϕ(x)), F (D2ϕ(x), Dϕ(x))].
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2.3 Convergence

Given g(x) ∈ UC(R2), as in [23], we have that

lim
τ→0, Nτ2→t

uτ (x,Nτ2) = u(x, t) locally uniformly on R2 × (0,∞). (2.4)

Here u ∈ C(R2 × [0,∞)) is the unique viscosity solution to equation (1.2)
subject to

lim
t→0

u(x, t) = g(x) uniformly in R2.

As it was mentioned in [24], this game theory approach is essentially a semi-
discrete approximation scheme (continuous in space, discrete in time) for
curvature-type equations. See [38] for an analogous game in combinatorics.

The proof is standard under the framework of viscosity solution. For the
reader’s convenience, we provide an outline of the proof.

Step 1: Define

u(x, t) := lim sup
y→x, τ→0, Nτ2→t

uτ (y,Nτ2)

u(x, t) := lim inf
y→x, τ→0, Nτ2→t

uτ (y,Nτ2).

Then u is upper semicontinuous and u is lower semicontinuous.

Lemma 2.1 For t ∈ [0, 1],

min
|y−x|≤C

√
t
g(y) ≤ u(x, t) ≤ u(x, t) ≤ max

|y−x|≤C
√
t
g(y).

Here C is a constant depending only on d and maxR2 |V |.

Proof: Fix t > 0. Consider the game starting from x0 ∈ R2 with (τ,N),
Nτ2 ∈ [ t2 , 2t].

On the one hand, if player I adopts the following strategy similar to the
exit strategy in [23]: at each step n, player I chooses the direction ηn such
that

ηn · (xn − x0) = 0,

then regardless of how player II plays, if |xn − x0| ≥
√
t, then

|q + w| − |q| = 2w · q + |w|2

|q + w|+ |q|
⇒ |xn+1 − x0| ≤ |xn − x0|+ Cτ2

(
1 +

1√
t

)
.

Hence
|xN − x0| ≤ C

√
t for t ∈ [0, 1].

13



Then by the definition of u(x, t),

u(x0, t) ≤ max
|y−x0|≤C

√
t
g(y).

On the other hand, if player II employs the strategy as: at each step n,
player II chooses the sign bn such that

bnηn · (xn − x0) ≤ 0

after player I picks the direction ηn, then regardless what kind of strategy
player I uses, similarly, we have that

|xN − x0| ≤ C
√
t.

This implies that
u(x0, t) ≥ min

|y−x0|≤C
√
t
g(y).

□
Since g ∈ UC(R2),

lim
y→x,t→0

u(y, t) = lim
y→x,t→0

u(y, t) = g(x) uniformly for x ∈ R2.

Step 2: As in [23], we have that

Lemma 2.2 u(x, t) is a viscosity subsolution of

ut + F (D2u,Du) + V (x) ·Du = 0 on R2 × (0,∞)

and u(x, t) is a viscosity supersolution of

ut + F (D2u,Du) + V (x) ·Du = 0 on R2 × (0,∞).

□

Step 3: Finally, the comparison principle Theorem 2.1 implies that
u ≥ u. Therefore, u = u and (2.4) holds. □

Remark 2.1 By the uniqueness of solution and Lemma 2.1, if n = 2 and
G(x, t) is the unique viscosity to equation (1.2) subject to G(x, 0) = g(x),
Then for t ∈ [0, 1]

min
|y−x|≤C

√
t
g(y) ≤ G(x, t) ≤ max

|y−x|≤C
√
t
g(y).

Of course, this can also be proved by pure PDE methods through comparison
principle.
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Remark 2.2 Although the game is formulated in a deterministic way, it
has some intrinsic stochastic features due to the different scales τ and τ2 so
that the game trajectory is practically hard to analyze. Having the positive
part (equivalently, allowing player I to choose ηn = 0) renders the game
more deterministic. As mentioned in [24], one of the two main questions
about the game is whether it can be used to prove new results about PDE,
which requires finding the right structure of PDE to work with. The curva-
ture G-equation with integrable ambient fluid flows turns out to be a good
candidate. The game formulation does allow us to make the best use of the
underlying structure that is not naturally accessible by the relatively rough
PDE approaches. See [28] and [20] for other works related to applications
of the game.

2.4 Stationary equation and reachability

As in [23], we may also consider stationary equations(
1− d div

(
Du

|Du|

))
+

|Du|+ V (x) ·Du = α. (2.5)

for a constant α ≥ 0.

Definition 2.4 u ∈ USC(Ω) is called a viscosity subsolution of equation
(2.5) provided that given ϕ(x) ∈ C2(Rn), if for x0 ∈ Ω

u(x0)− ϕ(x0) = max
x∈Ω

(u(x)− ϕ(x)),

then
F
(
D2ϕ(x0), Dϕ(x0)

)
+ V (x0) ·Dϕ(x0) ≤ α.

Definition 2.5 u ∈ LSC(Ω) is called a viscosity supersolution of equation
(2.5) provided that given ϕ(x) ∈ C2(Rn), if for x0 ∈ Ω

u(x0)− ϕ(x0) = min
x∈Ω

(u(x)− ϕ(x)),

then
F
(
D2ϕ(x0), Dϕ(x0)

)
+ V (x0) ·Dϕ(x0) ≥ α.

u ∈ C(Ω) is called a viscosity solution of (2.5) if it is both a viscosity
subsolution and a viscosity supersolution. Unlike the Cauchy problem, the
stationary problem might not have a solution with a prescribed boundary
data.

Similar to the proof of Theorem 2.1, we can prove the following compar-
ison principle.
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Theorem 2.2 Assume that α > 0 and Ω is a bounded open set. Suppose
that u1 ∈ USC(Ω) ∩ L∞(Ω) is a viscosity subsolution of equation (2.5) on
Ω and u2 ∈ LSC(Ω) ∩ L∞(Ω) is a viscosity supersolution of equation (2.5)
on Ω. If for every point x ∈ ∂Ω,

lim sup
y∈Ω→x

u1(y) ≤ lim inf
y∈Ω→x

u2(y),

then
u1(x) ≤ u2(x) for x ∈ Ω.

Lemma 2.3 Suppose α > 0 and u ∈ C(Ω) is a viscosity supersolution of
equation (2.5), then

min
x∈Ω

u(x) = min
x∈∂Ω

u(x).

Proof: By the definition of viscosity supersolution, u cannot attain min-
imum at x0 ∈ Ω. Otherwise, we can use the constant function ϕ ≡ minΩ̄ u
as the test function and obtain

0 = F (D20, D0) + V (x0) · 0 ≥ α > 0,

which is absurd. Hence our conclusion holds. □

Definition 2.6 Consider the game dynamics introduced in section 2.2. Let
S be subset of R2. We say that S is reachable from x (or x can reach
S) within time T if for every open set U satisfying S ⊂ U , there exist a
sequence of positive numbers {τm}m≥1 such that limm→+∞ τm = 0 and for
each fixed τm, player I has a U -oriented strategy Γm1 such that regardless of
how player II chooses his strategy Γ2, under strategy Γm1, player I can force
the associated game trajectory starting from x to enter U at N(m,Γm1,Γ2)-
th step (i.e., xN(m,Γm1,Γ2) ∈ U), where N(m,Γm1,Γ2) is a positive integer
depending on τm,Γm1,Γ2 and satisfying N(m,Γm1,Γ2)τ

2
m ≤ T .

Remark 2.3 To simplify notations, we usually omit the dependence of the
game trajectory (in particular, the terminal point xN ) on τ , N and the
strategy of player II. Moreover, by the above definition, it is clear that if a
point x can reach an open set U within time t1 and every point on U can
reach a set S within t2. Then the point x can reach S within time t1 + t2.

Hereafter, for any set E ⊂ Rn and t ≥ 0, we denote by Et the image of
E under the −V flow ξ̇ = −V (ξ) at time t, i.e.,

Et = {ξx(t)|x ∈ E, ξ̇x(s) = −V (ξx(s)), ξx(0) = x}.
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Lemma 2.4 Suppose that u ∈ UC(R2) is a viscosity subsolution of equation
(2.5) on R2. For x0 ∈ R2, if there exists T0 > 0 such that a bounded set S
is reachable from x0 within time T0, then

u(x0) ≤ max
y∈∪t∈[0,T0]

S̄t

u(y) + αT0.

In particular, if the set S is −V flow invariant (i.e., St = S for all t ≥ 0),
then

u(x0) ≤ max
y∈S̄

u(y) + αT0.

Proof: let w(x, t) = u(x) − αt. Then w(x, t) is a viscosity subsolution to
equation (1.2) with initial data w(x, 0) = u(x). Now let G(x, t) ∈ C(R2 ×
[0,∞)) be the unique viscosity solution to equation (1.2) with initial data
G(x, 0) = u(x). Owing to the comparison principle Theorem 2.1,

w(x, t) ≤ G(x, t).

For r > 0 and E ⊂ R2, let Dr(E) = {x ∈ R2| d(x,E) < r}. Fix r > 0.
Due to the game formulation of G(x, t) and the Definition 2.6 of reachability,
there are a sequence of positive numbers {τm}m≥1 and a sequence of positive
integers {Nm}m≥1 such that limm→+∞ τm = 0 and for each τm, player I has
a Dr(S)-oriented strategy to drive the game trajectory to enter Dr(S) at
the Nm-th step for Nmτ2m ≤ T0 regardless of how player II plays. Here
for convenience, we omit the dependence of Nm on the concrete strategy of
player II since what really matters here is the upper bound Nmτ2m ≤ T0.

Next, starting from xNm ∈ Dr(S), player I chooses η = 0 for k more steps.
Here k is the first whole number such that T0 ≥ (Nm + k)τ2m ≥ T0 − τ2m.

Let Jm be the integer part of T0
τ2m

. Then the above argument says that

player I has a strategy such that regardless of how player II plays, player I
can steer the game trajectory into

DCτ2m
(Er).

at the Jm-th step for Er = ∪0≤t≤T0(Dr(S))t.
Hence for the value function defined in (2.2), due to G(x, 0) = u(x),

uτm(x0, Jmτ2m) ≤ max
y∈D

Cτ2m
(Er)

u(y)

G(x0, T0) = lim
m→+∞

uτm(x0, Jmτ2m) ≤ max
y∈Er

u(y).

17



So
u(x0)− T0α = w(x0, T0) ≤ G(x0, T0) ≤ max

y∈Er

u(y).

Accordingly, our conclusion follows by sending r → 0. □

Lemma 2.5 Suppose that u ∈ UC(Rn) is a viscosity subsolution of equation
(2.5) on Rn. Let ξ : [0,∞) → Rn satisfy ξ̇(s) = −V (ξ(s)). Then for t1 < t2,

u(ξ(t1)) ≤ u(ξ(t2)) + α(t2 − t1).

Proof: This follows directly from the two facts below:

(1) w(x, t) = u − αt is also a viscosity subsolution of the transport
equation

wt + V (x) ·Dw = 0 subject to w(x, 0) = u(x),

(2) the unique solution tovt + V (x) ·Dv = 0

v(x, 0) = u(x)

is given by the representation formula: v(x, t) = u(ξx(t)) for ξ̇x(s) = −V (ξx(s))
subject to ξx(0) = x. □

3 Proof of Theorem 1.1

Let p ∈ Rn be a fixed unit vector. By the standard Perron’s method [13], for
any given λ > 0, the following equation has a unique continuous Zn-periodic
viscosity solution v = vλ ∈ C(Rn).

λv +

(
1− ddiv

(
p+Dv

|p+Dv|

))
+

|p+Dv|+ V (x) · (p+Dv) = 0 in Rn.

The above equation also has a comparison principle whose proof is similar
to that of Theorem 2.1. To prove Theorem 1.1, our main task will be to
show that when n = 2 and V = A(DH)⊥ is the 2D cellular flow, there exists
a positive constant H(p) such that

lim
λ→0

λvλ(x) = −H(p) uniformly on R2.
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Here we omit the dependence of H on the flow intensity A.
Throughout this section, C represents a constant depending only on d

and V . By maximum principle, it is easy to see that

max
x∈R2

|λvλ(x)| ≤ 1 + max
R2

|V |. (3.1)

We believe that the equi-continuity of the family of functions {vλ}λ>0

does not hold due to the degeneracy of the curvature term and the lack of
coercivity. Instead, we will show that

max
x,y∈R2

|vλ(x)− vλ(y)| ≤ C.

Our strategy is (1) establishing partial reachability from the associated game
dynamics based on the special structure of the cellular flow to apply Lemma
2.4 and Lemma 2.5, then (2) using the minimum value principle Lemma 2.3
to compensate for the lack of full reachability. The proof can be viewed as a
combination of Lagrangian and Eulerian approaches. The game trajectory
under player I’s strategy more or less mimics the reverse of the propagation
route of flame.

By adopting the proof of Theorem 4 in [1], we first establish the connec-
tion between G(x, t) and vλ. Combining with partial reachability, this will
lead to a negative upper bound of λvλ(x) for small λ in Corollary 3.2 later,
which allows us to apply the minimum value principle.

Lemma 3.1 Let G(x, t) be the unique solution of (1.2) with G(x, 0) = p ·x.
Suppose that there exists β > 0 such that for all (x, t) ∈ Rn × [0,∞)

G(x, t)− p · x ≤ −βt+ C.

Then

max
x∈Rn

λvλ(x) < −β

2
+ λC

Here C represents a constant depending only on d and V .

Proof: By comparing G(x, t) and p · x ± Mt for a suitable constant M
depending only on d and V , the comparison principle Theorem 2.1 implies
that

|G(x, t)− p · x| ≤ Mt for all (x, t) ∈ Rn × [0,∞).

Apparently, β ≤ M .
In addition, by periodicity of V , G(x + l⃗, t) − p · l⃗ is also a solution of

(1.2) with intial data p · x for any l⃗ ∈ Zn. Then uniqueness implies that
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G(x+ l⃗, t)− p · l⃗ = G(x, t), equivalently, G(x, t)− p · x is Zn-periodic for x.
By the assumption, we may choose T0 > 0 such that

G(x, t)− p · x ≤ −2βt

3
for (x, t) ∈ Rn × [T0,∞).

Step 1: Choose f(t) ∈ C∞([0,∞)) such that

f ′(t) ≤ −β

2

and

f(t) =

−2Mt when t ≥ 2T0

−βt
2 when t ∈ [0, T0].

Define
h(x) = min

t>0
(G(x, t)− p · x− f(t)) > −∞.

Clearly, h(x) < 0. Hence the minimum is attained for some tx ∈ (0, 2T0].
Therefore, h(x) is periodic, continuous and is a viscosity supersolution of(

1− ddiv

(
p+Dh

|p+Dh|

))
+

|p+Dh|+ V (x) · (p+Dh) =
β

2
on Rn.

Step 2: Then

hλ(x) = h(x)− min
x∈Rn

h(x)− β

2λ

is a viscosity supersolution of

λhλ(x) +

(
1− ddiv

(
p+Dhλ
|p+Dhλ|

))
+

|p+Dhλ|+ V (x) · (p+Dhλ) = 0.

Accordingly, by comparison principle,

vλ(x) ≤ hλ(x),

which implies that

max
x∈Rn

λvλ(x) ≤ −β

2
+ 2λmax

x∈Rn
|h(x)|.

Hence our conclusion holds. □
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Hereafter, we let x = (x1, x2) ∈ R2 and

V (x) = A(DH)⊥ = A(− cos(x2) sin(x1), cos(x1) sin(x2)).

for A > 0. Keep in mind that our game is using

−V (x) = A(cos(x2) sin(x1), − cos(x1) sin(x2)).

Write
Q = [0, π]× [0, π], Qµ = {x ∈ Q| H(x) > µ}

and

Γµ = {x = (x1, x2) ∈ R2| min{|x1|, |x2|, |x1 − π|, |x2 − π|} < µ}.

for µ ∈ (0, 1]. Note that Qµ is −V flow invariant.

O π

π
Q

flow of −V (x) Qµ and Γµ

ΓµQµ

π

π

O

Figure 3: Flow of −V , two domains Qµ and Γµ.

We will utilize the special structure of the cellular flow to establish reach-
ability.

Lemma 3.2 Suppose µ ∈ [0, 1). For P1 ∈ Qµ, the level curve {x ∈ Q| H(x) =
µ} is reachable from P1 within time 3

√
2. In particular, for µ > 0, ev-

ery point P2 ∈ {x ∈ Q| H(x) = µ} is reachable from P1 within time
≤ C(1 + | logµ|) for a constant C depending only on V .

Proof: First we prove the reachability to the level curve. Given the game
step size parameter τ , recall that the game dynamics is{

Xn+1 = Xn + τ
√
2dbnηn + τ2η⊥n − τ2V (Xn)

X0 = P1
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for n ≥ 0. Here ηn ∈ B1(0) = {v ∈ R2| |v| ≤ 1} and bn ∈ {−1, 1}.

Case 1: P1 ̸= (π2 ,
π
2 ). Then |DH(P1)| > 0. Player I chooses the strategy

as follows: Let X0 = P1.

At each step n ≥ 0, if H(Xn) > H(P2), player I chooses

ηn =
V (Xn)

|V (Xn)|
.

Then

η⊥n = − DH(Xn)

|DH(Xn)|
.

Then regardless of how player II moves, we have that

H(Xn+1)−H(Xn) = H
(
Xn + τbn

√
2dηn + τ2η⊥n − τ2V (Xn)

)
−H(Xn)

=
〈
DH, τbn

√
2dηn + τ2η⊥n − τ2V (Xn)

〉
+

1

2

〈
D2Hτbn

√
2dηn, τbn

√
2dηn

〉
+O(τ3)

=τ2
[
− |DH|+ d

〈
D2H

D⊥H

|DH|
,
D⊥H

|DH|

〉]
+O(τ3).

Since H(Xn) = sinx1n sinx2n for Xn = (x1n, x2n), we have

−max
R2

||D2H|| ≤
〈
D2H

D⊥H

|DH|
,
D⊥H

|DH|

〉
=

sin(x1n) sin(x2n)(cos(2x1n) + cos(2x2n) + 2)

cos(2x1n) cos(2x2n)− 1
≤ 0.

Here the negative sign is essentially due to the convexity of the level curve
of H instead of the specific form of H. So

H(Xn+1)−H(Xn) ≤ −|DH(Xn)|τ2 +O(τ3).

Let an = H(Xn). Then by Lemma 3.3,

an+1 ≤ an −
√
2(an − a2n)τ

2 +O(τ3).

This implies that the decreasing rate of an = H(Xn) when n increases is no
slower than the decreasing rate along the ODE

ṡ(t) = −
√
2s(t)(1− s(t)) with s(0) = H(P1) ∈ (0, 1),

which has a unique solution when s(t) ∈ (0, 1). Assume that s(t) > 0 for t ∈
(0, t0) and s(t0) = 0. Clearly s(t) is strictly decreasing for t ∈ [0, t0). Since
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√
2s(t)(1− s(t)) ≥

√
1− s(t) when s(t) ∈ (12 , 1) and

√
2s(t)(1− s(t)) ≥√

s(t) when s(t) ∈ (0, 12 ], we have that

t0 ≤
∫ 1

1
2

1√
1− s

ds+

∫ 1
2

0

1√
s
ds = 2

√
2.

In particular, the upper bound is independent of the value ofH(P1). Hence a

simple calculation shows that when τ is small enough, after at most n1 ≤ 3
√
2

τ2

steps, we have that
H(Xn1) ≤ µ

for the first time. In particular, d(Xn1 , {x ∈ Q| H = µ}) ≤ Cτ . Hence by
Defintion 2.6, the needed time to reach the level curve T1 ≤ 3

√
2.

Figure 4: Game trajectory of Lemma 3.2.

Case 2: P1 = (π2 ,
π
2 ). First travel a little bit away from P1. Choose r > 0

such that maxBr(P1)
|V | ≤ 1

4 . Then player I can use the exit strategy as in

the proof of Lemma 2.1. It is easy to see that player I could reach ∂Br(P1)
within time Cr2. Then it goes to Case 1.

Next we show the reachability to every point P2 on the level curve
{x ∈ Q| H(x) = µ}. After the game trajectory reaches the level curve ,
player I can just choose η = 0, i.e., follow the −V flow to travel along the
level curve to reach every point P2 on the curve. When µ is close to 1, the
traveling time around the level curve is near 2π. When µ is close to 0, the
traveling time is bounded by O(| logµ|). Hence the conclusion holds. □
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Remark 3.1 The reachability established in the above lemma is only one
way: P1 is NOT reachable from P2 if H(P1) is close to 1 since the curvature
on the level curve will become very big and surpass 1. This is different from
the invicid case (d = 0) where two points are mutually reachable.

Lemma 3.3 For x = (x1, x2) ∈ [0, π]× [0, π],

|DH(x)| ≥
√

2(H(x)−H2(x)).

Proof: A direction computation shows that

|DH(X)| =
√

sin2 x1 + sin2 x2 − 2 sin2 x1 sin
2 x2

≥
√

2 sinx1 sinx2 − 2 sin2 x1 sin
2 x2

=
√

2(H(x)−H2(x)).

□

We would like to point out that the convexity of level sets of H and the
above inequality provide technical convenience in the proof, but they are not
essential in obtaining the existence of H(p). See Section 4 for more details.

Lemma 3.4 There exists µ0 > 0 and T0 > 0 depending only on d and V
such that the set Q2µ0 is reachable from every point x ∈ Γµ0 within time T0.

Proof: It is enough to prove the above conclusion when Γµ0 is replaced
by the set

Aµ0 =

[
−µ0,

2π

3

]
× [−µ0, µ0]

since the proof for other pieces are similar and we can just choose the smallest
µ0.

Step 1: We first consider points near the corner O = (0, 0). For α > 0,
set

Ωα = (α, 1)×
(
−1

2
,
1

2

)
.

Note that V (x) · (1, 0) = 0 for all x ∈ {0} × R. By applying Lemma 5.3 for
S = (0, 1) ×

(
−1

2 ,
1
2

)
and Ω = Ωα, we have that there is α1 > 0 such that

Ω2α1 is reachable from every point x ∈ [−α1, α1]
2 within time 1.

Step 2: Next we look at points on the line segment

L1 =

{
(x1, 0)| x1 ∈

[
α1

2
,
2π

3

]}
.
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By applying Lemma 5.3 for S = Q and Ω = Qµ, we deduce that there is
µ0 ∈ (0, α1

2 ) such that Q2µ0 is reachable by every x ∈ L1,µ0 = L1 × [−µ0, µ0]
within time 1.

Step 3: Next, given a point P1 ∈ [−α1, α1]
2, by step 1, player I has a

strategy to push the game trajectory to some point P2 ∈ Ω2α1 within time
1. If P2 /∈ L1,µ0 , then |H(P2)| ≥ sinµ0 sin(2α1). Hence, by Lemma 3.2, P2

can reach L1,µ0 within time t1. Thus by step 2, P1 can reach Q2µ0 within
time 1 + 1 + t1 = 2 + t1.

1 2π
3O

1
2

1
2

α1 2α1

Q2µ0

Ω2α1

x1

P1

P2

x2

Figure 5: Game trajectory of Lemma 3.4.

Accordingly, every point on Aµ0 ⊂
(
[−α1, α1]

2 ∪ L1,µ0

)
can reach Q2µ0

within time 2 + t1. Note that µ0 (hence t1 as well) depends only on d and
V .

□

Given a point X0 = (a0, b0) and δ̃ > 0, let γ(s) ∈ C([0, 1],R2) be a
continuous simple curve satisfying

γ((0, 1)) ∈ (a0 − δ̃, a0 + δ̃)× (−∞, b0)

and γ(0) · (1, 0) = a0 − δ̃, γ(1) · (1, 0) = a0 + δ̃. Write

Jr =

(
a0 −

δ̃

2
, a0 +

δ̃

2

)
×
(
b0 + r, b0 + r + r′

)
for some r, r′ > 0. Note that the curve γ divides the strip [a0− δ̃, a0+ δ̃]×R
into two connected components I1 and I2. Let I1 be the lower component.
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Lemma 3.5 Given a point x = (x1, x2) ∈ I1, if x can reach Jr within

t0 ≤ δ̃
3M , then x can also reach γ([0, 1]) within t0. Here M = 1+maxR2 |V |.

Proof: According to Definition 2.6 of the reachability, player I has a
Jr-oriented strategy to move the game trajectory into Jr within time t0
regardless of how player II responses. Let U be an open set such that
γ([0, 1]) ⊂ U and

ν = d(γ([0, 1]), ∂U) < 1.

We claim that the corresponding game trajectory of player I’s Jr-oriented
strategy with a game step size parameter τ < ν

M+d must enter U before it
arrives at Jr. If not, then at some moment t1 < t0, the game trajectory
arrives at

{x = (x1, x2)| |x1 − a0| > δ̃}.

Without loss generality, we assume that it arrives at {x1 < a0 − δ̃}.

(a0, b0)(a0 − δ̃, b0) (a0 + δ̃, b0)

δ̃
2

δ̃
2

Jr

r

I2

I1

γ

(x1, x2)

Figure 6: Game trajectory of Lemma 3.5.

Then player II can simply employ the strategy: at each step n, after play I
picks the direction ηn, player II chooses the sign bn such that

bnηn · (1, 0) ≤ 0.

Then the only remaining force that can push the game trajectory to move
along the positive horizontal direction is the mean burning speed 1 and the

flow −V . Therefore, it will take the game at least δ̃
2M time to reach Jr.

Since t0 ≤ δ̃
3M < δ̃

2M , this is a contradiction. □

26



Corollary 3.1 For any 0 < θ < π
8 , every point in the set

Zθ = ((θ, π − θ)× [0, π]) ∪ ([0, π]× (θ, π − θ))

is reachable from the center P0 = (π2 ,
π
2 ) within time tθ depending only on θ,

V and d.

Proof: Let M = 1+maxR2 |V |. Due to symmetric structure and Lemma
3.2, it suffices to show that for some δθ > 0, every point in the set

Sθ =
(
[θ, π − θ]×

[
0,

π

2

])
∩ {0 ≤ H < δθ}

is reachable from P0 within time tθ depending only on θ, V and d.
By applying Lemma 5.3 for S =

(
3θ
8 ,

5θ
8

)
×
(
− θ

4 , 0
)
and

Ωm =

(
3θ

8
,
5θ

8

)
×
(
− 1

m
− θ

4
, − 1

m

)
we can show that there exist m ∈ N and Xm = ( θ2 ,

1
m) such that 1

m < θ
4 and

every point x ∈ B 1
4m

(Xm) can reach Ωm within time θ
12M . Now fix m and

set

δθ =
1

2
min

x∈B 1
4m

(Xm)
H(x).

Applying Lemma 3.5 with δ̃ = θ
4 to level curves of the stream function H

within the strip
[
θ
4 ,

3θ
4

]
× R, we deduce that for any µ ∈ [0, δθ], every point

on B 1
4m

(Xm) can reach the curve

ξµ = {H = µ} ∩
([

θ

4
,
3θ

4

]
×
(
−∞,

π

2

])
within time θ

12M .
Next we show that every point on Sθ is reachable from P0.
In fact, suppose that P1 ∈ Sθ. Let µ1 = H(P1) ∈ [0, δθ).
Step 1: Thanks to Lemma 3.2, P0 can reach Xm within time t1. By the

definition of reachability, the game trajectory can arrive at some point in
Y1 ∈ B 1

4m
(Xm) within t1.

Step 2: By the above discussion and the definition of reachability, start-
ing from Y1, for any k ≥ 2 ∈ N, the game trajectory can arrive at a point
Yk such that d(Yk, ξµ1) <

1
k within time t2 =

θ
12M .
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Step 3: Starting from Yk, at each step n, player I chooses ηn = 0 (i.e.,
just following the flow −V ). Then within time t3, the game trajectory will
arrive at some point as close to P1 as we want when k → +∞. Note that
|V | has a positive lower bound depending on θ on

(
[ θ4 , π − θ]×

[
0, π2

])
. So

t3 has a upper bound depending only on θ and V .

Hence P0 can reach any neighborhood of P1 within time t1+t2+t3. Note
that each ti depends only on θ, V and d.

O θ
4

θ
2

3θ
4

θ

1
m

− 1
m

Sθ
x1

x2

Xm

1
4m

P0

P1

Y1

Yk

Figure 7: Game trajectory of Corollary 3.1.

□

Recall that Q = [0, π]2. Consider the interior of four cells in [−π, π]2:
U1 = (0, π)× (0, π), U2 = U1− (π, 0), U3 = U1− (0, π) and U4 = U1− (π, π).
Clearly, by similar proofs, the corresponding versions of previous results on
U1 could also be established for Ui (i = 2, 3, 4).

Below is a transition property from one cell to another.

Lemma 3.6 There exists β > 0 depending only on d and V such that every
point P ∈ U1 can reach the set Ui within time β for i = 2, 3, 4.

Proof: It suffices to prove this for U2. The others are similar. Fix P ∈ U1.
Choose µ0 from Lemma 3.4 that works for the corresponding statements for
all four cells in [−π, π]2. Choose the largest µ̃ ∈ (0, µ0) such that

{x ∈ Q| H(x) ≤ µ̃} ⊂ Γµ0 .
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Case 1: If H(P ) ≥ µ̃, by Lemma 3.2, P can reach at some point

P1 ∈ J =

{
x ∈ Q| µ̃

2
< H(x) < µ̃

}
within time t1. Then by following the flow −V , P1 can reach a point P2 ∈
J ∩ ((0, µ0)× (0, π)) within time t2. Since

(0, µ0)× (0, π) ⊂ Γµ0 − (π, 0),

P2 can reach U2 within time T0 by applying Lemma 3.4 to U2.

Case 2: If H(P ) < µ̃, then P ∈ Γµ0 . Owing to Lemma 3.4, P can arrive
at some P̃1 ∈ Q2µ0 within time t3 , which goes back to case 1.

In the above, t1, t2 and t3 depend only on d and V . Let β = t1 + t2 +
t3 + T0. □

U1U2

P

−π

π

π x1

x2

µ0O

P1

P2

Figure 8: Case 1 game trajectory of Lemma 3.6.

Figure 9: Case 2 game trajectory of Lemma 3.6.
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□

Lemma 3.7 Let p ∈ R2 be a unit vector and G(x, t) be the unique solution
of (1.2) with G(x, 0) = p · x. Then there exists γ > 0 depending only on d
and V such that

G(x, t)− p · x ≤ −γt+ C.

Proof: Since |p| = 1, without loss of generality, we may assume that
p · (1, 0) > 1

2 . Owing to the above Lemma 3.6, there exists β > 0 such that,
starting from any point x ∈ Q = [0, π]2, player I can design a strategy so that
it takes at most 2β time to move the game trajectory into U1 + (−2π, 0).
Using periodicity, staring from any point x ∈ Q, in time t, player I can
design a strategy to move the game trajectory into U1 + (−2πk, 0) for some
k ≥ t

2β − 1 within time t. Since U1 + (−2πk, 0) is −V flow invariant, when
the game trajectory arrives at U1 + (−2πk, 0), if needed, player I can just
choose η = 0 until time t. Accordingly, by the game theory formulation, we
have that

G(x, t) ≤ max
y∈Q+k(−2π,0)

p · y ≤ −kp · (2π, 0) + C ≤ −γt+ C.

for γ = π
2β . □

Combining with Lemma 3.1, we deduce that

Corollary 3.2 When λ is small enough,

max
x∈R2

λvλ(x) ≤ −γ

2
.

In particular, v = vλ is a viscosity supersolution of(
1− ddiv

(
p+Dv

|p+Dv|

))
+

|p+Dv|+ V (x) · (p+Dv) =
γ

2
> 0, in R2.

Here γ is from the previous Lemma 3.7.

Let O1 = (0, 0), O2 = (1, 0), O3 = (1, 1) and O4 = (0, 1).

Lemma 3.8 Let uλ(x) = p · x+ vλ(x). Then

max
(x,y)∈[−π,π]2

|uλ(x)− uλ(y)| ≤ C

for a constant C depending only on V and d.
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Proof: Owing to (3.1), uλ is always a viscosity subsolution of

F (D2uλ, Duλ) + V (x) ·Duλ = 1 +max
R2

|V (x)| in R2.

Throughout the proof, Cµ represents various constants depending only on
d, V and a given parameter µ.

Step 1: We first establish the difference bound within Qµ for any given
µ ∈ (0, 1). Note that the level curve {x ∈ Q| H(x) = µ} is flow invariant.
When µ is close to 1, the traveling time around the level curve is near 2π.
When µ is close to 0, the traveling time is bounded by O(| logµ|).

Owing to Lemma 3.2, Lemma 2.4 and Lemma 2.5, we have that

1. For every point x ∈ ∂Qµ and every point y ∈ Qµ, uλ(x) ≥ uλ(y)−Cµ.
Accordingly,

min
x∈∂Qµ

uλ(x) ≥ max
x∈Qµ

uλ(x)− Cµ.

2. By Corollary 3.2 and the minimum value principle Lemma 2.3,

min
x∈∂Qµ

uλ(x) = min
x∈Qµ

uλ(x).

Accordingly,

max
x∈Qµ

uλ(x)− min
x∈Qµ

uλ(x) = max
x,y∈Qµ

|uλ(x)− uλ(y)| ≤ Cµ. (3.2)

Step 2: Recall the four cells in [−π, π]2: U1 = (0, π) × (0, π), U2 =
U1 − (π, 0), U3 = U1 − (0, π) and U4 = U1 − (π, π). Let P0 = (π2 ,

π
2 ),

q1 = (0, 0), q2 = −(π, 0), q3 = −(0, π) and q4 = −(π, π). Then the above
(3.2) also holds when Qµ is replaced by Qµ + qi for 1 ≤ i ≤ 4.

Let µ0 be the number from Lemma 3.4 that works for all four cells.
Combining with corresponding versions of Corollary 3.1 in all four cells,
Q2µ0 + qi is reachable by P0 + qj for 1 ≤ i, j ≤ 4 within time T0 depending
only on d and V . Since Q2µ0 + qi are flow invariant, owing to Lemma 2.4
and (3.2) from Step 1, we deduce that for 1 ≤ i, j ≤ 4

|uλ(P0 + qi)− uλ(P0 + qj)| ≤ C. (3.3)

By employing (3.2) in all cells, we actually have that for any µ ∈ (0, 1],

|uλ(x)− uλ(y)| ≤ Cµ (3.4)

for x, y ∈ ∪1≤i≤4(Qµ + qi).
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Step 3: It remains to take care of regions near {H = 0} since Cµ → +∞
as µ → 0. Owing to Corollary 3.1, there exists t̃1 such that every point (1, d)
for d ∈ [0, 1] is reachable from P0 within time t̃1.

For d ∈ [0, 1], let ξd : [0,∞) → R2 be the −V flow starting from (1, d),
i.e., ξ̇d(s) = −V (ξd(s)) subject to ξd(0) = (1, d). Write ξ0(t̃1) = (π− 2ν0, 0).
Fix 0 < α0 ≤ min{µ0, ν0}. Clearly, there exists d0 ∈ (0, µ0) such that for all
d ≤ d0,

ξd([0,∞)) ∩ ({π − α0} × [0, 1]) = ξd(sd)

for some sd ≥ t̃1. Let
(π − α0, β0) = ξd0(sd0).

By choose d0 small enough, we may assume that β0 ≤ α0.

O π

π

x1

x2

1

d0

P0

π − α0

β0

Figure 10: d0, β0 and α0.

Due to Lemma 2.4, for all d ≤ d0,

uλ(P0) ≤ max
t∈[0,t̃1]

uλ(ξd(t)) + C.

Combining with Lemma 2.5, for all s ∈ [0, 1],

uλ(P0) ≤ uλ(π − α0, sβ0) + C.

By looking at other cells and using (3.3), we can find common β0 ≤ α0 ∈
(0, µ0) such that

uλ(P0) ≤ min{uλ(x)| x ∈ J1 ∪ (−J1) ∩ J2 ∩ (−J2)}+ C.

Here J1 = {π − α0} × [−β0, β0] and J2 = [−β0, β0]× {α0}.
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x1

x2

P0

O π

π

−π

−π

J2

−J2

J1−J1

x1

x2

P0

O π

π

−π

−π O
R0

Figure 11: Ji and R0.

Combining with Lemma 3.4, Lemma 2.4, the flow-invariance of Qµ and
(3.4), we have that

uλ(P0) ≥ max{uλ(x)| x ∈ J1 ∪ (−J1) ∩ J2 ∩ (−J2)} − C.

Now consider the rectangle R0 = [−π + α0, π − α0] × [−α0, α0]. Thanks to
(3.4) and the above argument, we have that

max
x∈∂R0

|uλ(P0)− uλ(x)| ≤ C.

Again, combining with Lemma 3.4, Lemma 2.4, the flow-invariance of Qµ

and (3.4),
uλ(P0) ≥ max

x∈R0

uλ(x)− C.

Finally, applying the minimum value principle Lemma 2.3 on R0, we have
that

min
x∈R0

uλ(x) = min
x∈∂R0

uλ(x) ≥ uλ(P0)− C.

Accordingly, combining all the inequalities above, we derive that

max
x∈R0

|uλ(P0)− uλ(x)| ≤ C.

By applying this to other cells and edges (see Fig. 12 below), we have that

max
x∈Γα0

|uλ(P0)− uλ(x)| ≤ C.

Similar conclusion also holds in other cells. Combining with (3.4), the lemma
holds. □

33



x1

x2

P0

O π

π

−π

−π O π 2π

π

Figure 12: Corresponding versions of R0 on other edges.

According to the above Lemma 3.8, standard arguments lead to

Corollary 3.3 For any unit vector p, there exists H(p) ∈ R such that

lim
λ→0

λvλ(x) = −H(p) uniformly in R2.

In particular, there exists a Z2-periodic v ∈ USC(R2) that is a viscosity
subsolution of

F (D2v, p+Dv) + V (x) · (p+Dv) = H(p)

and a Z2-periodic v ∈ LSC(R2) that is a viscosity supersolution of

F (D2v, p+Dv) + V (x) · (p+Dv) = H(p).

Also,
sup
x∈R2

{|v(x)|, |v(x)|} < C0

for a constant C0 depending only on d and V .

Proof: The argument of the existence of the limit is similar to the proof of
(3) in the following lemma. Let

v(x) = lim sup
λ→0,y→x

(vλ(y)− vλ(0))
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and
v(x) = lim inf

λ→0,y→x
(vλ(y)− vλ(0)).

It is easy to see that our conclusion holds. □

Lemma 3.9 Below are several properties of H.
1. for λ > 0,

H(λp) = λH(p);

2.
H(p) > 0 for p ̸= 0;

3.
H(p) ∈ C(R2).

Proof: (1) is obvious from the definition of vλ. (2) follows from Corollary
3.2. (3) follows from the standard stability of viscosity solutions. For the
reader’s convenience, we present details of the proof. Fixed a unit vector
p. We argue by contradiction. If not, without loss of generality, we may
assume that there exist a sequence of unit vectors {pm}m≥1 such that for
limm→+∞ pm = p and for all m ≥ 1

H(pm) ≥ H(p) + r

for some r > 0. Owing to Corollary 3.3, for each m ≥ 1, let vm ∈ LSC(R2)
be a Z2-periodic viscosity supersolution of

F (D2vm, pm +Dvm) + V (x) · (pm +Dvm) = H(p) + r

and
sup
x∈R2

|vm(x)| ≤ C0

with the constant C0 from Corollary 3.3. Let

v(x) = lim inf
m→+∞,y→x

vm(y).

Then v(x) ∈ LSC(R2) is a Z2-periodic viscosity supersolution of

F (D2v, p+Dv) + V (x) · (p+Dv) = H(p) + r.
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Also by Corollary 3.3, there is v ∈ USC(R2) that is a Z2-periodic viscosity
subsolution to

F (D2v, p+Dv) + V (x) · (p+Dv) = H(p).

Write u = p · x+ v and u = p · x+ v. Then u is a viscosity supersolution of

F (D2u,Du) + V (x) ·Du = H(p) + r

and u is a viscosity subsolution of

F (D2u,Du) + V (x) ·Du = H(p).

Let

wδ(x, y) = u(x)− u(y)− |x− y|4

δ
.

Due to the periodicity of v and v, we can find (xδ, yδ) ∈ R2 × R2 such that

wδ(xδ, yδ) = max
x,y∈R2

wδ(x, y).

It is easy to see that

lim
δ→0

wδ(xδ, yδ) = max
x∈R2

(v − v) and lim
δ→0

|xδ − yδ|4

δ
= 0. (3.5)

Owing to Theorem 3.2 and Remark 3.8 in [13], there are two 2×2 symmetric
matrices X and Y such that

X ≤ Y, ||X||+ ||Y || ≤ C
|xδ − yδ|2

δ

and for p̄ = 4(xδ − yδ)
|xδ−yδ|2

δ

F (X, p̄) + V (xδ) · p̄ ≤ H(p)

F (Y, p̄) + V (yδ) · p̄ ≥ H(p) + r.

Also,

|(V (xδ)− V (yδ)) · p| ≤
C|xδ − yδ|4

δ
.

Accordingly,

F (X, p̄)− F (Y, p̄) ≤ C|xδ − yδ|4

δ
− r.
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Case 1: If xδ − yδ = 0, then X = Y = 0. We have that

0 = 0− 0 ≤ −r,

which is impossible.

Case 2: If xδ − yδ ̸= 0. Then

F (X, p̄)− F (Y, p̄) = F (X, p̄)− F (Y, p̄) ≥ 0,

we obtain

0 ≤ C|xδ − yδ|4

δ
− r.

Owing to (3.5), as δ → 0, we have

0 ≤ −r,

a contradiction. □

Proof of Theorem 1.1 Let v and v be functions from Corollary 3.3.
Then by comparison principle Theorem 2.1,

p · x+ ϵ
(
v
(x
ϵ

)
− C0

)
−H(p)t ≤ Gϵ(x, t) ≤ p · x+ ϵ

(
v
(x
ϵ

)
+ C0

)
−H(p)t

and

p · x+ v(x)− C0 −H(p)t ≤ G(x, t) ≤ p · x+ v(x) + C0 −H(p)t.

for the constant C0 from Corollary 3.3. The conclusion follows immediately.
□

Remark 3.2 For application purposes, people are interested in deriving ex-
plicit formulas of the effective burning velocity under the G-equation model
(see [22] for instance). Although a simple formula is mathematically not
available, it might be practically interesting to investigate more detailed prop-
erties of H(p) (e.g., its anisotropy due to the presence of the fluid) in addi-
tion to its dependence on physical parameters. These kind of problems often
require methods deeper than those standard PDE approaches in Lemma 3.9.
For instance, questions in this aspect have been studied in [21] and [39] for
the case vn⃗ = a(x) (e.g., phase transition in an inhomogeneous medium
without considering curvature effect) using tools from dynamical systems.
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A conclusion from results there is that in 2D, a polygon could be an effec-
tive front if and only if it is centrally symmetric with rational vertices and
nonempty interior. So different distributions of defects and heterogeneities
can change the evolution significantly, which could have an important prac-
tical implication [12].

Remark 3.3 A natural question is whether our result can be proved by pure
PDE or geometric approaches as in previous literature. For this aspect, The-
orem 10.2 in [5] seems relevant. Checking Assumption B” there (if it holds)
might need to evolve Qµ by properly combining the motion law and the V
flow. It is not clear to us how to arrange the motions to reach a stationary
supersolution (basically a large V -flow invariant set in our context) within
finite time. Game theoretical method provides more flexibility to handle de-
tailed local structures. For instance, the non-divergence inviscid example
in section 11.2 of [5] relying on Theorem 10.2 for 2D can be proved for
all dimensions via control formulation using full reachability or partially
reachability + minimum value principle as in this paper. See [43] for more
applications of game theory in homogenization of non-coercive non-convex
G-equations.

4 Extension to general 2D incompressible flows

In this section, we will briefly explain how to possibly modify our methods to
cover more general 2D incompressible flows. Assume that V = (−Hx2 , Hx1)
for a general periodic stream function H. For simplicity, we just discuss two
representative scenarios and the corresponding adjustments of our methods.

Case 1: Non-convex cells. In general, the level curves ofH might consist
of convex and concave parts (relative to a fixed cell).

P P

γ1

γ2

X

Figure 13: Move forward within a non-convex cell.
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• Movement within a cell (extension of Lemma 3.2). Starting from a
level curve γ1, the game trajectory can move forward on the convex part
(or near flat part) of γ1 using a modified version of Lemma 5.3 to arrive at
another level curve γ2, then travel along γ2 to its convex parts (or near flat
parts) in order to further move forward.

• Movement to reach the boundary and adjacent cells (extension of
Lemma 3.4 and Corollary 3.1). Starting from the center critical point P
in the cell U0, player I aims to drive the game trajectory to travel to a
point W2 that is very close to a concave portion of the boundary. As in
this paper, we need to control the amount of travel time. Since the game
trajectory might not be able to cross the boundary on the concave portion,
it can first move to a point W1 near (but not very close to) the convex part
of the boundary. Next use a modified version of Lemma 5.3 to reach W3 in
the adjacent cell U1. Then follow the flow −V to a point W4 that is close
(but not too close) to the concave part of the boundary of U0 and move back
to U0 based on a modified version of Lemma 5.3, and finally travel to W2

along the flow −V .
Other lemmas and conclusions in this paper can be extended similarly.

P

W1

W3

W2

U0
U1

W4

Figure 14: Move to points near the boundary and to an adjacent cell.

Case 2: Cat’s-eye types. For simplicity, we look at the following repre-
sentative example

H(x1, x2) = sinx1 sinx2 + δ cosx1 cosx2

for δ ∈ (0, 1). The picture consists of islands (e.g. shaded regions I1, I2 in
figure below) and unbounded periodic orbits of −V flow (e.g. regions J1, J2
in the figure below).
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I2

I1

J1

J2

Figure 15: Cat’s-eye type flows.

Step 1: By similar arguments in this paper and possible extensions as in
the above Case 1 together with periodicity, there exist constants c̄1, c̄2, c1
and c2 such that for i = 1, 2, limλ→0 λuλ = c̄i in the unbounded region Ji
and limλ→0 λuλ = ci within Ii.

Step 2: By partial reachability (from I1, I2 to J1 and J2 due to convexity
of the boundary of Ii), we have that c1, c2 ≤ c̄1, c̄2.

Step 3: Note that for (x1, x2) near (0, 0),

H(x1, x2) = x1x2 + δ

(
1− x21

2
− x22

2

)
+O(x41 + x42).

It is not hard to see that the curvature of H(x1, x2) = δ (the boundary of
islands) tends 0 when approaching saddle points (inflection points). There-
fore, starting from some regions of J1 or J2, player I can move the game
trajectory into those islands through portions of the boundary near saddle
points. Accordingly, we have that c1 = c2 = c̄1 = c̄2.

For other cat’s-eye type flows, it could happen that one island I is uni-
formly convex and, hence, game trajectories might not be able to enter it
from unbounded domains when the Markstein diffusivity d is large. For this
case, game trajectories can still enter islands adjacent to I and the minimum
value principle will lead to the same conclusion. One such example is

H(x1, x2) = x21 − x22 − 2x31 + x41 for (x1, x2) near (0, 0).

Here H = 0 implies x2 = x1 − x21 or x2 = −x1 + x21 near (0, 0).
We expect that the effective burning velocity should exist for quite

general 2D incompressible flows, at least if all critical points H are non-
degenerate where the flow structure is well-understood and essentially the
combination of case 1 and case 2 (see [3]). The main challenge is how to
find an efficient systematic proof without examining all possible scenarios.
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For non-smooth flows (H ∈ C1,1, or equivalently V is only Lipschitz contin-
uous) or flows with degenerate stagnation points, the analysis appears more
complicated. We plan to investigate this issue in the future.

Remark 4.1 Our proof of Theorem 1.1. suggests a general framework based
on the one sided reachability of game trajectories and the minimum value
principle of suitable stationary problems. The former is a separate dynamical
system issue that has to be verified for a given flow field V, be it periodic,
almost periodic or random. If it is true or almost surely true, the remaining
PDE argument extends and the existence of effective front speed might be
established in interesting non-periodic settings.

5 Appendix

It is well known that the front propagation under the viscosity solution
framework is consistent with the classical meaning when the smooth solu-
tions exist. See section 6 in [16] for instance. The following conclusion is a
special case in our context, which is needed to derive a reachability prop-
erty. For the reader’s convenience, we present its proof here in 2D, which is
sufficient for our purpose.

Throughout this section, we only assume that V ∈ W 1,∞(R2) and

V (x) · (1, 0) = 0 for x ∈ {0} × [0, 1]. (5.1)

Let S = (0, 1)2 and

gS(x) =

− 2
π arctan(d(x, ∂S)) for x ∈ S

2
π arctan(d(x, ∂S)) otherwise.

Here d(x, ∂S) is the distance from x to ∂S.

Lemma 5.1 Suppose that G ∈ C(R2 × [0,∞)) is the unique viscosity solu-
tion to equation (1.2) subject to

G(x, 0) = gS(x).

Then for a given δ ∈ (0, 12), there exists tδ > 0 depending only on d, V and
δ such that

G((0, θ), t) < 0 for (θ, t) ∈ [δ, 1− δ]× (0, tδ].
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Proof: Intuitively, this conclusion is obvious since the speed along the
normal direction n⃗ = (−1, 0) at the point (0, θ) is

vn⃗ = 1− dκ+ V (x) · n⃗ = 1.

To make this rigorous, we need to build smooth supersolutions and employ
comparison principle. It suffices to prove this at a fixed θ ∈ [δ, 1− δ].

Step 1: Choose an ellipse. Consider the ellipse

Eθ(t) :
(x1 − a0 − ν)2

a2(t)
+

(x2 − θ)2

b2(t)
= 1.

Here ν ∈ (0, a0) is added for technical convenience and will be sent to zero
later.

(0, θ)

S

t = 0

(0, θ)

SR0

0 < t ≤ t0

Figure 16: Propagation of the ellipse.

Let b0 =
δ
2 . Then choose a0 ∈ (0, b04 ) small enough such that

|V (x) · (1, 0)| < 1

8
if x ∈ [−4a0, 4a0]× [0, 1]

and
d64a0
b20

+ 4M0

√
3
a0
b0

<
1

8
.

Here M0 = maxx∈R2 |V (x)|.
Then we define a(t) = a0 +

1
2 t and b(t) = b0 − Lt for L > 0 satisfying

1

2
− 3La0

4b0
< 1− db0

a02
−M0.
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Hereafter we require 0 ≤ t ≤ tδ for tδ = min
{
2a0,

b0
2L

}
, which implies that

(a(t), b(t)) ∈ [a0, 2a0]×
[
b0
2
, b0

]
and

Eθ(t) ⊂ R0 = [−4a0, 4a0]× [0, 1]

for t ∈ [0, tδ]. Also, 4a0 < b0 leads to

a(t) < b(t) for all t ∈ [0, tδ].

For convenience, we drop the dependence of a and b on t. Hereafter
t ∈ [0, tδ] unless specified otherwise. Let n⃗ be the outward unit normal
vector along Eθ(t) that has the following parameterization: for ϕ ∈ [0, 2π]{

x1 = a0 + ν + a cosϕ

x2 = θ + b sinϕ.

Then

V · n⃗ = V ·

(
b cosϕ√

a2 sin2 ϕ+ b2 cos2 ϕ
,

a sinϕ√
a2 sin2 ϕ+ b2 cos2 ϕ

)
.

If | sinϕ| <
√
3
2 ,

|V · n⃗| ≤ |V (x) · (1, 0)|+M0 · a sinϕ√
a2 sin2 ϕ+b2 cos2 ϕ

≤ |V (x) · (1, 0)|+M0 · a
b · | tanϕ|

≤ |V (x) · (1, 0)|+M0 · 2a0
b0/2

·
√
3

= |V (x) · (1, 0)|+ 4
√
3M0 · a0

b0
< 1

8 + 1
8 = 1

4 .

(5.2)

Step 2: Evolution of an elliptic boundary. Let us recall some basic
facts. Given a C1 function f(x, t) and the family of level curves

C(t) = {x ∈ R2 |f(x, t) = 0},

if Dxf ̸= 0, the propagation speed of C(t) along the outward normal direc-
tion n⃗ = Dxf

|Dxf | is given by

vn⃗ = − ft
|Dxf |

,
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which can be easily derived through the chain rule. Moreover, the corre-
sponding mean curvature along C(t) is

κ = divx(n⃗).

Now let us verify that for t ∈ [0, tδ], the propagation of Eθ(t) obeys the
following inequality:

vn⃗ < 1− dκ+ V · n⃗, (5.3)

which will be used to construct a supersolution. Fix any a, b > 0 and an
ellipse

x21
a2

+
x22
b2

= 1,

direct compuations show that its curvature at point P (a cosϕ, b sinϕ), 0 ≤
ϕ < 2π, is

κ =
ab(

a2 sin2 ϕ+ b2 cos2 ϕ
) 3

2

and the normal velocity at P (a cosϕ, b sinϕ) is

vn⃗ =
a′b cos2 ϕ+ ab′ sin2 ϕ√
a2 sin2 ϕ+ b2 cos2 ϕ

.

Case 1. If | sinϕ| ≤
√
3
2 , then

dκ =
dab(

a2 sin2 ϕ+ b2 cos2 ϕ
) 3

2

≤ dab

(b2 cos2 ϕ)
3
2

≤ dab

(b/2)3
≤ d64a0

b20
<

1

8
.

Note that

vn⃗ =
b
2 cos

2 ϕ− La sin2 ϕ√
a2 sin2 ϕ+ b2 cos2 ϕ

≤
b
2 cos

2 ϕ√
b2 cos2 ϕ

≤ 1

2
.

Since for t ∈ [0, tδ],
Eθ(t) ⊂ [−4a0, 4a0]× [0, 1],

(5.2) implies that vn⃗ ≤ 1
2 < 1− 1

8 − 1
4 < 1− dκ+ V · n⃗.

Case 2. If | sinϕ| ≥
√
3
2 , then

vn⃗ =
b
2 cos

2 ϕ− La sin2 ϕ√
a2 sin2 ϕ+ b2 cos2 ϕ

≤
b
2 cos

2 ϕ√
b2 cos2 ϕ

− La sin2 ϕ

b

≤ 1

2
− 3La

4b
≤ 1

2
− 3La0

4b0
.
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Meanwhile,

dκ =
dab(

a2 sin2 ϕ+ b2 cos2 ϕ
) 3

2

≤ db

a2
≤ db0

a02
.

Therefore, due to the choice of L, we have vn⃗ < 1− dκ+ V · n⃗.
Combining case 1 and case 2, we see that (5.3) holds, i.e., the evolution

of Eθ(t) satisfies

vn⃗ < 1− dκ+ V · n⃗, for 0 ≤ t ≤ tδ.

Step 3: Comparison. Let

Ψ(x, t) =
(x1 − a0 − ν)2

a2(t)
+

(x2 − θ)2

b2(t)
− 1.

Owing to (5.3), we may choose µ0 ∈ (0, 12) such that (5.3) also holds
along the curve {x ∈ R2| Ψ(x, t) = µ} for all µ ∈ [−µ0, µ0] and t ∈ [0, tδ].
Equivalently, for

Dθ =
{
(x, t) ∈ R2 × [0, tδ] | − µ0 ≤ Ψ(x, t) ≤ µ0

}
,

Ψt +

(
1− d div

(
DΨ

|DΨ|

))
|DΨ|+ V (x) ·DΨ ≥ 0 on Dθ. (5.4)

Let {hk}k≥1 ∈ C∞(R) be a sequence of functions such that

0 < h
′
k ≤ 1 in Ik =

(
−µ0 +

1

k
, µ0 −

1

k

)
, h

′
k = 0 in R\Ik

and limk→+∞ hk(s) = h(s) uniformly in R, where

h(s) =


µ0 for s ≥ µ0

s for s ∈ [−µ0, µ0]

−µ0 for s ≤ −µ0.

Apparently, Ψk(x, t) = hk(Ψ(x, t)) satisfies

∂Ψk

∂t
+

(
1− d div

(
DΨk

|DΨk|

))
|DΨk|+ V (x) ·DΨk ≥ 0 on R2 × (0, tδ).

(5.5)

45



By stability, we have that G1(x, t) = h(Ψ(x, t)) ∈ W 1,∞(R2 × [0,∞)) is a
viscosity supersolution of

∂G1

∂t
+

(
1− d div

(
DG1

|DG1|

))
|DG1|+ V (x) ·DG1 ≥ 0 on R2 × (0, tδ).

(5.6)
Since (a)+ ≥ a, G1 = G1(x, t) is also a viscosity supersolution of equation

(1.2) on R2 × (0, tδ).
Because for fixed ν > 0

{G1(x, 0) ≤ 0} = {Ψ(x, 0) ≤ 0} ⊂ S,

we can choose a function ξ ∈ C∞(R) such that ξ̇ > 0, ξ(0) = 0, sups∈R |ξ(s)| <
∞ and

g(x) ≤ ξ(G1(x, 0)).

Since ξ(G1(x, 0)) is also a viscosity supersolution of equation (1.2) on R2 ×
(0, tδ), thanks to Theorem 2.1, we have that

G(x, t) ≤ ξ(G1(x, t)) for (x, t) ∈ R2 × [0, tδ].

In particular, this implies that

{x ∈ R2| G1(x, t) < 0} = {x ∈ R2| ξ(G1(x, t)) < 0} ⊂ {x ∈ R2| G(x, t) < 0}.

Note that {x ∈ R2| G1(x, t) < 0} = {x ∈ R2| Ψ(x, t) < 0}. Sending ν → 0,
we have that for t ∈ [0, tδ],{

x = (x1, x2) ∈ R2| (x1 − a0)
2

a2(t)
+

(x2 − θ)2

b2(t)
< 1

}
⊂ {x ∈ R2| G(x, t) < 0}.

Then
G((0, θ), t) < 0 for t ∈ (0, tδ],

which finishes the proof. Note that tδ only depends on δ and V . □

Let Ω ⊂ R2 be an open convex set. Denote by GΩ(x, t) the unique
viscosity solution to equation (1.2) subject to GΩ(x, 0) = gΩ(x) where

gΩ(x) =

− 2
π arctan(d(x, ∂Ω)) for x ∈ Ω

2
π arctan(d(x, ∂Ω)) otherwise.
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Given two sets E1 and E2, their Hausdorff distance

dH(E1, E2) = max{max
x∈E1

d(x,E2), max
x∈E2

d(x,E1)}.

Also, for α > 0 and δ ∈ (0, 12), we write

Wα,δ = [−α, α]× [δ, 1− δ].

Lemma 5.2 Let S = (0, 1)2. For given δ ∈ (0, 12) and n ∈ N, there exists
σδ,n > 0 such that if

dH(S,Ω) ≤ σδ,n and α ≤ σδ,n,

then

GΩ(x, t) < 0 for (x, t) ∈ Wα,δ ×
[
tδ
n
, tδ

]
.

Here tδ is from the previous Lemma 5.1.

Proof: We argue by contradiction. If not, then there exist a sequence of
convex open sets {Ωm}m≥1 such that

dH(S,Ωm) ≤ 1

m

and for some (xm, tm) ∈ W 1
m
,δ ×

[
tδ
n , tδ

]
GΩm(xm, tm) ≥ 0.

Since
lim

m→+∞
gΩm(x) = gS(x) uniformly on R2,

due to Remark 2.1, the uniqueness of viscosity solutions, we have that

lim
m→+∞

GΩm(x, t) = G(x, t) locally uniformly on R2 × [0,∞).

Here G is from Lemma 5.1. The proof is similar to that of (2.4). Also, up to a
subsequence if necessary, we may assume that limm→+∞(xm, tm) = ((0, θ), t̄)
for (θ, t̄) ∈ [δ, 1− δ]×

[
tδ
n , tδ

]
. Then we have that

G((0, θ), t̄) = lim
m→+∞

GΩm(xm, tm) ≥ 0.

This is a contradiction. □

As an immediate corollary, we have the following reachability.
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Lemma 5.3 Consider the game in section 2.2. Under the assumption of
Lemma 5.2, every point on Wα,δ can reach Ω within time tδ

n . Also, it is easy
to see that if we replace S by an arbitrary rectangle, all previous results are
still true in the corresponding forms. See the figure below.

W↵,�

S

⌦

Figure 17: Reach Ω from Wα,δ.

Remark 5.1 Due to the hidden stochastic nature of the game trajectory,
it is not clear to us how to use pure game dynamics to prove the above
reachability conclusion. An interesting analog in random walk (or Brownian
motion) is to use strong maximum principle of the Laplace equation to show
that a particle has a positive probability to exit from any small window of
the boundary.
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pures et appliquées 91 (2009), no. 4, pp. 339–363.

[7] P. Cardaliaguet, J. Nolen, P. Souganidis, Homogenization and enhance-
ment for the G-equation in periodic media, Arch. Ration. Mech. Anal.
199 (2), pp. 527–561, 2011.

[8] A. Cesaroni, M. Novaga, Long-time behavior of the mean curvature flow
with periodic forcing, Communications in Partial Differential Equations,
38(5):780–801, 2013.

[9] S. Chaudhuri, F. Wu, C. K. Law, Scaling of turbulent flame speed for
expanding flames with Markstein diffusion considerations, Phys. Rev.
E, 88, 033005, 2013.

[10] Y. G. Chen, Y. Giga, S. Goto, Uniqueness and existence of viscosity
solutions of generalized mean curvature flow equations, J. Differential
Geometry, 33(1991), pp. 749–786.

[11] S. Childress, A. D. Gilbert, “Stretch, Twist, Fold: The Fast Dynamo”,
Lecture Notes in Physics Monographs, 37, Springer, 1995.

[12] B. Craciun, K. Bhattacharya, Effective motion of a curvature-sensitive
interface through a heterogeneous medium, Interfaces Free Bound. 6
(2004), no. 2, pp. 151–173.

[13] M. G. Crandall, H. Ishii, P. L. Lions, User’s guide to viscosity solutions
of second order partial differential equations, Bull. Amer. Math. Soc.,
27(1), 1992, pp. 1–67.

[14] N. Dirr, G. Karali, N.K. Yip, Pulsating wave for mean curvature flow
in inhomogeneous medium, Eur. J. Appl. Math. 19(6), 661–699 (2008).

49



[15] L. C. Evans, The perturbed test function method for viscosity solutions
of nonlinear PDE, Proceedings of the Royal Society of Edinburgh Sec-
tion A: Mathematics, Volume 111 , Issue 3–4 , 1989, pp. 359–375.

[16] L. C. Evans, J. Spruck, Motion of level sets by mean curvature, Journal
of Differential Geometry, 33(1991), pp. 635–681.

[17] W. M. Feldman, Mean curvature flow with positive random forcing in
2-d, arXiv:1911.00488, 2019.

[18] H. Gao, I. Kim, Head and tail speeds of mean curvature flow with forc-
ing, Arch. Ration. Mech. Anal. 235, no.1 (2020), pp. 287–354.

[19] Y. Giga, H. Mitake, H.V. Tran, On asymptotic speed of solutions to
level-set mean curvature flow equation with driving and source terms,
Siam J. Math. Anal. Vol. 48, No. 5 (2016), pp. 3515–3546.

[20] N. Hamamuki, Q. Liu, A game-theoretic approach to dynamic bound-
ary problems for level-set curvature flow equations and applications, SN
Partial Differential Equations and Applications, 2:30(2021).

[21] W. Jing, H. V. Tran, Y. Yu, Effective fronts of polygon shapes in two
dimensions, arXiv:2112.10747 [math.AP], 2021.

[22] A. R. Kerstein, W. T. Ashurst, and F. A. Williams, Field equation for
interface propagation in an unsteady homogeneous flow field, Phys. Rev.
A 37, 2728 (1988).

[23] R. V. Kohn, S. Serfaty, A deterministic-control-based approach to mo-
tion by mean curvature, Comm. Pure. Appl. Math, 59 (2006), pp. 344-
407.

[24] R. V. Kohn, S. Serfaty, Second-order PDE’s and deterministic games,
Proceedings of ICIAM 2007, pp. 239-249.

[25] J. Langer, Instabilities and pattern formation in crystal growth, Rev.
Mod. Phys. 52, 1, 1980.

[26] P.L. Lions, G.C. Papanicolaou, S.R.S. Varadhan, Homogenization of
Hamilton-Jacobi equation, unpublished preprint, circa 1980.

[27] P. L. Lions, P. E. Souganidis, Homogenization of degenerate second-
order PDE in periodic and almost periodic environments and applica-
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