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We introduce DeepParticle, a method to learn and generate invariant measures of stochastic 
dynamical systems with physical parameters based on data computed from an interacting 
particle method (IPM). We utilize the expressiveness of deep neural networks (DNNs) to 
represent the transform of samples from a given input (source) distribution to an arbitrary 
target distribution, neither assuming distribution functions in closed form nor the sample 
transforms to be invertible, nor the sample state space to be finite. In the training stage, 
we update the weights of the network by minimizing a discrete Wasserstein distance 
between the input and target samples. To reduce the computational cost, we propose an 
iterative divide-and-conquer (a mini-batch interior point) algorithm, to find the optimal 
transition matrix in the Wasserstein distance. We present numerical results to demonstrate 
the performance of our method for accelerating the computation of invariant measures of 
stochastic dynamical systems arising in computing reaction-diffusion front speeds in 3D 
chaotic flows by using the IPM. The physical parameter is a large Péclet number reflecting 
the advection-dominated regime of our interest.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, deep neural networks (DNNs) have achieved unprecedented levels of success in a broad range of areas 
such as computer vision, speech recognition, natural language processing, and health sciences, producing results comparable 
or superior to human experts [31,18]. The impacts have reached physical sciences where traditional first-principle based 
modeling and computational methodologies have been the norm. Thanks in part to the user-friendly open-source com-
puting platforms from industry (e.g. TensorFlow and PyTorch), there have been vibrant activities in applying deep learning 
tools for scientific computing, such as approximating multivariate functions, solving ordinary/partial differential equations 
(ODEs/PDEs) and inverse problems using DNNs; see e.g. [29,52,13,14,21,45,26,2,72,50,60,73,51,25,37,36,49,66,71,1,64,39,58,
70] and references therein.

There are many classical works on the approximation power of neural networks; see e.g. [12,23,15,48]. For recent works 
on the expressive (approximation) power of DNNs; see e.g. [10,55,69,45,39,58]. In [21], the authors showed that DNNs 
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with rectified linear unit (ReLU) activation function and enough width/depth contain the continuous piece-wise linear finite 
element space.

Solving ODEs or PDEs by a neural network (NN) approximation is known in the literature dating back at least to the 
1990’s; see e.g. [32,44,30]. The main idea in these works is to train NNs to approximate the solution by minimizing the 
residual of the ODEs or PDEs, along with the associated initial and boundary conditions. These early works estimate neural 
network solutions on a fixed mesh, however. Recently DNN methods are developed for Poisson and eigenvalue problems 
with a variational principle characterization (deep Ritz, [14]), for a class of high-dimensional parabolic PDEs with stochas-
tic representations [20], and for advancing finite element methods [22,5,4]. The physics-informed neural network (PINN) 
method [51] and a deep Galerkin method (DGM) [60] compute PDE solutions based on their physical properties. For para-
metric PDEs, a deep operator network (DeepONet) learns operators accurately and efficiently from a relatively small dataset 
based on the universal approximation theorem of operators [40]; a Fourier neural operator method [34] directly learns the 
mapping from functional parametric dependence to the solutions (of a family of PDEs). Deep basis learning is studied in 
[43] to improve proper orthogonal decomposition for residual diffusivity in chaotic flows [42], among other works on re-
duced order modeling [29,62,8]. In [71,1], weak adversarial network methods are studied for weak solutions and inverse 
problems, see also related studies on PDE recovery from data via DNN [37,36,49,66] among others. In the context of sur-
rogate modeling and uncertainty quantification (UQ), DNN methods include Bayesian deep convolutional encoder-decoder 
networks [72], deep multi-scale model learning [63], physics-constrained deep learning method [73], see also [26,55,25,68]
and references therein. For DNN applications in mean field games (high dimensional optimal control problems) and various 
connections with numerical PDEs, see [6,7,53,3,35] and references therein. In view of the above literature, the DNN interac-
tions with numerical PDE methods mostly occur in the Eulerian setting with PDE solutions defined in either the strong or 
weak (variational) sense.

Our goal here is to study deep learning in a Lagrangian framework of multi-scale PDE problems, coming naturally from our 
recent work ([41], reviewed in section 4.2 later) on a convergent interacting particle method (IPM) for computing large-scale 
reaction-diffusion front speeds through chaotic flows. The method is based on a genetic algorithm that evolves a large en-
semble of uniformly distributed particles at the initial time to another ensemble of particles obeying an invariant measure 
at a large time. The front speed is readily computed from the invariant measure. Though the method is mesh-free, the 
computational costs remain high as advection becomes dominant at large Péclet numbers. Clearly, it is desirable to initialize 
particle distribution with some resemblance of the target invariant measure instead of starting from the uniform distribu-
tion. Hence learning from samples of invariant measure at a smaller Péclet number with more affordable computation to 
predict an invariant measure at a larger Péclet number becomes a natural problem to study.

Specifically, we shall develop a DNN f (·; θ) to map a uniform distribution μ (source) to an invariant measure ν = ν(κ)

(target), where κ is the reciprocal of Péclet number, and θ consists of network weights and κ . The network is deep from 
input to output with 12 Sigmoid layers while the first three layers are coupled to a shallow companion network to account 
for the effects of parameter κ on the network weights. In addition, we include both local and nonlocal skip connections 
along the deep direction to assist information flow. The network is trained by minimizing the 2-Wasserstein distance (2-WD) 
between two measures μ and ν [61]. We consider a discrete version of 2-WD for finitely many samples of μ and ν , which 
involves a linear program (LP) optimizing over doubly stochastic matrices [59]. Directly solving the LP by the interior point 
method [65] is too costly. We devise a mini-batch interior point method by sampling smaller sub-matrices while preserving 
row and column sums. This turns out to be very efficient and integrated well with the stochastic gradient descent (SGD) 
method for the entire network training.

We shall conduct three numerical experiments to verify the performance of the proposed DeepParticle method. The first 
example is a synthetic data set on R1, where μ is a uniform distribution and ν is a normal distribution with zero mean 
and variance σ 2

1 . In the second example, we compute the Kolmogorov-Petrovsky-Piskunov (KPP) front speed in a 2D steady 
cellular flow and learn the invariant measures corresponding to different κ ’s. In this experiment, μ is a uniform distribution 
on [0, 2π ]2, and ν an empirical invariant measure obtained from IPM simulation of reaction-diffusion particles in advecting 
flows with Péclet number O (κ−1). Finally, we compute the KPP front speed in a 3D time-dependent Kolmogorov flow 
with chaotic streamlines and study the IPM evolution of the measure in three-dimensional space. In this experiment, μ is a 
uniform distribution on [0, 2π ]3, and ν is an empirical invariant measure obtained from IPM simulation of reaction-diffusion 
particles of the KPP equation in time-dependent Kolmogorov flow. Numerical results show that the proposed DeepParticle 
method efficiently learns the κ dependent target distributions and predicts the physically meaningful sharpening effect as 
κ becomes small.

We remark that though there are other techniques for mapping distributions such as Normalizing Flows (NF) [27], 
Generative Adversarial Networks (GAN) [19], entropic regularization and Sinkhorn Distances [11,47], Fisher information 
regularization [33], our method differs either in training problem formulation or in imposing fewer constraints on the finite 
data samples. For example, our mapping is not required to be invertible as in NF, the training objective is not min-max as in 
GAN for image generation, there is no regularization effect such as blurring or noise. We believe that our method is better 
tailored to our problem of invariant measure learning by using a moderate amount of training data generated from the IPM. 
Detailed comparison will be left for future work.

The rest of the paper is organized as follows. In Section 2, we review the basic idea of DNNs and their properties, 
as well as Wasserstein distance. In Section 3, we introduce our DeepParticle method for learning and predicting invariant 
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measures based on the 2-Wasserstein distance minimization. In Section 4, we present numerical results to demonstrate the 
performance of our method. Finally, concluding remarks are made in Section 5.

2. Preliminaries

2.1. Artificial neural network

In this section, we introduce the definition and approximation properties of DNNs. There are two ingredients in defining a 
DNN. The first one is a (vector) linear function of the form T :Rn →Rm , defined as T (x) = Ax + b, where A = (aij) ∈Rm×n , 
x ∈ Rn and b ∈ Rm . The second one is a nonlinear activation function σ : R → R. A frequently used activation function, 
known as the rectified linear unit (ReLU), is defined as σ(x) = max(0, x) [31]. In the neural network literature, the sigmoid 
function is another frequently used activation function, which is defined as σ(x) = (1 + e−x)−1. By applying the activation 
function in an element-wise manner, one can define (vector) activation function σ :Rm →Rm .

Equipped with those definitions, we are able to define a continuous function F (x) by a composition of linear transforms 
and activation functions, i.e.,

F (x) = T k ◦ σ ◦ T k−1 ◦ σ · · · ◦T 1 ◦ σ ◦ T 0(x), (1)

where T i(x) = Ai x + bi with Ai be undetermined matrices and bi be undetermined vectors, and σ(·) is the element-wise 
defined activation function. Dimensions of Ai and bi are chosen to make (1) meaningful. Such a DNN is called a (k +1)-layer 
DNN, which has k hidden layers. Denoting all the undetermined coefficients (e.g., Ai and bi ) in (1) as θ ∈ �, where θ is a 
high-dimensional vector and � is the space of θ . The DNN representation of a continuous function can be viewed as

F = F (x; θ). (2)

Let F = {F (·, θ)|θ ∈ �} denote the set of all expressible functions by the DNN parameterized by θ ∈ �. Then, F provides 
an efficient way to represent unknown continuous functions, in contrast with a linear solution space in classical numerical 
methods, e.g. the space of linear nodal basis functions in the finite element methods and orthogonal polynomials in the 
spectral methods.

2.2. Wasserstein distance and optimal transportation

Wasserstein distances are metrics on probability distributions inspired by the problem of optimal mass transportation. 
They measure the minimal effort required to reconfigure the probability mass of one distribution in order to recover the 
other distribution. They are ubiquitous in mathematics, especially in fluid mechanics, PDEs, optimal transportation, and 
probability theory [61].

One can define the p-Wasserstein distance between probability measures μ and ν on a metric space Y with distance 
function dist by

W p(μ,ν) :=
⎛
⎝ inf

γ ∈	(μ,ν)

∫
Y ×Y

dist(y′, y)p dγ (y′, y)

⎞
⎠

1/p

(3)

where 	(μ, ν) is the set of probability measures γ on Y × Y satisfying γ (A × Y ) = μ(A) and γ (Y × B) = ν(B) for all Borel 
subsets A, B ⊂ Y . Elements γ ∈ 	(μ, ν) are called couplings of the measures μ and ν , i.e., joint distributions on Y × Y with 
marginals μ and ν on each axis.

In the discrete case, the definition (3) has a simple intuitive interpretation: given a γ ∈ 	(μ, ν) and any pair of locations 
(y′, y), the value of γ (y′, y) tells us what proportion of μ mass at y′ should be transferred to y, in order to reconfigure μ
into ν . Computing the effort of moving a unit of mass from y′ to y by dist(y′, y)p yields the interpretation of W p(μ, ν) as 
the minimal effort required to reconfigure μ mass distribution into that of ν . A cost function c(y′, y) on Y × Y tells us how 
much it costs to transport one unit of mass from location y′ to location y. When the cost function c(y′, y) = dist(y′, y)p , 
the p-Wasserstein distance (3) reveals the Monge-Kantorovich optimization problem, see [61] for more exposition.

In a practical setting [47], the closed-form solution of μ and ν may be unknown, instead only N independent and 
identically distributed (i.i.d.) samples of μ and ν are available. We approximate the probability measures μ and ν by 
empirical distribution functions:

μ = 1

N

N∑
i=1

δxi and ν = 1

N

N∑
j=1

δy j . (4)

Any element in 	(μ, ν) can clearly be represented by an N × N doubly stochastic matrix [59], denoted as transition matrix, 
γ = (γi j)i, j satisfying:
3
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γi j ≥ 0; ∀ j,
N∑

i=1

γi j = 1; ∀i,
N∑

j=1

γi j = 1. (5)

The empirical distribution functions allow us to approximate different measures. And the doubly stochastic matrix provides 
a practical tool to study the transformation of measures via minimizing the Wasserstein distance between different empirical 
distribution functions. Notice that when the number of particles becomes large, it is expensive to find the transition matrix 
γ to calculate discrete Wasserstein distance. We propose an efficient submatrix sampling method to overcome this difficulty 
in the next section.

3. Methodology

3.1. Physical parameter dependent neural networks

Compared with general neural networks, we propose a new architecture to learn the dependency of physical parameters. 
Such type of network is expected to have independently batched input, and the output should also rely on some physical 
parameter that is shared by the batched input. Thus, in addition to concatenating the physical parameters as input, we also 
include some linear layers whose weights and biases are generated from a shallow network; see Fig. 1 for the layout of the 
proposed network used in later numerical experiments.

To be more precise, we let the network take on two kinds of input, X and η. Their batch sizes are denoted as N and 
nη respectively. Then, there are nη sets of X , such that X in each set shares the same physical parameter η. From layer1
to layer12 are general linear layers in which the weights and biases are randomly initialized and updated by Adams 
descent during training. They are 20 in width and Sigmoid function is applied as activation between adjacent layers. Arrows 
denote the direction in forward propagation. From layer1_2 to layer3_2 are linear layers with 20 in width, but every 
element of weight matrix and bias vector is individually generated from the par− net specified on the right. Input of 
par− net is the shared parameter, namely η. From par− net : layer1 to par− net : layer3 are general linear layers 
with 10 in width. For example, given the physical parameter η is dη dimension, to generate a 20 × 20 weight matrix, we 
first tile η to bsz× 20 × 20 × dη tensor η (boldface for tensor). Here bsz denotes the shape of input batches which are 
independently forwarded in the network. In our numerical examples, bsz= nη ×N . Then, we introduce a 20 ×dη ×10 tensor 
as weight matrix w in par− net : layer1 and do matrix multiplication of η and w on the last two dimensions while 
keeping dimensions in front. The third dimension in w is the width of the par− net : layer3. Shapes of weight tensor 
in par− net : layer2 and par− net : layer3 are 20 × 10 × 10 and 20 × 10 × 1 respectively. The weight parameters 
of the par− net are randomly initialized and updated by gradient descent during training. We also include some skip 
connections as in Resnet to improve the performance of deeper layers in our network. In addition to standard Resnet
short cuts, we design a linear propagation path directly from the input x to the output f (x). In numerical experiment shown 
later, such connection helps avoid output being over-clustered. There is no activation function between the last layer and 
output.

3.2. DeepParticle algorithms

Given distributions μ and ν defined on metric spaces X and Y , we aim to construct a transport map f 0 : X → Y
such that f 0∗ (μ) = ν , where star denotes the push forward of the map. On the other hand, given function f : X → Y , the 
p-Wasserstein distance between f∗(μ) and ν is defined by:

W p( f∗(μ),ν) :=
⎛
⎝ inf

γ ∈	( f∗(μ),ν)

∫
Y ×Y

dist(y′, y)p dγ (y′, y)

⎞
⎠

1/p

, (6)

where 	( f∗(μ), ν) denotes the collection of all measures on Y × Y with marginals f∗(μ) and ν on the first and second 
factors respectively and dist denotes the metric (distance) on Y . A straightforward derivation yields:

W p( f∗(μ),ν) =
⎛
⎝ inf

γ ∈	(μ,ν)

∫
X×Y

dist( f (x), y)p dγ (x, y)

⎞
⎠

1/p

, (7)

where 	(μ, ν) denotes the collection of all measures on X × Y with marginals μ and ν on the first and second factors 
respectively and still dist denotes the metric (distance) on Y .

Network training objective Our DeepParticle algorithm does not assume the knowledge of closed form distribution of μ and 
ν , instead we have i.i.d. samples of μ and ν namely, xi and y j , i, j = 1, · · · , N , as training data. Then a discretization of (7)
is:
4
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Fig. 1. Layout of the proposed deep network where η is physical parameter input for learning its implicit dependence in the output f (x).

Ŵ ( f ) :=
⎛
⎝ inf

γ ∈	N

N∑
i, j=1

dist( f (xi), y j)
pγi j

⎞
⎠

1/p

, (8)

where 	N denotes all N × N doubly stochastic matrices.
Let the map (represented by neural network in Fig. 1) be fθ (x; η) where x is the input, η is the shared physical parameter 

and θ denotes all the trainable parameters in the network. Clearly Ŵ ( fθ ) ≥ 0. In case of X = Y = Rd equipped with 
Euclidean metric, we take p = 2. The training loss function is

Ŵ 2( fθ ) :=
nη∑

r=1

⎛
⎝ inf

γr∈	N

N∑
i, j=1

| fθ (xi,r;κr) − y j,r |2γi j,r

⎞
⎠ . (9)

Iterative method in finding transition matrix γ To minimize the loss function (9), we update parameters θ of fθ with the 
classical Adams stochastic gradient descent, and alternate with updating the transition matrix γ .

We now present a mini-batch linear programming algorithm to find the best γ for each inner sum of (9), while suppressing 
kr dependence in fθ . Notice that the problem (9) is a linear program on the bounded convex set 	N of vector space of real 
N × N matrices. By Choquet’s theorem, this problem admits solutions that are extremal points of 	N . Set of all doubly 
stochastic matrix 	N can be referred to as Birkhoff polytope. The Birkhoff–von Neumann theorem [54] states that such 
polytope is the convex hull of all permutation matrices, i.e., those matrices such that γi j = δ j,π(i) for some permutation π
of {1, ..., N}, where δ jk is the Kronecker symbol.

The algorithm is defined iteratively. In each iteration, we select columns and rows and solve a linear programming sub-
problem under the constraint that maintains column-wise and row-wise sums of the corresponding sub-matrix of γ . To be 
precise, let {ik}M

k=1, { jl}M
l=1 (M 
 N) denote the index chosen from {1, 2, · · · , N} without replacement. The cost function of 

the sub-problem is

C(γ ∗) :=
M∑

k,l=1

| fθ (xik ) − y jl |2γ ∗
ik jl

(10)

subject to⎧⎪⎪⎨
⎪⎪⎩

∑M
k=1 γ ∗

ik, jl
= ∑M

k=1 γik, jl ∀l = 1, · · · , M∑M
l=1 γ ∗

ik, jl
= ∑M

l=1 γik, jl ∀k = 1, · · · , M

γ ∗ ≥ 0 ∀k, l = 1, · · · , M,

(11)
ik jl

5
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where γik, jl are from the previous step. This way, the column and row sums of γ are preserved by the update. The linear 
programming sub-problem of much smaller size is solved by the interior point method [65].

We observe that the global minimum of γ in (9) is also the solution of sub-problems (10) with arbitrarily selected rows 
and columns, subject to the row and column partial sum values of the global minimum. The selection of rows and columns 
can be one’s own choice. In our approach, in each step after gradient descent, apart from random sampling of rows and 
columns, we also perform a number of searches for rows or columns with the largest entries to speed up computation; see 
Algorithm 1.

Algorithm 1: Random Pivot Search
Result: Given transition matrix γ , randomly search M rows/columns with largest elements (“pivots”).
Randomly pick i1 as the first row;
find j1 such that γi1 j1 is the largest among {γi11, · · · , γi1 N };
for k ← 2 to M do

find ik such that γik jk−1 is the largest among {γi′ jk−1 }i′∈{1,··· ,N}\{i1,··· ,ik−1};
find jk such that γik jk is the largest among {γik j′ } j′∈{1,··· ,N}\{ j1,··· , jk−1};

end

The cost of finding optimal γ increases as N increases, however, the network itself is independent of γ . After training, 
our network acts as a sampler from some target distribution ν without assumption of closed-form distribution of ν . At this 
stage, the input data is no longer limited by training data, an arbitrarily large amount of samples approximately obeying ν
can be generated through μ (uniform distribution).

Update of training data Note that given any fixed set of {xi} and {y j} (training data), we have developed the iterative method 
to calculate the optimal transition matrix γ in (9) and update network parameter θ at the same time. However, in more 
complicated cases, more than one set of data (size of which is denoted as bsz) should be assimilated. The total number of 
data set is denoted Ndict . For the second and later set of training data, the network is supposed to establish some accuracy. 
So before updating the network parameter, we first utilize our iterative method to find an approximated new γ for the new 
data feed to reach a preset level measured by the normalized Frobenius norm ‖ · ‖ f ro of γ (‖γ ‖F divided by the square root 
of its row number). The full training process is outlined in Algorithm 2.

Algorithm 2: DeepParticle Learning

Randomly initialize weight parameters θ in network fθ :Rd →Rd ;
repeat

for physical parameter set r ← 0 to nη do
randomly select {xi,r}, {y j,r}, i, j = 1 : N from i.i.d. samples of input and target distribution with respect to physical parameter ηr ;
γi j,r = 1/N;

end
if not the first training mini-batch then

for physical parameter set r ← 0 to nη do
Pr = ∑N

i, j=1 | fθ (xi,r , ηr) − y j,r |2γi j,r ;

while ||γr || f ro < tol do
randomly (or by Algorithm 1) choose {ik,r}M

k=1, { jl,r}M
l=1 from {1, 2, · · · , N} without replacement;

solve the linear programming sub-problem (10)-(11) to get γ ∗
r ;

update {γik,r jl,r }M
k,l=1 with {γ ∗

ik,r jl,r
}M

k,l=1.

end
end

end
repeat

P = ∑Nr
r=1

∑N
i, j=1 | fθ (xi,r , ηr) − y j,r |2γi j,r ;

θ ← θ − δ1∇θ P , δ1 is the learning step size;
repeat

for physical parameter set r ← 0 to nη do
Pr = ∑N

i, j=1 | fθ (xi,r , ηr) − y j,r |2γi j,r ;

randomly (or by Algorithm 1) choose {ik,r}M
k=1, { jl,r}M

l=1 from {1, 2, · · · , N} without replacement;
solve the linear programming sub-problem (10)-(11) to get γ ∗

r ;
update {γik,r jl,r }M

k,l=1 with {γ ∗
ik,r jl,r

}M
k,l=1.

end
until given linear programming steps, NL P ;

until given steps for each training mini-batch;
until given number of training mini-batches, Ndict ;
Return
6
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Fig. 2. Generated histograms with the red lines being the ground truth pdfs. Lines under the pdfs connect inputs, scaled to Uni f [−5, 5], and their corre-
sponding outputs of the network. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

4. Numerical examples

4.1. Mapping uniform to normal distribution

For illustration, we first apply our algorithm to learn a map from 1D uniform distribution on [0, 1] to 1D normal dis-
tribution with zero mean and various standard derivation σ1. The σ1 refers to one dimensional η in the network of Fig. 1. 
As training data, we independently generate nσ1 = 8 sets of N = 1500 uniformly distributed points, also N = 1500 normally 
distributed sample points with zero mean and standard derivation σ1 equally spaced in [2, 3.75]. During training, we aim 
to find a σ1-dependent network such that the output from the 8 input data sets along with their σ1 values approximate 
normal distributions with standard derivation σ1, respectively. The layout of network is shown in Fig. 1. The total number 
of training steps is 104 with initial learning rate 0.02 and Ndict = 1 data set. After each update of parameters, we solve the 
optimization problem of transition matrix γ , i.e. Eq. (10) under Eq. (11), with selection of rows and columns by Algorithm 1
for NL P = 5 times. After training, we generate N = 40000 uniformly distributed test data points and apply the networks 
with σ1 = 2, 3, 4, 5.

In Fig. 2, we plot the output histograms. Clearly, the empirical distributions vary with σ1 and fit the reference normal 
probability distribution functions (pdfs) in red lines. We would like to clarify that even though the dependence of σ1 in this 
example is ‘linear’, the linear propagation directly from input to output does not depend on σ1 and output par− net is 
no longer a linear function of σ1. In addition, we plot the input-output pairs at the bottom of each empirical distribution. 
Each line connects the input (for better visualization we scale it to Uni f [−5, 5]) and its corresponding output from the 
network. In one dimensional case, it is well known that the inverse of the cumulative distribution function is the optimal 
transport map. It is a monotone function that maps uniform distribution to the quantile of the target distribution. In the 
plotted input-output pair, we can see there are no lines crossing. It verifies that our network finds the monotone transport 
map. Our experiments here and below are all carried out on a quad-core CPU desktop with an RTX2080 8GB GPU at UC 
Irvine.

4.2. Computing front speeds in complex fluid flows

Front propagation in complex fluid flows arises in many scientific areas such as turbulent combustion, chemical kinetics, 
biology, transport in porous media, and industrial deposition processes [67]. A fundamental problem is to analyze and 
7
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compute large-scale front speeds. An extensively studied model problem is the reaction-diffusion-advection (RDA) equation 
with Kolmogorov-Petrovsky-Piskunov (KPP) nonlinearity [28]:

ut = κ �xu + (v · ∇x) u + u(1 − u), t ∈R+, x = (x1, ..., xd)
T ∈Rd, (12)

where κ is diffusion constant, v is an incompressible velocity field (precise definition given later), and u is the concentra-
tion of reactant. Let us consider velocity fields v = v(t, x) to be T -periodic in space and time, which contain the celebrated 
Arnold-Beltrami-Childress (ABC) and Kolmogorov flows as well as their variants with chaotic streamlines [9,24]. The solu-
tions from compact non-negative initial data spread along direction e with speed [46]:

c∗(e) = inf
α>0

λ(α)/α,

where λ(α) is the principal eigenvalue of the parabolic operator ∂t −A with:

Aw := κ �x w + (2α e + v) · ∇x w + (
κ α2 + α v · e + 1

)
w, (13)

on the space domain Td := [0, T ]d (periodic boundary condition). It is known [46] that λ(α) is convex in α, and superlinear 
for large α. The operator A in (13) is a sum A = L + C , with

L := κ �x · +(2α e + v) · ∇x·, C := c(t,x)· = (
κ α2 + α v · e + 1

)· (14)

where L is the generator of a Markov process, and C acts as a potential. The Feynman-Kac (FK) formula [16] gives λ(α) a 
stochastic representation:

λ = lim
t→∞ t−1 ln

⎛
⎝Eexp

⎧⎨
⎩

t∫
0

c(t − s, X t,x
s )ds

⎫⎬
⎭

⎞
⎠ . (15)

In Eq. (15), X t,x
s satisfies the following stochastic differential equation

d X t,x
s = b(t − s, X t,x

s )ds + √
2κ dW s, X t,x

0 = x, (16)

where the drift term b = 2 α e + v and W(s) is the standard d-dimensional Wiener process. The expectation E(·) in (15) is 
over W(t). Directly applying (15) and Monte Carlo method to compute λ(α) is unstable as the main contribution to E(·)
comes from sample paths that visit maximal or minimal points of the potential function c, resulting in inaccurate or even 
divergent results. A computationally feasible alternative is a scaled version, the FK semi-group:

�c
t (ν)(φ) := E[φ(X t,x

t ) exp{∫ t
0 c(t − s, X t,x

s )ds}]
E[exp{∫ t

0 c(t − s, X t,x
s )ds}] := P c

t (ν)(φ)

P c
t (ν)(1)

.

Acting on any initial probability measure ν , �c
nT (ν) converges weakly to an invariant measure νc (i.e. �c

T (νc) = νc) as n → ∞, 
for any smooth test function φ. Moreover,

P c
t (νc) = exp{λ t}νc or λ = t−1 ln Eνc [P c

t (νc)]. (17)

Given a time discretization step �t , an interacting particle method (IPM) proceeds to discretize X t,x
s as X�t

i , (i = 1, · · · , n ×
m, where m = T

�t ) by Euler’s method, approximates the evolution of probability measure �c
t (ν) by a particle system with a 

re-sampling technique to reduce variance. Let

P c,�t
n (ν)(φ) := E

[
φ(X�t

nm) exp

{
�t

m∑
i=1

c((m − i)�t, X�t
i+(n−1)m)

}]
. (18)

Then sampled FK semi-group actions on ν:

�c,�t
n (ν)(φ) = P c,�t

n (ν)(φ)

P c,�t
n (ν)(1)

−→
∫
Td

φ d νc,�t , as n ↑ ∞, ∀ smooth φ,

where νc,�t is an invariant measure of the discrete map �c,�t
1 , thanks to b being T -periodic in time. There exists q ∈ (0, 1)

so that [41]:

λn
�t := (nT )−1 ln[P c,�t

n (ν0)(1)] −−−→
n→∞ T −1 ln[P c,�t

1 (νc,�t)(1)] = λ + o((�t)q). (19)
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The IPM algorithm below (Algorithm 3) approximates the evolving measure as an empirical measure of a large number 
of genetic particles that undergo advection-diffusion (L) and mutations (C). The mutation relies on fitness and its nor-
malization defined as in the FK semi-group. In Algorithm 3, the evolution is phrased in G generations, each moving and 
mutating m times in a life span of T . The index n in (18) is changed to G .

Algorithm 3: Genetic Interacting Particle Method

Initialize first generation of N0 particles ξ0
1 = (ξ

0,1
1 , · · · , ξ0,N0

1 ), uniformly distributed over Td (d ≥ 2). Let g be the generation number in 
approximating νc,�t . Each generation moves and replicates m-times, with a life span T (time period), time step �t = T /m.

while g = 1 : G − 1 do
while i = 0 : m − 1 do

ζ i
g ← one-step-advection-diffusion update on ξ i

g . Define fitness F := exp{c(T − i�t, ζ i
g ) �t}.

E g,i := 1
�t ln (mean population fitness).

Normalize fitness to weight. p := F/SU M(F ).
ξ i+1

g ← resample ζ i
g via multinomial distribution with weight p.

end

ξ0
g+1 ← ξm

g , E g ← mean (E g,i) over i.
end

Output: approximate λ�t ← mean(E g ), and ξ0
G .

Much progress has been made in the finite element computation [57,56,74] of the KPP principal eigenvalue problem 
(13) particularly in steady 3D flows v = v(x). However, when κ is small and the spatial dimension is 3, adaptive FEM can 
be extremely expensive. For 2D time periodic cellular flows, adaptive basis deep learning is found to improve the accuracy 
of reduced order modeling [42,43]. Extension of deep basis learning to 3D in the Eulerian setting has not been attempted 
partly due to the costs of generating a sufficient amount of training data.

An advantage of the IPM is that given the same particle number, the computational cost of generating training data scales 
linearly with the dimension of spatial variables. As a comparison, in the Eulerian framework, one needs to solve the principal 
eigenvalue of a parabolic operator ∂t − A by discretizing the eigenvalue problem on mesh grids. The number of mesh 
grids depends exponentially on the spatial dimension, which becomes expensive for 3D problems. Though adaptive mesh 
techniques can alleviate the computational burden, their design and implementation are challenging for time dependent 
3D problems when large gradient regions are dynamically changing and repeated mesh adaptations must be performed. In 
contrast, the IPM is spatially mesh-free and self-adaptive. The computational bottleneck remains in IPM at small κ when we 
need a large number of particles running for many generations to approach the invariant measure. To address this issue, we 
apply our DeepParticle method to generate particle samples by initiating at a learned distribution resembling the invariant 
measure and accelerating Algorithm 3 (i.e. reduce G to reach convergence).

2D steady cellular flow We first consider a 2D cellular flow v = (− sin x1 cos x2, cos x1 sin x2). In this case, we apply the 
physical parameter dependent network described in Section 3.1 to learn the invariant measure corresponding to different κ
values. To generate training data, we first use the IPM, Algorithm 3 with κi = 2−2−0.25∗(i−1) , i = 1 : 8(= nη), and N0 = 40000
particle evolution for G = 2048, �t = 2−8, T = 1, to get samples of invariant measure at different κ values. The value of G
is chosen so that the direct IPM simulation of principal eigenvalue converges, see blue line of Fig. 4(d). From each set of 
sample points with different κ ’s, we randomly pick N = 2000 sample points without replacement, denoted as Y1, · · · , Y8. 
Under such setting, we then seek neural networks fθ such that given κi and a set Xi of i.i.d. uniformly distributed points 
on [0, 2π ]2, the network output fθ (Xi; κi) is distributed near Yi in W 2 distance. The set {Y1, · · · , Y8} is called one mini-
batch of training data and in total we have Ndict = 5 mini-batches through 50000 steps of network training. As stated 
in Algorithm 2, after each mini-batch of network training (10000 steps of gradient descent), we re-optimize γ until its 
normalized Frobenius norm is greater than tol = 0.7. Note that only a quarter of the 40,000 particles in the IPM simulations 
have been used in training.

During training, we apply Adams gradient descent with initial learning rate 0.002 and a weight decay with hyper-
parameter 0.005 for trainable weights in the network. In each step, we select M = 25 columns and rows by Algorithm 1 in 
solving the sub-optimization problem (10) and repeat the linear programming for NL P = 10 times.

In Fig. 3, we present the performance of our algorithm in sampling distribution in the original training data. Each 
time, the training algorithm only has access to at most N × Ndict = 10000 samples of each target distribution with 
κi = 2−2−0.25∗(i−1) , i = 1, · · · , 8 = nη . After training, we generate N0 = 40000 uniformly distributed points as input of the 
network. We compare the histogram of network output and that of the N0 = 40000 sample points obeying the invariant 
measure from the IPM Algorithm 3. We see that our trained parameter-dependent network indeed reproduces the sharpen-
ing effect on the invariant measure when κ becomes small.

In Fig. 4, we present the performance of algorithm in predicting the invariant measure of IPM with κ = 2−4. First 
we compare the invariant measure generated from direct simulation with IPM (Fig. 4(a)) and from the trained network 
(Fig. 4(b)). In Fig. 4(c), we show the W2 distance between the generated distribution and the target distribution of the 
Z. Wang, J. Xin and Z. Zhang Journal of Computational Physics 464 (2022) 111309
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Fig. 3. Generated invariant measure (upper row) and corresponding training data (reference, lower row).

Fig. 4. DeepParticle prediction (top), training/acceleration (bottom) at test value κ = 2−4 in a 2D front speed computation. Loss reduction in c) shows fast 

(steps before 1.e4) and slow phases [38].
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Fig. 5. Measures generated at different gradient descent (GD) steps in network training for KPP front speeds in 2D steady cellular flows.

training data. The W2 distance goes up when we re-sample the training data. This is because at this moment, the transition 
matrix γ in the definition of the W2 distance is inaccurate. Note that the test κ = 2−4 value is no longer within the training 
range κ = 2−p , p ∈ [2, 3.75]. Our trained network predicts an invariant measure. Such prediction also serves as a ‘warm start’ 
for IPM and can accelerate its computation to quickly reach a more accurate invariant measure. As the invariant measure 
has no closed-form analytical solution, we plot in Fig. 4(d) the principal eigenvalue approximations by IPM with warm and 
cold starts, i.e. one generated from DeepParticle network (warm) and the i.i.d. samples from a uniform distribution (cold). 
The warm start by DeepParticle achieves 4x to 8x speedup.

Fig. 5 displays histograms of N0 = 40000 samples generated from our DeepParticle algorithm at different stage of training. 
In Fig. 5(d) with only one set of data, we already get a rough prediction of target distribution. With more data sets added, 
the prediction quality improves; see Fig. 5(e) to Fig. 5(i).

3D time-dependent Kolmogorov flow Next, we compute KPP front speed in a 3D time-dependent Kolmogorov flow [17]:

v = (sin (x3 + sin(2πt)) , sin (x1 + sin(2πt)) , sin (x2 + sin(2πt))) .

The hyper-parameter setting for network training remains the same as in the 2D case. The physical parameter-dependent 
network in Section 3.1 learns the invariant measure corresponding to eight different κ training values. Besides the in-
11
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Fig. 6. Generated invariant measure (upper row) and the corresponding training data (reference, lower row), viewed as projections to 2nd and 3rd dimen-
sions in a 3D KPP front speed computation.

put x and output f(x) are both in 3 dimensions, the network layout and training procedure are the same as in the 2D
example.

Fig. 6 shows the performance of the network interpolating training data from κ = 2−2 to κ = 2−3.5. Fig. 7 displays 
network prediction at κ = 2−4. All the histograms here are 2D projections of the 3D histogram to the second and third 
dimensions. Results of the projection to other choices of two dimensions are similar and are not shown here for brevity.

5. Conclusions

We developed a DeepParticle method to generate invariant measures of stochastic dynamical (interacting particle) 
systems by a physically parameterized DNN that minimizes the Wasserstein distance between the source and target dis-
tributions. Our method is very general in the sense that we do not require distributions to be in closed-form and the 
generation map to be invertible. Thus, our method is fully data-driven and applicable in the fast computation of invariant 
measures of other interacting particle systems. During the training stage, we update network parameters based on a dis-
cretized Wasserstein distance defined on finite samples. We proposed an iterative divide-and-conquer algorithm that allows 
us to significantly reduce the computational cost in finding the optimal transition matrix in the Wasserstein distance. We 
carried out numerical experiments to demonstrate the performance of the proposed method. Numerical results show that 
our method is very efficient and helps accelerate the computation of invariant measures of interacting particle systems for 
KPP front speeds. In the future, we plan to apply the DeepParticle method to learn and generate invariant measures of other 
stochastic particle systems.
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