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Abstract. We carried out a computational study of propagation speeds of reaction-diffusion-
advection fronts in three dimensional (3D) cellular and Arnold-Beltrami-Childress (ABC) flows
with Kolmogorov-Petrovsky-Piskunov(KPP) nonlinearity. The variational principle of front
speeds reduces the problem to a principal eigenvalue calculation. An adaptive streamline diffu-
sion finite element method is used in the advection dominated regime. Numerical results showed
that the front speeds are enhanced in cellular flows according to sublinear power law O(δp),
p ≈ 0.13, δ the flow intensity. In ABC flows however, the enhancement is O(δ) which can be
attributed to the presence of principal vortex tubes in the streamlines. Poincaré sections are
used to visualize and quantify the chaotic fractions of ABC flows in the phase space. The effect
of chaotic streamlines of ABC flows on front speeds is studied by varying the three parameters
(a, b, c) of the ABC flows. Speed enhancement along x direction is reduced as b (the param-
eter controling the flow variation along x) increases at fixed (a, c) > 0, more rapidly as the
corresponding ABC streamlines become more chaotic.
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adaptive streamline diffusion finite element method.
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1. Introduction

Front propagation in fluid flows is a robust nonlinear phenomenon in premixed turbulent combustion and
reactive transport among other scientific areas [10, 14, 26, 31, 33, 39, 42, 43, 45]. A fundamental problem
is to analyze and compute large scale front speeds in complex flows. Much progress has been made
in recent years for the Kolmogorov-Petrovsky-Piskunov (KPP) reactive fronts in the large amplitude
regime of steady periodic incompressible flows [1,3,30,35,46]. An extensively studied example is the two
dimensional cellular flow consisting of periodic array of vortices. The KPP equation is:

ut = κ∆zu + B(z) · ∇zu +
1

τr
f(u), z ∈ R

n, t > 0, (1.1)
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where κ and τr are two positive constants, B is a given steady incompressible 2π-periodic velocity field;
f(u) = u(1 − u), the so called KPP nonlinearity.

In this paper, we shall carry out a numerical study of KPP front speeds of equation (1.1) in a three
dimensional (3D) infinite cylinder z = (x, y, z) ∈ R

1 × [0, Ly] × [0, Lz], where Ly and Lz are positive
constants. The boundary condition is zero Neumann. If the initial data for u is nonnegative and front-like
(approaching zero and one rapidly enough as x → ±∞), large time behavior of u is a propagating front
along x. We will denote the KPP front speed as µ which admits a variational characterization in terms of
principal eigenvalue of an associated linear operator [7,43]. More precisely, let Ω = [0, 2π]×[0, Ly]×[0, Lz],
and for each fixed λ, we consider the principal eigenvalue problem of (H, φ) with zero Neumann boundary
condition at y = 0, Ly; z = 0, Lz; 2π-periodic in x:

κ∆φ + (2κλe + B) · ∇φ + [κλ2 + λe ·B + τ−1f ′(0)]φ = H(λ)φ, in Ω,

φ|x=0 = φ|x=Lx
,

∂φ

∂ν
|y=0,Ly

= 0,
∂φ

∂ν
|z=0,Lz

= 0, (1.2)

where ν is the outer normal vector, e = (1, 0, 0), B is a 2π-periodic incompressible flow field, either a 3-D
cellular flow or an Arnold-Beltrami-Childress (ABC) flow. The 3-D cellular flow is:

B(x, y, z) = (Φx(x, y)W ′(z), Φy(x, y)W ′(z), kΦ(x, y)W (z)), (1.3)

with −∆Φ = kΦ. In our computation, we shall fix k = 2, or

B(x, y, z) = (− sin x cos y cos z,− cosx sin y cos z, 2 cosx cos y sin z).

The ABC flow field is:

B(x, y, z) = (a sin(z) + c cos(y), b sin(x) + a cos(z), c sin(y) + b cos(x)), (1.4)

parametrized by 3 constants (a, b, c), whose streamlines are known to be chaotic in certain regimes [17].
ABC flows have been studied as prototype flows for flow enhanced diffusion and dynamo problems
[9,12,18,21,22,32], however, little appears to be known of their properties in front propagation problems.

The KPP front speed along e is given by:

µ = inf
λ>0

H(λ)

λ
, (1.5)

where H(λ) is the largest eigenvalue of (1.2). The variational formula (1.5) makes possible accurate
and efficient computation of KPP front speeds without direct simulation of the time-dependent reaction-
diffusion-advection equation (1.1). For random flows, computation based on variants of (1.5) are performed
in [29,36]. In [36], the present authors initiated a numerical study for KPP front speeds in random shear
flows using two-scale finite element methods. They also computed KPP front speeds in 2-D periodic
cellular flows and cat’s eye flows based on an adaptive streamline diffusion finite element method [37].
If the flow field is scaled as B(x, y) → δ · B(x, y) for a positive constant δ, we are interested in the
dependence of front speed on δ when δ is large. At large δ, the eigenfunction φ develops internal layers,
for which an adaptive finite element method is appropriate. We shall also study the effect of chaos in
ABC flows and the (a, b, c) parameters on the propagation speed µ. The amount of chaos in the phase
space of a 3D flow is measured by volume fractions occupied by dense points on the Poincaré sections.

The rest of the paper is organized as follows. In section 2, we give a brief overview of the asymptotic
theory of KPP front speeds in the large δ limit and ABC flows. In section 3, we present adaptive and
streamline diffusion finite element methods for computation of eigenvalue problem (1.2). In section 4,
we present numerical results on KPP front speeds µ in 3D cellular flows and ABC flows. We observed
that the sublinear growth of front speeds in cellular flows in the large advection regime (large δ) is a
power law of O(δp), p ≈ 0.13, in constrast p = 0.25 in 2D [3, 30]. In ABC flows, the speed growth is
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linear or O(δ) at large δ. The speed is monotone increasing in c at fixed (a, b), and monotone decreasing
in b at fixed (a, c). The qualitative behavior may be attributed to c controling the y dependence of the
flow field which is in a perpendicular direction to front motion in x, while b controls the x dependence
of the flow. The former is analogous to shear flows which enhance front speeds and the latter mimics
compresssible flows which decrease front speeds. Similar to the former case, the front speed µ is monotone
increasing in a at fixed (b, c). Geometrically, the presence of vortex tubes (principal vortices [17]) in the
ABC flows is associated with the linear growth. The related maximally enhanced diffusion was confirmed
numerically before [9]. If none of the (a, b, c) parameters is equal to zero, the ABC flow is non-integrable
and chaotic regions may exist around the vortex tubes. We found that as the volume fractions of the
chaotic regions peak with increasing and uniformly sampled values of b =

√

1/3 i (i = 1, 2, 3, 4) at fixed

(a, c) = (1,
√

1/3), the reduction of front speed tends to intensify in a nonlinear manner. In contrast,
as the volume fractions of the chaotic regions peak with increasing and uniformly sampled values of
c =

√

1/3 i (i = 1, 2, 3, 4) at fixed (a, b) = (1,
√

2/3), the speed growth rate (µ/δ) is linear in c, showing
minimal influence from chaotic streamlines in ABC flows. The result is similar as a varies at fixed (b, c). In
section 5, we conclude with remarks on future work of computing KPP front speeds in three dimensional
flows. Our acknowledgements are in section 6.

2. Overview of KPP front speeds and ABC flows

Qualitative properties of KPP front speeds in two and higher dimensional periodic steady flows have
been actively studied in recent years in the large flow amplitude regime. For 2D cellular flows at large
δ, µ(δ) ∼ O(δ1/4) in any direction of propagation [3, 30]. If the Hamiltonian of the 2D cellular flow is
perturbed periodically into that of the cat’s eye flow [12,20], µ(δ) = O(1) in the direction (−1, 1)/

√
2 and

O(δ) in any other direction [44]. In three and higher dimensions, asymptotic results are less precise. There
are Eulerian type criteria on bounded or unbounded behavior of µ as δ → +∞ in terms of the existence
of H1 solution (first integral) of the equation B · (∇w − e) = 0 on the torus [8, 35]. The Lagrangian
criterion on the linear growth rate of µ in δ is given in terms of the large time behavior of the orbit of
the flow field B [44]. In other words, there exists an orbit or a smooth solution of ξ′ = B(ξ(t)) such that

lim
t→+∞

e · ξ(t)/t = lim
δ→+∞

µ(δ)/δ. (2.1)

For 3D cellular flows (1.3) as illustrated in Figure 1, it is shown in [35] that

µ(δ) → +∞, as δ → +∞. (2.2)

By the Lagrangian criterion [44],
µ(δ)/δ → 0, as δ → +∞. (2.3)

The variational formula of the linear growth rate in Rn is [46] (take τr = 1 for simplicity):

lim
δ→+∞

µ(δ)

δ
= sup

w∈I,‖∇w‖2

2
≤f ′(0)‖w‖2

2

∫

T n (B · e)w2

‖w‖2
2

, (2.4)

where I = {w ∈ H1(T n) : B · ∇w = 0}, the set of first integrals of vector field B on the n-dimensional
torus T n (n ≥ 3).

No analytical results appear to be known about µ in ABC flows, though a lot is known about streamlines
of the ABC flows [17]. By symmetry, it suffices to consider (a, b, c) ≥ 0. In case of 1 = a ≥ b ≥ c ≥ 0,
stagnation points exist if b2 + c2 ≥ 1. Other stagnation conditions follow by permuating a, b, c. There are
six so called principal vortex tube regions in ABC flows, two along each axis where Lagrangian particles
move predominantly in one direction. Outside of these vortical tubes, chaotic streamlines exist due to
unstable periodic orbits, stagnation points, heteroclinic orbits etc. Poincaré sections can be used for flow
visualization and as a quantitative measure as we shall present later. It would be interesting to show that
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Figure 1. The 3-D cellular flow and the values of its x (upper left), y (upper right) and
z (lower left) components with vector field.

the right hand side of (2.4) is positive for B equal to the ABC flow. We shall demonstrate this property
numerically, and study the more subtle effects of chaotic regions on the behavior of µ.

With scaling B → δB, we compute the front speeds µ(δ) = inf
λ>0

H(λ, δ)

λ
where with fixed δ the function

H(λ, δ)

λ
is a convex function of λ and the minimum point is unique. The ABC flows are illustrated in

Figure 2.

3. Numerical Problem and Methods

Since ABC flow is 2π-periodic, we confine the domain to the cubic [0, 2π] × [0, 2π] × [0, 2π]. That is ,
choose Lx = Ly = Lz = 2π. Equation (1.2) becomes the following eigenvalue problem:

κ∆φ + (2κλe + B) · ∇φ + [κλ2 + λe · B + τ−1f ′(0)]φ = H(λ)φ, in Ω,

φ|x=0 = φ|x=2π ,
∂φ

∂ν
|y=0,2π = 0,

∂φ

∂ν
|z=0,2π = 0, (3.1)
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Figure 2. The x (up-left), y (up-right), z (bottom) component values of the ABC flow
and the vector field in the domain [0, 4π] × [0, 4π]× [0, 4π].

where κ = 1.0 and τ = 2.0.

To simplify presentation, we denote B̃ = (B̃x, B̃y, B̃z) = 2κλe + δB(x, y, z), and C̃ = κλ2 + λδe ·
B(x, y, z) + τ−1f ′(0). The first equation of (1.2) has the form

κ∆φ + B̃ · ∇φ + C̃φ = H(λ)φ . (3.2)

According to the dominance of convection, i.e., the various values of δ, we choose the standard finite
element method, the streamline diffusion method and the adaptive streamline diffusion method to solve
this problem and obtain the eigenvalue and the corresponding eigenfunction. For a fixed δ, when the
eigenvalues H(λ) are obtained at different values of λ, we find the approximation of the unique minimal

value of
H(λ)

λ
based on its strict convexity.

The streamline diffusion method is widely used in convection dominated problems to stabilize the
discretization methods. The method was originally investigated for solving the boundary value problems
by Hughes and Brooks [23] and then analyzed by Nävert [28] and Johnson et al [24] (see also [25,34] and
references cited therein). As an efficient computational method, we understand that the adaptive finite
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element method has been extensively studied. We refer to Babuška and Vogelius [5] for one dimensional
linear symmetric elliptic problems and [16, 27, 40] for higher dimensional boundary value problems and
eigenvalue problems. The combination of those two methods is the adaptive streamline diffusion method
which was applied to stationary convection-diffusion (boundary value) problems by Johnson and his co-
workers [19]. It was also applied by the authors to a two-dimensional convection dominated eigenvalue
problem [37] in which it was compared with the standard finite element method and upwind finite
difference method to show its high efficiency. However, to our best knowledge, there is no work applying
the streamline diffusion method to solve an eigenvalue problem in three dimensions. Computation is
challenging due to convection dominance, nonlinear nature and high dimension of the problem. It takes
more sophisticated construction of mesh refinements and streamline diffusion function, as well as parallel
computing.

3.1. Standard finite element method

We define a bilinear form

a(w, v) = −(κ∇w,∇v) + (B̃ · ∇w, v) + (C̃w, v) +

∫

Ω|x=0 ∪Ω|x=2π

κv∇w · n ds, ∀w, v ∈ H1(Ω), (3.3)

and the function space

V = {v ∈ H1(Ω) : v|x=0 = v|x=2π},

where (·, ·) denotes the inner product in L2(Ω), n is the exterior normal at the boundary surfaces Ω|x=0

and Ω|x=2π. Then the variational form for equation (1.2) can be written as follows: Find (H, φ) ∈ R× V
such that

a(φ, v) = H(φ, v), ∀v ∈ V. (3.4)

Let Th be a shape regular conforming tetrahedral finite element mesh over Ω with size h [2, 11, 38].
Denote the linear finite element space

Sh = {p ∈ H1(Ω) : p|e is piecewise linear , ∀e ∈ Th}

and let

Vh = Sh ∩ V.

Then the standard finite element discretization for (3.4) is: Find (Hh, φh) ∈ R × Vh such that

a(φh, v) = Hh(φh, v), ∀v ∈ Vh. (3.5)

After discretization, we can get a linear system which is a generalized eigenvalue problem

Mu = HhNu,

where M and N are matrices with the same row and column numbers as the number of unknowns. The
value Hh is the eigenvalue and the vector u the corresponding eigenvector. We use the inverse power
method to solve this eigenpair in our computation since only the smallest eigenvalue is required.

If the coefficients of (1.2) are of the same scale, the convergence and error estimates of approximations
of (3.5) are well established [4].

3.2. Streamline diffusion finite element method(SD-FEM)

Similar to the streamline diffusion finite element method for boundary value problems [25,34], we define

ah(φ, v) = a(φ, v) +
∑

e∈Th

ce(κ∆φ + B̃ · ∇φ + C̃φ, B̃ · ∇v)e, ∀φ, v ∈ Vh (3.6)
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and
bh(φ, v) = (φ, v) +

∑

e∈Th

ce(φ, B̃ · ∇v)e, ∀φ, v ∈ Vh, (3.7)

where (·, ·)e denotes the inner product in L2(e). In our computation, we choose ce as follows [15]

ce = O(He), He =
1

4
h2

e
+ 2B̃

he
+ C̃

.

Our streamline diffusion finite element discretization for solving (3.4) is: Find (Hsd
h , φsd

h ) ∈ R1 × Vh

such that
ah(φsd

h , v) = Hsd
h bh(φsd

h , v), ∀v ∈ Vh. (3.8)

If the coefficients are of the same scale, the error estimates of the above equation are well studied (see,
e.g., [25, 34] and the abstract spectral approximation results in [4]). In this paper, we consider not only
the problem with coefficients of the same scale, but also with the convection term being dominant. To
our best knowledge, except for the two-dimensional convection dominant problem studied by the authors
[37], there is no work applying the streamline diffusion method to solve an eigenvalue problem in such a
regime.

3.3. Adaptive streamline diffusion finite element method

To improve the computational efficiency, we combine the streamline diffusion finite element method with
the adaptive method. Let Th be a shape regular conforming tetrahedral finite element mesh and ∂Th the
set of all interior faces (of tetrahedrons) in Th. The refinement strategy is as follows [27, 40]:

– Error estimation

Compute some local error estimator ηe = ηe(φh) for all e ∈ Th.
– Mark and locally refine

Refine those elements {e} that satisfy

ηe(φh) > r max
e∈T h

ηe(φh), (3.9)

where r ∈ (0, 1) is a given refinement parameter.

In our local refining, we use the tetrahedron bisection approach [2, 27] to refine the meshes. First, we
bisect all the marked tetrahedrons. This may generate hanging nodes. Second, we bisect those tetrahedrons
with hanging nodes until all of the hanging nodes are removed and the conforming mesh is obtained.

To describe the adaptive finite element algorithm for (3.8), we shall replace the subscript h by an
iteration counter k of the adaptive algorithm afterwards for convenience. Given an initial tetrahedron T0

with size h0, we generate a sequence of nested conforming tetrahedrons Tk using the following loop:

Solve → Estimate → Mark → Refine.

More precisely, we have an adaptive finite element algorithm for (3.8) as follows:

Algorithm 3.1. Adaptive finite element algorithm

1. Pick an initial mesh T0 and let k = 0.
2. Solve (3.8) on Tk and get the finite element eigenpair (Hsd

k , φsd
k ).

3. Compute local error indictors ηe(φ
sd
k ) ∀ e ∈ Tk.

4. Refine such elements {e} in Tk that satisfy

ηe(φ
sd
k ) > r max

e∈Tk

ηe(φ
sd
k ) (3.10)

to get a new conforming mesh Tk+1, where r ∈ (0, 1) is a given refinement parameter.
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5. Let k = k + 1 and go to 2.

Following [41], we design our local error indictors on each element e ∈ Th as

ηe(φh) =

(

A−1h2
e‖Re(φh)‖2

0,e +
1

2
A

1

2 he‖Rl(φh)‖2
0,l

)
1

2

(3.11)

and the global a posteriori error estimations as

η(φh) =

(

∑

e∈Th

ηe(φh)2

)
1

2

=

(

∑

e∈Th

A−1h2
e‖Re(φh)‖2

0,e +
∑

l∈∂Th

A
1

2 he‖Rl(φh)‖2
0,l

)
1

2

, (3.12)

where
Re(φh) = Hφh − κ∆φh − B̃∇φh − C̃φh

and

Rl(φh) = κ[
∂φh

∂n
]l,

with l labeling a face of element e and [·]l denoting the jump across l.

4. Numerical Results

In this section, we present numerical results of equation (3.1) solved by the standard finite element
method, the uniform streamline diffusion finite element method and the adaptive streamline diffusion
finite element method as we mentioned before. Different methods were chosen for different ranges of δ to
balance computational costs and accuracy. For small δ, we use standard finite element method. As the
value of δ grows and the standard finite element method becomes unstable, we switch to the uniform
streamline diffusion finite element method. When the value of δ gets even larger and it is too costly to
get convergent results by the uniform streamline diffusion finite element method, we turn to the adaptive
streamline diffusion finite element method. For flows with different parameters, the methods for the same
δ value may be different. We shall focus on the variation of front speeds in terms of the parameters a, b, c
of the ABC flows.

The ABC flows have both ordered and chaotic streamlines [17]. In Figure 3, we show the eight equidis-
tant Poincaré sections of the chaotic streamlines parallel to the (x, y)-plane at z = 0, 1

4π, 2
4π, · · · , 7

4π

for various values of c and a = 1, b =
√

2/3. As the value of c decreases from 4
√

2/3 to 0, the chaotic

region reaches the maximum at c = 3
√

1/3. In Figure 4, the upper left plot shows that the front speed
µ increases linearly in δ for different c values. The upper-right plot is a log plot that shows the growth
exponent to be one for ABC flows and approximately 0.13 for the 3D cellular flows. The lower-left plot
shows the speed growth rates (µ/δ at the largest δ computed) vs. different values of c. The lower-right
plot shows the volume fractions of the chaotic streamlines as c varies. The growth rate appears linear in
c and is independent of the presence of the chaotic streamlines. The ordered part of the ABC streamlines
plays the dominant role.

Figure 5 shows Poincaré sections with a = 1, c =
√

1/3 and b varying from 4
√

2/3 to 0. The left plot
of Figure 6 is on front speed vs. δ, with the right plot on the volume fraction of chaotic streamlines. We
see that speed enhancement is reduced more when chaos is getting stronger, alternatively the µ curves
spread more between them even as b is uniformly sampled at b =

√

1/3, 2
√

1/3, 3
√

1/3, 4
√

1/3. The
chaotic part of streamlines has a nonlinear effect on the front speeds.

Figure 7 shows the Poincaré sections at different values of a.
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In Figure 8, at b =
√

2/3, c =
√

1/3, the front speed is linearly increasing in δ and the speed growth
rate is linear in a, similar to Figure 4. Again the ordered part of streamlines dominates.
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Figure 4. The upper-left plot shows the speed growth vs. δ for ABC flows at values of
c in Figure 3 and (a, b) = (1,

√

2/3), also 3D cellular flows. The upper-right plot is a log
plot on growth exponents. The lower-left plot is on the speed growth rate vs. c values in
Figure 3. The lower-right plot is on the volume fraction of the chaotic ABC streamlines
with c varying and (a, b) = (1,

√

2/3).
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5. Concluding Remarks

KPP front speeds in 3D cellular flows and ABC flows are computed by a couple of finite element methods
especially the adaptive streamline diffusion finite element methods in the advection dominated regime.
Numerical results showed the sublinear power law growth of front speeds in cellular flows and linear
growth in the ABC flows. The chaotic streamlines in ABC flows play a subtle role in speed enhancement,
more pronounced in reducing enhancement as parameter b controling the flow variation in the propagation
direction is varied. The instabilities of ABC flows [21] suggest a line of future work on KPP front speeds
in time dependent ABC flows.
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Figure 6. The left plot shows the front speed of ABC flow vs. δ at a = 1.0, c =
√

1/3
and different values of b in Figure 5. The right plot shows the volume fraction of chaotic
streamlines vs. b.
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Figure 8. The upper left plot shows the front speed in ABC flow at b =
√

2/3, c =
√

1/3
and different values of a in Figure 7. The upper right plot is on the volume fraction of
the chaotic streamlines at different values of a in Figure 7. The lower left panel is on the
growth rate of the front speed as a is varied.
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