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A CONVERGENT INTERACTING PARTICLE METHOD AND
COMPUTATION OF KPP FRONT SPEEDS IN CHAOTIC FLOWS\ast 

JUNLONG LYU\dagger , ZHONGJIAN WANG\ddagger , JACK XIN\S , AND ZHIWEN ZHANG\P 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . In this paper, we study the propagation speeds of reaction-diffusion-advection fronts
in time-periodic cellular and chaotic flows with Kolmogorov--Petrovsky--Piskunov (KPP) nonlinear-
ity. We first apply the variational principle to reduce the computation of KPP front speeds to a
principal eigenvalue problem of a linear advection-diffusion operator with space-time periodic co-
efficient on a periodic domain. To this end, we develop efficient Lagrangian particle methods to
compute the principal eigenvalue through the Feynman--Kac formula. By estimating the conver-
gence rate of Feynman--Kac semigroups and the operator splitting method for approximating the
linear advection-diffusion solution operators, we obtain convergence analysis for the proposed nu-
merical method. Finally, we present numerical results to demonstrate the accuracy and efficiency
of the proposed method in computing KPP front speeds in time-periodic cellular and chaotic flows,
especially the time-dependent Arnold--Beltrami--Childress flow and time-dependent Kolmogorov flow
in three-dimensional space.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . KPP front speeds, cellular and chaotic flows, Feynman--Kac semigroups, interacting
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1. Introduction. Front propagation in complex fluid flows arises in many sci-
entific areas such as turbulent combustion, chemical kinetics, biology, transport in
porous media, and industrial deposition processes (see [48] for a review). A funda-
mental problem is to analyze and compute large-scale front speeds in complex flows.
An extensively studied model problem is the reaction-diffusion-advection equation
with Kolmogorov--Petrovsky--Piskunov (KPP) nonlinearity [24]. To be specific, the
KPP equation is

ut = \kappa \Delta \bfx u+ (v \cdot \nabla \bfx )u+ \tau  - 1f(u), t \in \BbbR +, x = (x1, . . . , xd)
T \in \BbbR d,(1)

where \kappa is a diffusion constant, \tau is the time scale of reaction rate, v is an incom-
pressible velocity field (its precise definition will be discussed later), u is the con-
centration of reactant or population, and the KPP reaction term f(u) = u(1  - u)
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COMPUTING KPP FRONT SPEED USING PARTICLE METHOD 1137

satisfies f(u) \leq uf \prime (0). In our analysis and numerical examples, we will keep \tau and \kappa 
fixed, while changing the magnitude of the velocity field v, which equivalently means
changing the P\'eclet number.

Since the pioneering work of Kolmogorov, Petrovsky, and Piskunov [24] and Fisher
[14] on traveling fronts of the reaction-diffusion equations, this field has gone through
enormous growth and development. Reaction-diffusion front propagation in fluid flows
has been an active research topic for decades; see, e.g., [18, 46, 26, 47, 3, 34, 35, 48, 31]
and references therein. Significant amounts of mathematical analysis and numerical
works in this direction have been accomplished when the streamlines of fluid flow are
either well-structured (regular motion) or fully random (ergodic motion). Yet, the
often encountered less studied case is when the streamlines consist of both regular
and irregular motions, while neither one takes up the entire phase space, such as the
chaotic Arnold--Beltrami--Childress (ABC) flow [11, 4] and Kolmogorov flows [17, 8].

In recent years, much progress has been made in finite element computation of
the KPP front speeds in time-periodic cellular and chaotic flows based on a linearized
corrector equation. If the velocity field v = v(x) in the KPP equation (1) is time-
independent, the minimal front speed in direction e is given by the variational formula
[18]: c\ast (e) = inf\lambda >0 \mu (\lambda )/\lambda , where \mu (\lambda ) is the principal eigenvalue of the elliptic
operator, \scrA \lambda 

1 , namely,

\scrA \lambda 
1\Phi \equiv \kappa \Delta \bfx \Phi + ( - 2\kappa \lambda e+ v) \cdot \nabla \bfx \Phi +

\bigl( 
\kappa \lambda 2  - \lambda v \cdot e+ \tau  - 1f \prime (0)

\bigr) 
\Phi = \mu (\lambda )\Phi .(2)

In (2), \Phi \in L2(\BbbT d), \BbbT = \BbbR /\BbbZ is the one-dimensional (1D) torus, and v is period 1
in all directions xi, 1 \leq i \leq d. Accurate estimation of c\ast (e) boils down to computing
the principal eigenvalue of the operator \scrA \lambda 

1 in (2). Adaptive finite element methods
(FEMs) were successfully applied to solve (2) in [41, 40]. If the velocity field v =
v(t,x) in the KPP equation (1) is periodic in time t, then the variational formula
c\ast (e) = inf\lambda >0 \mu (\lambda )/\lambda still holds [32], where \mu (\lambda ) is the principal eigenvalue [19] of
the time-periodic parabolic operator, \scrA \lambda 

2 , namely,

\scrA \lambda 
2\Phi \equiv \kappa \Delta \bfx \Phi + ( - 2\kappa \lambda e+ v) \cdot \nabla \bfx \Phi +

\bigl( 
\kappa \lambda 2  - \lambda v \cdot e+ \tau  - 1f \prime (0)

\bigr) 
\Phi  - \Phi t = \mu (\lambda )\Phi ,

(3)

on the space-time domain \BbbT d \times [0, T ] (T is the period of v in t), subject to the
same boundary condition in x as (1) and periodic in t. An edge-averaged FEM with
algebraic multigrid acceleration was developed in [49] to study KPP front speeds in
2D time-periodic cellular flows with chaotic streamlines. Adaptive FEM methods
provide an efficient way to compute the KPP front speeds in time-periodic cellular
and chaotic flows. However, when the magnitude of the velocity field is large (the
problem becomes advection-dominated) and/or the dimension of spatial variables is
big (e.g., d = 3), it is extremely expensive to compute KPP front speeds by using the
FEM.

Recently, we have made significant progress in developing Lagrangian particle
methods for computing effective diffusivities in chaotic and random flows [43, 45, 25].
This motivates us to develop interacting particle methods to compute KPP front
speeds in time-periodic cellular and chaotic flows in this paper, especially in 3D flows
in the small diffusion regime.

In this paper, we first apply operator splitting methods to approximate the so-
lution operator of the linear advection-diffusion operator (see (4)), which is a non-
autonomous evolution equation and corresponding to the linearization of the KPP
equation. Then, we develop numerical methods to compute the KPP front speeds
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1138 J. LYU, Z. WANG, J. XIN, AND Z. ZHANG

through the Feynman--Kac formula, which establishes a link between parabolic PDEs
and SDEs. Direct approximation of the Feynman--Kac formula is unstable, since the
main contribution to the expectation comes from sample paths that visit maximal
points of the potential; see (9). Alternatively, we study a normalized version, i.e., the
Feynman--Kac semigroup. Specifically, the principal eigenvalue of \scrA \lambda 

1 and \scrA \lambda 
2 can be

obtained by studying the convergence of Feynman--Kac semigroups for SDEs associ-
ated with operators \scrA \lambda 

1 and \scrA \lambda 
2 [9, 13]. We approximate the evolution of probability

measures by an interacting particle system and use the resampling technique to reduce
the variance. Moreover, we estimate the approximation of semigroups associated with
the solution operators of nonautonomous evolution equations and obtain convergence
analysis for our method in computing the KPP front speeds.

We point out that using Feynman--Kac semigroups to estimate the principal eigen-
value of differential operators has a long history. It was developed in large deviation
theory, where Feynman--Kac semigroups were used to calculate cumulant generating
functions [10]. They were also used in important practical applications, such as the
diffusion Monte Carlo method [15]. When the velocity field v of the flow is time-
independent, one can apply the backward error analysis approach to obtain the error
estimate of the principal eigenvalue [13]. However, when the velocity field v of the
flow is time-dependent, their method cannot be directly applied. There are several
novelties in our paper. First, we analyze the solution operator by an operator split-
ting method and estimate the error in the L2 operator norm. Second, we prove the
convergence of estimating principal eigenvalues by the Feynman--Kac semigroups for
nonautonomous periodic systems. Furthermore, we apply the N -interacting particle
system (N -IPS) method to calculate the principal eigenvalue, where several important
3D chaotic flows are investigated. Notice that when the magnitude of the velocity field
is large and/or the dimension of spatial variables is three, it is extremely expensive to
calculate the principal eigenvalue using the FEM and the spectral method, especially
when the flows are time-dependent.

Finally, we carry out numerical experiments to demonstrate the accuracy and
efficiency of the proposed method in computing KPP front speeds for time-periodic
cellular and chaotic flows. Most importantly, we investigate the dependence of KPP
front speeds on the chaos (disorder) and flow intensities. Let A denote the magnitude
of the velocity field. For space-time periodic shear flow, the speed c\ast (A) obeys a
quadratic enhancement law: c\ast (A) = c0(1 + \alpha A2) + O(A3), 0 < A \ll 1, where c0 is
the KPP front speed in homogeneous media (A = 0) and \alpha > 0 depends only on flow
v [33]. The study for complicated flows, e.g., 3D flows, remains largely open. At large
A, the solution of the principal eigenvalue problem (2) develops internal layers and
their locations are unknown a priori, which brings difficulties for the FEM and the
spectral method. We will study this issue in section 4.3. Numerical results show that
our interacting particle method is still very efficient when the magnitude of velocity
field A is large and computational cost linearly depends on the dimension d of spatial
variables in the KPP equation (1). Thus, we are able to compute the KPP front
speeds for time-dependent cellular and chaotic flows of physical interests, including
the ABC flows and Kolmogorov flows in 3D space. To the best of our knowledge, our
work appears to be the first in the literature to develop numerical methods to compute
KPP front speeds in 3D time-dependent flows. Furthermore, we numerically verify
that the relationship between the KPP front speed c\ast (A) and the effective diffusivity
DE(A), i.e., c\ast (A) = O(

\sqrt{} 
DE(A)), is true in 2D steady cellular flows and remains so

in the 3D Kolmogorov flows. We also compute the invariant measure of Feynman--Kac
semigroups by our interacting particle method.
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COMPUTING KPP FRONT SPEED USING PARTICLE METHOD 1139

The rest of the paper is organized as follows. In section 2, we propose Lagrangian
interactive particle methods in computing KPP front speeds in time-periodic cellular
and chaotic flows. In section 3, we estimate the approximation of semigroups asso-
ciated with the solution operators of nonautonomous evolution equations and obtain
convergence analysis for our method. In section 4, we present numerical results to
demonstrate the accuracy and efficiency of our method. In addition, we investigate
the dependence of KPP front speeds on the chaos (disorder) and flow intensities, espe-
cially in 3D time-dependent chaotic flows. Concluding remarks are made in section 5.
Finally, we collect several fundamental results for abstract linear evolution equations
by semigroup theory in the appendix.

2. Efficient Lagrangian methods in computing KPP front speeds.

2.1. Computing principal eigenvalue via the Feynman--Kac formula.
In this section, we develop Lagrangian interacting particle methods to compute KPP
front speeds via the Feynman--Kac formula. We consider the linearized corrector
equation of the KPP equation (1), where the velocity field v(t,x) is space-time peri-
odic, mean zero, and divergence-free. To compute the KPP front speed c\ast (e) along
direction e, let w solve a linearized equation parameterized by \lambda > 0:

(4) wt = \scrA w := \kappa \Delta \bfx w + ( - 2\kappa \lambda e+ v) \cdot \nabla \bfx w +
\bigl( 
\kappa \lambda 2  - \lambda v \cdot e+ \tau  - 1f \prime (0)

\bigr) 
w

with initial condition w(x, 0) = 1. Then, the principal eigenvalue \mu (\lambda ) is given by

(5) \mu (\lambda ) = lim
t\rightarrow \infty 

1

t
ln

\int 
\BbbT d

w(t,x)dx.

The number \mu (\lambda ) is also the principal Lyapunov exponent of the parabolic equation
(4), which is convex and superlinear for large \lambda [32, 49]. Finally, we compute the KPP
front speed using the variational formula c\ast (e) = inf\lambda >0 \mu (\lambda )/\lambda .

To design Lagrangian particle methods, we decompose the operator \scrA in (4) into
\scrA = \scrL + \scrC , where

(6) \scrL := \kappa \Delta \bfx + ( - 2\kappa \lambda e+ v) \cdot \nabla \bfx 

and

(7) \scrC := c(t,x) =
\bigl( 
\kappa \lambda 2  - \lambda v \cdot e+ \tau  - 1f \prime (0)

\bigr) 
.

To approximate the operator \scrL , we define an SDE system as follows:
(8)

dXt2,t1,\bfx 
s = b(t2 + t1  - s,Xt2,t1,\bfx 

s ) ds+
\surd 
2\kappa dw(s), Xt2,t1,\bfx 

t1 = x, t2 \geq s \geq t1,

where the drift term b =  - 2\kappa \lambda e + v is determined by the advection field in the
operator \scrL and w(t) is a d-dimensional Brownian motion. The principal eigenvalue
\mu (\lambda ) of (4) can be computed via the Feynman--Kac formula [16] as follows:

(9) \mu (\lambda ) = lim
t\rightarrow \infty 

1

t
ln\BbbE 

\biggl( 
exp

\biggl( \int t

0

c(t - s,Xt,0,\bfx 
s ) ds

\biggr) \biggr) 
,

where the expectation \BbbE (\cdot ) is over randomness induced by the Brownian motion w(t).
If we apply the formula (5) to compute the principal eigenvalue \mu (\lambda ), we need

to solve a parabolic-type PDE (4) using numerical methods, such as FEM and the
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spectral method. When the magnitude of the velocity field is large and/or the di-
mension of spatial variables d is big (say, d = 3), the FEM and the spectral method
become extremely expensive. The Feynman--Kac formula (9) provides an alternative
strategy to design Lagrangian methods to compute the principal eigenvalue \mu (\lambda ) and
thus allows us to compute the KPP front speeds. As we will demonstrate in section
4, the proposed Lagrangian method is efficient for computing KPP front speeds in 3D
time-dependent chaotic flows.

Remark 2.1. When the velocity field in the KPP equation (1) is time-independent,
the construction of the Lagrangian method for computing KPP front speeds is straight-
forward. We simply replace the drift term b in (8) and the potential c in (9) by their
time-independent counterparts.

2.2. Feynman--Kac semigroups. Directly using the Feynman--Kac formula
(9) and the Monte Carlo method to compute the principal eigenvalue \mu (\lambda ) is unstable

as the main contribution to \BbbE (exp(
\int t

0
c(t - s,Xt,0,\bfx 

s )ds)) comes from sample paths that
visit maximal or minimal points of the potential function c, which leads to inaccurate
or even divergent results.

Accurate principal eigenvalue \mu (\lambda ) can be obtained by studying the convergence of
the Feynman--Kac semigroup associated with the SDE system (8) and the potential
c. Specifically, let \scrP (\BbbT d) denote the set of probability measures over \BbbT d and S =
\scrC \infty (\BbbT d). We define the evolution operator, denoted by P\cdot ,\cdot , associated with the process
(Xt2,t1,\bfx 

s )t2\geq s\geq t1 in (8) as

(10) (\nu )(Pt2,t1\phi ) = \BbbE \bfx \sim \nu 

\bigl( 
\phi (Xt2,t1,\bfx 

t2 )
\bigr) 

\forall \nu \in \scrP (\BbbT d), \phi \in S, t2 \geq t1.

Similarly, we define its weighted counterpart as

(\nu )(P c
t2,t1\phi ) = \BbbE \bfx \sim \nu 

\Bigl( 
\phi (Xt2,t1,\bfx 

t2 ) exp

\biggl( \int t2

t1

c(t2 + t1  - s,Xt2,t1,\bfx 
s )

\biggr) 
ds
\Bigr) 

\forall \nu \in \scrP (\BbbT d), \phi \in S, t2 \geq t1.(11)

In other words, the infinitesimal generators of Pt2,t1 and P c
t2,t1 with respect to t2 are

\scrL (t1) and \scrA (t1) = \scrL (t1) + \scrC (t1), respectively. Equipped with the definitions of the
evolution operators Pt2,t1 and P c

t2,t1 , we can define the Feynman--Kac operator \Phi c
t2,t1

[5, 13] as follows:
(12)

\Phi c
t2,t1(\nu )(\phi ) :=

(\nu )(P c
t2,t1\phi )

(\nu )(P c
t2,t11)

=
\BbbE \bfx \sim \nu 

\bigl( 
\phi (Xt2,t1,\bfx 

t2 ) exp
\bigl( \int t2

t1
c(t2 + t1  - s,Xt2,t1,\bfx 

s )
\bigr) 
ds
\bigr) 

\BbbE \bfx \sim \nu 

\bigl( 
exp

\bigl( \int t2
t1

c(t2 + t1  - s,Xt2,t1,\bfx 
s )

\bigr) 
ds
\bigr) \bigr) .

One can easily verify that for all \nu \in \scrP (\BbbT d) and t1 \leq t2 \leq t3 \in \BbbR +, \Phi 
c
t2,t1(\Phi 

c
t3,t2(\nu )) =

\Phi c
t3,t1(\nu ). Notice that we use T to denote the period of the velocity in time. For conve-

nience we denote \Phi c
T = \Phi c

T,0 and P c
T = P c

T,0. Therefore, we consider the Feynman-Kac
semigroup for t = nT, n \in \BbbN . Namely, we consider \Phi c

nT = (\Phi c
T )

n. One can easily
verify the Feynman-Kac semigroup \Phi c

nT satisfies the following property, where the
proof is a direct conclusion of Theorem 3.7 and Theorem 3.8.

Proposition 2.2. For any \nu \in \scrP (\BbbT d) and \phi \in S, there exists C > 0 such that

(13)
\bigm| \bigm| \bigm| \Phi c

nT (\nu )(\phi ) - 
\int 
\Omega 

\phi d\nu c

\bigm| \bigm| \bigm| \leq C| | \phi | | exp( - \delta cnT ),

where \delta c = inf\{ \mu (\lambda ) - \Re (z) : z \in \sigma (\scrA )\setminus \{ \mu (\lambda )\} \} > 0 is the spectral gap of the operator
\scrA , \nu c is the invariant measure of \Phi c

T .
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The exponential-decay property stated above ensures that we obtain an invariant
measure \nu c for \Phi c

T from any initial measure \nu . From the definition of \nu c, we know
that \Phi c

T (\nu c) = \nu c, which means that for any \phi \in S

(14)

\int 
\BbbT d

\phi d\nu c = \Phi c
T (\nu c)\phi =

\biggl( \int 
\BbbT d

P c
T 1d\nu c

\biggr)  - 1 \int 
\BbbT d

P c
T\phi d\nu c.

Therefore, we can find that the principal eigenvalue of P c
T is just

\int 
\BbbT d P

c
T 1d\nu c, which

provides a feasible way to compute the principal eigenvalue.

2.3. Numerical discretization and resampling techniques. Let M be the
number of time discretization intervals for each period and \Delta t = T/M . At the time
ti = i\Delta t, we define a transform of random variable as follows:

(15) Yi = Xi + b(ti,Xi)\Delta t+
\surd 
2\kappa \Delta t\bfitomega i,

where \bfitomega i's are independent and identically distributed (i.i.d.) d-dimensional standard
Gaussian random variables, independent of Xi. It is the one step Euler--Maruyama
discretization for XT,0,\bfx 

s at s = T  - ti which follows the SDE (8). Then (15) defines
an evolution operator P\Delta t

i (also known as transition operator) as follows:

(16) P\Delta t
i \phi (\bfitx ) = \BbbE 

\bigl( 
\phi (Yi)| Xi = \bfitx 

\bigr) 
, \phi \in S.

The evolution operator P\Delta t
i describes how the values of a given function evolve

in the L2 sense over one time step \Delta t. One can easily verify that

(17)
\bigm| \bigm| \bigm| \bigm| P\Delta t

i  - e\Delta t\scrL (ti)
\bigm| \bigm| \bigm| \bigm| 
L2 \leq C(\Delta t)2,

where the operator \scrL refers to (6) and C is a positive constant [28]. Specially, when
b = 0, P\Delta t

ti = e\Delta t\scrL (ti) for all i. In addition, we can define the approximation operator
for P c

t in (11). For instance, if we choose the right-point rectangular rule, we obtain
that for any \nu \in \scrP (\BbbT d) and \phi \in S

(18) (\nu )(P\Delta t
i e\Delta t\scrC (ti)\phi ) = \BbbE 

\Bigl( 
\phi (Yi) exp

\bigl( 
c(ti,Yi)\Delta t

\bigr) \bigm| \bigm| Xi \sim \nu 
\Bigr) 
, i = 1, 2, . . . ,M.

The time discretization for the Feynman--Kac semigroup (12) reads

(19) \Phi \scrC ,\Delta t
i (\nu )(\phi ) =

(\nu )(P\Delta t
i e\Delta t\scrC (ti)\phi )

(\nu )(P\Delta t
i e\Delta t\scrC (ti)1)

, i = 1, 2, . . . ,M.

It is difficult to obtain a closed-form solution to the evolution of probability measure
in (19). Therefore, we approximate the evolution of probability measure in (19) by
an N -IPS [30]. Let us introduce the notation \scrK \Delta t = \scrK \Delta t,M\scrK \Delta t,M - 1 \cdot \cdot \cdot \scrK \Delta t,1, where
\scrK \Delta t,i = P\Delta t

i e\Delta t\scrC (ti), \Delta t = T/M , and T is time period. We denote

\Phi \scrK \Delta t,i

(\nu )(\phi ) =
(\nu )(\scrK \Delta t,i\phi )

(\nu )(\scrK \Delta t,i1)
, i = 1, 2, . . . ,M,(20)

the Feynman--Kac semigroup associated with the operator\scrK \Delta t,i. According to Lemma
3.6, for any operators \scrA , \scrB in \scrL (L2(\BbbT d)), \Phi \scrA \scrB = \Phi \scrB \Phi \scrA . Therefore, we have that

(21) \Phi \scrK \Delta t

=

M - 1\prod 
i=0

\Phi \scrK \Delta t,M - i

= \Phi \scrK \Delta t,1

\Phi \scrK \Delta t,2

\cdot \cdot \cdot \Phi \scrK \Delta t,M

.
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1142 J. LYU, Z. WANG, J. XIN, AND Z. ZHANG

Suppose the Markov process (\Theta , (\scrF n)n\geq 0, (\bfitxi 
n)n\geq 0,\BbbP ) is defined in the product space

(\BbbT d)N . For any initial probability measure \pi 0 = \nu , we approximate it by an N -particle
system as

(22) P (\bfitxi 0 \in d\bfitz ) =

N\prod 
p=1

\pi 0(dz
p).

Then, according to [30] we evolve the N -particle system according to

P (\bfitxi n \in d\bfitz | \bfitxi n - 1 = \bfitx ) =

N\prod 
p=1

\Phi \scrK \Delta t

\Biggl( 
1

N

N\sum 
i=1

\delta xi

\Biggr) 
(dzp)

=

N\prod 
p=1

\left(  M - 1\prod 
j=0

\Phi \scrK \Delta t,M - j

\right)  \Biggl( 1

N

N\sum 
i=1

\delta xi

\Biggr) 
(dzp),(23)

where \bfitx = (x1, . . . , xN )T and n denotes the iteration number in the evolution of
probability measure by the Feynman--Kac semigroup (19).

Using (23), we can compute the evolution of the N -particle system from \bfitxi n - 1

to \bfitxi n. It will be divided into M small steps. Let us denote \bfitxi n0 = \bfitxi n for all n.
Within each iteration stage, we evolve the particles from s = 0 to s = T in the SDE
(8) by the evolution operator \{ P\Delta t

i \} M - 1
i=0 and resample these particles according to

weights determined by the potential function. Specifically, at the i-step, i.e., s =
i\Delta t, we evolve the particles in \bfitxi n - 1

i = (\xi 1,n - 1
i , . . . , \xi N,n - 1

i ) by the numerical scheme

(15) (i in (15) is replaced as M  - i by recalling definition of (8)) and get \widetilde \bfitxi n - 1
i =

(\widetilde \xi 1,n - 1
i , . . . , \widetilde \xi N,n - 1

i ). Namely, each particle is updated by

(24) \widetilde \xi p,n - 1
i = \xi p,n - 1

i + b(tM - i, \xi 
p,n - 1
i )\Delta t+

\surd 
2\kappa \Delta t\bfitomega p,n - 1

i , p = 1, 2, . . . , N,

where \bfitomega p,n - 1
i 's are i.i.d. d-dimensional standard Gaussian random variables.

Then, we resample the particles in \widetilde \bfitxi n - 1
i according to the multinomial distribution

with the weights

(25) wp,n - 1
i =

exp
\bigl( 
c(tM - i, \widetilde \xi p,n - 1

i )\Delta t
\bigr) \sum N

p=1 exp
\bigl( 
c(tM - i, \widetilde \xi p,n - 1

i )\Delta t
\bigr) , p = 1, 2, . . . , N,

and obtain \bfitxi n - 1
i+1 . The evolution of N -IPS from (n - 1)T to nT can be represented as

follows:

\bfitxi n - 1
0 = (\xi 1,n - 1

0 , . . . , \xi N,n - 1
0 )  - \rightarrow \bfitxi n - 1

1 = (\xi 1,n - 1
1 , . . . , \xi N,n - 1

1 )  - \rightarrow 

\cdot \cdot \cdot  - \rightarrow \bfitxi n - 1
M = (\xi 1,n - 1

M , . . . , \xi N,n - 1
M ) = \bfitxi n0 = (\xi 1,n0 , . . . , \xi N,n

0 ).(26)

After obtaining the empirical distribution of the particles \bfitxi n0 , we can compute the
principal eigenvalue. At the iteration stage n, we first define the change of the mass
as follows:

(27) eNi,n = N - 1
N\sum 

p=1

exp(c(tM - i, \widetilde \xi p,ni )\Delta t).
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COMPUTING KPP FRONT SPEED USING PARTICLE METHOD 1143

Then, we compute the approximation of the principal eigenvalue by

(28) \mu n
\Delta t(\lambda ) = (M\Delta t) - 1

M - 1\sum 
i=0

log
\Bigl( 
N - 1

N\sum 
p=1

exp(c(tM - i, \widetilde \xi p,ni )\Delta t)
\Bigr) 
.

We know that the empirical distribution of the particles \bfitxi n0 will weakly converge to

the distribution \Phi \scrK \Delta t

n (\pi 0) as N \rightarrow \infty . Therefore, we can use \mu n
\Delta t(\lambda ) to approximate

the principal eigenvalue \mu (\lambda ).
Finally, we give the complete algorithm in Algorithm 1. The performance of our

method will be demonstrated in section 4.

Algorithm 1 Algorithm for computing the principal eigenvalues of parabolic equa-
tions

Input: velocity field v(x, t), potential c(x, t), number of N -IPS system (i.e., N),
initial probability measure \nu 0, iteration number n, time period T , time step \Delta t =
T/M and ti = i\Delta t, 0 \leq i \leq M .

1: Generate N i.i.d. \nu 0-distributed random variables on [0, 1]d: \bfitxi 00 = (\xi 1,00 , . . . , \xi N,0
0 ),

the N -particle system.
2: for k = 1 : n do
3: for i = 0 : M  - 1 do
4: Generate i.i.d. standard Gaussian random variables (\omega 1,k - 1

i , . . . , \omega N,k - 1
i )

and compute \widetilde \bfitxi k - 1
i = (\widetilde \xi 1,k - 1

i , . . . , \widetilde \xi N,k - 1
i ) according to \bfitxi k - 1

i by (24).

5: Compute the pointwise value \bfitS = (eC
1

, . . . , eC
N

), where Cp =

c(tM - i, \widetilde \xi p,k - 1
i )\Delta t.

6: Compute weights \bfitw = (w1, . . . , wN ) = \bfitS /sum(\bfitS ) and Ek,i =
1
\Delta t log(mean(\bfitS )).

7: Resample \widetilde \bfitxi k - 1
i according to multinomial distribution with weight \bfitw (25),

and get \bfitxi k - 1
i+1 .

8: end for
9: Compute \mu k

\Delta t(\lambda ) = M - 1
\sum M - 1

i=0 (Ek,i) and define \bfitxi k0 = \bfitxi k - 1
M .

10: end for
Output: The approximate invariant distribution \Phi \scrK \Delta t

n (\nu )-distributed N -particle sys-
tem \bfitxi n0 and approximate the principal eigenvalue \mu n

\Delta t(\lambda ) using (28).

Remark 2.3. When the flow is time-independent, we can view it as a periodic flow
with any given period T . Then, we can still use Algorithm 1 to compute the principal
eigenvalue. Hence the numerical schemes and the convergence analysis proposed in
time-dependent flow can be applied by assigning T = \Delta t and M = 1.

3. Convergence analysis of the Lagrangian particle method. In this sec-
tion, we will prove the convergence of the Lagrangian particle method in computing
the KPP front speed. We divide the analysis into two parts. The first part studies
the approximation of the evolution of parabolic operators by using an operator split-
ting method. The second part studies the error estimate of the Lagrangian particle
method in computing the principal eigenvalue of parabolic operators.

3.1. Approximation of the evolution of parabolic operators. We first
rewrite the linearized corrector equation of the KPP equation (4) into the following
nonautonomous parabolic equation:
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1144 J. LYU, Z. WANG, J. XIN, AND Z. ZHANG

(29)
wt = \kappa \Delta \bfx w+b(t,x) \cdot \nabla \bfx w+ c(t,x)w, x = (x1, . . . , xd)

T \in \BbbT d = [0, 1]d, t \in [0, T ],

where the initial condition w(0,x) = w0, b(t,x) =  - 2\kappa \lambda e+v, c(t,x) = \kappa \lambda 2 - \lambda v \cdot e+
\tau  - 1f \prime (0), and T is final computational time. Since the velocity v = v(t,x) is space-
time periodic, so are b(t,x) and c(t,x). We assume the period of b(t,x) and c(t,x)
is one in each dimension and they are smooth functions. For notational simplicity, we
define

(30) \scrA (t) = \scrL (t) + \scrC (t),

where \scrL (t) := \kappa \Delta \bfx + b(t,x) \cdot \nabla \bfx and \scrC (t) = c(t,x). The operator \scrA (t) has a real
isolated principal eigenvalue \mu (\lambda ) [19]. We aim to obtain error estimates of our La-
grangian method in approximating the principal eigenvalue \mu (\lambda ). To this end, we
study the approximation of the solution operator for the parabolic equation (29) by
using an operator splitting method.

We define the solution operator \scrU (t, s) : \scrU (t, s)w(s, \cdot ) = w(t, \cdot ) corresponding to
the parabolic equation (29), mapping the solution in time s to the solution in time t,
which satisfies the following properties:

1. \scrU (s, s) = Id for any s \geq 0;
2. \scrU (t, r) \circ \scrU (r, s) = \scrU (t, s) for any t \geq r \geq s \geq 0;
3. d

dt\scrU (t, s)w0 = \scrA (t)\scrU (t, s)w0 for any t \geq s \geq 0, w0 \in L2([0, 1]d).
The solution operator \scrU (t, s) enables us to study the evolution of the parabolic op-
erator in (29), e.g., the principal eigenvalue of \scrU (T, 0) gives the principal eigenvalue
of the parabolic operator \scrA (t). It has been proven that the principal eigenvalue of
\scrU (T, 0) exists and is real [19]. It is difficult to obtain a closed-form for the solution
operator \scrU (T, 0). Therefore, we approximate the solution operator \scrU (T, 0) by using
an operator splitting method.

We set ti = i\Delta t with \Delta t = T
M and consider the following parabolic equation with

freezing time coefficients:

(31) wt = \kappa \Delta \bfx w + b(ti,x) \cdot \nabla \bfx w + c(ti,x)w, ti < t \leq ti+1, i \geq 0.

The corresponding solution operator can be formally represented as

(32) w(t) = e(t - ti)(\scrL +\scrC )(ti)
i - 1\prod 
k=0

e\Delta t(\scrL +\scrC )(tk)w0, ti \leq t < ti+1.

Furthermore, we can apply the first-order Lie--Trotter operator splitting method to
approximate the solution operator defined in (32) and obtain

(33) w(t) = e(t - ti)\scrL (ti)e(t - ti)\scrC (ti)
i - 1\prod 
k=0

e\Delta t\scrL (tj)e\Delta t\scrC (tj)w0, ti \leq t < ti+1.

We will prove the solution operator
\prod M - 1

j=0 e\Delta t\scrL (tj)e\Delta t\scrC (tj) obtained by the Lie--
Trotter operator splitting method converges to the solution operator \scrU (T, 0) in certain
operator norm as \Delta t approaches zero. As a consequence of this convergence result,
we can further prove the convergence of the principal eigenvalue associated with these
two solution operators.

To make our paper self-contained, we collect several fundamental results for ab-
stract linear evolution equations by semigroup theory in A. We begin with the follow-
ing lemma, which is as a special case of Theorem 1 in [42].
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Lemma 3.1. For any fixed t, if b(t,x) and c(t,x) are smooth and bounded, then
the operator \scrA (t) defined in (30) is a strongly elliptic operator on \BbbT d. Moreover, \scrA (t)
generates an analytic semigroup e\cdot \scrA (t) in Lp(\BbbT d) for all 1 \leq p \leq \infty .

We will prove that, in our nonautonomous parabolic equation setting, the as-
sumptions made in A are all satisfied, so we can obtain the error of the operator
splitting method in approximating the nonautonomous parabolic operator.

We first prove that the operator \scrA defined in (30) satisfies a H\"older continuous
condition.

Lemma 3.2. Suppose b(t,x) and c(t,x) in the operator \scrA (t) are bounded, smooth,
and periodic in each component of x, and uniformly H\"older continuous in t, i.e., for
any t, s \in \BbbR +,

(34)
\bigm| \bigm| \bigm| \bigm| b(t,x) - b(s,x)

\bigm| \bigm| \bigm| \bigm| \leq C1| t - s| \beta ,
\bigm| \bigm| c(t,x) - c(s,x)

\bigm| \bigm| \leq C1| t - s| \beta ,

for some positive C1 and \beta . Let v \in \scrD (\scrA (\cdot )) = H2(\BbbT d) be periodic. Then, for any
0 < s \leq \tau , there exists \gamma 1 > 0 such that

(35)
\bigm| \bigm| \bigm| \bigm| \scrA (\tau )v  - \scrA (s)v

\bigm| \bigm| \bigm| \bigm| 
L2 \leq C2(\tau  - s)\beta 

\bigm| \bigm| \bigm| \bigm| (\scrA (t) - \gamma 1)v
\bigm| \bigm| \bigm| \bigm| 1/2
L2

\bigm| \bigm| \bigm| \bigm| v\bigm| \bigm| \bigm| \bigm| 1/2
L2

for any t \in \BbbR +. Specifically, if b(t,x) = 0, then

(36)
\bigm| \bigm| \bigm| \bigm| \scrA (\tau )v  - \scrA (s)v

\bigm| \bigm| \bigm| \bigm| 
L2 \leq C3(\tau  - s)\beta 

\bigm| \bigm| \bigm| \bigm| v\bigm| \bigm| \bigm| \bigm| 
L2 .

Proof. For the operator \scrA (t), we claim that there exists \gamma 1 > 0 such that

(37)
\bigm| \bigm| \bigm| \bigm| (\scrA (t) - \gamma 1)v

\bigm| \bigm| \bigm| \bigm| 
L2 \geq C(\kappa ,b, c)

\bigl( 
| | \Delta \bfx v| | L2 + | | v| | L2

\bigr) 
\forall v \in \scrD (\scrA (\cdot )),

where the constant C(\kappa ,b, c) depends on \kappa , b(t,x), and c(t,x).
We prove the statement in (37) before moving to the main results. Let c\gamma 1

= c - \gamma 1
and assume

\bigm| \bigm| \bigm| \bigm| b(t,x)\bigm| \bigm| \bigm| \bigm| \leq M1, | c(t,x)| \leq M2, and
\bigm| \bigm| \bigm| \bigm| \nabla \bfx c(t,x)

\bigm| \bigm| \bigm| \bigm| \leq M3. We know that\bigm| \bigm| \bigm| \bigm| (\scrA (t) - \gamma 1)v
\bigm| \bigm| \bigm| \bigm| 
L2 =

\bigm| \bigm| \bigm| \bigm| (\kappa \Delta \bfx + b(t,x) \cdot \nabla \bfx + c\gamma 1
(t,x))v

\bigm| \bigm| \bigm| \bigm| 
L2

\geq 
\bigm| \bigm| \bigm| \bigm| (\kappa \Delta \bfx + c\gamma 1(t,x))v

\bigm| \bigm| \bigm| \bigm| 
L2  - 

\bigm| \bigm| \bigm| \bigm| b(t,x) \cdot \nabla \bfx v
\bigm| \bigm| \bigm| \bigm| 
L2 .(38)

For the term
\bigm| \bigm| \bigm| \bigm| (\kappa \Delta \bfx + c\gamma 1

(t,x))v
\bigm| \bigm| \bigm| \bigm| 
L2 , the periodic condition of v implies that\bigm| \bigm| \bigm| \bigm| (\kappa \Delta \bfx + c\gamma 1(t,x))v

\bigm| \bigm| \bigm| \bigm| 2
L2

=| | \kappa \Delta \bfx v| | 2L2 +
\bigm| \bigm| \bigm| \bigm| c\gamma 1(t,x)v

\bigm| \bigm| \bigm| \bigm| 2
L2  - 2\langle \kappa \nabla \bfx v, c\gamma 1(t,x)\nabla \bfx v\rangle L2  - 2\langle \kappa \nabla \bfx v, v\nabla \bfx c(t,x)\rangle L2 .

(39)

Notice that if we choose \gamma 1 =
2M2

1

\kappa +M2, then we obtain

 - 2\langle \kappa \nabla \bfx v, c\gamma 1
(t,x)\nabla \bfx v\rangle L2 \geq 4\kappa (\gamma 1  - M2)| | \nabla \bfx v| | L2 \geq 4

\bigm| \bigm| \bigm| \bigm| b(t,x) \cdot \nabla \bfx v
\bigm| \bigm| \bigm| \bigm| 
L2 .(40)

In addition, we have

2\langle \kappa \nabla \bfx v, v\nabla \bfx c(t,x)\rangle L2 \leq 2\kappa M3| | \nabla \bfx v| | L2 | | v| | L2 \leq 2\kappa M3C| | \Delta \bfx v| | 
1
2

L2 | | v| | 
3
2

L2 .(41)

Here, we use the fact that | | \nabla \bfx v| | L2 \leq C| | \Delta \bfx v| | 
1
2

L2 | | v| | 
1
2

L2 , which is the moment in-
equality in interpolation theory; see Theorem 5.34 of [12]. If we take \gamma 1 large enough

such that 4(\gamma 1 - M2

3 )
3
4\kappa 

1
4 \geq 2\kappa M3C, we get that

(42) | | \kappa \Delta \bfx v| | 2L2+
\bigm| \bigm| \bigm| \bigm| c\gamma 1

(t,x)v
\bigm| \bigm| \bigm| \bigm| 2
L2 \geq 2\kappa M3C| | \Delta \bfx v| | 

1
2

L2 | | v| | 
3
2

L2 \geq 2\langle \kappa \nabla \bfx v, v\nabla \bfx c(t,x)\rangle L2 .

D
ow

nl
oa

de
d 

06
/1

6/
22

 to
 1

28
.1

95
.6

9.
42

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1146 J. LYU, Z. WANG, J. XIN, AND Z. ZHANG

Substituting the estimates (40)--(42) into (39), we obtain

(43)
\bigm| \bigm| \bigm| \bigm| (\kappa \Delta \bfx + c\gamma 1

(t,x))v
\bigm| \bigm| \bigm| \bigm| 
L2 \geq 2

\bigm| \bigm| \bigm| \bigm| b(t,x) \cdot \nabla \bfx v
\bigm| \bigm| \bigm| \bigm| 
L2 .

Similarly, we can prove that for \gamma 1 large enough,

(44)
\bigm| \bigm| \bigm| \bigm| (\kappa \Delta \bfx + c\gamma 1

(t,x))v
\bigm| \bigm| \bigm| \bigm| 
L2 \geq \^C(| | \Delta \bfx v| | L2 + | | v| | L2).

Thus, from (38) we get that

(45)
\bigm| \bigm| \bigm| \bigm| (\scrA (t) - \gamma 1)v

\bigm| \bigm| \bigm| \bigm| 
L2 \geq 1

2

\bigm| \bigm| \bigm| \bigm| (\kappa \Delta \bfx + c\gamma 1(t,x))v
\bigm| \bigm| \bigm| \bigm| 
L2 \geq 

\^C

2
(| | \Delta \bfx v| | L2 + | | v| | L2).

We first consider the case when b(t,x) \not = 0. By using the uniformly H\"older continuous
conditions for b(t,x) and c(t,x), we have\bigm| \bigm| \bigm| \bigm| \scrA (\tau )v  - \scrA (s)v

\bigm| \bigm| \bigm| \bigm| 
L2 =

\bigm| \bigm| \bigm| \bigm| (b(\tau ,x) - b(s,x)) \cdot \nabla \bfx v + (c(\tau ,x) - c(s,x))v
\bigm| \bigm| \bigm| \bigm| 
L2

\leq C1(t - s)\beta (| | \nabla \bfx v| | L2 + | | v| | L2).(46)

To see (35), we apply | | \nabla \bfx v| | L2 \leq C| | \Delta \bfx v| | 
1
2

L2 | | v| | 
1
2

L2 and moment inequality when
multiplying | | v| | L2 to (45) and comparing with (46).

The case when b(t,x) = 0 is simple since we have

(47)
\bigm| \bigm| \bigm| \bigm| \scrA (\tau )v  - \scrA (s)v

\bigm| \bigm| \bigm| \bigm| 
L2 =

\bigm| \bigm| \bigm| \bigm| (c(\tau ,x) - c(s,x))v
\bigm| \bigm| \bigm| \bigm| 
L2 \leq C3(t - s)\beta | | v| | L2 .

Lemma 3.3. Suppose b(t,x) and c(t,x) in the operator \scrA satisfy the same as-
sumption as that in Lemma 3.2. Then, there exists \gamma 2 > 0 such that, for any periodic
v \in L2(\BbbT d), the commutator of \scrL and \scrC acting on v follows

(48)
\bigm| \bigm| \bigm| \bigm| [\scrL (t), \scrC (t)]v\bigm| \bigm| \bigm| \bigm| 

L2 \leq C1

\bigm| \bigm| \bigm| \bigm| (\scrL (t) - \gamma 2)v
\bigm| \bigm| \bigm| \bigm| 12
L2 | | v| | 

1
2

L2 \forall t \geq 0.

Proof. We first observe that, for any v periodic in L2(\BbbT d),\bigm| \bigm| \bigm| \bigm| [\scrL (t), \scrC (t)]v\bigm| \bigm| \bigm| \bigm| 
L2 =

\bigm| \bigm| \bigm| \bigm| \scrL (t)(\scrC (t)v) - \scrC (t)(\scrL (t)v)
\bigm| \bigm| \bigm| \bigm| 
L2

=
\bigm| \bigm| \bigm| \bigm| \bigl( \kappa \Delta \bfx c(t,x) + b(t,x) \cdot \nabla \bfx c(t,x)

\bigr) 
v + 2\kappa \nabla \bfx c(t,x) \cdot \nabla v

\bigm| \bigm| \bigm| \bigm| 
L2

\leq (\kappa M4 +M1M3)| | v| | L2 + 2\kappa M3| | \nabla \bfx v| | L2 ,(49)

where | | b(t,x)| | \leq M1, | | \nabla \bfx c(t,x)| | \leq M3, and | \Delta \bfx c(t,x)| \leq M4. Following the same
procedure as in the proof of Lemma 3.2, i.e., taking c \equiv 0 , we have\bigm| \bigm| \bigm| \bigm| (\scrL (t) - \gamma 2)v

\bigm| \bigm| \bigm| \bigm| 
L2 \geq C(\kappa ,b)(| | \Delta \bfx v| | L2 + | | v| | L2).(50)

Using the fact that | | \nabla \bfx v| | L2 \leq C| | \Delta \bfx v| | 
1
2

L2 | | v| | 
1
2

L2 , we finally prove the assertion in
(48).

Now we are in position to present the main result in approximating the solution
operator \scrU (t, s) for the parabolic equation (29).

Theorem 3.4. The solution operator (32) has the following error in approximat-
ing the solution operator \scrU (T, 0) in the L2 operator norm:

\bigm| \bigm| \bigm| \bigm| \scrU (T, 0) - M\prod 
k=1

e\Delta t\scrA (k\Delta t)
\bigm| \bigm| \bigm| \bigm| 
L2(\BbbT d)

\leq C1(T )(\Delta t)\beta  - 
1
2 ,(51)
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where T > 0, M is an integer, and \Delta t = T
M . In addition, the Lie--Trotter operator

splitting method has the following error in approximating the solution operator (32):

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| M\prod 
k=1

e\Delta t\scrA (k\Delta t)  - 
M\prod 
k=1

e\Delta t\scrL (k\Delta t)e\Delta t\scrC (k\Delta t)
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
L2(\BbbT d)

\leq C2(T )(\Delta t)
1
2 .(52)

Proof. We take \~\gamma = max(\gamma 1, \gamma 2), where \gamma 1 and \gamma 2 are defined in Lemmas 3.2 and
3.3, respectively. Let \gamma = \~\gamma +M2 where | c(t, x)| \leq M2 as assumed in Lemma 3.2. Let
\scrU \gamma (t, s) = e - \gamma (t - s)\scrU (t, s) be the solution operator that corresponds to the parabolic
equation (29) with \scrA \gamma (t) = \scrA (t)  - \gamma , \scrL \~\gamma (t) = \scrL (t)  - \~\gamma , and \scrC M2(t) = \scrC (t)  - M2.
Then, we have

\scrU (T, 0) - 
M\prod 
k=1

e\Delta t\scrA (k\Delta t) = e\gamma T

\Biggl( 
\scrU \gamma (T, 0) - 

M\prod 
k=1

e\Delta tA\gamma (k\Delta t)

\Biggr) 
.(53)

The statement in (51) is proved according to Theorem A.9.
For the Lie--Trotter operator splitting method, we know that

M\prod 
k=1

e\Delta t\scrA (k\Delta t)  - 
M\prod 
k=1

e\Delta t\scrL (k\Delta t)e\Delta t\scrC (k\Delta t)(54)

= e\gamma T

\Biggl( 
M\prod 
k=1

e\Delta t\scrA \gamma (k\Delta t)  - 
M\prod 
k=1

e\Delta t\scrL \~\gamma (k\Delta t)e\Delta t\scrC M2
(k\Delta t)

\Biggr) 
.

Now according to Lemmas 3.2 and 3.3, \scrL \~\gamma and \scrC M2
satisfy the assumptions A.10 and

A.11. Thus, applying Theorem A.13, we can prove the estimate (52).

The convergence of \scrK \Delta t in the operator norm \scrL (L2, H1) has been proved in [2]. In
Theorem 3.4, we obtain the convergence of \scrK \Delta t in the operator norm \scrL (L2). Finally,
we can obtain the error estimate for the principal eigenvalue.

Theorem 3.5. Let e\mu (\lambda )T and e\mu \Delta t(\lambda )T denote the principal eigenvalue of the so-
lution operator \scrU (T, 0) and the approximated solution operator

\prod M
k=1 e

\Delta t\scrL (k\Delta t)e\Delta t\scrC (k\Delta t),
respectively. Then, we have the error estimate as follows:\bigm| \bigm| e\mu (\lambda )T  - e\mu \Delta t(\lambda )T

\bigm| \bigm| \leq C1(T )(\Delta t)\beta  - 
1
2 + C2(T )(\Delta t)

1
2 .(55)

Moreover, we can obtain that | \mu (\lambda ) - \mu \Delta t(\lambda )| = O
\bigl( 
(\Delta t)min(\beta  - 1

2 ,
1
2 )
\bigr) 
.

Proof. According to the standard spectral theorem [23], the principal eigenvalue
e\mu (\lambda ) of the solution operator \scrU (T, 0) and the principal eigenvalue e\mu \Delta t(\lambda ) of the ap-

proximated solution operator
\prod M

k=1 e
\Delta t\scrL (k\Delta t)e\Delta t\scrC (k\Delta t) satisfy

\bigm| \bigm| e\mu (\lambda )T  - e\mu \Delta t(\lambda )T
\bigm| \bigm| \leq C3

\bigm| \bigm| \bigm| \bigm| \scrU (T, 0) - M\prod 
k=1

e\Delta t\scrL (k\Delta t)e\Delta t\scrC (k\Delta t)
\bigm| \bigm| \bigm| \bigm| 
L2(\BbbT d)

.(56)

By using the triangle inequality for the right-hand side of (56) and the estimated
results from Theorem 3.4, we can get the error estimate (55). The error estimate for
| \mu (\lambda ) - \mu \Delta t(\lambda )| can be obtained accordingly.

In this paper, we assume that b(t,x) and c(t,x) in the operator \scrA are uniformly
Lipschitz. Thus, the error of the principal eigenvalue obtained by the Lie--Trotter
operator splitting method is at least O((\Delta t)

1
2 ).
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3.2. Analysis of the Lagrangian particle method. We consider the Feynman--
Kac semigroup \Phi \scrA associated with an arbitrary operator \scrA . The action of the
Feynman--Kac semigroup \Phi \scrA on a probability measure \nu is defined by

(57) \Phi \scrA (\nu )(\phi ) =
(\nu )(\scrA \phi )

(\nu )(\scrA 1)
\forall \phi \in L2(\BbbT d).

Moreover, we denote \Phi \scrA 
n = (\Phi \scrA )n. The Feynman--Kac semigroup operation satisfies

the following property.

Lemma 3.6. For any operators \scrA , \scrB in \scrL (L2(\BbbT d)), \Phi \scrA \scrB = \Phi \scrB \Phi \scrA .

Proof. Let \nu be a probability measure and \phi be a function in L2(\BbbT d). Then, we
can easily verify that

\Phi \scrA \scrB (\nu )(\phi ) =
(\nu )(\scrA \scrB \phi )
(\nu )(\scrA \scrB 1)

=
(\nu )(\scrA \scrB \phi )
(\nu )(\scrA 1)

(\nu )(\scrA 1)

(\nu )(\scrA \scrB 1)

=
\Phi \scrA (\nu )(\scrB \phi )
\Phi \scrA (\nu )(\scrB 1)

= \Phi \scrB \Phi \scrA (\nu )(\phi ).(58)

Recall that the operator \Phi \scrK \Delta t

n defined in (21) is a composition of the Feynman--

Kac semigroup \Phi \scrK \Delta t,i

associated with the operator \scrK \Delta t,i; see (20). In what follows,

we will prove the operator \Phi \scrK \Delta t

n satisfies the uniform minorization and boundedness
condition, which guarantees the existence of an invariant measure.

Theorem 3.7. There exists a probability measure \eta so that the operator \scrK \Delta t

satisfies a uniform minorization and boundedness condition as follows:

(59) \epsilon \eta (\phi ) \leq \scrK \Delta t(\phi )(x) \leq \gamma \eta (\phi ), \forall x \in \BbbT d \forall \phi \in L2(\BbbT d),

where 0 < \epsilon < \gamma are independent of \Delta t. Moreover, when \Delta t \rightarrow 0 the limit operator
is the exact solution operator \scrU (T, 0), which also satisfies this uniform minorization
and boundedness condition.

Proof. We first define an operator P\Delta t =
\prod M

i=1 P
\Delta t
ti , which corresponds to the

case when c(t,x) = 0 in (29). Since c(t,x) is bounded (i.e., c1 \leq c(t,x) \leq c2), one
can easily obtain the following estimate based on the Feynman--Kac formula:

(60) P\Delta t(\phi )ec1T \leq \scrK \Delta t(\phi ) \leq P\Delta t(\phi )ec2T .

Thus, to estimate the bounds for \scrK \Delta t, we only need to study the operator P\Delta t.
Moreover, it is sufficient to prove that there exist a probability measure \eta and a
constant \epsilon > 0 so that for any indicator function of a Borel set S \subset \BbbT d the following
result holds:

(61) \BbbP (XM \in S| X0 = x) \geq \epsilon \eta (S),

where Xi are defined in the scheme (15) as the numerical solution to the SDE (8).
The idea of the proof is to explicitly rewrite XM as a perturbation of the reference
evolution corresponding to b = 0. According to the numerical scheme (15), we have

(62) XM = X0 +\bfitG M + \bfitF M ,

where

(63) \bfitG M =
\surd 
2\kappa \Delta t

M - 1\sum 
i=0

\bfitomega i and \bfitF M = \Delta t

M - 1\sum 
i=0

b(T  - i\Delta t,Xi).
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We know that | \bfitF M | \leq T | | b| | L\infty and \bfitG M is a Gaussian random variable with covari-
ance matrix 2\kappa T Id, where Id is the d-dimensional identity matrix. Therefore

\BbbP (XM \in S| X0 = \bfitx ) \geq \BbbP (\bfitG M \in S  - \bfitx  - \bfitF M )

=

\biggl( 
1

2\pi \kappa T

\biggr) d/2 \int 
S - \bfitx  - \bfitF m

exp

\biggl( 
 - | \bfity | 2

2\kappa T

\biggr) 
d\bfity .(64)

Since the state space \BbbT d is compact, we can find R > 0 such that | \bfitx + FM | \leq R for
all \bfitx \in \BbbT d. Thus, we define the probability measure \eta as

\eta (S) = Z - 1
R inf

| Q| \leq R

\int 
S+Q

exp

\biggl( 
 - | \bfity | 2

2\kappa T

\biggr) 
d\bfity \forall S \subset \BbbT d,(65)

where ZR is the normalization constant. Setting \epsilon = ZR(4\pi \kappa T )
 - d/2, we can eas-

ily verify that \eta (S) \geq Z - 1
R exp( - | R+1| 2

2\kappa T )| S| , which satisfies a uniform minorization
condition.

The uniform boundedness condition is automatically satisfied since \eta has a posi-
tive density with respect to Lebesgue measure.

The situation when the exact solution operator is considered can be proved by
changing (62) into an Ito integration form

XT,0,\bfx 
s = XT,0,\bfx 

0 +

\int s

0

b(T  - s,XT,0,\bfx 
s )dr +

\int s

0

\surd 
2\kappa dw(r)(66)

and then go through the same procedure.

We now represent an important result that ensures the existence of the limiting
measure for the discretized Feynman--Kac dynamics. The detailed proof of Theorem
3.8 can be found in [27] or Corollary 2.5 in [29].

Theorem 3.8. Suppose the minorization and boundedness conditions (59) hold

true. Then, \Phi \scrK \Delta t

n admits an invariant measure \nu \Delta t, whose density function is the
eigenfunction of the operator (\scrK \Delta t) \star , the adjoint operator of the solution operator
\scrK \Delta t. Moreover, for any initial distribution \nu 0 \in \scrP (\BbbT d), we have

(67)
\bigm| \bigm| \bigm| \bigm| \Phi \scrK \Delta t

n (\nu 0) - \nu \Delta t

\bigm| \bigm| \bigm| \bigm| 
TV

\leq 2

\biggl( 
1 - \epsilon 

\gamma 

\biggr) n

,

where | | \cdot | | TV is the total variation norm and 0 < \epsilon < \gamma are the parameters defined in
the minorization and boundedness conditions in (59). The estimate (67) is also true
when changing \scrK \Delta t to the exact solution operator \scrU (T, 0).

Corollary 3.9. The principal eigenvalue \mu \Delta t of \scrK \Delta t satisfies the following re-
lation:

(68) e\mu \Delta t(\lambda )T = \nu \Delta t\scrK \Delta t1 = \Phi \scrK \Delta t

n (\nu 0)\scrK \Delta t1 + \rho n,

where \nu 0 is any bounded nonnegative initial probability measure, T is the period of the
time parameter, and \rho n = O(1 - \epsilon 

\gamma )
n.

Proof. Theorem 3.8 implies that for any bounded nonnegative measure \nu 0, the
measure \Phi \scrK \Delta t

n (\nu 0) converges to an invariant measure \nu \Delta t in the weak sense, that is,

(69) \nu \Delta t\phi :=

\int 
\BbbT d

\phi d\nu \Delta t = \Phi \scrK \Delta t

n (\nu 0)(\phi ) +O(1 - \epsilon 

\gamma 
)n,
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for any bounded nonnegative measurable function \phi . Then, we take \phi = \scrK \Delta t1. From
the fact that the density function of \nu \Delta t is the eigenfunction of the operator (\scrK \Delta t) \star ,
we get that

(70) \nu \Delta t(\scrK \Delta t1) = ((\scrK \Delta t) \star \nu \Delta t)1 = e\mu \Delta t(\lambda )T (\nu \Delta t1) = e\mu \Delta t(\lambda )T .

Thus, we finish the proof.

Now we compute the principal eigenvalue \mu \Delta t(\lambda ).

Lemma 3.10. Let \nu k\Delta t=
\prod k - 1

i=0 \Phi \scrK \Delta t,M - i

\nu \Delta t, 1\leq k\leq M . Let ek=(\nu k\Delta t)(\scrK \Delta t,M - k1)
denote the changing of mass. Then, we have

(71) e\mu \Delta t(\lambda )T =

M\prod 
k=1

ek and \mu \Delta t(\lambda ) =
1

M\Delta t

M - 1\sum 
k=0

log(ek).

Proof. It is easy to verify that

\nu M\Delta t = \nu 0\Delta t = \nu \Delta t, (\scrK \Delta t,M - k) \star \nu k\Delta t = ek\nu 
k+1
\Delta t ,(72)

for some positive numbers ek's. Thus, we have (\scrK \Delta t) \star \nu 0\Delta t = (
\prod M - 1

k=0 ek)\nu 
0
\Delta t, which

means e\mu \Delta t(\lambda )T =
\prod M - 1

k=0 ek. By taking the logarithm, we obtain the formula for
\mu \Delta t(\lambda ) in (71), where M\Delta t = T .

Finally, we show the error estimate of the Lagrangian particle method in com-
puting the principal eigenvalue of parabolic operators as follows.

Theorem 3.11. Suppose b(t,x) and c(t,x) in \scrA (t) in (30) are bounded, smooth,
and periodic in each component of x and uniformly H\"older continuous in t. Let

\mu n
\Delta t(\lambda ) = (M\Delta t) - 1

M - 1\sum 
k=0

log

\Biggl( 
N - 1

N\sum 
p=1

exp(c(tM - k, \widetilde \xi p,n - 1
k )\Delta t)

\Biggr) 
(73)

denote the approximate principal eigenvalue obtained by the N -IPS method, where\widetilde \xi p,n - 1
k , k = 0, . . . ,M  - 1, p = 1, . . . , N , n is the iteration number, and \Delta t are defined
in Algorithm 1. Let \mu (\lambda ) denote the principal eigenvalue of (4) defined in (9). Then,
we have the following convergence result:

lim
N\rightarrow \infty 

(M\Delta t) - 1
M - 1\sum 
k=0

log
\Bigl( 
N - 1

N\sum 
p=1

exp(c(tM - k, \widetilde \xi p,n - 1
k )\Delta t)

\Bigr) 
= \mu (\lambda ) +O

\biggl( \biggl( 
1 - \epsilon 

\gamma 

\biggr) n\biggr) 
+O

\bigl( 
(\Delta t)

1
2

\bigr) 
,(74)

where 0 < \epsilon < \gamma are the parameters defined in the minorization and boundedness
conditions in (59).

Proof. By the convergence property of the N -IPS, we know that the empirical
distribution of the particles \{ \widetilde \xi p,n - 1

k \} p=1,...,N will weakly converge to the distribution\prod k - 1
i=0 \Phi \scrK \Delta t,M - i

\Phi \scrK \Delta t

n - 1\nu 0, 1 \leq k \leq M , whenN \rightarrow \infty . Let eNk,n = N - 1
\sum N

p=1 exp(c(tM - k,\widetilde \xi p,n - 1
k )\Delta t) denote the increasing of the mass for each small step \scrK \Delta t,k. Then, we can

get that
\prod k - 1

i=0 \Phi \scrK \Delta t,M - i

\Phi \scrK \Delta t

n - 1\nu 0, 1 \leq k \leq M , satisfy

lim
N\rightarrow \infty 

eNk,n =

\Biggl( 
k - 1\prod 
i=0

\Phi \scrK \Delta t,M - i

\Phi \scrK \Delta t

n - 1\nu 0

\Biggr) 
(\scrK \Delta t,k1).(75)
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According to Theorem 3.8, we have that \Phi \scrK \Delta t

n - 1\nu 0 = \nu \Delta t + \delta n, where | | \delta n| | TV \leq 2(1 - 
\epsilon 
\gamma )

n. This implies that

lim
N\rightarrow \infty 

eNk,n =

\Biggl( 
k - 1\prod 
i=0

\Phi \scrK \Delta t,M - i

\nu \Delta t

\Biggr) 
(\scrK \Delta t,k1) +O

\biggl( \biggl( 
1 - \epsilon 

\gamma 

\biggr) n\biggr) 
.(76)

Combining Lemma 3.10, we conclude that

lim
N\rightarrow \infty 

(M\Delta t) - 1
M\sum 
i=1

log(eNk,n) = (M\Delta t) - 1
M - 1\sum 
k=0

log(ek) +O

\biggl( \biggl( 
1 - \epsilon 

\gamma 

\biggr) n\biggr) 
= \mu \Delta t(\lambda ) +O

\biggl( \biggl( 
1 - \epsilon 

\gamma 

\biggr) n\biggr) 
.(77)

From Theorem 3.5, we know that
\bigm| \bigm| \mu (\lambda )  - \mu \Delta t(\lambda )

\bigm| \bigm| = O
\bigl( 
(\Delta t)

1
2

\bigr) 
. Therefore, the esti-

mate in (74) can be obtained by using the triangle inequality.

4. Numerical results. In this section, we first present numerical examples to
verify the convergence analysis of the proposed method in computing eigenvalues.
Then, we compute the KPP front speeds in 2D and 3D chaotic flows. In addition,
we investigate the dependence of the KPP front speed on the magnitude of velocity
fields and the evolution of the empirical distribution of the N -IPS. To be consistent
with the setting of numerical experiments in the literature, e.g., [41, 40], we choose
the torus space \BbbT d = [0, 2\pi ]d, d = 2, 3.

4.1. Convergence tests in computing principal eigenvalue. We first ver-
ify the convergence of the operator splitting method in approximating solution the
operator. Let x = (x1, x2)

T . We consider a 2D nonautonomous equation on [0, 2\pi ]2

as follows:

(78) ut = \scrL (t)u+ \scrC (t)u,

where \scrL (t) = \Delta \bfx +(sin(x2) cos(2\pi t), sin(x1) cos(2\pi t)) \cdot \nabla \bfx , and \scrC (t) =
\bigl( 
sin(x1+x2)+

cos(x1 + x2)
\bigr) 
sin(2\pi t).

We use spectral method to discretize (78), in order to obtain an accurate ap-
proximation in the physical space of the solution operator of (78). Specifically, let
VH = span\{ ei(k1x1+k2x2) :  - H \leq k1, k2 \leq H\} denote a finite dimensional space
spanned by Fourier basis functions, where H is a positive integer. First, we compute
the approximations of the operators \scrL (t) and \scrC (t) in the space VH . Let matrices

LH(t) and CH(t) \in \BbbC (2H+1)2\times (2H+1)2 denote the approximations of \scrL (t) and \scrC (t),
respectively [39].

Then, we use the matrix exponential functions e\Delta tLH(t) and e\Delta tCH(t) to approx-
imate e\Delta t\scrL (t) and e\Delta t\scrC (t), respectively. Thus, we get an approximation formula for
\scrK \Delta t as

(79) KH,\Delta t =

T/\Delta t - 1\prod 
j=0

e\Delta tLH(tj)e\Delta tMH(tj).

For the reference solution, we choose a much finer time step \Delta tref and compute the
approximation formula

(80) \widetilde KH,\Delta tref =

T/\Delta tref - 1\prod 
j=0

e\Delta tref (L
H(tj)+MH(tj)).

D
ow

nl
oa

de
d 

06
/1

6/
22

 to
 1

28
.1

95
.6

9.
42

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1152 J. LYU, Z. WANG, J. XIN, AND Z. ZHANG

10
-3

10
-2

10
-1

10
0

∆ t

10
-4

10
-3

10
-2

10
-1

10
0

E
rr

o
r

Fig. 1. Numerical errors for | | KH,\Delta t  - \widetilde KH,\Delta tref | | L2 .
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Fig. 2. In the Lagrangian method, iteration number n = 200 and n = 400. The reference
principle eigenvalue is obtained by the spectral method.

In this experiment, we choose H = 24, \Delta t = 2 - 1, 2 - 2, . . . , 2 - 9, and \Delta tref = 2 - 12.

Then, we compute | | KH,\Delta t  - \widetilde KH,\Delta tref | | L2 to verify our result. Figure 1 shows the
convergence results for the splitting method. The convergence rate is (\Delta t)1.05. This
numerical result suggests that the convergence analysis in Theorem 3.5 is not sharp.
More studies on the convergence analysis of our method will be reported in our future
work.

Then, we test the convergence of the Lagrangian method, i.e., Algorithm 1, in
computing principal eigenvalues of parabolic-type equations. We still consider the
problem (78) with the same \scrL (t) and \scrC (t). In this experiment, we choose \Delta t =
2 - 1, 2 - 2, 2 - 3, 2 - 4, 2 - 5, N =200,000 in the N -IPS system and iteration number n =
200 and n = 400 in the Lagrangian method. Figure 2 shows the convergence of
principal eigenvalues with respect to \Delta t by the spectral method and our Lagrangian
method, where the reference solution is computed from spectral method with a finer
grid \Delta tref = 2 - 10. So given sufficiently large N and n, the error in calculating
principal eigenvalues of a linearized KPP operator \scrA via our proposed Lagrangian
approach only comes from the error of operator splitting. Also as the Lagrangian
method will eventually converge to some invariant measure approximating the ground
truth invariant measure, there is no error accumulation for long-time integration.
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(a) 2D convergence test, fitted slope \approx 
1.51
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(b) 3D convergence test, fitted slope \approx 
1.60.

Fig. 3. Errors of the principal eigenvalue computed by using different time steps.

4.2. Computing KPP front speeds in different flows. We first compute the
KPP front speeds in two different time-independent flows, i.e., a 2D steady cellular
flow and a 3D ABC flow. Let x = (x1, . . . , xd)

T \in [0, 2\pi ]d with d = 2, 3. We use
the Lagrangian method to compute the following principal eigenvalue problem with
periodic boundary condition:

(81) \kappa \Delta \bfx \Phi + ( - 2\kappa \lambda e+ v) \cdot \nabla \bfx \Phi +
\bigl( 
\kappa \lambda 2  - \lambda e \cdot v + \tau  - 1f \prime (0)

\bigr) 
\Phi = \mu (\lambda )\Phi ,

where f(u) = u(1 - u) and (\mu (\lambda ),\Phi ) are the principal eigenvalue of (81) and its asso-
ciated eigenfunction, respectively. The velocity field v = ( - sinx1 cosx2, cosx1 sinx2)
in the 2D steady cellular flow and v = (sinx3 + cosx2, sinx1 + cosx3, sinx2 + cosx1)
in the 3D ABC flow, respectively.

We choose the parameters \kappa = 1 and \tau = 1 in (81). We use the spectral method
to obtain an accurate reference solution for the principal eigenvalue of (81). Figure 3
shows the convergence results of the Lagrangian method in computing the principal
eigenvalue, where \lambda = 0.35 for the 2D cellular flow and \lambda = 0.55 for the 3D ABC flow.
We find the convergence rate of the Lagrangian method is (\Delta t)1.51 for the 2D steady
cellular flow and (\Delta t)1.70 for the 3D ABC flow. Thus, we can use the Lagrangian
method to compute the KPP front speeds in both 2D and 3D flows.

After getting the principal eigenvalue, we compute the KPP front speed c\ast through

the formula c\ast = inf\lambda >0
\mu (\lambda )
\lambda . We only show the numerical results for the 3D ABC

flow here since the results for the 2D steady cellular flow are quantitatively similar.
We choose the velocity field v = A(sinx3 + cosx2, sinx1 + cosx3, sinx2 + cosx1),

where A is the strength of the convection. In Figure 4, we show the results of \mu (\lambda )
\lambda 

for ABC flows with A = 1 and A = 10. The amplitude of the principal eigenvalue
increases fast and the convergence speed becomes slower. Notice that in this case, the
flow becomes very unstable since the convection becomes dominant compared to the
diffusion. This issue will be studied in subsection 4.3.

Next, we compute the KPP front speed in a 2D unsteady (time-dependent) cellu-
lar flow. Let x = (x1, x2)

T . We use the Lagrangian method to compute the following
principal eigenvalue problem with periodic boundary condition:

(82) \kappa \Delta \bfx \Phi + ( - 2\kappa \lambda e+ v) \cdot \nabla \bfx \Phi +
\bigl( 
\kappa \lambda 2  - \lambda e \cdot v + \tau  - 1f \prime (0)

\bigr) 
\Phi  - \Phi t = \mu (\lambda )\Phi ,
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Fig. 4. Numerical results of
\mu (\lambda )
\lambda 

for different \lambda 's in the ABC flow.
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(a) Convergence test for different \Delta t's.
The fitted slope is \approx 1.31.
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Fig. 5. Numerical results for a 2D unsteady cellular flow.

where (t,x) \in [0, T ] \times [0, 2\pi ]2, T is the period of v in t, f(u) = u(1  - u), and
(\mu (\lambda ),\Phi ) are the principal eigenvalue of (82) and its associated eigenfunction, respec-
tively. The velocity field of the 2D unsteady cellular flow is v =

\bigl( 
 - sinx1 cosx2(1 +

\delta cos 2\pi t), cosx1 sinx2(1 + \delta cos 2\pi t)
\bigr) 
, where \delta > 0 is a parameter.

We choose the parameters \kappa = 1 and \tau = 1 in (82) and \delta = 0.5 in the velocity
field v. We use the spectral method to obtain an accurate reference solution for
the principal eigenvalue of (82). For Figure 5(a), we choose \lambda = 0.57. Figure 5(a)
shows the convergence results of the Lagrangian method in computing the principal
eigenvalue, where the convergence rate is (\Delta t)1.31. Figure 5(b) shows the numerical

results of \mu (\lambda )
\lambda for different \lambda 's, from which we can compute the KPP front speed in the

2D unsteady cellular flow. We can see that \mu (\lambda )
\lambda is convex within the computational

domain of \lambda . Thus, we can compute the KPP front speed by finding the minimizer of
\mu (\lambda )
\lambda .
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4.3. Investigate the dependence of front speed on the strength of the
flows. To further test the performance of the Lagrangian method, we study the
dependence of the KPP front speeds on the strength of different flows. Moreover,
we study the relationship between the KPP front speeds in the chaotic flows and the
effective diffusivity of the passive tracer model in the same chaotic flows. We refer
the interested reader to [43, 45, 25] for recent developments in computing effective
diffusivities in chaotic and random flows. We set the diffusion constant \kappa = 1 and the
time scale of reaction rate \tau = 1.

Let us first consider this issue in KPP front speeds of time-independent flows. If
we scale v \rightarrow Av, (81) can be rewritten as the following form:

(83) \Delta \bfx \Phi + ( - 2\lambda e+Av) \cdot \nabla \bfx \Phi +
\bigl( 
\lambda 2  - \lambda e \cdot Av + f \prime (0)

\bigr) 
\Phi = \mu (\lambda )\Phi .

The KPP front speed is c\ast = inf\lambda >0
\mu (\lambda )
\lambda . Notice that the KPP front speed c\ast depends

on A, i.e., c\ast = c\ast (A). Therefore, we consider the equivalent equation
(84)

A - 1\Delta \bfx \Phi + ( - 2A - 1\lambda e+ v) \cdot \nabla \bfx \Phi +
\bigl( 
A - 1\lambda 2  - \lambda e \cdot v +A - 1f \prime (0)

\bigr) 
\Phi = \widetilde \mu (\lambda )\Phi ,

where \widetilde \mu (\lambda ) = A - 1\mu (\lambda ). Let \widetilde c\ast denote the KPP front speed of the rescaled equation
(84). We have that

(85) \widetilde c\ast = inf
\lambda >0

\widetilde \mu (\lambda )
\lambda 

=
c\ast 

A
.

We denote \sigma = A - 1. For the 2D steady cellular flow v = ( - sinx1 cosx2, cosx1 sinx2),
it has been proved that c\ast (A) = O(A1/4) [1, 36]. Let DE(A) denote the effective
diffusivity corresponding to the passive tracer model in the same 2D steady cellular
flow v. It has been proved by a boundary layer analysis that DE(A) = O(A1/2) in
[1, 7]. By scaling analysis, we obtain that for the 2D steady cellular flow the following
result holds:

(86) c\ast (A) = O(
\sqrt{} 
DE(A)).

To the best of our knowledge, the above relationship between the KPP front speeds
and the effective diffusivity was only proved in 2D steady cellular flows; see [36,
37]. The result (86) implies that \widetilde c\ast (\sigma ) = \sigma O(\sigma  - 1/4) = O(\sigma 3/4), which provides a
theoretical guidence for our numerical experiments. Figure 6(a) shows the numerical
results of \widetilde c\ast (\sigma ) in the 2D steady cellular flow obtained by our method. From the
numerical results, we compute regression and obtain \widetilde c\ast (\sigma ) = O(\sigma 0.74), which agrees
with the theoretical result (86).

For other flows, such as unsteady flows and 3D chaotic flows, the understanding
of c\ast (A) for large A's (or \widetilde c\ast (\sigma ) for small \sigma 's) remains open. We will study these
flows here. In our previous work [45], we computed the effective diffusivity of the
passive tracer model in the 3D Kolmogorov flow, where v = (sinx1, sinx2, sinx3),
and obtained that DE(A) = O(A1.13). Notice that in [45] the effective diffusivity
is represented in terms of the diffusion and we have converted the result in terms
of the strength of the flows here, which are equivalent. The result (86) implies that\widetilde c\ast (\sigma ) = \sigma O(\sigma  - 0.56) = O(\sigma 0.44). Using our method, we compute \widetilde c\ast (\sigma ) for \sigma in 3D
Kolmogorov flow and show the numerical results in Figure 6(b). We obtain that\widetilde c\ast (\sigma ) = O(\sigma 0.43), which means that the result (86) also holds in the 3D Kolmogorov
flow. We conjecture that the result (86) also holds true in other 3D chaotic flows. We
will study this issue in future works.
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(a) Numerical results of \widetilde c\ast (\sigma ) in 2D cel-
lular flow. The fitted slope is \approx 0.74.
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(b) Numerical results of \widetilde c\ast (\sigma ) in 3D Kol-
mogorov flow. The fitted slope is \approx 0.43.

Fig. 6. Numerical results of \widetilde c\ast (\sigma ) in different flows.
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Fig. 7. Numerical results of \widetilde c\ast (\sigma ) in a 3D time-dependent Kolmogorov flow.

Next, we study the dependence of the KPP front speeds on the strength of time-
dependent flows. Specifically, we will consider two 3D flows. The first one is a time-
dependent Kolmogorov flow with v =

\bigl( 
sin(x3+\theta sin(2\pi t)), sin(x1+\theta sin(2\pi t)), sin(x2+

\theta sin(2\pi t))
\bigr) 
, and the second one is a time-dependent ABC flow with v =

\bigl( 
sin(x3 +

sin(2\pi \Omega t)) + cos(x2 + sin(2\pi \Omega t)), sin(x1 + sin(2\pi \Omega t)) + cos(x3 + sin(2\pi \Omega t)), sin(x2 +
sin(2\pi \Omega t)) + cos(x1 + sin(2\pi \Omega t))

\bigr) 
.

For the 3D time-dependent Kolmogorov flow, we choose iteration time n = 256,
time step \Delta t = 2 - 9 and particle number N = 400, 000. Figure 7 shows the result of\widetilde c\ast (\sigma ) for small \sigma 's and different \theta 's. Again, we find the KPP front speed \widetilde c\ast (\sigma ) is not
very sensitive to the parameter \theta . When \theta = 1, we obtain that \widetilde c\ast (\sigma ) = O(\sigma 0.39).

In Figure 8, we plot out procedure searching for the \lambda when the minimum in (85)
was reached. We use a\lambda + b\lambda  - 1+ c to fit a curve, then find the minimum of the curve.
When \sigma is large, the relative fluctuation is small and the minimum is easily found.
When \sigma is small, the relative fluctuation becomes strong enough, so we decide to fit
the curve, then find the minimum point.

For the 3D time-dependent ABC flow, we choose the iteration time n = 2048
(since the ABC flow is more chaotic), time step \Delta t = 2 - 9, and particle number
N =400,000. Figure 9(a) shows the KPP front speeds \widetilde c\ast (\sigma ) for different \Omega 's, where \Omega 
ranges from 2 - 7 to 20. Figure 9(b) shows the slope of each approximation line for each
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Fig. 8. Numerical results of
\mu (\lambda )
\lambda 

for different \lambda 's and \sigma 's in the 3D time-dependent Kolmogorov

flow. The red dashed curve is fitted by a\lambda + b\lambda  - 1 + c.
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(a) Numerical results of \widetilde c\ast (\sigma ) for different
\Omega 's and different \sigma 's.
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Fig. 9. Numerical results for the time-dependent ABC flows.

\Omega in Figure 9(a). If we assume \widetilde c\ast (\sigma ) = O(\sigma \alpha ) is true, the slope values in Figure 9(b)
give the power value \alpha 's for different \Omega 's. We find that when \Omega is near 0.1, the power
value \alpha is large. When \Omega is away from 0.1, say, \Omega < 2 - 4 or \Omega > 2 - 2, the power value
\alpha is small. A similar sensitive dependence on the frequency of time-dependent ABC
flows was reported in [4], where the Lyapunov exponent of the deterministic time-
dependent ABC flow problem was studied as the indicator of the extent of chaos; see
Figures 2 and 3 of [4].

We compare the computational time of the interacting particle method and the
spectral method in the 2D cellular flow example. The numerical experiments are
carried out on the same core of the HPC2015 system at HKU with 10-core Intel
Xeon E5-2600 v3 (Haswell) processors and 96 GB physical memory. We compute the
front speed using the spectral method mentioned in section 4.1. We set the Fourier
modes H = 2k and k is a positive integer. When \sigma = 2 - 2, for the spectral method,
H = 23 is enough and it spends 1.13 seconds to calculate the front speed, while for our
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Fig. 10. Empirical distributions for the 2D steady cellular flow with \sigma varies from 20 to 2 - 5.
First row from left to right: \sigma = 20, \sigma = 2 - 1, and \sigma = 2 - 2. Second row from left to right: \sigma = 2 - 3,
\sigma = 2 - 4, and \sigma = 2 - 5.

interacting particle method, the computational time is about 45.01 seconds. When
\sigma = 2 - 5, for the spectral method, H = 24 is enough and it spends 42.35 seconds to
calculate the front speed, and the interacting particle method costs 172.76 seconds.
When \sigma = 2 - 8, for the spectral method, H = 24 is needed and it costs 1203.12 seconds
to calculate the front speed; on the other hand, our interacting particle method costs
676.23 seconds. When \sigma becomes extremely small, the spectral method becomes
very expensive; however, our interacting particle method is still very efficient. For
instance, when \sigma = 2 - 12, the spectral method may need several days to calculate
the front speed, but our interacting particle method only costs 5378.24 seconds. We
remark that the spectral method becomes very expensive in computing front speeds
for 3D chaotic flows. However, the computational time of the interacting particle
method only weakly depends on the dimension of the physical space. Thus, we can
compute KPP front speeds in 3D chaotic flows.

4.4. Evolution of the empirical distribution of the particles. As stated
in Theorem 3.8, the empirical distribution converges to the invariant measure of the
Feynman--Kac semigroup as n approaches infinity. Our Lagrangian method cannot
only calculate the principal eigenvalue but also compute the evolution of the distri-
bution. In this subsection, we study the empirical distribution of the N -IPS system
moduled to the torus space \BbbT d. We choose the particle number N = 200,000 in all
the numerical experiments.

Figure 10 shows the invariant distribution generated by the N -IPS system in the
2D steady cellular flow, where v = ( - sinx1 cosx2, cosx1 sinx2). The parameter \sigma 
varies from 20 to 2 - 5. The strength of the convection is then proportion to 1/\sigma .
We can see that when we increase the strength, the invariant measure concentrates
in smaller domains and its gradient becomes sharper near these domains, which is a
common phenomenon in fluid dynamics. In addition, by comparing to the pattern
at the boundary of the plot, one can find that the invariant measure is periodic in
physical space.

Next, we study the evolution of invariant distribution generated by ourN -IPS sys-
tem in a 2D time-periodic mixing flow, where v = ( - cosx2 - \theta sinx1 cos(2\pi t), cosx1+
\theta sinx2 cos(2\pi t)). Figure 11 shows the empirical distribution of the N -IPS system at

D
ow

nl
oa

de
d 

06
/1

6/
22

 to
 1

28
.1

95
.6

9.
42

 . 
R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COMPUTING KPP FRONT SPEED USING PARTICLE METHOD 1159

0 2 4 6

0

1

2

3

4

5

6

0.02

0.04

0.06

0.08

0.1

0 2 4 6

0

1

2

3

4

5

6

0.02

0.04

0.06

0.08

0.1

0 2 4 6

0

1

2

3

4

5

6

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 2 4 6

0

1

2

3

4

5

6

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 2 4 6

0

1

2

3

4

5

6

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 2 4 6

0

1

2

3

4

5

6

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 2 4 6

0

1

2

3

4

5

6

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 2 4 6

0

1

2

3

4

5

6

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 2 4 6

0

1

2

3

4

5

6

0.02

0.04

0.06

0.08

Fig. 11. Empirical distributions for the 2D time-periodic mixing flow with \theta = 1, \sigma = 1, in
different phase of one period: t varies from 0 to 1 with time interval equal to 1/9.

different times within one period when the iteration time n = 400. From these
numerical results, we can see the invariant distribution varies at different times within
one period. The first subfigure and the last subfigure are identical. These results are
consistent with our analysis obtained in Lemma 3.10, where we proved that the in-
variant measure changes periodically with the same period as the flow.

Finally, we let the parameter \sigma vary from 20 to 2 - 5 and study the evolution of
invariant distribution generated by our N -IPS system in the 2D time-periodic mixing
flow. Figure 12 shows that with the increasing of the strength of the convection, the
invariant measure becomes compactly supported with a sharp gradient.

From these numerical results, we get two conclusions. First, the invariant measure
of the Feynman--Kac semigroup associated with the KPP operator is no longer uniform
distribution. This is due to the effect from the potential function c(t,x). Second, the
invariant measure converges to a limiting measure as \sigma \rightarrow 0. Notice that when \sigma is
small, the invariant measure develops sharp gradients, which requires more particles
to compute. Moreover, it may take more time steps to converge. Developing effective
sampling methods to compute the invariant measure for the KPP operator with small
diffusion constant will be studied in our future works; see, e.g., [44].

5. Conclusion. In this paper, we developed efficient Lagrangian particle meth-
ods to compute the KPP front speeds in time-periodic cellular and chaotic flows and
provided rigorous convergence analysis for the numerical schemes. In the convergence
analysis, we first obtained the error of the operator splitting methods in approximat-
ing the solution operator corresponding to the linearized KPP equation. Then, we
proved the convergence of the Lagrangian particle method in computing the principal
eigenvalue based on the Feynman--Kac semigroup theory. Finally, we presented nu-
merical results to verify the convergence rate of the proposed method for computing
the principal eigenvalues. In addition, we computed the KPP front speeds in several
typical chaotic flow problems of physical interests, including the ABC flow and the
Kolmogorov flow. Compared with spectral methods and FEM methods, our method
has several striking advantages in computing the principal eigenvalue of the linear
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Fig. 12. Empirical distributions for the 2D time-periodic mixing flow with \theta = 1, \sigma varies from
20 to 2 - 5. First row from left to right: \sigma = 20, \sigma = 2 - 1, and \sigma = 2 - 2. Second row from left to
right: \sigma = 2 - 3, \sigma = 2 - 4, and \sigma = 2 - 5.

reaction-diffusion-advection operator: (1) it is scalable with respect to dimension d of
spatial variables and is quite cheap to compute 3D problems, and (2) it is meshfree
and self-adaptive. Thus, it is still very efficient when the diffusion is small and/or
the strength of the flows is large. It has been proved that the KPP front speed and
the effective diffusivity satisfy the relation c\ast (A) = O(

\sqrt{} 
DE(A)) in 2D cellular flows

[36, 37]. We numerically verified this relation and found that this relation still holds
in 3D Kolmogorov flows and ABC flows.

There are three directions we plan to explore in our future work. First, we will ex-
tend the Lagrangian particle method to compute KPP front speeds in time-stochastic
and space-periodic flows. Second, we will develop Lagrangian particle methods to
compute KPP fronts speeds in more complex fluid flows, where the computational
domain is not compact. This type of problem is more challenging both analytically
and numerically. As stated in the introduction, there is limited literature on study-
ing the existence of KPP front speeds in complex flows. In the aspect of numerical
computation, our current method cannot be adapted to noncompact domains. We
shall adopt some relaxation techniques to address this problem. In addition, we shall
develop adaptive sampling methods for our Lagrangian particle methods in order
to resolve the sharp gradients in the invariant measure when the magnitude of the
velocity field is very large.

Appendix A. Error bounds for exponential operator splitting in non-
autonomous evolution equations.

A.1. Euler methods for nonautonomous evolution equations. In this sec-
tion, we review the fundamental results for abstract linear evolution equations by
semigroup theory; see, e.g., [12, 6] for more details. We consider the nonautonomous
Cauchy problem (NCP) as follows:

(87)

\left\{   
d

dt
u(t) = \scrA (t)u(t), t \geq s \in \BbbR ,

u(s) = x \in X,
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where X is a Banach space and (\scrA (t),\scrD (\scrA (t)))t\in \BbbR is a family of linear operators on
X.

Definition A.1. A continuous function u : [s,\infty )  - \rightarrow X is called a classical
solution of (87) if u \in C1([s,\infty );X), u(t) \in \scrD (\scrA (t)) for all t \geq s, u(s) = x, and
d
dtu(t) = \scrA (t)u(t) for all t \geq s.

Definition A.2. For a family (\scrA (t),\scrD (\scrA (t)))t\in \BbbR of linear operators on a Banach
space X, the NCP (87) is well-posed with regularity subspace (Ys)s\in \BbbR and exponentially
bounded solutions if
(i) (Existence) for all s \in R the subspace

(88)
Ys = \{ y \in X : there exists a classical solution for the NCP (87)\} \subset \scrD (\scrA (s))

is dense in X;
(ii) (Uniqueness) for every y \in Ys, the solution us(\cdot , y) is unique;
(iii) (Continuous dependence) The solution continuously depends on s and y, i.e.,

if sn \rightarrow s \in \BbbR , | | yn  - y| | X \rightarrow 0 with yn \in Yyn
, then we have | | \^usn(t, yn)  - 

\^us(t, y)| | X \rightarrow 0 uniformly for t in compact subsets of \BbbR , where

\^us(t, y) =

\Biggl\{ 
ur(t, y) if r \leq t,

y if r > t.

(iv) (Exponential boundedness) there exists a constant \omega \in \BbbR such that

| | us(t, y)| | X \leq e\omega (t - s)| | y| | X
for all y \in Ys and t \geq s.

Definition A.3. A family \{ \scrU (t, s), t \geq s\} of linear, bounded solution operators
on Banach space X is called an exponentially bounded evolution family if
(i) \scrU (t, r)\scrU (r, s) = \scrU (t, s) and \scrU (t, t) = Id hold for all t \geq r \geq s \in \BbbR ,
(ii) the mapping (t, s) \rightarrow \scrU (t, s) is strongly continuous,
(iii) | | \scrU (t, s)| | X \leq e\omega (t - s) for some \omega \in \BbbR and all t \geq s \in \BbbR .

In contrast to the behavior of C0-semigroups, the algebraic proposition of an
evolution family does not imply any differentiability on a dense subspace. Therefore,
we need extra assumptions in order to solve an NCP.

Definition A.4. An evolution family \{ \scrU (t, s), t \geq s\} is called an evolution family
solving NCP (87) if for every s \in \BbbR the regularity space

Ys = \{ y \in X : [s,\infty ) \ni t \mapsto \rightarrow \scrU (t, s)y solves NCP (87)\} 

is dense in X.

In this case, the unique classical solution of the NCP (87) is given by u(t) =
\scrU (t, s)x. The well-posedness of the NCP (87) can now be characterized by the exis-
tence of solving an evolution family \{ \scrU (t, s), t \geq s\} .

Proposition A.5. Let X be a Banach space and (\scrA (t),\scrD (\scrA (t)))t\in \BbbR be a family
of linear operators on X. The following assertions are equivalent [12]:
(i) The NCP (87) is well-posed.
(ii) There exists a unique evolution family \{ \scrU (t, s), t \geq s\} solving the NCP (87).

In addition, if | | e\tau \scrA (t)| | X \leq e\omega \tau for any \tau \geq 0, t \in \BbbR , then we have | | \scrU (t, s)| | X \leq 
e\omega (t - s).
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The well-posedness of nonautonomous evolution equations is complicated and
there is no general theory describing it. Conditions implying well-posedness are gen-
erally divided into parabolic-type assumptions and hyperbolic-type ones. Due to the
property of the KPP equation, we only study the parabolic-type conditions in this
paper, where the domain (\scrD (\scrA (t)) is independent of t \in \BbbR . We refer the interested
reader to [38] for more general cases.

Assumption A.6 (parabolic-type conditions).
(P1) The domain \scrD = \scrD (\scrA (t)) is independent of t \in \BbbR .
(P2) For each t \in R the operator\scrA (t) is sectorial and generates an analytic semigroup

e\cdot \scrA (t). For all t \in \BbbR , the resolvent\scrR (\gamma 1,\scrA (t)) exists for all \gamma 1 \in \BbbC with Real\gamma 1 \geq 
0 and there is a constant M \geq 1 such that

(89)
\bigm| \bigm| \bigm| \bigm| R(\gamma 1,\scrA (t))

\bigm| \bigm| \bigm| \bigm| 
X

\leq M

| \gamma 1| + 1

for Real\gamma 1 \geq 0 and t \in \BbbR . The semigroups e\cdot \scrA (t) satisfy | | e\tau \scrA (t)| | X \leq e\omega \tau for
some constant \omega \in \BbbR .

(P3) There exist constants L \geq 0 and 0 < \theta \leq 1 such that

(90)
\bigm| \bigm| \bigm| \bigm| (\scrA (t) - \scrA (s))\scrA (0) - 1

\bigm| \bigm| \bigm| \bigm| 
X

\leq L| t - s| \theta ,\forall t, s \in \BbbR .

To obtain a convergence estimate for the operator in a certain norm, we need an
additional assumption on \scrA (t) as follows.

Assumption A.7. The operator\scrA (t) satisfies a H\"older continuous condition. Namely,
there exists 0 \leq \alpha < \beta such that for any x \in \scrD (\scrA ),

(91)
\bigm| \bigm| \bigm| \bigm| (\scrA (t) - \scrA (s))x

\bigm| \bigm| \bigm| \bigm| 
X

\leq C| t - s| \beta | | \scrA (\tau )x| | \alpha X | | x| | 1 - \alpha 
X

for any s \leq \tau \leq t.

For forward Euler--type discretization, Assumption A.7 can be relaxed to \tau = s
only. The backword Euler-type discretization needs \tau = t, and other discretization
methods need different \tau 's instead. For analytic semigroups, the following estimate
holds true; see Theorem II.4.6 in [12].

Lemma A.8. Let et\scrA be an anlytical semigroup on X. Let \scrA be the infinitesimal
generator. There is a constant C \geq 0 such that

(92) | | \scrA et\scrA | | X \leq C

t
, t > 0, 0 \leq \alpha \leq 1.

Now we state the first result, which gives the approximation error of the freezing
time coefficients methods for solving the NCP (87).

Theorem A.9. Suppose assumptions A.6 and A.7 hold true. Let \scrU (T, 0) be the
solution operator associated with the NCP (87). Then the solution operator obtained
by the freezing time coefficients methods has the following approximation error to
\scrU (T, 0):

(93)
\bigm| \bigm| \bigm| \bigm| \scrU (T, 0) - M - 1\prod 

k=0

e\Delta t\scrA (k\Delta t)
\bigm| \bigm| \bigm| \bigm| 
X

\leq C(T )(\Delta t)\beta  - \alpha ,

where T > 0, M is an integer, and \Delta t = T
M .
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Proof. First we refer to [38] for the abstract version of the method of freezing
coefficients,

(94) \scrU (t, s) = e(t - s)\scrA (s) +

\int t

s

\scrU (t, \tau )(\scrA (\tau ) - \scrA (s))e(\tau  - s)\scrA (s)d\tau ,

which immediately gives us that, for every x \in X,\bigm| \bigm| \bigm| \bigm| (\scrU (t, s) - e(t - s)\scrA (s))x
\bigm| \bigm| \bigm| \bigm| 
X

=
\bigm| \bigm| \bigm| \bigm| \int t

s

\scrU (t, \tau )(\scrA (\tau ) - \scrA (s))e(\tau  - s)\scrA (s)xd\tau 
\bigm| \bigm| \bigm| \bigm| 
X

\leq 
\int t

s

\bigm| \bigm| \bigm| \bigm| \scrU (t, \tau )\bigm| \bigm| \bigm| \bigm| 
X
(\tau  - s)\beta 

\bigm| \bigm| \bigm| \bigm| \scrA (s)e(\tau  - s)\scrA (s)x
\bigm| \bigm| \bigm| \bigm| \alpha 
X

\bigm| \bigm| \bigm| \bigm| e(\tau  - s)\scrA (s)x
\bigm| \bigm| \bigm| \bigm| 1 - \alpha 

X
d\tau .(95)

In (95), we have used the fact that e(\tau  - s)\scrA (s)x \in \scrD (\scrA ) for any x \in X. Notice
that \scrA (s) generates an analytic semigroup e\cdot \scrA (s). According to, (A.8) we have the
following estimate:

(96)
\bigm| \bigm| \bigm| \bigm| \scrA (s)e(\tau  - s)\scrA (s)

\bigm| \bigm| \bigm| \bigm| \alpha 
X

\leq C(\tau  - s) - \alpha .

Substituting (96) into (95), we obtain that, suppose \omega > 0,\bigm| \bigm| \bigm| \bigm| (\scrU (t, s) - e(t - s)\scrA (s))x
\bigm| \bigm| \bigm| \bigm| 
X

\leq 
\int t

s

Ce\omega (t - \tau )(\tau  - s)\beta  - \alpha e\omega (\tau  - s)d\tau | | x| | X =
C

1 + \beta  - \alpha 
e\omega (t - s)(t - s)1+\beta  - \alpha | | x| | X .

(97)

When \omega < 0, we only need to modify e\omega (t - s) in the right-hand side to e(1 - \alpha )\omega (t - s),
and in the following proofs we will choose the same trick. Thus, we get the estimate
for the operator in the norm | | \cdot | | X

(98)
\bigm| \bigm| \bigm| \bigm| \scrU (t, s) - e(t - s)\scrA (s)

\bigm| \bigm| \bigm| \bigm| 
X

\leq C

1 + \beta  - \alpha 
e\omega (t - s)(t - s)1+\beta  - \alpha .

We denote \scrU (T, 0) =
\prod M - 1

k=0 \scrU ((k+1)\Delta t, k\Delta t). Using the telescoping sum argument,
we obtain\bigm| \bigm| \bigm| \bigm| \scrU (T, 0) - M - 1\prod 

k=0

e\Delta t\scrA (k\Delta t)
\bigm| \bigm| \bigm| \bigm| 
X

=
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| M - 1\sum 

j=0

M - 1\prod 
k=j+1

U((k + 1)\Delta t, k\Delta t)
\bigl( 
\scrU ((j + 1)\Delta t, j\Delta t) - e\Delta t\scrA (j\Delta t)

\bigr) j - 1\prod 
l=0

e\Delta t\scrA (l\Delta t)
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
X

\leq 
M - 1\sum 
j=0

e\omega (N - j - 1)\Delta t C

1 + \beta  - \alpha 
e\omega \Delta t(\Delta t)1+\beta  - \alpha e\omega j\Delta t =

Ce\omega T

1 + \beta  - \alpha 
(\Delta t)\beta  - \alpha .

(99)

The statement in (93) is proved.

For higher-order operator splitting methods, in some specific situation the higher-
order convergence has been proved in [20, 21]. In their works, Assumption A.7 was
largely strengthened, for both the operator \scrA (t) and the initial condition, and the
convergence largely depends on the graph norm | | v| | \alpha := | | \scrA (t)\alpha v| | X . The convergence
in norm | | \cdot | | X is still open and will be our future research work.
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A.2. Operator splitting methods for solving nonautonomous evolution
equations. We study the approximation error of operator splitting methods in solv-
ing nonautonomous evolution equations. To be specific, we consider an abstract NCP,

(100)

\left\{   
d

dt
u(t) = (\scrA (t) + \scrB (t))u(t), t \geq s \in \BbbR ,

u(s) = x \in X,

on a Banach space X, where \scrA (t) and \scrB (t) are linear operators, \scrD (\scrA (t)) is indepen-
dent of t and dense in X, and for each t \in \BbbR , \scrA (t), \scrB (t), and \scrA (t) + \scrB (t) generate
strongly continuous semigroups e\cdot \scrA (t), e\cdot \scrB (t), and e\cdot (\scrA (t)+\scrB (t)), respectively.

We will study the NCP (100) based on the perturbation theory. We assume\scrA (t) is
a sectorial operator, which generates an analytical semigroup e\cdot \scrA (t), and assume \scrB (t)
is bounded, thus \scrA (t) + \scrB (t) is also sectorial and generates an analytical semigroups
e\cdot (\scrA (t)+\scrB (t)), where \scrD (\scrA (t) + \scrB (t)) = \scrD (\scrA (t)). In addition, we assume that the
operator \scrA (t)+\scrB (t) satisfies Assumptions A.6 and A.7. Therefore, the corresponding
evolution family \scrU (t, s) solves the NCP problem (100) and admits an Euler-type
approximation, i.e.,

(101)
\bigm| \bigm| \bigm| \bigm| \scrU (T, 0) - M - 1\prod 

k=0

e\Delta t(\scrA +\scrB )(k\Delta t)
\bigm| \bigm| \bigm| \bigm| 
X

\leq C(T )(\Delta t)\beta  - \alpha ,

where T = M\Delta t, \alpha , \beta are constants defined in Assumptions A.6 and A.7.
In what follows, we analyze the error between

\prod M - 1
k=0 e\Delta t(\scrA +\scrB )(k\Delta t) and\prod M - 1

k=0 e\Delta t\scrA (k\Delta t)e\Delta t\scrB (k\Delta t).
First, we list all the assumptions as follows.

Assumption A.10. 1. \scrA (t)t\geq 0 and \scrB (t)t\geq 0 are all linear operators (may be
unbounded) on X,

2. \scrD (\scrA (t)) are the same for all t and dense in X,
3. | | \scrB (t)| | X < C for all t \geq 0,
4. \scrA (t) satisfies Assumption A.6 and \scrA (t) +\scrB (t) satisfies Assumptions A.6 and

A.7,
5. | | e\tau \scrA (t)| | X \leq 1,| | e\tau \scrB (t)| | X \leq 1,| | e\tau (\scrA (t)+\scrB (t))| | X \leq 1 for all \tau \geq 0.

To obtain a convergence theorem, we need an extra assumption in \scrA and \scrB .
Assumption A.11. For the commutator [\scrA (t),\scrB (t)] = \scrA (t)\scrB (t)  - \scrB (t)\scrA (t), we

assume that there is a nonnegative \gamma with

(102)
\bigm| \bigm| \bigm| \bigm| [\scrA (t),\scrB (t)]x

\bigm| \bigm| \bigm| \bigm| 
X

\leq c1
\bigm| \bigm| \bigm| \bigm| \scrA (t)x

\bigm| \bigm| \bigm| \bigm| \gamma 
X
| | x| | 1 - \gamma 

X \forall x \in \scrD (\scrA ).

Next is a standard result from [22], and we prove it here.

Theorem A.12. Suppose Assumptions A.10 and A.11 are satisfied. We have the
following error estimate for the operator splitting method:

(103)
\bigm| \bigm| \bigm| \bigm| (e\tau \scrA (t)e\tau \scrB (t)  - e\tau (\scrA (t)+\scrB (t)))x

\bigm| \bigm| \bigm| \bigm| 
X

\leq C1\tau 
2 - \gamma | | x| | X \forall x \in X,

where C1 depends only on c1, \gamma , and | | \scrB | | X .

Proof. We use the freezing coefficient formula and obtain

(104) e\tau (\scrA (t)+\scrB (t))x = e\tau \scrA (t)x+

\int \tau 

0

es\scrA (t)\scrB (t)e(\tau  - s)(\scrA (t)+\scrB (t))xds.
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Expressing the term e(\tau  - s)(\scrA (t)+\scrB (t)) using the integral form (104), we have

(105) e\tau (\scrA (t)+\scrB (t))x = e\tau \scrA (t)x+

\int \tau 

0

es\scrA (t)\scrB (t)e(\tau  - s)\scrA (t)xds+R1x,

where

(106) R1 =

\int \tau 

0

es\scrA (t)\scrB (t)
\int \tau  - s

0

e\sigma \scrA (t)\scrB (t)e(\tau  - s - \sigma )(\scrA (t)+\scrB (t))d\sigma ds.

We can easily verify that the term R1 is bounded, i.e., | | R1| | X \leq 1
2\tau 

2| | \scrB (t)| | 2X .

On the other hand side, we express the term e\tau \scrB (t) exponential series and obtain

(107) e\tau \scrA (t)e\tau \scrB (t)x = e\tau \scrA (t)x+ \tau e\tau \scrA (t)\scrB (t)x+R2x,

where | | R2| | X \leq 1
2\tau 

2| | \scrB (t)| | 2X .

Denoted by f(s) = es\scrA (t)\scrB (t)e(\tau  - s)\scrA (t)x, we have

(108) e\tau \scrA (t)e\tau \scrB (t)x - e\tau (\scrA (t)+\scrB (t))x = \tau f(\tau ) - 
\int \tau 

0

f(s)ds+ r = d+ r,

where d = \tau f(\tau ) - 
\int \tau 

0
f(s)ds = \tau 2

\int 1

0
\theta f \prime (\theta \tau )d\theta and r = R2x - R1x.

Since f \prime (s) = es\scrA (t)[\scrA (t),\scrB (t)]e(\tau  - s)\scrA (t)x, Assumption A.11 implies

\bigm| \bigm| \bigm| \bigm| es\scrA (t)[\scrA (t),\scrB (t)]e(\tau  - s)\scrA (t)x
\bigm| \bigm| \bigm| \bigm| 
X

\leq c1| | es\scrA (t)| | X | | \scrA (t)e(\tau  - s)\scrA (t)x
\bigm| \bigm| \bigm| \bigm| \gamma 
X

\bigm| \bigm| \bigm| \bigm| e(\tau  - s)\scrA (t)x
\bigm| \bigm| \bigm| \bigm| 1 - \gamma 

X
.

(109)

By using the property of analytic semigroup Lemma A.8, we know that

(110)
\bigm| \bigm| \bigm| \bigm| \scrA (t)e(\tau  - s)\scrA (t)x

\bigm| \bigm| \bigm| \bigm| 
X

\leq C(\tau  - s) - 1| | x| | X .

Thus, we have

| | d| | X =
\bigm| \bigm| \bigm| \bigm| \tau 2 \int 1

0

\theta f \prime (\theta \tau )d\theta 
\bigm| \bigm| \bigm| \bigm| 
X

\leq 
\bigm| \bigm| \tau 2 \int 1

0

C\theta (\tau  - \theta \tau ) - \gamma d\theta 
\bigm| \bigm| | | x| | X

=
C

(1 - \gamma )(2 - \gamma )
\tau 2 - \gamma | | x| | X .(111)

Notice that | | r| | X \leq \tau 2| | \scrB | | 2X | | x| | X . We finish the proof.

Using the one step estimate obtained in Theorem A.12, we finally obtain the error
estimate for the operator splitting method.

Theorem A.13. Suppose Assumptions A.10 and A.11 hold true. We have the
following error estimate for the operator splitting method in solving the NCP (100):

(112)
\bigm| \bigm| \bigm| \bigm| M\prod 

k=1

e\Delta t(\scrA +\scrB )(k\Delta t)  - 
M\prod 
k=1

e\Delta t\scrA (k\Delta t)e\Delta t\scrB (k\Delta t)
\bigm| \bigm| \bigm| \bigm| 
X

\leq C1(\Delta t)1 - \gamma ,

where C1 is a constant independent of \gamma .

Proof. We take t = j\Delta t and s = (j - 1)\Delta t for j = 1, . . . ,M  - 1 in Theorem A.12,
and by using the telescoping sum argument, we obtain that for any x \in X,
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\bigm| \bigm| \bigm| \bigm| M\prod 
k=1

e\Delta t(\scrA +\scrB )(k\Delta t)x - 
M\prod 
k=1

e\Delta t\scrA (k\Delta t)e\Delta t\scrB (k\Delta t)x
\bigm| \bigm| \bigm| \bigm| 
X

=
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| M\sum 

j=1

M\prod 
k=j+1

e\Delta t(\scrA +\scrB )(k\Delta t)
\bigl( 
e\Delta t(\scrA +\scrB )(j\Delta t)  - e\Delta t\scrA (j\Delta t)e\Delta t\scrB (j\Delta t)

\bigr) 
\times 

j - 1\prod 
l=1

e\Delta t\scrA (l\Delta t)e\Delta t\scrB (l\Delta t)x
\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
X

\leq 
M\sum 
j=1

C1(\Delta t)2 - \gamma 
\bigm| \bigm| \bigm| \bigm| j - 1\prod 

l=1

e\Delta t\scrA (l\Delta t)e\Delta t\scrB (l\Delta t)x
\bigm| \bigm| \bigm| \bigm| 
X

\leq 
M\sum 
j=1

C1(\Delta t)2 - \gamma | | x| | X

= C1(\Delta t)1 - \gamma | | x| | X .(113)
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