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Abstract We compute the front speeds of the Kolmogorov-Petrovsky-Piskunov (KPP) re-
active fronts in two prototypes of periodic incompressible flows (the cellular flows and the
cat’s eye flows). The computation is based on adaptive streamline diffusion methods for the
advection-diffusion type principal eigenvalue problem associated with the KPP front speeds.
In the large amplitude regime, internal layers form in eigenfunctions. Besides recovering
known speed growth law for the cellular flow, we found larger growth rates of front speeds
in cat’s eye flows due to the presence of open channels, and the front speed slowdown due
to either zero Neumann boundary condition at domain boundaries or frequency increase of
cat’s eye flows.

Keywords KPP front speeds · Cellular and cat’s eye flows · Eigenvalue problems ·
Adaptive streamline diffusion finite element method

1 Introduction

Front propagation in fluid flows is a ubiquitous nonlinear phenomenon that arises in pre-
mixed turbulent combustion and reactive transport in porous media among other applications
[8, 12, 13, 19, 24, 25, 29, 32, 33, 35]. A fundamental problem is to characterize, bound and
compute large scale front speeds. Though the problem is challenging in general for complex
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flows, much progress has been made lately for the Kolmogorov-Petrovsky-Piskunov (KPP)
reactive fronts in the large amplitude regime of steady periodic incompressible flows [1, 2,
23, 27, 36]. The prime example is the two dimensional cellular flows consisting of periodic
array of vortices. The KPP equation is:

ut = κ�zu + B(z) · ∇zu + 1

τr

f (u), z ∈ R
n, t > 0, (1.1)

where κ and τr are two positive constants, B is a given steady incompressible 2π -periodic
velocity field; f (u) = u(1 − u), the so called KPP nonlinearity.

In this paper, we shall carry out a numerical study of KPP front speeds of Eq. (1.1) in
a two dimensional infinite strip R

1 × [0,L]; so n = 2, z = (x, y), x ∈ R
1, y ∈ [0,L]. The

boundary condition at y = 0,L is either zero Neumann or periodic. If the initial data for u

is nonnegative and front-like (approaching zero and one rapidly enough as x → ±∞), large
time behavior of u is a propagating front along x. We will denote the KPP front speed as μ

which admits a variational characterization in terms of principal eigenvalue of an associated
linear operator [6, 33]. More precisely, let Ω = [0,2π] × [0,L], and for each fixed λ, we
consider the classical principal eigenvalue problem of (H,φ) with either zero Neumann
boundary condition at y = 0,L or L-periodic in y:{

κ�φ + (2κλe + B(x, y)) · ∇φ + [κλ2 + λe · B(x, y) + τ−1f ′(0)]φ = H(λ)φ,

φ|x=0 = φ|x=2π ; ∂φ

∂n |y=0,L = 0 or φ|y=0 = φ|y=L.
(1.2)

Here n is the outer normal vector, e = (1,0), and B(x, y) is either a 2-dimensional cellular
flow

B(x, y) = (− sinx cosy, cosx siny) (1.3)

or a periodic perturbation of the cellular flow (δ > 0 is a constant)

B(x, y) = (− sinx cosy, cosx siny) + δ(cosx siny,− sinx cosy) (1.4)

the so called cat’s eye flow. Both cellular flow and cat’s eye flows have been studied exten-
sively for flow enhanced diffusion and dynamo problems [11, 16].

The KPP front speed is given by:

μ = inf
λ>0

H(λ)

λ
, (1.5)

where H(λ) is the largest eigenvalue of (1.2). This variational formula makes possible ac-
curate and efficient computation of KPP front speeds without direct simulation of the time-
dependent reaction-diffusion-advection equation (1.1). Even for random flows, computation
based on variants of (1.5) are performed in [22, 28]. In [28], the present authors initiated a
numerical study for KPP front speeds in random shear flows using two-scale finite element
methods. In this paper, we shall study KPP front speeds in periodic cellular flows and cat’s
eye flows based on an adaptive streamline diffusion finite element method. If the flow field
is scaled as B(x, y) → A · B(x, y) for a positive constant A, we are interested in the depen-
dence of front speed on A when A is large. For cellular flows and propagation in the entire
plane, asymptotic result [2, 23] says that μ(A) = O(A1/4) as A � 1 independent of the di-
rection of propagation (isotropic). For cat’s eye flows and propagation in the entire plane,
front speeds are anisotropic [34]: μ(A) = O(1) along direction (−1,1)/

√
2, μ(A) = O(A)
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along any other direction. At large A, the eigenfunction φ develops internal layers, for which
an adaptive finite element method is appropriate. It is not known at what threshold value the
asymptotic regime is entered. This is what we shall study numerically as well.

The rest of the paper is organized as follows. In Sect. 2, we give a brief overview of
asymptotic theory of KPP front speeds in the large A limit. In Sect. 3, we present adap-
tive and streamline diffusion finite element methods for computation of eigenvalue problem
(1.2). In Sect. 4, we present numerical results on KPP front speeds. We first recover the
known growth law A1/4 for cellular flows with our method at A ∼ 103, then show find-
ings of increased KPP front speeds in cat’s eye flows due to the presence of open channels.
Though our numerical results are for front speeds in (1,0), a fast direction, the linear growth
asymptotic regime of cat’s eye flow is not yet reached based on the A values up to 103. In-
stead, we observed intermediate growth exponents in (1/4,1). The threshold value of A to
enter the theoretical scaling regime of front speeds in cat’s eye flows appears to be much
larger than that for cellular flows. We also compare front speeds under zero Neumann and
periodic boundary conditions for cat’s eye flows. We found that zero Neumann boundary
condition may slow down front speed at large A. In contrast, periodic boundary condition
always enhances front speed so that the growth law observed is O(Ap), p ∈ (1/4,1] due to
the presence of channels from periodic perturbation (δ > 0). We also found that increasing
the oscillation frequency of cat’s eye flows in the domain slows down the front speed growth
in A. In Sect. 5, we conclude with remarks on future work of computing KPP front speeds
in three dimensional periodic steady flows in cylindrical domains. Acknowledgments are in
Sect. 6.

2 Asymptotic Theory: An Overview

KPP front speed in two dimensional periodic steady flows in the entire plane has been ac-
tively studied in recent years in the regime of large flow amplitude or when the flow field B

is scaled up by a large factor A � 1. The first type of result concerns μ in cellular flows at
large A, μ(A) ∼ O(A1/4), [2, 23]. The second type of result [34] is on anisotropic behavior
of the front speeds in cat’s eye flows at large A: μ(A) = O(1) in the direction (−1,1)/

√
2

and O(A) in any other direction. For more general two dimensional periodic flows, explicit
growth exponent is difficult to find, however μ(A) is related to the effective diffusivity in the
same flow in case of (1.2) with periodic boundary condition in y. Consider the advection-
diffusion equation:

pt = κ �p + AB(z) · ∇zp, (2.1)

whose long-time behavior is governed by the effective diffusion equation:

p̄t =
n∑

i,j=1

σij (A)p̄zi ,zj
. (2.2)

The z-independent diffusivity matrix σ(A) is given by the cell problem as follows. For
e ∈ R

n, let χe(ξ) be the periodic mean-zero solution of:

κ �ξχe + AB · ∇ξχe = AB · e, (2.3)

on the n-dimensional unit torus T
n. The matrix σ(A) is:

e · σ(A)e′ =
∫

Tn

(∇χe + e) · (∇χ ′
e + e′)dξ = e · e′ +

∫
Tn

∇χe · χ ′
e dξ, (2.4)
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for any e, e′ ∈ R
n. The effective diffusivity in the direction e is:

De(A) = e · σ(A)e = 1 +
∫

Tn

|∇χe|2 dξ. (2.5)

The front speed μe along direction e over the entire plane is bounded from above and be-
low by constant times

√
De . It is proved in [27] that for some constant independent of

(A, 
B,f, e):
√

f ′(0)

C(1 + √
f ′(0))

≤ μe(A)√
De(A)

≤ C
√

f ′(0)
(
1 + √

f ′(0)
)
. (2.6)

Hence information on De(A) can be transferred to μe(A). For example, it is known [16]
that cat’s eye flows contain channels of width O(δ) along direction d = (1,1)/

√
2 where

maximal diffusivity enhancement takes place, Dd(A) = O(A2) for any fixed δ. This implies
that μd(A) = O(A). Along the orthogonal direction d⊥ = (−1,1)/

√
2, closed streamlines in

the eddies cause minimal diffusivity enhancement, Dd⊥(A) = O(1), so μd⊥(A) is uniformly
bounded in A � 1. Along any other direction, one has a mixture of fast and slow transport.
It is only recently proved that the growth law away from the slow direction is O(A) [34],
or the fast transport eventually wins as A → +∞. We shall compute front speeds along a
fast direction (1,0) under both zero Neumann and periodic boundary conditions in y. It is
worth pointing out that the inequality (2.6) is false in three and higher dimensions [37]. In
particular, it remains to discover the relationship between μe(A) and De(A) in three space
dimensions through numerical and analytical studies. We refer to [7, 36] for first integral
type criteria, [34] for periodic orbits and invariant measure type criteria on linear or sublinear
growth of front speeds in A.

3 Numerical Problem and Methods

For simplicity, let L = 2π and consider the principal eigenvalue problem over domain Ω =
[0,2π] × [0,2π]:{

κ�φ + (2κλe + B(x, y)) · ∇φ + [κλ2 + λe · B(x, y) + τ−1f ′(0)]φ = H(λ)φ,

φ|x=0 = φ|x=2π ; ∂φ

∂n |y=0,2π = 0, or φ|y=0 = φ|y=2π ; (3.1)

where κ = 1.0, τ = 2.0. We shall apply and compare the standard finite element method, the
streamline diffusion method, the upwind finite difference method, and an adaptive stream-
line diffusion method for computing (3.1).

The streamline diffusion method was originally proposed by Hughes and Brooks [17]
for solving a boundary value problem. Starting with Nävert [21], it was then analyzed
by Johnson and his co-workers (see, e.g., [18, 26] and references cited therein). The
streamline diffusion method has been successfully applied to various problems, e.g., the
model problems of many fluid flows including incompressible Navier-Stokes equations and
diffusion-convection-reactive equations, the model problems in physics like semiconductor
device [26], etc. However, to our best knowledge, there is no work applying the streamline
diffusion method to solve an eigenvalue problem. We see also that adaptive finite element
methods have been extensively studied since Babuška and Vogelius [4] gave an analysis of
an adaptive finite element method for linear symmetric elliptic problems in one dimension.
We refer to [15] for an adaptive streamline diffusion method for the stationary convection-
diffusion (boundary value) problem and [14, 20, 30] and references cited therein for adaptive
finite element method for linear eigenvalue problems.
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Remark 3.1 It is open whether we are able to get the convergence properties for either the
standard finite element method or a streamline diffusion method for eigenvalue problem
reflecting the dependency of the parameter.

To simplify the presentation, we denote B̃ = (B̃x, B̃y) = 2κλe + AB(x, y), and C̃ =
κλ2 + λAe · B(x, y) + τ−1f ′(0). The first equation of (3.1) has the form

κ�φ + B̃ · ∇φ + C̃φ = H(λ)φ. (3.2)

If the boundary condition is φ|x=0 = φ|x=2π , ∂φ

∂n |y=0,2π = 0, we define

a(w,v) = −(κ∇w,∇v) + (B̃ · ∇w,v) + (C̃w,v) +
∫

x=0,2π

κv∇w · nds, ∀w,v ∈ H 1(Ω)

(3.3)
and

V = {
v ∈ H 1(Ω) : v|x=0 = v|x=2π

}
where (·, ·) denotes the inner product in L2(Ω). If the boundary condition is φ|x=0 = φ|x=2π ,
φ|y=0 = φ|y=2π , we define

a(w,v) = −(κ∇w,∇v) + (B̃ · ∇w,v) + (C̃w,v) +
∫

∂Ω

κv∇w · nds, ∀w,v ∈ H 1(Ω)

(3.4)
and

V = {
v ∈ H 1(Ω) : v|x=0 = v|x=2π , v|y=0 = v|y=2π

}
.

The variational form for Eq. (3.1) is as follows: Find (H,φ) ∈ R × V such that

a(φ, v) = H(φ,v), ∀v ∈ V. (3.5)

3.1 Standard Finite Element Method

Let Th be a shape regular conforming triangular finite element mesh over Ω with size h.
Denote the linear finite element space

Sh = {
p ∈ H 1(Ω) : p|τ is piecewise linear, ∀τ ∈ Th

}
and let

Vh = Sh ∩ V.

The standard finite element discretization for (3.5) is: Find (Hh,φh) ∈ R × Vh such that

a(φh, v) = Hh(φh, v), ∀v ∈ Vh. (3.6)

The convergence and error estimates of approximations of (3.6) can be derived from [3]
when the coefficients/parameters of (3.1) are of the same scale (see also [5]).
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3.2 Upwind Finite Difference Method (Upwind FDM)

Assume that finite element mesh Th is rectangular. Let {(xi, yj )} (i, j = 1, . . . ,N) be the
grid points of the mesh. At the interior grid points (xi, yj ),

κ(�φ)(xi, yj ) + (B̃ · ∇φ)(xi, yj ) + (C̃φ)(xi, yj ) = Hφ(xi, yj ). (3.7)

Let φ(xi, yj ) be approximated by φij (i, j = 1,2, . . . ,N). On the left hand side of (3.7), we
discretize the first term using center difference scheme as follows:

�φ(xi, yj ) ≈ φi−1,j + φi+1,j + φi,j−1 + φi,j+1 − 4φij

h2
. (3.8)

The one order upwind scheme [9, 10] for the x direction of the second term is{
∂φ

∂x
(xi, yj ) ≈ φij −φi−1,j

h
, if B̃x > 0,

∂φ

∂x
(xi, yj ) ≈ φi+1,j −φi,j

h
, if B̃x < 0.

(3.9)

Similarly, for the y direction,

{
∂φ

∂y
(xi, yj ) ≈ φij −φi,j−1

h
, if B̃y > 0,

∂φ

∂y
(xi, yj ) ≈ φi,j+1−φi,j

h
, if B̃y < 0.

(3.10)

The two order upwind schemes [9, 10] for the x and y directions of the second term are as
follows: {

∂φ

∂x
(xi, yj ) ≈ 1

h
( 3

2φij − 2φi−1,j + 1
2φi−2,j ), if B̃x > 0,

∂φ

∂x
(xi, yj ) ≈ 1

h
(− 3

2φij + 2φi+1,j − 1
2φi+2,j ), if B̃x < 0.

(3.11)

{
∂φ

∂y
(xi, yj ) ≈ 1

h
( 3

2φij − 2φi,j−1 + 1
2φi,j−2), if B̃y > 0,

∂φ

∂y
(xi, yj ) ≈ 1

h
(− 3

2φij + 2φi,j+1 − 1
2φi,j+2), if B̃y < 0.

(3.12)

3.3 Streamline Diffusion Finite Element Method (SD-FEM)

Following the streamline diffusion finite element method for boundary value problems
[18, 26], we define

ah(φ, v) = a(φ, v) +
∑
τ∈Th

cτ (κ�φ + B̃ · ∇φ + C̃φ, B̃ · ∇v)τ , ∀φ,v ∈ Vh (3.13)

and

bh(φ, v) = (φ, v) +
∑
τ∈Th

cτ (φ, B̃ · ∇v)τ , ∀φ,v ∈ Vh, (3.14)

where (·, ·)τ denotes the inner product in L2(τ ). In our computation, we choose cτ = O(h2
τ ).

Our streamline diffusion finite element discretization for solving (3.5) is: Find (H sd
h ,

φsd
h ) ∈ R1 × Vh such that

ah

(
φsd

h , v
) = Hsd

h bh

(
φsd

h , v
)
, ∀v ∈ Vh. (3.15)
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Remark 3.2 Let T : L2(Ω) −→ V be defined by

a(T f, v) = (f, v), ∀v ∈ V (3.16)

and Th : L2(Ω) −→ Vh be defined by

ah(Thf, v) = bh(f, v), ∀v ∈ Vh. (3.17)

Using the error estimates between Th and T (see, e.g., [18, 26]) and the abstract spectral
approximation results in [3], we are able to get the error estimates for (3.15) when the coef-
ficients/parameters of (3.1) are of the same scale, too. However, this kind of error estimates
are not very interesting since the problem we compute is convection-dominated.

Remark 3.3 As we mentioned before, SD-FEM is widely used in various problems such as
diffusion-convection-reaction problems with convection dominant. But to our best knowl-
edge, there is no work applying the streamline diffusion method to solve an eigenvalue
problem. In fact, in some sense, the eigenvalue problems we discuss here can be regarded as
nonlinear diffusion-convection-reaction problems with convection dominant. The nonlinear-
ity obscures the regularity of solution, which makes it difficult to analyze the convergence
of the numerical method.

3.4 Adaptive Streamline Diffusion Finite Element Method

To improve the computational efficiency, we combine the streamline diffusion finite element
method with an adaptive method. Let Th be a shape regular conforming triangular finite
element mesh and ∂Th the set of all interior edges (of elements) in Th. We use the following
a posterior error estimators in our computation [31]:

η(φh) =
(∑

τ∈Th

A−1h2
τ

∥∥Rτ (φh)
∥∥2

0,τ
+

∑
e∈∂Th

A
1
2 hτ

∥∥Re(φh)
∥∥2

0,e

) 1
2

, (3.18)

where

Rτ (φh) = Hφh − κ�φh − B̃∇φh − C̃φh (3.19)

and

Re(φh) = κ

[
∂φh

∂n

]
e

(3.20)

with [·]e denoting the jump on the edge e.
Given a conforming mesh Th, we apply the following refinement strategy [20, 30]:

• Error estimation
Compute local error estimator

ητ (φh) ≡ A−1h2
τ

∥∥Rτ (φh)
∥∥2

0,τ
+ A

1
2

∑
e∈∂Th,e⊂τ̄

hτ

∥∥Re(φh)
∥∥2

0,e

for all τ ∈ Th.
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• Mark and local refinement
Refine those elements {τ } that satisfy

ητ (φh) > r max
τ∈T h

ητ (φh), (3.21)

where r ∈ (0,1) is a given refinement parameter.

In our computation, we use the triangle bisection approach [30] to refine the meshes.
To describe the adaptive finite element algorithm for (3.15), we shall replace the subscript

h by an iteration counter k of the adaptive algorithm afterwards for convenience. Given
an initial triangulation T0 with size h0, we can generate a sequence of nested conforming
triangulations Tk using the following loop:

Solve → Estimate → Mark → Refine.

More precisely, we have an adaptive finite element algorithm for (3.15) as follows:

Algorithm 3.1 Adaptive finite element algorithm

1. Pick an initial mesh T0 and let k = 0.
2. Solve (3.15) on Tk and get the finite element eigenpair (H sd

k , φsd
k ).

3. Compute local error indictors ητ (φ
sd
k ) ∀τ ∈ Tk .

4. Refine such elements {τ } in Tk that satisfy

ητ

(
φsd

k

)
> r max

τ∈Tk

ητ

(
φsd

k

)
(3.22)

to get a new conforming mesh Tk+1, where r ∈ (0,1) is a given refinement parameter.
5. Let k = k + 1 and go to 2.

4 Numerical Results

In this section, we present numerical results using the above methods. First we give the
results for the two dimensional cellular flow (1.3) and then the cat’s eye flow (1.4).

4.1 Numerical Results for the Cellular Flow

Using the above methods, we compute Eq. (3.1) under zero Neumann boundary condition
in y. Figure 1 shows the numerical results using standard FEM, SD-FEM and upwind FDM
with uniform meshes. Figure 2 shows those values in ln (natural logarithm) function. We see
from Fig. 2 that our results agree with the quarter law of speed growth. Figure 3 compares the
adaptive SD-FEM with both uniform SD-FEM and uniform upwind FDM. We can see from
the values of the front speed for A = 1000 in Fig. 3 that using the same degree of freedoms,
the accuracy of the results using adaptive SD-FEM is much higher than that using uniform
SD-FEM and uniform upwind FDM. Adaptive SD-FEM converges faster than the other
two methods. Therefore adaptive SD-FEM is more efficient for the problem we compute.
Comparing the results by uniform SD-FEM and uniform upwind FDM, uniform SD-FEM
shows higher accuracy than uniform upwind FDM. Figure 4 compares the convergence rate
of the front speed from adaptive SD-FEM with the rates from uniform SD-FEM and upwind
FDM. We can see that the convergence rates of adaptive SD-FEM and upwind FDM are
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Fig. 1 Front speed vs. flow
amplitude of cellular flows using
different discrete methods with
uniform meshes

Fig. 2 The ln-ln plot of front
speed vs. amplitude of cellular
flow using different discrete
methods with uniform meshes,
recovering the quarter growth
exponent

about 2, faster than that of uniform SD-FEM. Figure 5 shows the approximate front speed
for A = 1000 and the corresponding adaptive mesh.

Figure 6 shows the values of H(1) vs. A, suggesting that the growth of H(1) is sublinear
and above O(A1/4) as known in theory [34].
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Fig. 3 Numerical front speed
convergence for cellular flow at
amplitude A = 1000, using
adaptive SD-FEM, uniform
SD-FEM and uniform upwind
FDM

Fig. 4 The ln-ln plot of
numerical front speed
convergence for cellular flow at
amplitude A = 1000, using
adaptive method for A = 1000

4.2 Numerical Results for the Cat’s Eye Flow

In this subsection, we present the results for the cat’s eye flow with the perturbation param-
eter δ = 0.1,0.2. Since the boundary layer effect becomes significant when A increases, we
use the uniform SD-FEM for A < 400 and the adaptive SD-FEM for A ≥ 400 to improve
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Fig. 5 The left figure shows the computational results of eigenfunction using the adaptive SD-FEM with
A = 1000. The right figure shows the corresponding mesh

Fig. 6 The left figure show the values of H(1). The right figure shows the values of ln(H(1))

the accuracy. Figure 7 shows the vector fields for δ = 0.1,0.2,0.3. The larger the δ values,
the more opened the channels are.

We consider zero Neumann boundary condition in y for (3.1), and the scaled cat’s eye
flow B(x, y) → B(kx, ky) with k = 1,5,10,15. The results are shown in Fig. 8. To compare
with the values for the cellular flows, we keep the data curves for the cellular flows in Fig. 8.
Though growth exponent remains at 0.25, the speed values for cat’s eye flows are lower
than those in cellular flows. It appears that zero Neumann boundary condition slows down
the front speeds in cat’s eye flows even though open channels in them tend to increase the
speeds. The boundary effect is the strongest for the unscaled cat’s eye flow B(x, y) in that the
speed curve is non-monotone and shows speed reduction in A as A ≥ 300. The lower panels
of Fig. 8 show that a larger δ value or more opening of the cat’s eye channels decreases



466 J Sci Comput (2013) 55:455–470

Fig. 7 The streamline for the cat’s eye flow with δ = 0.1,0.2,0.3

the speed at scale factor 1,5, while increasing the speed at scale factor above 10. This
phenomenon may be attributed to the zero Neumann boundary condition as well. Opening
sufficiently many cat’s eye channels is necessary to overcome the slow down effect of the
no flux zero Neumann boundary condition in y. As we shall see in Fig. 9, opening cat’s
eye channels (by increasing δ) always increases speed if the periodic boundary condition is
imposed in y. The computation becomes unstable for B(x, y) and δ = 0.2 when A > 400,
though the trend is clear that the speed decreases in large A as in the case of δ = 0.1. We
shall study this regime further in the future.

Now we consider periodic boundary condition in y for (3.1) and the corresponding speed
values in the cat’s eye flows. The results are shown in Fig. 9. We see that the cat’s eye flow in
two dimensional periodic domain (both x and y) enhances more than cellular flows (expo-
nents range 0.3–0.75 and are above 1/4) because of open streamlines along (1,1) from cell
to cell. The growth exponent is theoretically 1 in the limit A → +∞ [34]. The exponents
observed numerically here reflect the growth in the range of A values computed (A ≤ 1000)
which are still below the theoretical asymptotic regime. The slow-down with higher fre-
quency (or more small scales) may be explained by the presence of more periodic structures
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Fig. 8 The upper-left figure shows the numerical results for the cat’s eye flow and the scaled cat’s eye flow
with perturbation parameter δ = 0.1 using SD-FEM with periodic boundary condition in x direction and zero
Neumann in y direction. The upper-right figure shows the ln-ln plot. The lower-left figure shows the results
for the cat’s eye flow and the scaled cat’s eye flow with perturbation parameter δ = 0.1,0.2 with periodic
boundary condition in x direction and zero Neumann in y direction. The lower-right figure shows the ln-ln
plot

along the slow direction (−1,1)/
√

2. Though there is help from fast direction (1,1)/
√

2,
front speed along (1,0) is still influenced more by the slow direction in the range of com-
puted A values. The larger the cat’s eye parameter δ, the higher the growth exponents due
to open channels being wider.

Remark 4.1 We can only compute with A ∈ [0,1000] due to the instability of the numerical
methods. Exploring the enhancement laws for larger A requires much smaller size of the
mesh, which leads to expensive computational cost. We will adopt parallel computation to
improve the computational performance in the future work.
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Fig. 9 The upper two figures show the numerical results for the cat’s eye flow and the scaled cat’s eye flows
with perturbation parameter δ = 0.1 and 0.2. The results are obtained using SD-FEM with periodic boundary
conditions in both x and y directions. The lower two figures put those data together and show the values of
the speed and ln values of them respectively

5 Concluding Remarks

We performed adaptive eigenvalue and KPP front speeds computation with finite element
methods for both cellular flows and cat’s eye flows. Theoretical speed growth of cellu-
lar flows is recovered. New phenomena of fronts speed in cat’s eye flows are discovered:
(1) slow down by zero Neumann boundary condition in the direction transverse to the front
motion; (2) faster than the quarter growth law due to open channels in the cat’s eye flow;
(3) slow down of the speed growth by higher frequencies of cat’s eye flows (or presence of
more but smaller eddies of cat’s eye flows in the domain). In future work, we plan to adopt
two-grid finite element method [28] and parallel computation to improve the computational
efficiency so that we can deal with the instability for larger convection term. At the same
time, we will compute KPP front speeds in three dimensional steady incompressible flows
based on adaptive streamline diffusion finite element methods.
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