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Abstract
In this paper, we design an efficient, multi-stage image segmentation framework that incor-
porates a weighted difference of anisotropic and isotropic total variation (AITV). The seg-
mentation framework generally consists of two stages: smoothing and thresholding, thus 
referred to as smoothing-and-thresholding (SaT). In the first stage, a smoothed image is 
obtained by an AITV-regularized Mumford-Shah (MS) model, which can be solved effi-
ciently by the alternating direction method of multipliers (ADMMs) with a closed-form 
solution of a proximal operator of the �

1
− ��

2
 regularizer. The convergence of the ADMM 

algorithm is analyzed. In the second stage, we threshold the smoothed image by K-means 
clustering to obtain the final segmentation result. Numerical experiments demonstrate that 
the proposed segmentation framework is versatile for both grayscale and color images, effi-
cient in producing high-quality segmentation results within a few seconds, and robust to 
input images that are corrupted with noise, blur, or both. We compare the AITV method 
with its original convex TV and nonconvex TVp(0 < p < 1) counterparts, showcasing the 
qualitative and quantitative advantages of our proposed method.
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1 Introduction

Image segmentation is a prevalent, challenging problem in computer vision, aiming to par-
tition an image into several regions that represent specific objects of interest. Each par-
titioned region has similar features such as edges, colors, and intensities. One segmenta-
tion method is the Mumford-Shah (MS) model [63] well known for its robustness to noise. 
It finds the optimal piecewise-smooth approximation of an input image that incorporates 
region and boundary information to facilitate segmentation. Given a bounded, open set 
Ω ⊂ ℝ2 with Lipschitz boundary and an observed image f∶ Ω → [0, 1] , the MS model can 
be expressed as an energy minimization problem,

where 𝜆,𝜇 > 0 are weighing parameters, Γ ⊂ Ω is a compact curve representing the bound-
aries separating disparate objects, and u∶ Ω → ℝ is an approximation of f that is smooth in 
Ω ⧵ Γ but possibly discontinuous across Γ . The middle term ∫

Ω⧵Γ
|∇u|2 dx ensures that u is 

piecewise-smooth, or more specifically differentiable on Ω ⧵ Γ . The last term “ Length(Γ) ” 
measures the perimeter of Γ that can be mathematically expressed as H1(Γ) , which is the 
one-dimensional Hausdorff measure in ℝ2 [4]. It is challenging to solve for the minimiza-
tion problem (1) due to its nonconvex nature and difficulties in discretizing the unknown 
set of boundaries. Pock et al. [70] proposed a convex relaxation of (1) together with an effi-
cient primal-dual algorithm. For the boundary issue, one early attempt involved a sequence 
of (local) elliptic variational problems [2] to approximate the energy functional (1). Later, 
nonlocal approximations were adopted in [14, 36] and a finite element approximation was 
developed in [15].

By relaxing u from piecewise-smooth to piecewise-constant, Chan and Vese (CV) [20] 
proposed a two-phase model to segment the image domain Ω into two regions that are 
inside and outside of the curve Γ . The curve can be represented by a level-set function � 
that is Lipschitz continuous and satisfies

The Heaviside function H(�) is defined by H(�) = 1 if � ⩾ 0 and H(�) = 0 otherwise. The 
CV model is given by

(1)min
u,Γ

EMS(u,Γ) ∶=
�

2 ∫
Ω

(f − u)2 dx +
�

2 ∫
Ω⧵Γ

|∇u|2 dx + Length(Γ),

⎧
⎪⎨⎪⎩

𝜙(x) > 0 if x is inside Γ,

𝜙(x) = 0 if x is at Γ,

𝜙(x) < 0 if x is outside Γ.

(2)
min
c1,c2,�

ECV(c1, c2,�) ∶= �∫
Ω

|f − c1|2H(�) dx + �∫
Ω

|f − c2|2(1 − H(�)) dx

+ � ∫
Ω

|∇H(�)| dx,
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where �, � are two positive parameters and c1, c2 ∈ ℝ are mean intensity values of the two 
regions. Originally, the CV model (2) was solved by finite difference methods [21, 35]. 
Later Chan et  al. [19] formulated a convex relaxation of CV so that it can be solved by 
convex optimization techniques such as the split Bregman [37, 38], alternating direction 
method of multipliers (ADMMs) [8], and the primal-dual hybrid gradient (PDHG) [16, 
33]. As an alternative to the level-set formulation (2), a diffuse-interface approximation to 
the CV model was considered in [32], which can be solved efficiently by the Merrimen-
Bence-Osher scheme [62]. The (two-phase) CV model can be naively extended to the mul-
tiphase segmentation [77] but with a limitation that it can only deal with the power-two 
number of segmentation regions. The multiphase CV model was later combined with fuzzy 
membership functions [50] to segment an arbitrary number of regions.

Another approach of finding a piecewise-constant solution to the MS model is the smooth-
ing-and-thresholding (SaT) framework [12]. In SaT, one first finds a smoothed image u by 
solving a convex variant of the MS model:

where 𝜆 > 0,𝜇 > 0, and A is a linear operator. Specifically, A is the identity operator if one 
wants to segment a noisy image f, while it can be a blurring operator for the desire of seg-
menting a blurry and noisy image f. The middle term ∫

Ω
|∇u|2 dx extends the piecewise-

smooth regularization ∫
Ω⧵Γ

|∇u|2 dx in (1) to the entire image domain Ω . The last term 

∫
Ω
|∇u| dx is the total variation (TV) that approximates the length term in (1) based on the 

coarea formula [19]. After obtaining a piecewise-smooth approximation, one segments the 
image domain into K regions by thresholding u with K − 1 appropriately selected values. 
The SaT has several advantages over the MS model (1) and the CV model (2). First, the 
smoothing stage involves a strictly convex problem (3) to guarantee a unique solution that 
can be found by numerous convex optimization algorithms. Second, the thresholding stage 
allows for segmenting any number of regions via a clustering algorithm such as K-means 
clustering [3, 41]. Lastly, thresholding is independent of smoothing; in other words, thresh-
olding can be adjusted to obtain a visually appealing segmentation without going back 
to smoothing again. The SaT was adapted to segment images corrupted by Poisson or 
multiplicative Gamma noise [17]. For color images, the SaT was extended to quaternion 
space [84] or evolved into the “smoothing, lifting, and thresholding” (SLaT) framework 
[11]. The additional lifting stage in SLaT adds the Lab (perceived lightness, red-green, 
and yellow-blue) color space to provide more discriminatory information than the conven-
tional RGB color space with correlated color channels. The idea of lifting can also improve 
image segmentation of grayscale images whose pixel intensities vary dramatically, referred 
to as intensity inhomogeneity. Traditional methods that deal with inhomogeneity include 
preprocessing [43] and intensity correction [49, 82]. By generating an additional image 
channel [54], SaT/SLaT yields better segmentation results for grayscale images that suffer 
from intensity inhomogeneity.

Note that the convex approximation of the length term in (1) by ∫
Ω
|∇u| dx in (3) is not 

optimal, since the Hausdorff measure is nonconvex. For a better approximation, Wu et al. 
[85] adopted a nonconvex term ∫

Ω
|∇u|p dx for (0 < p < 1), referred to as TVp , leading to a 

nonconvex problem:

(3)min
u

�

2 ∫
Ω

(f − Au)2 dx +
�

2 ∫
Ω

|∇u|2 dx + ∫
Ω

|∇u| dx,
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If p = 1, TVp becomes the TV model. Generally, TVp outperforms TV in image restoration 
and segmentation [26, 42, 47, 55, 90]. The TVp regularization originated from the �p qua-
sinorm, which is more effective than the convex �1 norm in recovering sparse signals from 
an underdetermined linear system [24, 87]. Recently, a series of works [56, 58, 88] has 
demonstrated through experiments that the nonconvex regularizer �1 − �2 outperforms �1 
and �p when the linear system is highly coherent. The �1 − �2 model can be generalized to 
�1 − ��2 for � ∈ [0, 1] to allow for sparsity control via the parameter � . Theoretical analy-
ses of the �1 − ��2 family have been investigated in [31, 34, 53, 88] that justify its superior 
performances. When applying �1 − ��2 on the image gradient, Lou et al. [59] proposed a 
weighted difference of anisotropic and isotropic TV (AITV) that yields better results over 
TV and TVp for image denoising and deconvolution. AITV is robust against impulsive 
noise for image reconstruction [53], and it yields satisfactory segmentation results in the 
CV model and the fuzzy region competition model [9]. Recently, an AITV-based segmen-
tation model was discussed in [86]. However, these models are solved by a difference-of-
convex algorithm (DCA) [48, 67, 68] that requires solving a TV-type subproblem itera-
tively, thus being computationally expensive.

In this paper, we propose an efficient ADMM framework to solve the AITV variant of 
(3) and demonstrate its efficiency and effectiveness in the SaT/SLaT framework through 
various numerical experiments. The efficiency lies in the closed-form solution [57] of the 
proximal operator for �1 − ��2 to avoid nested loops in DCA as considered in [9, 86]. The 
main contributions of this paper are summarized as follows. 

 i. We provide model analysis such as the coerciveness and the existence of global mini-
mizers for the AITV-regularized variant of (3).

 ii. We develop an efficient ADMM algorithm for minimizing the AITV-based MS model 
based on the proximal operator of �1 − ��2 with a convergence guarantee.

 iii. We conduct extensive numerical experiments to showcase that the SaT/SLaT frame-
work with AITV regularization is a competitive segmentation method, especially 
using our proposed ADMM algorithm. The segmentation framework is robust to 
noise, blur, and intensity inhomogeneity.

 iv. We demonstrate experimentally that the proposed ADMM framework is significantly 
more efficient than DCA used in [9, 86] in producing segmentation results of compa-
rable or even better quality.

The paper is organized as follows. Section  2 summarizes mathematical notations and 
reviews the SaT/SLaT framework. Section 3 provides the analysis of the AITV-regularized 
MS model that can be solved by ADMM. The convergence analysis of the algorithm sub-
sequently follows. Section 4 presents extensive experiments on various grayscale and color 
images, comparing the AITV SaT/SLaT framework to other state-of-the-art segmentation 
methods to demonstrate the effectiveness of the proposed approaches. Lastly, we conclude 
the paper in Sect. 5.

(4)min
u

�

2 ∫
Ω

(f − Au)2 dx +
�

2 ∫
Ω

|∇u|2 dx + ∫
Ω

|∇u|p dx.
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2  Preliminaries

2.1  Notations

For simplicity, we adopt the discrete notations for images and mathematical models. With-
out loss of generality, an image is represented as an M × N matrix, so the image domain is 
Ω = {1, 2,⋯ ,M} × {1, 2,⋯ ,N} . Then, we denote X ∶= ℝM×N . We adopt the linear index 
for the 2D image, where for u ∈ X , we have ui,j ∈ ℝ to be the ((i − 1)M + j) th component 
of u. The gradient operator ∇∶ X → X × X is denoted by ∇u = (∇xu,∇yu) with ∇x and ∇y 
being the horizontal and vertical forward difference operators, respectively, with the peri-
odic boundary condition. Specifically, the (i, j)th entry of ∇u is defined by

where

and

For p = (px, py) ∈ X × X , its ((i − 1)M + j) th component is pi,j =
[
(px)i,j
(py)i,j

]
∈ ℝ2 . We define 

the following norms on X × X:

Lastly, the proximal operator for a function f∶ ℝn
→ ℝ ∪ {+∞} at y ∈ ℝn is given by

2.2  Review of SaT/SLaT

Both SaT and SLaT frameworks consist of two general steps: (i) smoothing to extract a 
piecewise-smooth approximation of a given image and (ii) thresholding to segment the 
regions via K-means clustering. SLaT has an intermediate stage called lifting, which 

(∇u)i,j =

[
(∇xu)i,j
(∇yu)i,j

]
,

(∇xu)i,j =

{
ui,j − ui,j−1 if 2 ⩽ j ⩽ N,

ui,1 − ui,N if j = 1,

(∇yu)i,j =

{
ui,j − ui−1,j if 2 ⩽ i ⩽ M,

u1,j − uM,j if i = 1.

‖p‖1 =
M�
i=1

N�
j=1

��(px)i,j� + �(py)i,j�
�
,

‖p‖2 =
���� M�

i=1

N�
j=1

�(px)i,j�2 + �(py)i,j�2,

‖p‖2,1 =
M�
i=1

N�
j=1

�
(px)

2
i,j
+ (py)

2
i,j
.

proxf (y) = argmin
x∈ℝn

f (x) +
1

2
‖x − y‖2

2
.
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generates additional color channels as opposed to the RGB color space for the smoothed 
image. More details for each stage are described below.

2.2.1  First Stage: Smoothing

Let f = (f1,⋯ , fd) ∈ Xd , where d represents the number of channels in the image f. For 
example, when the image f is grayscale, we have d = 1 , and when it is color, we have d = 3 . 
In general, f can be a multichannel image. Some of its channels could be generated from 
the original image to provide more information for segmentation. For example, the inten-
sity inhomogeneity image [54] is generated as an additional channel that quantifies the 
amount of intensity inhomogeneity in the original image.

The discretized model of (3) for each channel 𝓁 = 1,⋯ , d can be expressed as

where 𝜆 > 0,𝜇 > 0 , and ‖∇u
�
‖2
2
 is a smoothing term to reduce the staircase effects caused 

by the isotropic TV ‖∇u
�
‖2,1 . We assume the same pair of parameters (�,�) across chan-

nels. In summary, we obtain a smooth approximation u
�
 for each channel f

�
 by solving (5).

2.2.2  Intermediate Stage: Lifting

For a color image f = (f1, f2, f3) ∈ X3 , where f1 , f2 , and f3 are the red, green, and blue 
channels, respectively, we can obtain (u1, u2, u3) by applying the smoothing stage to each 
channel of f. Instead of using (u1, u2, u3) , SLaT transforms (u1, u2, u3) into (ū1, ū2, ū3) in the 
Lab space (perceived lightness, red-green, and yellow-blue) [60] and operates on a new 
vector-valued image (u1, u2, u3, ū1, ū2, ū3) . The rationale is that RGB channels are highly 
correlated, while the Lab space relies on numerical color differences to approximate the 
color differences perceived by the human eye. As a result, (u1, u2, u3, ū1, ū2, ū3) leads to bet-
ter segmentation results compared to (u1, u2, u3).

2.2.3  Final Stage: Thresholding

After rescaling the image obtained after smoothing and/or lifting, we denote the result-
ant image by u∗ ∈ [0, 1]D . For example, we have D = 1 when applying SaT to a grayscale 
image, and we have D = 6 when applying SLaT to a color image. Suppose the number 
of segmented regions is given and denoted by K. The thresholding stage applies K-means 
clustering to the vector-valued image u∗ , providing K centroids c1, c2,⋯ , cK as constant 
vectors. These centroids are used to form the regions

for k = 1,⋯ ,K such that Ωk ’s are disjoint and 
⋃K

k=1
Ωk = Ω . Using the centroids and 

regions, we can obtain a piecewise-constant approximation of f, denoted by

(5)min
u
�

�

2
‖f

�
− Au

�
‖2
2
+

�

2
‖∇u

�
‖2
2
+‖∇u

�
‖2,1,

Ωk =

�
(i, j) ∈ Ω∶ ‖u∗

i,j
− ck‖2 = min

1⩽�⩽K
‖u∗

i,j
− c

�
‖2
�
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where ck,� is the � th entry of ck and

Recall that d = 1 when the image f is grayscale and d = 3 when it is color.

3  Smoothing with AITV Regularization

We replace the isotropic TV in (5) by a weighted difference of anisotropic and isotropic 
TV, i.e.,

with 𝜆 > 0,𝜇 > 0, 𝛼 ∈ [0, 1]. AITV is a more suitable alternative to TV (no matter whether 
it is anisotropic or isotropic) since TV typically fails to recover oblique edges [7, 28], 
which can be preserved by AITV [9, 59]. To simplify notations, we omit the subscript 
� in (5) because the smoothing model is applied channel by channel independently. We 
show that our model (7) admits a global solution in Sect.  3.1. To find a solution to (7), 
we describe in Sect. 3.2 the ADMM scheme with its convergence analysis conducted in 
Sect. 3.3. The overall AITV SaT/SLaT framework for segmentation is visualized in Fig. 1 
and summarized in Algorithm 1.

Algorithm 1: AITV SaT/SLaT
Input:

image f = (f1 d)
blurring operator A
fidelity parameter λ > 0
smoothing parameter µ > 0
AITV parameter α ∈ [0, 1]
the number of regions in the image K

Output: segmentation f̃
i Stage one: compute u� by solving (7) for � = 1

, . . . , f

, . . . , d.
ii Stage two:
iii if f d = 3 then
iv transfer u = (u1, u2, u3) into Lab space to obtain (ū1, ū2, ū3) and

concatenate to form (u1, u2, u3, ū1, ū2, ū3).
v else
vi go to stage three.

vii Stage three: apply K-means to obtain {(cl,Ωk)}Kk=1 and compute f̃
by (6).

is a color image, i.e.,

(6)f̃ = (f̃1,⋯ , f̃d) such that f̃𝓁 =

K∑
k=1

ck,𝓁1Ωk
, ∀𝓁 = 1,⋯ , d,

1Ωk
=

{
1 if (i, j) ∈ Ωk,

0 if (i, j) ∉ Ωk.

(7)min
u

F(u) ∶=
�

2
‖f − Au‖2

2
+

�

2
‖∇u‖2

2
+ ‖∇u‖1 − �‖∇u‖2,1
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3.1  Model Analysis

In Theorem 1, we establish the existence of a global solution to (7) by showing that its 
objective function F is coercive in Lemma 1.

Lemma 1 If 𝜆 > 0,𝜇 > 0, 𝛼 ∈ [0, 1],  and ker(A) ∩ ker(∇) = {0},  then F defined in  (7) is 
coercive.

Proof We prove by contradiction. Suppose there exists a sequence {un}∞n=1 and a constant 
C > 0 such that ‖un‖2 → ∞ and F(un) < C for all n ∈ ℕ . We define a sequence {vn}∞n=1 , 
where vn =

un

‖un‖2 and thereby satisfies ‖vn‖2 = 1 for all n ∈ ℕ . Since {vn}∞n=1 is bounded, 
there exists a convergent subsequence {vnk}

∞
k=1

 such that vnk → v∗ and ‖v∗‖2 = 1.
It follows from ‖∇u‖2,1 ⩽ ‖∇u‖1 that

Since F(un) < C , we have ‖∇un‖2 <
�

2C

𝜇

 and ‖Aun‖2 <
�

2C

𝜆

+ ‖f‖2 . As a result, we 
have

After taking the limit nk → ∞, we get ‖Av∗‖2 = 0 and ‖∇v∗‖2 = 0 , which implies that 
v∗ = 0 due to the assumption that ker(A) ∩ ker(∇) = {0} . However, it contradicts with 
‖v∗‖2 = 1 , and hence F is coercive.

Theorem  1 If  𝜆 > 0,𝜇 > 0, 𝛼 ∈ [0, 1],  and  ker(A) ∩ ker(∇) = {0},  then  F  has a global 
minimizer.

Proof As F is lower bounded by 0, it has a minimizing sequence {un}∞n=1 . Without loss of 
generality, we assume u1 = 0 . Since F is coercive by Lemma 1, we have F(un) ⩽ F(0) < ∞ , 
showing that {‖∇un‖1}∞n=1 and {‖Aun‖2}∞n=1 are bounded. As ker(A) ∩ ker(∇) = {0} , we 
have {un}∞n=1 shall be bounded. Then, there exists a convergent subsequence {unk}

∞
k=1

 such 
that unk → u∗ . Since A and ∇ are both bounded, linear operators, we have Aunk → Au∗ and 
∇unk → ∇u∗ . Since norms are continuous and thereby lower semi-continuous, we have

 Altogether, we obtain F(u∗) ⩽ lim infk→∞ F(unk ) , which implies that u∗ minimizes F(u).

F(u) ⩾
�

2
‖Au − f‖2

2
+

�

2
‖∇u‖2

2
⩾

�

2
(‖Au‖2 − ‖f‖2)2 + �

2
‖∇u‖2

2
.

‖Avnk‖2 =
‖Aunk‖2
‖unk‖2

<

�
2C

𝜆

+ ‖f‖2
‖unk‖2

,

‖∇vnk‖2 =
‖∇unk‖2
‖unk‖2

<

√
2C√

𝜇‖unk‖2
.

‖∇u∗‖1 − �‖∇u∗‖2,1 ⩽ lim inf
k→∞

�‖∇unk‖1 − �‖∇unk‖2,1
�
,

‖∇u∗‖2
2
⩽ lim inf

k→∞
‖∇unk‖22,

‖Au∗ − f‖2
2
⩽ lim inf

k→∞
‖Aunk − f‖2

2
.
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3.2  Numerical Scheme

We describe an efficient algorithm to minimize (7) via ADMM. In particular, we intro-
duce an auxiliary variable w = (wx,wy) ∈ X × X and rewrite (7) into an equivalent con-
strained optimization problem

where wx = ∇xu and wy = ∇yu . Then, the corresponding augmented Lagrangian is 
expressed by

where 𝛿 > 0 is a penalty parameter and z = (zx, zy) ∈ X × X is a dual variable. The ADMM 
iterations proceed as follows: 

Note that � = 1 reduces to the original ADMM framework [8]. We consider an adaptive 
penalty parameter �t by choosing 𝜎 > 1 . In fact, the parameter 𝜎 > 1 controls the numeri-
cal convergence speed of the algorithm in the sense that a larger � leads to a fewer number 
of iterations the algorithm needs to run before satisfying a stopping criterion. However, 
if �t increases too quickly, the ADMM algorithm will numerically converge within a few 
iterations, which may yield a low-quality solution. Thus, a small � is recommended and we 
discuss its choice in experiments (Sect. 4).

Next we elaborate on how to solve the two subproblems (10a) and (10b). The subprob-
lem (10a) is written as

The first-order optimality condition of (10a) is given by

(8)
min
u,w

�

2
‖f − Au‖2

2
+

�

2
‖∇u‖2

2
+ ‖w‖1 − �‖w‖2,1

s.t. ∇u = w,

(9)

L
�
(u,w, z) ∶=

�

2
‖f − Au‖2

2
+

�

2
‖∇u‖2

2
+ ‖w‖1 − �‖w‖2,1

+ ⟨z,∇u − w⟩ + �

2
‖∇u − w‖2

2

=
�

2
‖f − Au‖2

2
+

�

2
‖∇u‖2

2
+ ‖w‖1 − �‖w‖2,1

+
�

2

����∇u − w +
z

�

����
2

2

−
1

2�
‖z‖2

2
,

(10a)ut+1 ∈ argmin
u

L
�t
(u,wt, zt),

(10b)wt+1 ∈ argmin
w

L
�t
(ut+1,w, zt),

(10c)zt+1 = zt + �t(∇ut+1 − wt+1),

(10d)�t+1 = ��t, � ⩾ 1.

ut+1 ∈ argmin
u

�

2
‖f − Au‖2

2
+

�

2
‖∇u‖2

2
+ ⟨zt,∇u − wt⟩ +

�t

2
‖∇u − wt‖22.
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where Δ = −∇⊤∇ is the Laplacian operator. If ker(A) ∩ ker(∇) = {0} , then 𝜆A⊤
A − (𝜇 + 𝛿

t
)Δ 

is positive definite. By assuming the periodic boundary condition, A⊤A and Δ are block cir-
culant, so we can solve for ut+1 via the fast Fourier transform F  [18, 64, 83]. By the Convo-
lution Theorem, the closed-form solution for ut+1 is

where F −1 is the inverse Fourier transform, ∗ denotes complex conjugate, ◦ denotes com-
ponentwise multiplication, and division is also componentwise.

Denote wi,j =

[
(wx)i,j
(wy)i,j

]
∈ ℝ2 as the (i,  j)th entry of w. The subproblem (10b) can be 

expressed as

 Expanding (10b), we get

which shows that wi,j can be solved elementwise. Specifically, the optimal solution of 
wi,j ∈ ℝ2 is related to the proximal operator for �1 − ��2 defined by

 The closed-form solution for (12) is given in Lemma 2 [57]. By comparing (11) and (12), 
the w-update is given by, for any (i, j) ∈ Ω,

Lemma 2 ([57]) Given y ∈ ℝn , 𝛽 > 0, and � ⩾ 0, the optimal solution to (12) can be dis-
cussed separately into the following cases. 

 

(i) When

 

‖y‖∞ > 𝛽,we have

x∗ = (‖𝜉‖2 + 𝛼𝛽)
𝜉

‖𝜉‖2 ,
            where � = sign (y)◦max(|y| − �, 0).

 (ii) When  (1 − 𝛼)𝛽 < ‖y‖∞ ⩽ 𝛽,  then  x∗  is a one-sparse vector such that one 
chooses i ∈ argmax j(|yj|) and defines x∗

i
=
(|yi| + (� − 1)�

)
sign (yi) and the rest 

of the elements equal to 0.

[
𝜆A⊤A − (𝜇 + 𝛿t)Δ

]
ut+1 = 𝜆A⊤f + 𝛿t∇

⊤

(
wt −

zt

𝛿t

)
,

u
t+1 = F

−1

⎛
⎜⎜⎜⎝

�F(A)∗◦F(f ) + �
t
F(∇)∗◦F

�
w
t
−

z
t

�
t

�

�F(A)∗◦F(A) − (� + �
t
)F(Δ)

⎞
⎟⎟⎟⎠
,

wt+1 ∈ argmin
w

‖w‖1 − �‖w‖2,1 +
�t

2

����∇ut+1 +
zt

�t

− w
����
2

2

.

(11)argmin
w

�
(i,j)∈Ω

�
‖wi,j‖1 − �‖wi,j‖2 +

�t

2

�����
(∇ut+1)i,j +

(zt)i,j

�t

− wi,j

�����

2

2

�
,

(12)prox(y; �, �) ∶= prox
�(‖⋅‖1−�‖⋅‖2)(y) = argmin

x

‖x‖1 − �‖x‖2 + 1

2�
‖x − y‖2

2
.

(wt+1)i,j = prox

(
(∇ut+1)i,j +

(zt)i,j

�t

; �,
1

�t

)
.
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 (iii) When ‖y‖∞ ⩽ (1 − �)� , then x∗ = 0.

In summary, the ADMM scheme that minimizes (7) is presented in Algorithm 2.

Algorithm 2: ADMM for minimizing the AITV-Regularized smoothing
model
Input:

image f
blurring operator A
fidelity parameter λ > 0
smoothing parameter µ > 0
AITV parameter α ∈ [0, 1]
penalty parameter δ0 > 0
penalty multiplier σ 1
relative error ε > 0

Output: ut

i Initialize u0, w0, z0.
Set t = 0.
while ‖ut−ut−1‖2

‖ut‖2
> ε do

ii

ut+1 = F−1




λF(A)∗ ◦ F(f) + δtF(∇)∗ ◦ F

(
wt −

zt
δt

)

λF(A)∗ ◦ F(A)− (µ+ δt)F(∆)





(wt+1)i,j = prox
(
(∇ut+1)i,j +

(zt)i,j
δt

; α,
1
δt

)
∀(i, j), ∈ Ω

zt+1 = zt + δt(∇ut+1 − wt+1)
δt+1 = σδt

t := t+ 1

3.3  Convergence Analysis

We aim to analyze the convergence for Algorithm 2. It is true that global convergence of 
ADMM has been established in [29] for certain classes of nonconvex optimization prob-
lems, but unfortunately it cannot be applied to our problem (8) since the gradient operator 
∇ is not surjective. Instead of global convergence, we manage to achieve weaker subse-
quential convergence for two cases: � = 1 and 𝜎 > 1 . The proof of 𝜎 > 1 is adapted from 
[39, 89].

Before providing convergence results for ADMM, we provide a definition of subdif-
ferential for general functions. For a function h∶ ℝn

→ ℝ ∪ {∞} , we denote the (limiting) 
subdifferential by �h(x) [73, Definition 11.10], which is defined as a set

 with

𝜕h(x) = {v ∈ ℝ
n∶ ∃{(xt, vt)}

∞

t=1
s.t. xt → x, h(xt) → h(x), vt ∈ �̂�h(xt), and vt → v}

�̂�h(x) =

�
v ∈ ℝ

n∶ lim inf
z→x,z≠x

h(z) − h(x) − ⟨v, z − x⟩
‖z − x‖2 ⩾ 0

�
.
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Since �̂�h(x) ⊂ 𝜕h(x) where h is finite on x, the graph x ↦ �h(x) is closed [27, 73] by 
definition

First, we present a lemma and a proposition whose proofs are delayed to the appendix.

Lemma 3 Suppose that ker(A) ∩ ker(∇) = {0} . Let {(ut,wt, zt)}
∞
t=1

 be generated by  (10a)–
(10d) with � ⩾ 1. The following inequality holds:

where 𝜁 > 0 is the smallest eigenvalue of 𝜆A⊤A + (𝜇 + 𝛿0)∇
⊤∇.

Proposition 1 Suppose that ker(A) ∩ ker(∇) = {0}. Let {(ut,wt, zt)}
∞
t=1

 be generated by (10a) 
–(10d). Assume one of the conditions holds:

• � = 1 and 
∑∞

i=0
‖zi+1 − zi‖22 < ∞,

• 𝜎 > 1.

Then, we have the following statements: 

(a) the sequence {(ut,wt, zt)}
∞
t=1

 is bounded,

(b) ut+1 − ut → 0 as t → ∞.

Proposition  1 reveals an advantage of using the adaptive penality parameter with 
𝜎 > 1 . For � = 1 , we require 

∑∞

i=0
‖zi+1 − zi‖22 < ∞ in order for the iterates {(ut,wt, zt)}

∞
t=1

 

of Algorithm 2 to be bounded and to satisfy the relative stopping criterion ‖ut−ut−1‖2‖ut‖2 < 𝜖 . 

The requirement 
∑∞

i=0
‖zi+1 − zi‖22 < ∞ is no longer necessary if 𝜎 > 1.

Finally, we establish the subsequential convergence in Theorem  2 under stronger 
conditions compared to the ones in Proposition  1. These conditions are motivated by 
a series of works [22, 23, 45, 46, 51, 55] that proved the theoretical convergence of 
ADMM in solving TV-based inverse problems.

Theorem 2 Let {(ut,wt, zt)}
∞
t=1

 be generated by (10a)–(10d ). Assume one set of the follow-
ing conditions holds:

• � = 1 and 
∑∞

i=0
‖zi+1 − zi‖22 < ∞,

• 𝜎 > 1 , �t(wt+1 − wt) → 0 , and zt+1 − zt → 0.

Then there exists a subsequence of {(ut,wt, zt)}
∞
t=1

 whose limit point (u∗,w∗, z∗) is a KKT 
point of (8) that satisfies

vt ∈ �h(xt), xt → x, h(xt) → h(x), vt → v ⟹ v ∈ �h(x).

(13)L
�t+1

(ut+1,wt+1, zt+1) − L
�t
(ut,wt, zt) ⩽

� + 1

2�t
�0

‖zt+1 − zt‖22 −
�

2
‖ut+1 − ut‖22,

(14a)0 = 𝜆A⊤(Au∗ − f ) − 𝜇Δu∗ + ∇⊤z∗,
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Proof By Proposition 1, {(ut,wt, zt)}
∞
t=1

 is bounded, and hence there exists a subsequence 
that converges to a point (u∗,w∗, z∗) , denoted by (utk ,wtk

, ztk ) → (u∗,w∗, z∗). Proposition 1 

also establishes limt→∞ ut+1 − ut = 0, which implies that limk→∞ utk+1 = limk→∞ utk = u∗. 
Either set of assumptions establishes limk→∞ ztk+1 = limk→∞ ztk = z∗. The optimality condi-
tions at iteration tk are 

Next we discuss two sets of assumptions individually.
If � = 1 , then �tk = �0 for each iteration tk . Together with limt→∞ zt+1 − zt = 0 , we have 

limt→∞ ∇ut − wt = 0 by (10c) and

leading to (14c). According to (15a), the point utk+1 satisfies

Then (14a) holds after taking k → ∞ . Finally, we have

If 𝜎 > 1 and �t(wt+1 − wt) → 0 , we substitute (15c) into (15a) and simplify it to obtain

We need to prove limk→∞ wtk+1
= w∗ . Since {zt}∞t=1 is bounded in this case, there exists 

C > 0 such that ‖zt‖2 ⩽ C . By (10c), we have

Taking the limit t → ∞ , we obtain ‖wt+1 − wt‖2 → 0 and wt+1 − wt → 0 . It follows that

(14b)z∗ ∈ �

�‖w∗‖1 − �‖w∗‖2,1
�
,

(14c)∇u∗ = w∗.

(15a)0 = 𝜆A⊤(Autk+1 − f ) − 𝜇Δutk+1 + 𝛿tk
∇⊤(∇utk+1 − wtk

) + ∇⊤ztk ,

(15b)0 ∈ �

�‖wtk+1
‖1 − �‖wtk+1

‖2,1
�
− �tk

�
∇utk+1 − wtk+1

�
− ztk ,

(15c)ztk+1 = ztk + �tk
(∇utk+1 − wtk+1

).

∇u∗ = lim
k→∞

∇utk = lim
k→∞

(∇utk − wtk
) + lim

k→∞
wtk

= w∗,

0 = 𝜆A⊤(Autk+1 − f ) − 𝜇Δutk+1 + 𝛿0∇
⊤(∇utk+1 − wtk

) + ∇⊤ztk

= 𝜆A⊤(Autk+1 − f ) − 𝜇Δutk+1 + 𝛿0∇
⊤(∇utk+1 − ∇utk ) + 𝛿0∇

⊤(∇utk − wtk
)

+ ∇⊤ztk .

lim
k→∞

wtk+1
= lim

k→∞
(wtk+1

− ∇utk+1) + lim
k→∞

∇utk+1 = lim
k→∞

∇utk = w∗.

0 = lim
k→∞

𝜆A⊤(Autk+1 − f ) − 𝜇Δutk + 𝛿tk
∇⊤(wtk+1

− wtk
) + ∇⊤ztk+1

= 𝜆A⊤(Au∗ − f ) − 𝜇Δu∗ + ∇⊤z∗.

‖wt+1 − wt‖2 ⩽ ‖wt+1 − ∇ut+1‖2 + ‖∇ut+1 − ∇ut‖2 + ‖∇ut − wt‖2
=
����
zt+1 − zt

�t

����2
+ ‖∇ut+1 − ∇ut‖2 +

����
zt − zt−1

�t−1

����2
⩽

4C

�t−1

+ ‖∇ut+1 − ∇ut‖2.
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Then (15c) implies

As a result, we have ∇u∗ = w∗.
By substituting (15c) into (15b), we have

By continuity, we have ‖wtk+1
‖1 − �‖wtk+1

‖2,1 → ‖w∗‖1 − �‖w∗‖2,1 . Together with the fact 

that (wtk+1
, ztk+1) → (w∗, z∗), we obtain z∗ ∈ �

�‖w∗‖1 − �‖w∗‖2,1
�
.

Therefore, if either set of assumptions holds, then (u∗,w∗, z∗) is a KKT point of (8).

4  Experimental Results

We examine the SaT/SLaT framework by comparing the isotropic TV1 [11, 12], the 
TVp(0 < p < 1) [85], and the AITV. The experiment comparison also includes the AITV-
regularized CV and fuzzy region (FR) models [9], the iterative convolution-thresholding 
method (ICTM) [81], and the TVp-regularized Mumford-Shah (TVp MS) model without 
the bias term [55] together with the Potts model [71] solved by either a primal-dual algo-
rithm2 [69] or ADMM3 [74]. In particular, the primal-dual algorithm solves a convex relax-
ation of the Potts model [69]:

where K is the number of regions specified in an image, {ck}Kk=1 ⊂ ℝ are constant values, 
and

 Once getting U∗ from (16), the regions of an image can be approximated by

lim
k→∞

wtk+1
− wtk

= 0 ⟹ lim
k→∞

wtk+1
= lim

k→∞
wtk

= w∗.

‖∇u∗ − w∗‖2 = lim
k→∞

‖∇utk+1 − wtk+1
‖2 = lim

k→∞

1

�tk

���ztk+1 − ztk
���2 ⩽ lim

k→∞

2C

�tk

= 0.

ztk+1 ∈ �

�‖wtk+1
‖1 − �‖wtk+1

‖2,1
�
, ∀k ∈ ℕ.

(16)U∗ = argmin
U∈S

K�
k=1

�
�

�
(i,j)∈Ω

(uk)i,j�(uk)i,j − ck�2 + ‖∇uk‖2,1
�
,

S =

{
U = (u1, u2,⋯ , uK) ∈ XK∶ ∀(i, j) ∈ Ω,

K∑
k=1

(uk)i,j = 1;

(uk)i,j ∈ [0, 1], k = 1,⋯ ,K

}
.

Ω
�
=

{
(i, j) ∈ Ω∶ � = argmax

1⩽k⩽K

(u∗
k
)i,j

}

1 MATLAB code is available at https:// xiaoh aocai. netli fy. app/ downl oad/.
2 Python code is available at https:// github. com/ VLOGr oup/ pgmo- lectu re/ blob/ master/ noteb ooks/ tv- potts. 
ipynb and a translated MATLAB code is available at https:// github. com/ kbui1 993/ MATLAB_ Potts.
3 Code is available at https:// github. com/ mstor ath/ Potts lab.

https://xiaohaocai.netlify.app/download/
https://github.com/VLOGroup/pgmo-lecture/blob/master/notebooks/tv-potts.ipynb
https://github.com/VLOGroup/pgmo-lecture/blob/master/notebooks/tv-potts.ipynb
https://github.com/kbui1993/MATLAB_Potts
https://github.com/mstorath/Pottslab


 Communications on Applied Mathematics and Computation

1 3

with � = 1,⋯ ,K . For short, we refer (16) as the convex Potts model. To apply ADMM, 
Storath and Weinmann [74] considered the following version of the Potts model:

Since it does not admit a segmentation result with a chosen number of regions, we develop 
its SaT version called SaT-Potts that solves (17), followed by the K-means clustering for 
segmentation. Both (16) and (17) can deal with multichannel input; please refer to [69, 74] 
for more details.

To ease the parameter tuning, we scale the pixel intensity of all the testing images in 
our experiments to [0,  1]. Stage 1 of the isotropic TV SaT/SLaT is solved using the 
authors’ official code that is implemented by a similar ADMM algorithm to Algo-
rithm 2 with � = 1 . Stage 1 of TVp and AITV SaT/SLaT is solved by Algorithm 2 with 
� = 1.25 using the appropriate proximal operators. We set the penalty parameter in 
Algorithm  2 to be �0 = 1.0, 2.0 for grayscale and multichannel images, respectively. 
The stopping criterion for the ADMM algorithms is until ‖ut+1−ut‖2‖ut+1‖2 < 10−4 with a maxi-
mum number of 300 iterations. We compare the proposed ADMM algorithm with our 
own DCA implementation for AITV SaT/SLaT as described in [86]. Note that its inner 
minimization subproblem is solved by semi-proximal ADMM [40], which has more 
parameters than ADMM. We use the default parameter setting as suggested in [86].

To quantitatively evaluate the segmentation performance, we use two metrics: DICE 
index [30] when the ground truth is available and PSNR when the ground truth is una-
vailable. The DICE index is given by

where R(i) is the set of pixels with label i in the ground-truth image f, R�(i) is the set of 
pixels with label i in the segmented image f̃  , and #{R} refers to the number of pixels in 
the set R. Following the works of [45, 52, 65, 74], we use PSNR to determine how well the 
segmented image f̃  approximates the original image f. It is computed by 10 log10(1∕MSE) , 
where MSE is the mean square error between f and f̃ .

We tune various parameters in the investigated algorithms to achieve the best DICE 
indices or PSNRs for synthetic or real images, respectively. The fidelity parameter � 
and the smoothing parameter � are tuned for each image, which will be specified later. 
For TVp SaT/SLaT, we only consider p = 1∕2, 2∕3 because they are the only values 
that have closed-form solutions [13, 87] for their proximal operators. For the AITV 
related algorithms, we tune � ∈ {0.2, 0.4, 0.6, 0.8} . For the SaT-Potts model [74], we 
use a default setting for the other parameters. For the convex Potts model [69], we run 
the algorithm for up to 150 iterations with the same stopping criterion as AITV does.

All experiments are performed in MATLAB R2022b on a Dell laptop with 
a 1.80  GHz Intel Core i7-8565U processor and 16.0  GB of RAM. In the gen-
eral SaT/SLaT framework, we use some MATLAB built-in functions. In Stage 2, 
makecform(‘srgb2lab’) is used to convert RGB to Lab. In Stage 3, kmeans 
performs K-means++ clustering [3] for up to 100 iterations five times with different 
initialization and selects the best arrangement among the five solutions. We also paral-
lelize Stage 1 for color, or generally multichannel, images to speed up the computa-
tion. To compute DICE and PSNR, we use the MATLAB functions dice and psnr. 

(17)min
u

�‖u − f‖2
2
+ ‖∇u‖0.

DICE = 2
#{R(i) ∩ R�(i)}

#{R(i)} + #{R�(i)}
,
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The AITV SaT/SLaT codes are available at https:// github. com/ kbui1 993/ Offic ial_ 
AITV_ SaT_ SLaT.

4.1  Two‑Phase Segmentation on Synthetic Images

We compare the proposed ADMM algorithm of AITV SaT/SLaT with the other SaT/SLaT 
methods, the Potts models, ICTM, TVp MS, and the AITV CV model on the synthetic 
images presented in Fig. 2. We corrupt the images with either random-valued (RV) or salt-
and-pepper (SP) impulsive noises. Additionally, we consider blurring the image before 
adding impulsive noises. Specifically, we use an average blur fspecial (‘average’, 
15) for Fig. 2a and a motion blur fspecial (‘motion’, 5, 45) for Fig. 2b. For the SaT/
SLaT methods applied to both images in Fig.  2, we tune the parameters � ∈ [1, 10] and 
� ∈ [0.2, 6].

4.1.1  Synthetic Grayscale Images

We apply the competing segmentation methods on four types of input data based on Fig. 2a, 
i.e., 65% RV noise, 65% SP noise, average blur followed by 50% RV, and average blur 

Fig. 2  Synthetic images for 
two-phase segmentation. a 
Grayscale image. b Color image 
whose regions have pixel value 
(128, 230, 64). The size of both 
images is 385 × 385

Table 1  Comparison of the DICE indices and computational times (seconds) between the segmentation 
methods applied to Fig. 2a corrupted in four cases

Number in bold indicates either the highest DICE index or the fastest time among the segmentation meth-
ods for a given corrupted image

65% RV 65% SP Blur and 50% RV Blur and 50% SP

DICE Time (s) DICE Time (s) DICE Time (s) DICE Time (s)

(Original) SaT 0.974 8 4.71 0.964 1 5.18 0.955 7 6.15 0.949 8 8.19
TVp SaT 0.975 1 2.14 0.964 7 2.33 0.953 9 2.74 0.947 5 3.76
AITV SaT (ADMM) 0.979 3 2.32 0.965 8 2.04 0.958 1 2.43 0.952 2 2.54
AITV SaT (DCA) 0.978 3 23.22 0.964 4 24.65 0.948 8 40.93 0.943 4 35.23
AITV CV 0.978 6 91.26 0.965 5 121.57 0.932 8 121.11 0.919 0 151.68
ICTM 0.432 2 0.50 0.432 1 0.18 0.531 9 0.82 0.506 5 0.22
TVp MS 0.968 1 4.96 0.953 3 10.14 0.936 9 3.20 0.927 1 6.08
Convex Potts 0.975 5 8.01 0.963 7 6.81 0.910 1 7.99 0.913 2 6.85
SaT-Potts 0.971 4 4.67 0.955 9 4.24 0.930 5 4.39 0.918 0 4.11

https://github.com/kbui1993/Official_AITV_SaT_SLaT
https://github.com/kbui1993/Official_AITV_SaT_SLaT
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followed by 50% SP. The resulting DICE indices together with the computational times 
are recorded in Table 1. For all four cases, our proposed AITV SaT (ADMM) achieves the 
highest DICE indices with generally the second fastest times. The fastest time is attained 
by ICTM, but it yields the worst results, indicating that it performs poorly on images cor-
rupted by impulsive noise. The AITV CV model, ICTM, TVp MS model, and the Potts 
models perform worse than the SaT methods on blurry images because, unlike the SaT 
methods, they do not account for blurring. Lastly, we point out that solving (7) in the AITV 
SaT model by ADMM yields higher DICE in significantly less time than by DCA.

Visual segmentation results are presented in Fig.  3 under the RV noise with average 
blur. Both AITV SaT methods identify the middle rectangle of the three rectangles at the 
top left corner and the two smallest circles above the middle square in Fig. 3. These regions 
are enclosed in red boxes. As a result, identifying more regions than the other methods and 
having a smoother segmentation than its DCA counterpart, AITV SaT (ADMM) has the 
highest DICE index for this case.

4.1.2  Synthetic Color Images

The (original) color image, Fig. 2b, is corrupted by either 60% impulsive noise or motion 
blur followed by 45% noise. Table 2 records the DICE indices and the computational times 
of various segmentation methods applied on all the four cases. For the noisy images with-
out blur, AITV SLaT (ADMM) attains comparable DICE indices as the best AITV CV 
method and its DCA counterpart but with significantly less computational time. For the 
blurry, noisy inputs, AITV SLaT (ADMM) attains the highest DICE indices. In general, as 
an alternative to its DCA counterpart, AITV SLaT (ADMM) gives satisfactory segmenta-
tion results under a reasonable amount of time.

9
7

1
8

8 9 9
1

5

O

Fig. 3  Segmentation results of Fig.  2a corrupted with average blur followed by 50% RV noise. Regions 
boxed in red are only identified by AITV SaT
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Figure 4 illustrates the visual results under the SP noise with motion blur case. AITV 
SLaT, AITV CV, and TVp MS are able to partially segment the leftmost rectangle in the 
upper left corner and the small circular region right of the triangular region. These regions 
are boxed in red to showcase the main differences in the results outputted by the segmen-
tation methods. By taking account for blur, AITV SLaT (ADMM) has the highest DICE 
index for this case while having a significantly faster time than its DCA counterpart.

Table 2  Comparison of the DICE indices and computational times (seconds) between the segmentation 
methods applied to Fig. 2b corrupted in four cases

Number in bold indicates either the highest DICE index or the fastest time among the segmentation meth-
ods for a given corrupted image

60% RV 60% SP Blur and 45% RV Blur and 45% SP

DICE Time (s) DICE Time (s) DICE Time (s) DICE Time (s)

(Original) SLaT 0.981 4 11.74 0.963 7 12.61 0.984 5 11.07 0.974 9 12.17
TVp SLaT 0.982 2 4.54 0.973 1 4.77 0.986 3 8.05 0.977 2 6.27
AITV SLaT (ADMM) 0.983 9 3.31 0.974 8 4.67 0.987 2 6.01 0.978 0 6.45
AITV SLaT (DCA) 0.984 9 41.27 0.975 3 47.09 0.986 6 44.54 0.977 6 61.64
AITV CV 0.989 3 84.56 0.980 6 113.08 0.977 1 92.41 0.970 2 103.99
ICTM 0.478 8 1.02 0.458 9 0.25 0.578 2 1.35 0.556 5 0.35
TVp MS 0.979 9 3.71 0.968 8 54.10 0.979 1 3.71 0.971 9 3.52
Convex Potts 0.962 9 9.20 0.961 4 7.50 0.972 8 7.31 0.957 3 8.10
SaT-Potts 0.980 6 7.66 0.967 2 7.70 0.976 0 6.24 0.964 3 6.53

(a) Motion
blur with SP

noise

(b) (Original)
SLaT

DICE: 0.974 9

(c) TVp

SLaT
DICE: 0.977 2

(d) AITV
SLaT

(ADMM)
DICE: 0.978 0

(e) AITV
SLaT (DCA)

DICE: 0.977 6

(f) AITV CV
DICE: 0.970 2

(g) ICTM
DICE: 0.556 5

(h) TVp MS
DICE: 0.971 9

(i) Convex
Potts

DICE: 0.957 3

(j) SaT-Potts
DICE: 0.964 3

Fig. 4  Segmentation results of Fig.  2b corrupted with motion blur followed by 45% SP noise. Regions 
boxed in red are only identified by the AITV SLaT, AITV CV, and TVp MS
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4.2  Real Grayscale Images with Intensity Inhomogeneities

We examine real images with intensity inhomogeneities [1], as shown in Fig. 5. Intensity inho-
mogeneities can be problematic for image segmentation because of the dramatically varying 
pixel intensities in the local regions of an image. For example, we apply AITV SaT (ADMM) 
to Figs. 5a, b to exemplify the challenges of segmenting the object of interest. In Fig. 6a, no 
part of the caterpillar is segmented while in Fig. 6d, most of the egret’s beak is not segmented. 
However, by incorporating the intensity inhomogeneity (IIH) images [54] shown in Figs. 6b, e 
as additional channels, AITV SaT accounts for intensity inhomogeneity and is able to segment 
the caterpillar in Fig. 6c and the egret and its beak in Fig. 6f.

Following the work of [54], we incorporate an IIH image by appending it as an additional 
channel to the original image to facilitate segmentation. To generate the IIH image, one calcu-
lates an IIH-indicator D

Fig. 5  Real, grayscale images for image segmentation

Fig. 6  AITV SaT results on real grayscale images with and without IIH images. Left column: AITV SaT 
results without IIH images. Middle column: IIH images. Right column: AITV SaT results with IIH images
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where Ω(i,j) is a neighborhood centered at pixel (i, j) and ūi,j is the average pixel intensity in 
the neighborhood Ω(i,j) . Using the IIH-indicator D, the IIH-image is calculated by

where

For our experiments, Ω(i,j) is a 7 × 7 patch centered at pixel (i, j).
When the IIH image is added as a channel to the grayscale image, we smooth each 

channel and then apply K-means clustering for the SaT methods. For the other segmen-
tation methods, we consider their multichannel extensions to process the two channels 
that are composed of grayscale and IIH.

For the images in Fig. 5 (after rescaling the pixel intensities to [0, 1]), we corrupt 
them with motion blur fspecial (‘motion’, 5, 0) followed by Gaussian noise with 
mean 0 and variance 0.001. We tune the parameters � ∈ [0.25, 5] and � ∈ [5, 60] for the 
SaT methods. For each image, the ground truth is determined from the segmentation 
results by three human subjects. A pixel is declared an object of interest in the ground 
truth if at least two subjects agree [1]. The DICE indices and computational times of 
the segmentation algorithms are recorded in Table  3 while the segmentation results 
and their ground truths are presented in Figs. 7, 8, 9, and 10. Note that some segmenta-
tion results have the image border segmented because of the boundary artifacts created 
by the IIH image (see Figs. 6b, e). For all four images, AITV SaT (ADMM) is among 
the top three methods with the highest DICE indices. It provides satisfactory results in 

D =
1

�Ω�
�

(i,j)∈Ω

⎛⎜⎜⎝
1

�Ω(i,j)�
�

(i�,j�)∈Ω(i,j)

�ui�,j� − ūi,j�2
⎞⎟⎟⎠
,

uIIH
i,j

=
1

|Ω(i,j)|
∑

(i� ,j�)∈Ω(i,j)

1Ω(i,j)
(i�, j�),

1Ω(i,j)
(i�, j�) =

{
1 if |ūi,j − ui�,j� |2 ⩾ D,

0 if |ūi,j − ui�,j� |2 < D.

Table 3  Comparison of the DICE indices and computational times (seconds) between the segmentation 
methods applied to Fig. 5

Number in bold indicates either the highest DICE index or the fastest time among the segmentation meth-
ods for a given image

Fig. 5a Fig. 5b Fig. 5c Fig. 5d

DICE Time (s) DICE Time (s) DICE Time (s) DICE Time (s)

(Original) SaT 0.881 8 3.10 0.967 7 3.42 0.919 1 5.09 0.928 8 4.01
TVp SaT 0.889 9 1.97 0.847 5 1.89 0.922 7 2.35 0.936 8 2.06
AITV SaT (ADMM) 0.888 8 1.76 0.968 6 1.45 0.917 3 2.20 0.926 9 1.53
AITV SaT (DCA) 0.879 5 19.52 0.843 5 12.28 0.905 3 25.05 0.926 9 18.21
AITV CV 0.756 8 50.86 0.942 3 46.57 0.891 3 107.67 0.914 1 15.89
ICTM 0.623 0 0.25 0.951 6 1.39 0.868 8 2.90 0.912 9 0.16
TVp MS 0.678 2 8.33 0.934 6 8.50 0.784 6 10.34 0.917 9 6.24
Convex Potts 0.890 2 2.23 0.525 7 2.27 0.813 1 4.69 0.917 3 1.96
SaT-Potts 0.876 9 2.10 0.961 3 2.08 0.916 5 2.53 0.912 0 2.37
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(a) Noisy and blurry (b) Ground truth (c) (Original) SaT (d) TVp SaT (e) AITV SaT (ADMM) (f) AITV SaT (DCA)

(g) AITV CV (h) TVp MS (i) ICTM (j) Convex Potts (k) SaT-Potts

Fig. 7  Segmentation results of Fig. 5a corrupted by motion blur followed by Gaussian noise

(a) Noisy and blurry (b) Ground truth (c) (Original) SaT (d) TVp SaT (e) AITV SaT (ADMM) (f) AITV SaT (DCA)

(g) AITV CV (h) TVp MS (i) ICTM (j) Convex Potts (k) SaT-Potts

Fig. 8  Segmentation results of Fig. 5b corrupted by motion blur followed by Gaussian noise

(a) Noisy and blurry (b) Ground truth (c) (Original) SaT (d) TVp SaT (e) AITV SaT (ADMM) (f) AITV SaT (DCA)

(g) AITV CV (h) TVp MS (i) ICTM (j) Convex Potts (k) SaT-Potts

Fig. 9  Segmentation results of Fig. 5c corrupted by motion blur followed by Gaussian noise

(a) Noisy and blurry (b) Ground truth (c) (Original) SaT (d) TVp SaT (e) AITV SaT (ADMM) (f) AITV SaT (DCA)

(g) AITV CV (h) TVp MS (i) ICTM (j) Convex Potts (k) SaT-Potts

Fig. 10  Segmentation results of Fig. 5d corrupted by motion blur followed by Gaussian noise
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about 2 s. Moreover, it outperforms its DCA counterpart in terms of DICE indices and 
computational times, especially for Fig. 5b. For Figs. 7, 8, and 9, although both algo-
rithms solve the same model (7), they output different results. As (7) is nonconvex, it is 
possible that ADMM and DCA attain different solutions.

4.3  Real Color Images

Four real color images taken from [61] are presented in Fig.  11 for segmentation. The 
images are corrupted with either Gaussian noise of mean zero and variance 0.025 or 10% 
SP noise. We segment Fig. 11a with k = 3 regions, Fig. 11b with k = 5 regions, Fig. 11c 
with k = 6 regions, and Fig. 11d with k = 8 regions. Because ground truth is unavailable, 
we use PSNR to evaluate the segmentation result as a piecewise-constant approxima-
tion of the original image. For the SLaT methods, we tune the parameters � ∈ [2, 30] and 
� ∈ [0.05, 1.0] for all the images.

Table 4 records the PSNR values and computational times in seconds of the segmenta-
tion algorithms while Figs.  12, 13, 14, and 15 present the visual results. Overall, AITV 
SLaT (ADMM) is generally among the top three methods with the best PSNR values for 
both noise cases. In fact, for SP noise, AITV SLaT (ADMM) has the second best PSNRs 
while being significantly faster than TVp MS that has the best PSNRs.

In Fig. 12, the sand lines are segmented in fine details by the SLaT methods, ICTM, 
and TVp MS in the Gaussian noise case and by the (original) SLaT, AITV SLaT, and TVp 
MS in the SP noise case. In Fig. 13, TVp SLaT, AITV SLAT, AITV FR, TVp MS, and 
SaT-Potts can clearly segment the multiple rows of windows on the top part of the building 
on the right. Under the SP noise, no algorithms succeed in the windows, but AITV SLaT 
(ADMM) and TVp MS are able to preserve some parts of the man’s eyes and the palm 

Fig. 11  Real color images for image segmentation
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trees’ green color and foliage. Despite AITV SLaT (ADMM) having a lower PSNR, the 
palm trees are greener in the segmentation result of AITV SLaT (ADMM) than TVp MS. 
In Fig. 14, under Gaussian noise, despite having lower PSNRs, both ADMM and DCA of 
AITV SLaT are able to more clearly segment the bottom half of the wheel at the lower 
right corner than TVp SLaT and TVp MS. Moreover, the roofs in the segmentation results 
of AITV SLaT are mostly brown while they have a considerable amount of green in the 
results of the TVp models. Under the SP noise, AITV SLaT (ADMM) provides the most 
visually appealing segmentation result even though its PSNR is not the best. TVp MS iden-
tifies the green color of the grass and most of the wheels on the bottom right corner com-
pared to any other methods. Lastly, for Fig. 15, under Gaussian noise, the SLaT methods, 
the Potts methods, and TVp MS produce visually similar segmentation results. Under SP 
noise, AITV SLaT (ADMM) and TVp MS segment more windows at the top of the build-
ing than any other methods. For all four figures, AITV SLaT (ADMM) and AITV SLaT 
(DCA) produce segmentation results with similar PSNR values, but the former is up to five 
times faster than the latter. Although ICTM and SaT-Potts are the fastest methods, their 
segmentation results are less satisfactory.

Table 4  Comparison of the PSNRs and computational times (seconds) between the segmentation methods 
applied to the images in Fig. 11 corrupted with either Gaussian noise with mean zero and variance 0.025 or 
10% SP noise

Number in bold indicates either the highest PSNR or the fastest time among the segmentation methods for 
a given image

Garden (Fig. 11a) 
k = 3

Man (Fig. 11b) 
k = 5

House (Fig. 11c) 
k = 6

Building (Fig. 11d) 
k = 8

PSNR Time (s) PSNR Time (s) PSNR Time (s) PSNR Time (s)

(a) Gaussian noise
(Original) SLaT 20.45 7.09 21.11 13.68 21.88 13.56 21.76 17.60
TVp SLaT 20.26 11.58 22.11 13.59 21.93 9.83 21.63 12.16
AITV SLaT (ADMM) 20.42 7.52 22.19 15.51 21.85 10.99 21.78 11.90
AITV SLaT (DCA) 20.42 38.27 22.21 53.51 21.81 47.54 21.78 52.73
AITV FR 18.51 148.62 21.47 354.32 20.35 447.50 19.91 583.13
ICTM 20.28 6.36 20.29 11.05 19.89 5.22 18.63 12.41
TVp MS 19.76 88.64 22.10 52.55 22.10 169.34 21.35 53.62
Convex Potts 18.50 14.93 21.30 52.22 20.64 76.07 21.17 152.46
SaT-Potts 19.34 9.78 21.71 7.60 21.62 7.31 21.56 7.85
(b) SP noise
(Original) SLaT 19.22 6.53 19.83 16.26 20.95 13.71 20.08 18.79
TVp SLaT 18.34 9.06 19.56 9.57 20.43 9.19 19.90 11.77
AITV SLaT (ADMM) 19.29 9.30 20.13 12.57 21.08 9.59 20.53 16.10
AITV SLaT (DCA) 18.99 47.62 20.09 76.38 20.91 84.83 19.97 96.29
AITV FR 18.33 144.43 19.96 307.03 19.25 368.40 19.15 759.58
ICTM 17.73 27.95 18.44 24.06 17.95 9.34 16.57 20.40
TVp MS 19.44 97.90 20.25 44.43 21.27 113.61 20.60 101.82
Convex Potts 18.86 14.95 19.26 45.86 19.62 76.83 19.18 154.43
SaT-Potts 18.27 8.58 18.94 6.48 20.20 9.77 19.45 7.97
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O

O

Fig. 12  Segmentation results into k = 3 regions of Fig. 11a corrupted by either Gaussian noise of mean zero 
and variance 0.025 or 10% SP noise

O

O

Fig. 13  Segmentation results into k = 5 regions of Fig.  11b corrupted by either Gaussian noise of mean 
zero and variance 0.025 or 10% SP noise
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4.3.1  HSV vs. Lab

The HSV (hue, saturation, and value) space is another popular, approximately uniform 
color space that could be used instead of Lab space for the SLaT methods. It was used 
to derived features for improving image segmentation algorithms [6, 10, 25, 44, 66, 75]. 
Some works [66, 76] claim that HSV space is better than Lab space for image segmen-
tation. However, we provide numerical evidence to show that HSV space may not be as 
effective as Lab space for the SLaT methods.

To compare the segmentation results between HSV and Lab for the AITV SLaT 
method, we replace Lab with HSV in Algorithm 1 and apply the HSV-based algorithm to 
the images in Fig. 11 corrupted with Gaussian noise with mean zero and variance 0.025. 
Figure  16 compares the segmentation results and the PSNR values between using HSV 
and Lab spaces. Overall, we observe that using Lab space for AITV SLaT leads to higher 
PSNR values and more detailed segmentation. For Fig.  16a, using Lab space identifies 
more of the fine sand lines than HSV space. Unlike using HSV space, AITV SLaT with 
Lab is able to identify the windows on the right side of Fig. 16b and the wheel on the bot-
tom right corner of Fig. 16c. Lastly, for Fig. 16d, the tulips are clearly redder and more 
segmented in the result of AITV SLaT with Lab than with HSV.

O

O

Fig. 14  Segmentation results into k = 6 regions of Fig.  11c corrupted by either Gaussian noise of mean 
zero and variance 0.025 or 10% SP noise
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4.4  Parameter Analysis

4.4.1  Model Parameters of (7)

We analyze the following parameters in (7).

• � : this fidelity parameter weighs how close the approximation Au∗ is to the original 
image f, where u∗ is a solution to (7). When the image f has a large amount of noise, 
choosing a small value for � is recommended.

O

O

Fig. 15  Segmentation results into k = 8 regions of Fig.  11d corrupted by either Gaussian noise of mean 
zero and variance 0.025 or 10% SP noise
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• � : this smoothing parameter determines the smoothness of the solution u∗ of (7), 
which may help with denoising. However, choosing a large value for � will deterio-
rate important edge information in u∗.

• � ∈ [0, 1] : this sparsity parameter determines the gradient vector sparsity at each 
pixel, which is important in preserving edge information. However, choosing a large 
� may result in preserving some noise in the solution u∗.

To perform sensitivity analysis on the model parameters, we apply AITV SLaT 
(ADMM) with parameters �0 = 2 and � = 1.25 to Fig.  11d corrupted with Gauss-
ian noise with mean 0 and variance 0.025. We examine the sparsity parameter 
� ∈ {0.2, 0.3,⋯ , 0.8} while we vary either the fidelity parameter � with � = 0.10 fixed 
or the smoothing parameter � with � = 10 fixed. The sensitivity analysis is visualized in 
Fig. 17.

Figure 17a shows that the PSNR has a concave relationship with respect to the fidel-
ity parameter � for each value of � . We observe that larger value of � leads to higher 

Fig. 16  Comparison between using Lab space vs. HSV space for the AITV SLaT method
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PSNR for smaller value of � . More specifically, when � ⩽ 5.0 , the order of the PSNR 
curves follows the increasing value of � . However, the order is reversed when � becomes 
large enough, such as when � ⩾ 10 . Figure 17b shows that with respect to the smooth-
ing parameter, PSNR is generally increasing when 0.4 ⩽ � ⩽ 0.8 while it appears to be 
robust for � = 0.2, 0.3.

4.4.2  Algorithm Parameters of Algorithm 2

We analyze the following parameters introduced in the ADMM algorithm that solves 
(7).

• �0 : this penalty parameter weighs the quadratic difference between the original variable 
∇u and the auxiliary variable w.

• � : this penalty multiplier determines the numerical convergence speed of the ADMM 
algorithm.

We perform sensitivity analysis on AITV SLaT (ADMM) with model parameters 
� = 10,� = 0.1 , and � = 0.2 to Fig. 11a corrupted with Gaussian noise with mean 0 and 
variance 0.025. When varying �0 , we fix � = 1.25 while when varying � , we fix �0 = 2 . 
Figure 18 visualizes the sensitivity analysis of the algorithm parameters.

According to Figs. 18a, b, the penalty parameter �0 does not have much influence on the 
PSNR, but it does affect the speed of the ADMM algorithm. When 𝛿0 < 1.5 , the compu-
tational time is between 9.5 s and 15.5 s, but when �0 ⩾ 1.5 , it decreases to between about  
9 s and 12 s. As shown in Figs. 18c, d, the penalty multiplier � does have an impact on both 
the PSNR and the algorithm’s numerical convergence. As � increases, the PSNR generally 
decreases. When 𝜎 < 1.25 , the algorithm can be as slow as up to 22 s, but when � ⩾ 1.25 , 
it does speed up to between 8 s and 13 s.

.0

.0

.0

.0

.0

.0

.0

.0

.0

.0
.0

Fig. 17  Sensitivity analysis on the model parameters � and � to Fig. 11d corrupted by Gaussian noise with 
mean 0 and variance 0.025
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5  Conclusion

In this paper, we proposed an efficient ADMM algorithm for the SaT/SLaT framework that 
utilizes AITV regularization. When designing the ADMM algorithm, we incorporated the 
proximal operator for the �1 − ��2 regularization [57]. We provided convergence analysis of 
ADMM to demonstrate that the algorithm subsequentially converges to a KKT point under 
certain conditions. In our numerical experiments, the AITV SaT/SLaT using our ADMM 
algorithm produces high-quality segmentation results within a few seconds. In addition, this 
work shows the effectiveness of using nonconvex regularizations in image processing. As for 

0

0

0

0

0
.0 .0 .0 .0 .0 .0

.0

.0 .0 .0 .0 .0 .0 .0 .0

Fig. 18  Sensitivity analysis on the ADMM algorithm parameters �
0
 and �
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future work, we will explore other nonconvex regularizations, such as transformed �1 [91, 92], 
as alternative options to AITV and TVp (0 < p < 1) under the SaT/SLaT framework. To sim-
plify the SLaT framework for color images, we plan to apply these nonconvex regularizations 
in quaternion space to complement the quaternion-based SaT model [84] with �1∕�2 regulari-
zation [72, 78–80].

Appendix A Proofs of Sect. 3.3

Appendix A.1 Proof of Lemma 3

Proof It is straightforward that u⊤A⊤Au = ‖Au‖2
2
⩾ 0 and u⊤∇⊤∇u = ‖∇u‖2

2
⩾ 0 

for any u ∈ X , so � ⩾ 0 . If � = 0, then there exists a nonzero vector x ∈ X such that 
𝜆‖Ax‖2

2
+ (𝜇 + 𝛿0)‖∇x‖22 = 𝜆x⊤A⊤Ax + (𝜇 + 𝛿0)x

⊤∇⊤∇x = 0. Then, we shall have 
x ∈ ker(A) ∩ ker(∇) , contradicting that ker(A) ∩ ker(∇) = {0} . Therefore, 𝜁 > 0 and hence we 
get

As �t+1 ⩾ �t ( � ⩾ 1 ), L
�t
(u,wt, zt) is a strongly convex function of u with parameter 𝜁 > 0 . 

Fixing wt, zt , the minimizer ut+1 of L
�t
(u,wt, zt) in (10a) satisfies the following inequality 

[5, Theorem 5.25]:

As wt+1 is the optimal solution to (10b), we have

It follows from the update (10c) that

Similarly, we get

Combining (A1)–(A4) leads to the desired inequality

�‖Au‖2
2
+ (� + �0)‖∇u‖22 ⩾ �‖u‖2

2
, ∀u ∈ X.

(A1)L
�t
(ut+1,wt, zt) − L

�t
(ut,wt, zt) ⩽ −

�

2
‖ut+1 − ut‖22.

(A2)L
�t
(ut+1,wt+1, zt) − L

�t
(ut+1,wt, zt) ⩽ 0.

(A3)
L
�t
(ut+1,wt+1, zt+1) − L

�t
(ut+1,wt+1, zt) = ⟨zt+1 − zt,∇ut+1 − wt+1⟩

=
1

�t

‖zt+1 − zt‖22.

(A4)
L
�t+1

(ut+1,wt+1, zt+1) − L
�t
(ut+1,wt+1, zt+1) =

�t+1 − �t

2
‖∇ut+1 − wt+1‖22

=
�t+1 − �t

2�2t
‖zt+1 − zt‖22.
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Appendix A.2 Proof of Proposition 1

Proof (a) We start by proving the boundedness of {zt}∞t=1. The optimality condition of 
(10b) at iteration t is expressed by

Together with (10c), we have

which implies that there exist two vectors v1 ∈ �‖wt+1‖1 and v2 ∈ �‖wt+1‖2,1 such that 
zt+1 = v1 − �v2 . For any v ∈ �‖w‖1 , we have

which guarantees that ‖v‖∞ ⩽ 1. If z ∈ �‖w‖2,1 , then

By (A8), we have ‖(v2)i,j‖2 ⩽ 1 , which means that ‖v2‖∞ ⩽ 1 . As a result, ‖z
t+1‖∞ ⩽

‖v
1
‖∞ + �‖v

2
‖∞ ⩽ 2 . Altogether, we arrive at an upper bound, i.e.,

By telescoping summation of (13), we have for all t that

Now that {zt}∞t=1 is bounded, then {‖zt+1 − zt‖22}∞t=1 is bounded. Denote C ∶= sup
t∈ℕ

‖z
t+1 − z

t
‖2
2
 . If � = 1 and 

∑∞

i=0
‖zi+1 − zi‖22 < ∞ , then {L

�t
(ut,wt, zt)}

∞
t=1

 is uniformly 

bounded above. On the other hand, if 𝜎 > 1 , then we get

L
�t+1

(ut+1,wt+1, zt+1) − L
�t
(ut,wt, zt) ⩽

�t+1 − �t

2�2t
‖zt+1 − zt‖22 + 1

�t

‖zt+1 − zt‖22

−
�

2
‖ut+1 − ut‖22

=
� + 1

2�t
�0

‖zt+1 − zt‖22 −
�

2
‖ut+1 − ut‖22.

(A5)0 ∈ �

�‖wt+1‖1 − �‖wt+1‖2,1
�
− �t

�
∇ut+1 − wt+1

�
− zt.

(A6)zt+1 ∈ 𝜕

�‖wt+1‖1 − 𝛼‖wt+1‖2,1
�
⊂ 𝜕‖wt+1‖1 − 𝛼𝜕‖wt+1‖2,1,

(A7)(vx)i,j = sign ((wx)i,j) and (vy)i,j = sign ((wy)i,j),

(A8)z
i,j =

�
w
i,j

‖w
i,j‖2 if ‖w

i,j‖2 ≠ 0,

∈ {z
i,j ∈ ℝ2∶‖z

i,j‖2 ⩽ 1} if ‖w
i,j‖2 = 0.

(A9)
‖zt+1‖2 =

��
i,j

��(zt+1,x)i,j�2 + �(zt+1,y)i,j�2
�

⩽
√
22(2MN) = 2

√
2MN.

L
�t+1

(ut+1,wt+1, zt+1) ⩽ L
�0
(u0,w0, z0) +

� + 1

2�0

t�
i=0

1

�
i
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⩽ L
�0
(u0,w0, z0) +

� + 1

2�0

∞�
i=0

1

�
i
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where the infinite sum converges for 𝜎 > 1 . In either case, we have that {L
�t
(ut,wt, zt)}

∞
t=1

 
is uniformly bounded above, and hence there exists a constant C̃ > 0 such that 
L
𝛿t
(ut,wt, zt) < C̃.
Since ‖w‖2,1 ⩽ ‖w‖1 , we have

This suggests an upper bound of ‖∇ut‖2, i.e.,

Moreover, we observe that

As {zt}∞t=1 is bounded, then {‖f − Aut‖22}∞t=1 is bounded as well. Altogether {F(ut)}∞t=1 
is a bounded sequence, and hence we conclude that {ut}∞t=1 is bounded by coercivity in 
Lemma 1. Lastly, from (10c), we have

proving that {wt}
∞
t=1

 is bounded.
(b) By Lemma 3, we can derive

By (A9), we have

Combining the two inequalities gives us

As t → ∞ , we obtain

L
𝛿t+1

(ut+1,wt+1, zt+1) ⩽ L
𝛿0
(u0,w0, z0) +

C(𝜎 + 1)

2𝛿0

∞∑
i=0

1

𝜎
i
< ∞,

𝜇

2
‖∇ut‖22 − 1

2𝛿t
‖zt‖22 ⩽ L

𝛿t
(ut,wt, zt) ⩽ C̃.

‖∇ut‖2 ⩽
�

2

𝜇

�
C̃ +

1

2𝛿t
‖zt‖22

�
⩽

�
2

𝜇

�
C̃ +

4MN

𝛿0

�
.

𝜆

2
‖f − Aut‖22 − 1

2𝛿t
‖zt‖22 ⩽ L

𝛿t
(ut,wt, zt) ⩽ C̃.

‖wt‖2 ⩽
����∇ut −

zt − zt−1

𝛿t−1

����
2

2

⩽
4
√
2MN

𝛿0

+

�
2

𝜇

�
C̃ +

4MN

𝛿0

�
,

L
�t+1

(ut+1,wt+1, zt+1) ⩽ L0(u0,w0, z0) +
(� + 1)

2�0

t�
i=0

1

�
i
‖zi+1 − zi‖22

−
�

2

t�
i=0

‖ui+1 − ui‖22.

(A10)L
�t+1

(ut+1,wt+1, zt+1) ⩾ −
1

2�t+1
‖zt+1‖22 ⩾ −

4MN

�0

, ∀t ∈ ℕ.

−
4MN

�0

+
�

2

t�
i=0

‖ui+1 − ui‖22 ⩽ L
�t+1

(ut+1,wt+1, zt+1) +
�

2

t�
i=0

‖ui+1 − ui‖22

⩽ L0(u0,w0, z0) +
(� + 1)

2�0

t�
i=0

1

�
i
‖zi+1 − zi‖22.
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Earlier in proving the boundedness of {L
�t
(ut,wt, zt)}

∞
t=1

 , we show that the summation ∑∞

i=0

1

�
i
‖zi+1 − zi‖22 converges. As a result, the summation 

∑∞

i=0
‖ui+1 − ui‖22 converges, 

which implies that ut+1 − ut → 0.
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