
Journal of Computational Physics 464 (2022) 111309
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

DeepParticle: Learning invariant measure by a deep neural
network minimizing Wasserstein distance on data generated

from an interacting particle method

Zhongjian Wang a, Jack Xin b, Zhiwen Zhang c,∗
a Department of Statistics and CCAM, The University of Chicago, Chicago, IL 60637, USA
b Department of Mathematics, University of California at Irvine, Irvine, CA 92697, USA
c Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 27 November 2021
Received in revised form 10 April 2022
Accepted 15 May 2022
Available online 20 May 2022

Keywords:
Physically parameterized invariant measures
Interacting particle method
Deep learning
Wasserstein distance
Front speeds in chaotic flows

We introduce DeepParticle, a method to learn and generate invariant measures of stochastic
dynamical systems with physical parameters based on data computed from an interacting
particle method (IPM). We utilize the expressiveness of deep neural networks (DNNs) to
represent the transform of samples from a given input (source) distribution to an arbitrary
target distribution, neither assuming distribution functions in closed form nor the sample
transforms to be invertible, nor the sample state space to be finite. In the training stage,
we update the weights of the network by minimizing a discrete Wasserstein distance
between the input and target samples. To reduce the computational cost, we propose an
iterative divide-and-conquer (a mini-batch interior point) algorithm, to find the optimal
transition matrix in the Wasserstein distance. We present numerical results to demonstrate
the performance of our method for accelerating the computation of invariant measures of
stochastic dynamical systems arising in computing reaction-diffusion front speeds in 3D
chaotic flows by using the IPM. The physical parameter is a large Péclet number reflecting
the advection-dominated regime of our interest.

© 2022 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, deep neural networks (DNNs) have achieved unprecedented levels of success in a broad range of areas
such as computer vision, speech recognition, natural language processing, and health sciences, producing results comparable
or superior to human experts [31,18]. The impacts have reached physical sciences where traditional first-principle based
modeling and computational methodologies have been the norm. Thanks in part to the user-friendly open-source com-
puting platforms from industry (e.g. TensorFlow and PyTorch), there have been vibrant activities in applying deep learning
tools for scientific computing, such as approximating multivariate functions, solving ordinary/partial differential equations
(ODEs/PDEs) and inverse problems using DNNs; see e.g. [29,52,13,14,21,45,26,2,72,50,60,73,51,25,37,36,49,66,71,1,64,39,58,
70] and references therein.

There are many classical works on the approximation power of neural networks; see e.g. [12,23,15,48]. For recent works
on the expressive (approximation) power of DNNs; see e.g. [10,55,69,45,39,58]. In [21], the authors showed that DNNs

* Corresponding author.
E-mail addresses: zhongjian@statistics.uchicago.edu (Z. Wang), jxin@math.uci.edu (J. Xin), zhangzw@hku.hk (Z. Zhang).
https://doi.org/10.1016/j.jcp.2022.111309
0021-9991/© 2022 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2022.111309
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2022.111309&domain=pdf
mailto:zhongjian@statistics.uchicago.edu
mailto:jxin@math.uci.edu
mailto:zhangzw@hku.hk
https://doi.org/10.1016/j.jcp.2022.111309

Z. Wang, J. Xin and Z. Zhang Journal of Computational Physics 464 (2022) 111309
with rectified linear unit (ReLU) activation function and enough width/depth contain the continuous piece-wise linear finite
element space.

Solving ODEs or PDEs by a neural network (NN) approximation is known in the literature dating back at least to the
1990’s; see e.g. [32,44,30]. The main idea in these works is to train NNs to approximate the solution by minimizing the
residual of the ODEs or PDEs, along with the associated initial and boundary conditions. These early works estimate neural
network solutions on a fixed mesh, however. Recently DNN methods are developed for Poisson and eigenvalue problems
with a variational principle characterization (deep Ritz, [14]), for a class of high-dimensional parabolic PDEs with stochas-
tic representations [20], and for advancing finite element methods [22,5,4]. The physics-informed neural network (PINN)
method [51] and a deep Galerkin method (DGM) [60] compute PDE solutions based on their physical properties. For para-
metric PDEs, a deep operator network (DeepONet) learns operators accurately and efficiently from a relatively small dataset
based on the universal approximation theorem of operators [40]; a Fourier neural operator method [34] directly learns the
mapping from functional parametric dependence to the solutions (of a family of PDEs). Deep basis learning is studied in
[43] to improve proper orthogonal decomposition for residual diffusivity in chaotic flows [42], among other works on re-
duced order modeling [29,62,8]. In [71,1], weak adversarial network methods are studied for weak solutions and inverse
problems, see also related studies on PDE recovery from data via DNN [37,36,49,66] among others. In the context of sur-
rogate modeling and uncertainty quantification (UQ), DNN methods include Bayesian deep convolutional encoder-decoder
networks [72], deep multi-scale model learning [63], physics-constrained deep learning method [73], see also [26,55,25,68]
and references therein. For DNN applications in mean field games (high dimensional optimal control problems) and various
connections with numerical PDEs, see [6,7,53,3,35] and references therein. In view of the above literature, the DNN interac-
tions with numerical PDE methods mostly occur in the Eulerian setting with PDE solutions defined in either the strong or
weak (variational) sense.

Our goal here is to study deep learning in a Lagrangian framework of multi-scale PDE problems, coming naturally from our
recent work ([41], reviewed in section 4.2 later) on a convergent interacting particle method (IPM) for computing large-scale
reaction-diffusion front speeds through chaotic flows. The method is based on a genetic algorithm that evolves a large en-
semble of uniformly distributed particles at the initial time to another ensemble of particles obeying an invariant measure
at a large time. The front speed is readily computed from the invariant measure. Though the method is mesh-free, the
computational costs remain high as advection becomes dominant at large Péclet numbers. Clearly, it is desirable to initialize
particle distribution with some resemblance of the target invariant measure instead of starting from the uniform distribu-
tion. Hence learning from samples of invariant measure at a smaller Péclet number with more affordable computation to
predict an invariant measure at a larger Péclet number becomes a natural problem to study.

Specifically, we shall develop a DNN f (·; θ) to map a uniform distribution μ (source) to an invariant measure ν = ν(κ)

(target), where κ is the reciprocal of Péclet number, and θ consists of network weights and κ . The network is deep from
input to output with 12 Sigmoid layers while the first three layers are coupled to a shallow companion network to account
for the effects of parameter κ on the network weights. In addition, we include both local and nonlocal skip connections
along the deep direction to assist information flow. The network is trained by minimizing the 2-Wasserstein distance (2-WD)
between two measures μ and ν [61]. We consider a discrete version of 2-WD for finitely many samples of μ and ν , which
involves a linear program (LP) optimizing over doubly stochastic matrices [59]. Directly solving the LP by the interior point
method [65] is too costly. We devise a mini-batch interior point method by sampling smaller sub-matrices while preserving
row and column sums. This turns out to be very efficient and integrated well with the stochastic gradient descent (SGD)
method for the entire network training.

We shall conduct three numerical experiments to verify the performance of the proposed DeepParticle method. The first
example is a synthetic data set on R1, where μ is a uniform distribution and ν is a normal distribution with zero mean
and variance σ 2

1 . In the second example, we compute the Kolmogorov-Petrovsky-Piskunov (KPP) front speed in a 2D steady
cellular flow and learn the invariant measures corresponding to different κ ’s. In this experiment, μ is a uniform distribution
on [0, 2π]2, and ν an empirical invariant measure obtained from IPM simulation of reaction-diffusion particles in advecting
flows with Péclet number O (κ−1). Finally, we compute the KPP front speed in a 3D time-dependent Kolmogorov flow
with chaotic streamlines and study the IPM evolution of the measure in three-dimensional space. In this experiment, μ is a
uniform distribution on [0, 2π]3, and ν is an empirical invariant measure obtained from IPM simulation of reaction-diffusion
particles of the KPP equation in time-dependent Kolmogorov flow. Numerical results show that the proposed DeepParticle
method efficiently learns the κ dependent target distributions and predicts the physically meaningful sharpening effect as
κ becomes small.

We remark that though there are other techniques for mapping distributions such as Normalizing Flows (NF) [27],
Generative Adversarial Networks (GAN) [19], entropic regularization and Sinkhorn Distances [11,47], Fisher information
regularization [33], our method differs either in training problem formulation or in imposing fewer constraints on the finite
data samples. For example, our mapping is not required to be invertible as in NF, the training objective is not min-max as in
GAN for image generation, there is no regularization effect such as blurring or noise. We believe that our method is better
tailored to our problem of invariant measure learning by using a moderate amount of training data generated from the IPM.
Detailed comparison will be left for future work.

The rest of the paper is organized as follows. In Section 2, we review the basic idea of DNNs and their properties,
as well as Wasserstein distance. In Section 3, we introduce our DeepParticle method for learning and predicting invariant
2

Z. Wang, J. Xin and Z. Zhang Journal of Computational Physics 464 (2022) 111309
measures based on the 2-Wasserstein distance minimization. In Section 4, we present numerical results to demonstrate the
performance of our method. Finally, concluding remarks are made in Section 5.

2. Preliminaries

2.1. Artificial neural network

In this section, we introduce the definition and approximation properties of DNNs. There are two ingredients in defining a
DNN. The first one is a (vector) linear function of the form T :Rn →Rm , defined as T (x) = Ax + b, where A = (aij) ∈Rm×n ,
x ∈ Rn and b ∈ Rm . The second one is a nonlinear activation function σ : R → R. A frequently used activation function,
known as the rectified linear unit (ReLU), is defined as σ(x) = max(0, x) [31]. In the neural network literature, the sigmoid
function is another frequently used activation function, which is defined as σ(x) = (1 + e−x)−1. By applying the activation
function in an element-wise manner, one can define (vector) activation function σ :Rm →Rm .

Equipped with those definitions, we are able to define a continuous function F (x) by a composition of linear transforms
and activation functions, i.e.,

F (x) = T k ◦ σ ◦ T k−1 ◦ σ · · · ◦T 1 ◦ σ ◦ T 0(x), (1)

where T i(x) = Ai x + bi with Ai be undetermined matrices and bi be undetermined vectors, and σ(·) is the element-wise
defined activation function. Dimensions of Ai and bi are chosen to make (1) meaningful. Such a DNN is called a (k +1)-layer
DNN, which has k hidden layers. Denoting all the undetermined coefficients (e.g., Ai and bi) in (1) as θ ∈ �, where θ is a
high-dimensional vector and � is the space of θ . The DNN representation of a continuous function can be viewed as

F = F (x; θ). (2)

Let F = {F (·, θ)|θ ∈ �} denote the set of all expressible functions by the DNN parameterized by θ ∈ �. Then, F provides
an efficient way to represent unknown continuous functions, in contrast with a linear solution space in classical numerical
methods, e.g. the space of linear nodal basis functions in the finite element methods and orthogonal polynomials in the
spectral methods.

2.2. Wasserstein distance and optimal transportation

Wasserstein distances are metrics on probability distributions inspired by the problem of optimal mass transportation.
They measure the minimal effort required to reconfigure the probability mass of one distribution in order to recover the
other distribution. They are ubiquitous in mathematics, especially in fluid mechanics, PDEs, optimal transportation, and
probability theory [61].

One can define the p-Wasserstein distance between probability measures μ and ν on a metric space Y with distance
function dist by

W p(μ,ν) :=
⎛
⎝ inf

γ ∈	(μ,ν)

∫
Y ×Y

dist(y′, y)p dγ (y′, y)

⎞
⎠

1/p

(3)

where 	(μ, ν) is the set of probability measures γ on Y × Y satisfying γ (A × Y) = μ(A) and γ (Y × B) = ν(B) for all Borel
subsets A, B ⊂ Y . Elements γ ∈ 	(μ, ν) are called couplings of the measures μ and ν , i.e., joint distributions on Y × Y with
marginals μ and ν on each axis.

In the discrete case, the definition (3) has a simple intuitive interpretation: given a γ ∈ 	(μ, ν) and any pair of locations
(y′, y), the value of γ (y′, y) tells us what proportion of μ mass at y′ should be transferred to y, in order to reconfigure μ
into ν . Computing the effort of moving a unit of mass from y′ to y by dist(y′, y)p yields the interpretation of W p(μ, ν) as
the minimal effort required to reconfigure μ mass distribution into that of ν . A cost function c(y′, y) on Y × Y tells us how
much it costs to transport one unit of mass from location y′ to location y. When the cost function c(y′, y) = dist(y′, y)p ,
the p-Wasserstein distance (3) reveals the Monge-Kantorovich optimization problem, see [61] for more exposition.

In a practical setting [47], the closed-form solution of μ and ν may be unknown, instead only N independent and
identically distributed (i.i.d.) samples of μ and ν are available. We approximate the probability measures μ and ν by
empirical distribution functions:

μ = 1

N

N∑
i=1

δxi and ν = 1

N

N∑
j=1

δy j . (4)

Any element in 	(μ, ν) can clearly be represented by an N × N doubly stochastic matrix [59], denoted as transition matrix,
γ = (γi j)i, j satisfying:
3

Z. Wang, J. Xin and Z. Zhang Journal of Computational Physics 464 (2022) 111309
γi j ≥ 0; ∀ j,
N∑

i=1

γi j = 1; ∀i,
N∑

j=1

γi j = 1. (5)

The empirical distribution functions allow us to approximate different measures. And the doubly stochastic matrix provides
a practical tool to study the transformation of measures via minimizing the Wasserstein distance between different empirical
distribution functions. Notice that when the number of particles becomes large, it is expensive to find the transition matrix
γ to calculate discrete Wasserstein distance. We propose an efficient submatrix sampling method to overcome this difficulty
in the next section.

3. Methodology

3.1. Physical parameter dependent neural networks

Compared with general neural networks, we propose a new architecture to learn the dependency of physical parameters.
Such type of network is expected to have independently batched input, and the output should also rely on some physical
parameter that is shared by the batched input. Thus, in addition to concatenating the physical parameters as input, we also
include some linear layers whose weights and biases are generated from a shallow network; see Fig. 1 for the layout of the
proposed network used in later numerical experiments.

To be more precise, we let the network take on two kinds of input, X and η. Their batch sizes are denoted as N and
nη respectively. Then, there are nη sets of X , such that X in each set shares the same physical parameter η. From layer1
to layer12 are general linear layers in which the weights and biases are randomly initialized and updated by Adams
descent during training. They are 20 in width and Sigmoid function is applied as activation between adjacent layers. Arrows
denote the direction in forward propagation. From layer1_2 to layer3_2 are linear layers with 20 in width, but every
element of weight matrix and bias vector is individually generated from the par− net specified on the right. Input of
par− net is the shared parameter, namely η. From par− net : layer1 to par− net : layer3 are general linear layers
with 10 in width. For example, given the physical parameter η is dη dimension, to generate a 20 × 20 weight matrix, we
first tile η to bsz× 20 × 20 × dη tensor η (boldface for tensor). Here bsz denotes the shape of input batches which are
independently forwarded in the network. In our numerical examples, bsz= nη ×N . Then, we introduce a 20 ×dη ×10 tensor
as weight matrix w in par− net : layer1 and do matrix multiplication of η and w on the last two dimensions while
keeping dimensions in front. The third dimension in w is the width of the par− net : layer3. Shapes of weight tensor
in par− net : layer2 and par− net : layer3 are 20 × 10 × 10 and 20 × 10 × 1 respectively. The weight parameters
of the par− net are randomly initialized and updated by gradient descent during training. We also include some skip
connections as in Resnet to improve the performance of deeper layers in our network. In addition to standard Resnet
short cuts, we design a linear propagation path directly from the input x to the output f (x). In numerical experiment shown
later, such connection helps avoid output being over-clustered. There is no activation function between the last layer and
output.

3.2. DeepParticle algorithms

Given distributions μ and ν defined on metric spaces X and Y , we aim to construct a transport map f 0 : X → Y
such that f 0∗ (μ) = ν , where star denotes the push forward of the map. On the other hand, given function f : X → Y , the
p-Wasserstein distance between f∗(μ) and ν is defined by:

W p(f∗(μ),ν) :=
⎛
⎝ inf

γ ∈	(f∗(μ),ν)

∫
Y ×Y

dist(y′, y)p dγ (y′, y)

⎞
⎠

1/p

, (6)

where 	(f∗(μ), ν) denotes the collection of all measures on Y × Y with marginals f∗(μ) and ν on the first and second
factors respectively and dist denotes the metric (distance) on Y . A straightforward derivation yields:

W p(f∗(μ),ν) =
⎛
⎝ inf

γ ∈	(μ,ν)

∫
X×Y

dist(f (x), y)p dγ (x, y)

⎞
⎠

1/p

, (7)

where 	(μ, ν) denotes the collection of all measures on X × Y with marginals μ and ν on the first and second factors
respectively and still dist denotes the metric (distance) on Y .

Network training objective Our DeepParticle algorithm does not assume the knowledge of closed form distribution of μ and
ν , instead we have i.i.d. samples of μ and ν namely, xi and y j , i, j = 1, · · · , N , as training data. Then a discretization of (7)
is:
4

Z. Wang, J. Xin and Z. Zhang Journal of Computational Physics 464 (2022) 111309
Fig. 1. Layout of the proposed deep network where η is physical parameter input for learning its implicit dependence in the output f (x).

Ŵ (f) :=
⎛
⎝ inf

γ ∈	N

N∑
i, j=1

dist(f (xi), y j)
pγi j

⎞
⎠

1/p

, (8)

where 	N denotes all N × N doubly stochastic matrices.
Let the map (represented by neural network in Fig. 1) be fθ (x; η) where x is the input, η is the shared physical parameter

and θ denotes all the trainable parameters in the network. Clearly Ŵ (fθ) ≥ 0. In case of X = Y = Rd equipped with
Euclidean metric, we take p = 2. The training loss function is

Ŵ 2(fθ) :=
nη∑

r=1

⎛
⎝ inf

γr∈	N

N∑
i, j=1

| fθ (xi,r;κr) − y j,r |2γi j,r

⎞
⎠ . (9)

Iterative method in finding transition matrix γ To minimize the loss function (9), we update parameters θ of fθ with the
classical Adams stochastic gradient descent, and alternate with updating the transition matrix γ .

We now present a mini-batch linear programming algorithm to find the best γ for each inner sum of (9), while suppressing
kr dependence in fθ . Notice that the problem (9) is a linear program on the bounded convex set 	N of vector space of real
N × N matrices. By Choquet’s theorem, this problem admits solutions that are extremal points of 	N . Set of all doubly
stochastic matrix 	N can be referred to as Birkhoff polytope. The Birkhoff–von Neumann theorem [54] states that such
polytope is the convex hull of all permutation matrices, i.e., those matrices such that γi j = δ j,π(i) for some permutation π
of {1, ..., N}, where δ jk is the Kronecker symbol.

The algorithm is defined iteratively. In each iteration, we select columns and rows and solve a linear programming sub-
problem under the constraint that maintains column-wise and row-wise sums of the corresponding sub-matrix of γ . To be
precise, let {ik}M

k=1, { jl}M
l=1 (M
 N) denote the index chosen from {1, 2, · · · , N} without replacement. The cost function of

the sub-problem is

C(γ ∗) :=
M∑

k,l=1

| fθ (xik) − y jl |2γ ∗
ik jl

(10)

subject to⎧⎪⎪⎨
⎪⎪⎩

∑M
k=1 γ ∗

ik, jl
= ∑M

k=1 γik, jl ∀l = 1, · · · , M∑M
l=1 γ ∗

ik, jl
= ∑M

l=1 γik, jl ∀k = 1, · · · , M

γ ∗ ≥ 0 ∀k, l = 1, · · · , M,

(11)
ik jl

5

Z. Wang, J. Xin and Z. Zhang Journal of Computational Physics 464 (2022) 111309
where γik, jl are from the previous step. This way, the column and row sums of γ are preserved by the update. The linear
programming sub-problem of much smaller size is solved by the interior point method [65].

We observe that the global minimum of γ in (9) is also the solution of sub-problems (10) with arbitrarily selected rows
and columns, subject to the row and column partial sum values of the global minimum. The selection of rows and columns
can be one’s own choice. In our approach, in each step after gradient descent, apart from random sampling of rows and
columns, we also perform a number of searches for rows or columns with the largest entries to speed up computation; see
Algorithm 1.

Algorithm 1: Random Pivot Search
Result: Given transition matrix γ , randomly search M rows/columns with largest elements (“pivots”).
Randomly pick i1 as the first row;
find j1 such that γi1 j1 is the largest among {γi11, · · · , γi1 N };
for k ← 2 to M do

find ik such that γik jk−1 is the largest among {γi′ jk−1 }i′∈{1,··· ,N}\{i1,··· ,ik−1};
find jk such that γik jk is the largest among {γik j′ } j′∈{1,··· ,N}\{ j1,··· , jk−1};

end

The cost of finding optimal γ increases as N increases, however, the network itself is independent of γ . After training,
our network acts as a sampler from some target distribution ν without assumption of closed-form distribution of ν . At this
stage, the input data is no longer limited by training data, an arbitrarily large amount of samples approximately obeying ν
can be generated through μ (uniform distribution).

Update of training data Note that given any fixed set of {xi} and {y j} (training data), we have developed the iterative method
to calculate the optimal transition matrix γ in (9) and update network parameter θ at the same time. However, in more
complicated cases, more than one set of data (size of which is denoted as bsz) should be assimilated. The total number of
data set is denoted Ndict . For the second and later set of training data, the network is supposed to establish some accuracy.
So before updating the network parameter, we first utilize our iterative method to find an approximated new γ for the new
data feed to reach a preset level measured by the normalized Frobenius norm ‖ · ‖ f ro of γ (‖γ ‖F divided by the square root
of its row number). The full training process is outlined in Algorithm 2.

Algorithm 2: DeepParticle Learning

Randomly initialize weight parameters θ in network fθ :Rd →Rd ;
repeat

for physical parameter set r ← 0 to nη do
randomly select {xi,r}, {y j,r}, i, j = 1 : N from i.i.d. samples of input and target distribution with respect to physical parameter ηr ;
γi j,r = 1/N;

end
if not the first training mini-batch then

for physical parameter set r ← 0 to nη do
Pr = ∑N

i, j=1 | fθ (xi,r , ηr) − y j,r |2γi j,r ;

while ||γr || f ro < tol do
randomly (or by Algorithm 1) choose {ik,r}M

k=1, { jl,r}M
l=1 from {1, 2, · · · , N} without replacement;

solve the linear programming sub-problem (10)-(11) to get γ ∗
r ;

update {γik,r jl,r }M
k,l=1 with {γ ∗

ik,r jl,r
}M

k,l=1.

end
end

end
repeat

P = ∑Nr
r=1

∑N
i, j=1 | fθ (xi,r , ηr) − y j,r |2γi j,r ;

θ ← θ − δ1∇θ P , δ1 is the learning step size;
repeat

for physical parameter set r ← 0 to nη do
Pr = ∑N

i, j=1 | fθ (xi,r , ηr) − y j,r |2γi j,r ;

randomly (or by Algorithm 1) choose {ik,r}M
k=1, { jl,r}M

l=1 from {1, 2, · · · , N} without replacement;
solve the linear programming sub-problem (10)-(11) to get γ ∗

r ;
update {γik,r jl,r }M

k,l=1 with {γ ∗
ik,r jl,r

}M
k,l=1.

end
until given linear programming steps, NL P ;

until given steps for each training mini-batch;
until given number of training mini-batches, Ndict ;
Return
6

Z. Wang, J. Xin and Z. Zhang Journal of Computational Physics 464 (2022) 111309
Fig. 2. Generated histograms with the red lines being the ground truth pdfs. Lines under the pdfs connect inputs, scaled to Uni f [−5, 5], and their corre-
sponding outputs of the network. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

4. Numerical examples

4.1. Mapping uniform to normal distribution

For illustration, we first apply our algorithm to learn a map from 1D uniform distribution on [0, 1] to 1D normal dis-
tribution with zero mean and various standard derivation σ1. The σ1 refers to one dimensional η in the network of Fig. 1.
As training data, we independently generate nσ1 = 8 sets of N = 1500 uniformly distributed points, also N = 1500 normally
distributed sample points with zero mean and standard derivation σ1 equally spaced in [2, 3.75]. During training, we aim
to find a σ1-dependent network such that the output from the 8 input data sets along with their σ1 values approximate
normal distributions with standard derivation σ1, respectively. The layout of network is shown in Fig. 1. The total number
of training steps is 104 with initial learning rate 0.02 and Ndict = 1 data set. After each update of parameters, we solve the
optimization problem of transition matrix γ , i.e. Eq. (10) under Eq. (11), with selection of rows and columns by Algorithm 1
for NL P = 5 times. After training, we generate N = 40000 uniformly distributed test data points and apply the networks
with σ1 = 2, 3, 4, 5.

In Fig. 2, we plot the output histograms. Clearly, the empirical distributions vary with σ1 and fit the reference normal
probability distribution functions (pdfs) in red lines. We would like to clarify that even though the dependence of σ1 in this
example is ‘linear’, the linear propagation directly from input to output does not depend on σ1 and output par− net is
no longer a linear function of σ1. In addition, we plot the input-output pairs at the bottom of each empirical distribution.
Each line connects the input (for better visualization we scale it to Uni f [−5, 5]) and its corresponding output from the
network. In one dimensional case, it is well known that the inverse of the cumulative distribution function is the optimal
transport map. It is a monotone function that maps uniform distribution to the quantile of the target distribution. In the
plotted input-output pair, we can see there are no lines crossing. It verifies that our network finds the monotone transport
map. Our experiments here and below are all carried out on a quad-core CPU desktop with an RTX2080 8GB GPU at UC
Irvine.

4.2. Computing front speeds in complex fluid flows

Front propagation in complex fluid flows arises in many scientific areas such as turbulent combustion, chemical kinetics,
biology, transport in porous media, and industrial deposition processes [67]. A fundamental problem is to analyze and
7

Z. Wang, J. Xin and Z. Zhang Journal of Computational Physics 464 (2022) 111309
compute large-scale front speeds. An extensively studied model problem is the reaction-diffusion-advection (RDA) equation
with Kolmogorov-Petrovsky-Piskunov (KPP) nonlinearity [28]:

ut = κ �xu + (v · ∇x) u + u(1 − u), t ∈R+, x = (x1, ..., xd)
T ∈Rd, (12)

where κ is diffusion constant, v is an incompressible velocity field (precise definition given later), and u is the concentra-
tion of reactant. Let us consider velocity fields v = v(t, x) to be T -periodic in space and time, which contain the celebrated
Arnold-Beltrami-Childress (ABC) and Kolmogorov flows as well as their variants with chaotic streamlines [9,24]. The solu-
tions from compact non-negative initial data spread along direction e with speed [46]:

c∗(e) = inf
α>0

λ(α)/α,

where λ(α) is the principal eigenvalue of the parabolic operator ∂t −A with:

Aw := κ �x w + (2α e + v) · ∇x w + (
κ α2 + α v · e + 1

)
w, (13)

on the space domain Td := [0, T]d (periodic boundary condition). It is known [46] that λ(α) is convex in α, and superlinear
for large α. The operator A in (13) is a sum A = L + C , with

L := κ �x · +(2α e + v) · ∇x·, C := c(t,x)· = (
κ α2 + α v · e + 1

)· (14)

where L is the generator of a Markov process, and C acts as a potential. The Feynman-Kac (FK) formula [16] gives λ(α) a
stochastic representation:

λ = lim
t→∞ t−1 ln

⎛
⎝Eexp

⎧⎨
⎩

t∫
0

c(t − s, X t,x
s)ds

⎫⎬
⎭

⎞
⎠ . (15)

In Eq. (15), X t,x
s satisfies the following stochastic differential equation

d X t,x
s = b(t − s, X t,x

s)ds + √
2κ dW s, X t,x

0 = x, (16)

where the drift term b = 2 α e + v and W(s) is the standard d-dimensional Wiener process. The expectation E(·) in (15) is
over W(t). Directly applying (15) and Monte Carlo method to compute λ(α) is unstable as the main contribution to E(·)
comes from sample paths that visit maximal or minimal points of the potential function c, resulting in inaccurate or even
divergent results. A computationally feasible alternative is a scaled version, the FK semi-group:

�c
t (ν)(φ) := E[φ(X t,x

t) exp{∫ t
0 c(t − s, X t,x

s)ds}]
E[exp{∫ t

0 c(t − s, X t,x
s)ds}] := P c

t (ν)(φ)

P c
t (ν)(1)

.

Acting on any initial probability measure ν , �c
nT (ν) converges weakly to an invariant measure νc (i.e. �c

T (νc) = νc) as n → ∞,
for any smooth test function φ. Moreover,

P c
t (νc) = exp{λ t}νc or λ = t−1 ln Eνc [P c

t (νc)]. (17)

Given a time discretization step �t , an interacting particle method (IPM) proceeds to discretize X t,x
s as X�t

i , (i = 1, · · · , n ×
m, where m = T

�t) by Euler’s method, approximates the evolution of probability measure �c
t (ν) by a particle system with a

re-sampling technique to reduce variance. Let

P c,�t
n (ν)(φ) := E

[
φ(X�t

nm) exp

{
�t

m∑
i=1

c((m − i)�t, X�t
i+(n−1)m)

}]
. (18)

Then sampled FK semi-group actions on ν:

�c,�t
n (ν)(φ) = P c,�t

n (ν)(φ)

P c,�t
n (ν)(1)

−→
∫
Td

φ d νc,�t , as n ↑ ∞, ∀ smooth φ,

where νc,�t is an invariant measure of the discrete map �c,�t
1 , thanks to b being T -periodic in time. There exists q ∈ (0, 1)

so that [41]:

λn
�t := (nT)−1 ln[P c,�t

n (ν0)(1)] −−−→
n→∞ T −1 ln[P c,�t

1 (νc,�t)(1)] = λ + o((�t)q). (19)
8

The IPM algorithm below (Algorithm 3) approximates the evolving measure as an empirical measure of a large number
of genetic particles that undergo advection-diffusion (L) and mutations (C). The mutation relies on fitness and its nor-
malization defined as in the FK semi-group. In Algorithm 3, the evolution is phrased in G generations, each moving and
mutating m times in a life span of T . The index n in (18) is changed to G .

Algorithm 3: Genetic Interacting Particle Method

Initialize first generation of N0 particles ξ0
1 = (ξ

0,1
1 , · · · , ξ0,N0

1), uniformly distributed over Td (d ≥ 2). Let g be the generation number in
approximating νc,�t . Each generation moves and replicates m-times, with a life span T (time period), time step �t = T /m.

while g = 1 : G − 1 do
while i = 0 : m − 1 do

ζ i
g ← one-step-advection-diffusion update on ξ i

g . Define fitness F := exp{c(T − i�t, ζ i
g) �t}.

E g,i := 1
�t ln (mean population fitness).

Normalize fitness to weight. p := F/SU M(F).
ξ i+1

g ← resample ζ i
g via multinomial distribution with weight p.

end

ξ0
g+1 ← ξm

g , E g ← mean (E g,i) over i.
end

Output: approximate λ�t ← mean(E g), and ξ0
G .

Much progress has been made in the finite element computation [57,56,74] of the KPP principal eigenvalue problem
(13) particularly in steady 3D flows v = v(x). However, when κ is small and the spatial dimension is 3, adaptive FEM can
be extremely expensive. For 2D time periodic cellular flows, adaptive basis deep learning is found to improve the accuracy
of reduced order modeling [42,43]. Extension of deep basis learning to 3D in the Eulerian setting has not been attempted
partly due to the costs of generating a sufficient amount of training data.

An advantage of the IPM is that given the same particle number, the computational cost of generating training data scales
linearly with the dimension of spatial variables. As a comparison, in the Eulerian framework, one needs to solve the principal
eigenvalue of a parabolic operator ∂t − A by discretizing the eigenvalue problem on mesh grids. The number of mesh
grids depends exponentially on the spatial dimension, which becomes expensive for 3D problems. Though adaptive mesh
techniques can alleviate the computational burden, their design and implementation are challenging for time dependent
3D problems when large gradient regions are dynamically changing and repeated mesh adaptations must be performed. In
contrast, the IPM is spatially mesh-free and self-adaptive. The computational bottleneck remains in IPM at small κ when we
need a large number of particles running for many generations to approach the invariant measure. To address this issue, we
apply our DeepParticle method to generate particle samples by initiating at a learned distribution resembling the invariant
measure and accelerating Algorithm 3 (i.e. reduce G to reach convergence).

2D steady cellular flow We first consider a 2D cellular flow v = (− sin x1 cos x2, cos x1 sin x2). In this case, we apply the
physical parameter dependent network described in Section 3.1 to learn the invariant measure corresponding to different κ
values. To generate training data, we first use the IPM, Algorithm 3 with κi = 2−2−0.25∗(i−1) , i = 1 : 8(= nη), and N0 = 40000
particle evolution for G = 2048, �t = 2−8, T = 1, to get samples of invariant measure at different κ values. The value of G
is chosen so that the direct IPM simulation of principal eigenvalue converges, see blue line of Fig. 4(d). From each set of
sample points with different κ ’s, we randomly pick N = 2000 sample points without replacement, denoted as Y1, · · · , Y8.
Under such setting, we then seek neural networks fθ such that given κi and a set Xi of i.i.d. uniformly distributed points
on [0, 2π]2, the network output fθ (Xi; κi) is distributed near Yi in W 2 distance. The set {Y1, · · · , Y8} is called one mini-
batch of training data and in total we have Ndict = 5 mini-batches through 50000 steps of network training. As stated
in Algorithm 2, after each mini-batch of network training (10000 steps of gradient descent), we re-optimize γ until its
normalized Frobenius norm is greater than tol = 0.7. Note that only a quarter of the 40,000 particles in the IPM simulations
have been used in training.

During training, we apply Adams gradient descent with initial learning rate 0.002 and a weight decay with hyper-
parameter 0.005 for trainable weights in the network. In each step, we select M = 25 columns and rows by Algorithm 1 in
solving the sub-optimization problem (10) and repeat the linear programming for NL P = 10 times.

In Fig. 3, we present the performance of our algorithm in sampling distribution in the original training data. Each
time, the training algorithm only has access to at most N × Ndict = 10000 samples of each target distribution with
κi = 2−2−0.25∗(i−1) , i = 1, · · · , 8 = nη . After training, we generate N0 = 40000 uniformly distributed points as input of the
network. We compare the histogram of network output and that of the N0 = 40000 sample points obeying the invariant
measure from the IPM Algorithm 3. We see that our trained parameter-dependent network indeed reproduces the sharpen-
ing effect on the invariant measure when κ becomes small.

In Fig. 4, we present the performance of algorithm in predicting the invariant measure of IPM with κ = 2−4. First
we compare the invariant measure generated from direct simulation with IPM (Fig. 4(a)) and from the trained network
(Fig. 4(b)). In Fig. 4(c), we show the W2 distance between the generated distribution and the target distribution of the
Z. Wang, J. Xin and Z. Zhang Journal of Computational Physics 464 (2022) 111309
9

Z. Wang, J. Xin and Z. Zhang Journal of Computational Physics 464 (2022) 111309

Fig. 3. Generated invariant measure (upper row) and corresponding training data (reference, lower row).

Fig. 4. DeepParticle prediction (top), training/acceleration (bottom) at test value κ = 2−4 in a 2D front speed computation. Loss reduction in c) shows fast

(steps before 1.e4) and slow phases [38].

10

Z. Wang, J. Xin and Z. Zhang Journal of Computational Physics 464 (2022) 111309
Fig. 5. Measures generated at different gradient descent (GD) steps in network training for KPP front speeds in 2D steady cellular flows.

training data. The W2 distance goes up when we re-sample the training data. This is because at this moment, the transition
matrix γ in the definition of the W2 distance is inaccurate. Note that the test κ = 2−4 value is no longer within the training
range κ = 2−p , p ∈ [2, 3.75]. Our trained network predicts an invariant measure. Such prediction also serves as a ‘warm start’
for IPM and can accelerate its computation to quickly reach a more accurate invariant measure. As the invariant measure
has no closed-form analytical solution, we plot in Fig. 4(d) the principal eigenvalue approximations by IPM with warm and
cold starts, i.e. one generated from DeepParticle network (warm) and the i.i.d. samples from a uniform distribution (cold).
The warm start by DeepParticle achieves 4x to 8x speedup.

Fig. 5 displays histograms of N0 = 40000 samples generated from our DeepParticle algorithm at different stage of training.
In Fig. 5(d) with only one set of data, we already get a rough prediction of target distribution. With more data sets added,
the prediction quality improves; see Fig. 5(e) to Fig. 5(i).

3D time-dependent Kolmogorov flow Next, we compute KPP front speed in a 3D time-dependent Kolmogorov flow [17]:

v = (sin (x3 + sin(2πt)) , sin (x1 + sin(2πt)) , sin (x2 + sin(2πt))) .

The hyper-parameter setting for network training remains the same as in the 2D case. The physical parameter-dependent
network in Section 3.1 learns the invariant measure corresponding to eight different κ training values. Besides the in-
11

Z. Wang, J. Xin and Z. Zhang Journal of Computational Physics 464 (2022) 111309
Fig. 6. Generated invariant measure (upper row) and the corresponding training data (reference, lower row), viewed as projections to 2nd and 3rd dimen-
sions in a 3D KPP front speed computation.

put x and output f(x) are both in 3 dimensions, the network layout and training procedure are the same as in the 2D
example.

Fig. 6 shows the performance of the network interpolating training data from κ = 2−2 to κ = 2−3.5. Fig. 7 displays
network prediction at κ = 2−4. All the histograms here are 2D projections of the 3D histogram to the second and third
dimensions. Results of the projection to other choices of two dimensions are similar and are not shown here for brevity.

5. Conclusions

We developed a DeepParticle method to generate invariant measures of stochastic dynamical (interacting particle)
systems by a physically parameterized DNN that minimizes the Wasserstein distance between the source and target dis-
tributions. Our method is very general in the sense that we do not require distributions to be in closed-form and the
generation map to be invertible. Thus, our method is fully data-driven and applicable in the fast computation of invariant
measures of other interacting particle systems. During the training stage, we update network parameters based on a dis-
cretized Wasserstein distance defined on finite samples. We proposed an iterative divide-and-conquer algorithm that allows
us to significantly reduce the computational cost in finding the optimal transition matrix in the Wasserstein distance. We
carried out numerical experiments to demonstrate the performance of the proposed method. Numerical results show that
our method is very efficient and helps accelerate the computation of invariant measures of interacting particle systems for
KPP front speeds. In the future, we plan to apply the DeepParticle method to learn and generate invariant measures of other
stochastic particle systems.

CRediT authorship contribution statement

Zhongjian Wang: Conceptualization, Programming, Methodology, Writing – Original draft preparation. Jack Xin: Con-
ceptualization, Methodology, Writing – Reviewing and Editing. Zhiwen Zhang: Conceptualization, Writing – Reviewing and
Editing.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

The research of JX is partially supported by NSF grants DMS-1924548 and DMS-1952644. The research of ZZ is supported
by Hong Kong RGC grant projects 17300318 and 17307921, National Natural Science Foundation of China No. 12171406,
12

Z. Wang, J. Xin and Z. Zhang Journal of Computational Physics 464 (2022) 111309
Fig. 7. DeepParticle prediction (viewed in 2nd/3rd dim, top) at test value κ = 2−4 in a 3D computation. The W 2 distance minimization in c) shows fast
(steps before 1.e4) and slow phases [38].

Seed Funding Programme for Basic Research (HKU), and Basic Research Programme (JCYJ20180307151603959) of The Sci-
ence, Technology and Innovation Commission of Shenzhen Municipality.

References

[1] G. Bao, X. Ye, Y. Zang, H. Zhou, Numerical solution of inverse problems by weak adversarial networks, Inverse Probl. 36 (11) (2020) 115003.
[2] Y. Bar-Sinai, S. Hoyer, J. Hickey, M. Brenner, Learning data-driven discretizations of PDEs, Bull. Am. Phys. Soc. 63 (2018).
[3] M. Burger, L. Ruthotto, S. Osher, Connections between deep learning and partial differential equations, Eur. J. Appl. Math. 32 (3) (2021) 395–396.
[4] Z. Cai, J. Chen, M. Liu, Least-squares ReLU neural network (LSNN) method for linear advection-reaction equation, J. Comput. Phys. (2021) 110514.
[5] Z. Cai, J. Chen, M. Liu, X. Liu, Deep least-squares methods: an unsupervised learning-based numerical method for solving elliptic PDEs, J. Comput. Phys.

420 (2020) 109707.
[6] R. Carmona, M. Lauriere, Convergence analysis of machine learning algorithms for the numerical solution of mean field control and games: I – the

ergodic case, arXiv:1907.05980, 13 July 2019.
[7] R. Carmona, M. Lauriere, Convergence analysis of machine learning algorithms for the numerical solution of mean field control and games: II – the

finite horizon case, arXiv:1908 .01613, 5 August 2019.
[8] W. Chen, Q. Wang, J. Hesthaven, C. Zhang, Physics-informed machine learning for reduced-order modeling of nonlinear problems, J. Comput. Phys. 446

(2021) 110666.
[9] S. Childress, A. Gilbert, Stretch, Twist, Fold: The Fast Dynamo, Lecture Notes in Physics Monographs, vol. 37, Springer, 1995.

[10] N. Cohen, O. Sharir, A. Shashua, On the expressive power of deep learning: a tensor analysis, in: Conference on Learning Theory, 2016, pp. 698–728.
[11] M. Cuturi, Sinkhorn distances: lightspeed computation of optimal transport, Adv. Neural Inf. Process. Syst. 26 (2013) 2292–2300.
[12] G. Cybenko, Approximation by superpositions of a sigmoidal function, Math. Control Signals Syst. 2 (4) (1989) 303–314.
[13] W. E, J. Han, A. Jentzen, Deep learning-based numerical methods for high-dimensional parabolic partial differential equations and backward stochastic

differential equations, Commun. Math. Stat. 5 (4) (2017) 349–380.
13

http://refhub.elsevier.com/S0021-9991(22)00371-0/bib33774BFD0D335028833941B57126C018s1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib4B1293578DB65051189B4BA53E6E62EBs1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bibE825A1E3CA867B4167536E534A786FCDs1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib5A7CFD748E1540CBE324E68C598FCC6Es1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib85854EE51765A6842AF20C9E82CE1481s1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib85854EE51765A6842AF20C9E82CE1481s1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib01E4F410E603C7293D39115612F42838s1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib01E4F410E603C7293D39115612F42838s1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib753A052C102C31E99A1625B5D782D39As1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib753A052C102C31E99A1625B5D782D39As1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib9D560C95986EC1C8861D87685740431Cs1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib9D560C95986EC1C8861D87685740431Cs1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib834BA3374A9367791702849ED16A3AC7s1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib45B2EFC9B1577799C5A5F83EAF359554s1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bibDCD7E524F4A8FF1A50EE40DAA376F636s1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib7C1BC1F9205D66540C060701CBACD75Es1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bibEB5A0314748CDC048DFDF99E350977D9s1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bibEB5A0314748CDC048DFDF99E350977D9s1

Z. Wang, J. Xin and Z. Zhang Journal of Computational Physics 464 (2022) 111309
[14] W. E, B. Yu, The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems, Commun. Math. Stat. 6 (1) (2018)
1–12.

[15] S. Ellacott, Aspects of the numerical analysis of neural networks, Acta Numer. 3 (1994) 145–202.
[16] M. Freidlin, Functional Integration and Partial Differential Equations, Princeton Univ. Press, 1985.
[17] D. Galloway, M. Proctor, Numerical calculations of fast dynamos in smooth velocity fields with realistic diffusion, Nature 356 (6371) (1992) 691–693.
[18] I. Goodfellow, Y. Bengio, A. Courville, Y. Bengio, Deep Learning, vol. 1, MIT Press, Cambridge, 2016.
[19] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversarial nets, Adv. Neural Inf. Process.

Syst. 27 (2014).
[20] J. Han, A. Jentzen, W. E, Solving high-dimensional partial differential equations using deep learning, Proc. Natl. Acad. Sci. 115 (34) (2018) 8505–8510.
[21] J. He, L. Li, J. Xu, C. Zheng, Relu deep neural networks and linear finite elements, J. Comput. Math. 38 (3) (2020) 502–527.
[22] J. He, J. Xu, Mgnet: a unified framework of multigrid and convolutional neural network, Sci. China Math. 62 (7) (2019) 1331–1354.
[23] K. Hornik, M. Stinchcombe, H. White, Multilayer feedforward networks are universal approximators, Neural Netw. 2 (5) (1989) 359–366.
[24] C. Kao, Y.Y. Liu, J. Xin, A semi-Lagrangian computation of front speeds of g-equation in ABC and Kolmogorov flows with estimation via ballistic orbits,

SIAM J. Multiscale Model. Simul. 20 (1) (2022) 107–117.
[25] S. Karumuri, R. Tripathy, I. Bilionis, J. Panchal, Simulator-free solution of high-dimensional stochastic elliptic partial differential equations using deep

neural networks, J. Comput. Phys. 404 (2020) 109120.
[26] Y. Khoo, J. Lu, L. Ying, Solving parametric PDE problems with artificial neural networks, in: Special Issue 3: Connections Between Deep Learning and

Partial Differential Equations, Eur. J. Appl. Math. 32 (2021) 421–435.
[27] I. Kobyzev, S. Prince, M. Brubaker, Normalizing flows: an introduction and review of current methods, IEEE Trans. Pattern Anal. Mach. Intell. (2020).
[28] A. Kolmogorov, I. Petrovsky, N. Piskunov, Investigation of the equation of diffusion combined with increasing of the substance and its application to a

biology problem, Bull. Moscow State Univ. Ser. A: Math. Mech. 1 (6) (1937) 1–25.
[29] J.N. Kutz, Deep learning in fluid dynamics, J. Fluid Mech. 814 (1–4) (2017).
[30] I. Lagaris, A. Likas, D. Fotiadis, Artificial neural networks for solving ordinary and partial differential equations, IEEE Trans. Neural Netw. 9 (5) (1998)

987–1000.
[31] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (7553) (2015) 436.
[32] H. Lee, Neural algorithm for solving differential equations, J. Comput. Phys. 91 (1990) 110–131.
[33] W. Li, P. Yin, S. Osher, Computations of optimal transport distance with Fisher information regularization, J. Sci. Comput. 75 (3) (2018) 1581–1595.
[34] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, A. Anandkumar, Fourier neural operator for parametric partial differential

equations, arXiv preprint, arXiv:2010 .08895, 2020.
[35] A. Lin, S. Fung, W. Li, L. Nurbekyana, S. Osher, Alternating the population and control neural networks to solve high-dimensional stochastic mean-field

games, Proc. Natl. Acad. Sci. 118 (31) (2021) e2024713118.
[36] Z. Long, Y. Lu, B. Dong, PDE-Net 2.0: learning PDEs from data with a numeric-symbolic hybrid deep network, J. Comput. Phys. 399 (2019) 108925.
[37] Z. Long, Y. Lu, X. Ma, B. Dong, PDE-Net: learning PDEs from data, in: International Conference on Machine Learning, 2018, pp. 3208–3216.
[38] Z. Long, P. Yin, J. Xin, Global convergence and geometric characterization of slow to fast weight evolution in neural network training for classifying

linearly non-separable data, Inverse Probl. Imaging 15 (1) (2021) 41–62.
[39] J. Lu, Z. Shen, H. Yang, S. Zhang, Deep network approximation for smooth functions, SIAM J. Math. Anal. 53 (5) (2021) 5465–5506.
[40] L. Lu, P. Jin, G. Karniadakis, Deeponet: learning nonlinear operators for identifying differential equations based on the universal approximation theorem

of operators, arXiv:1910 .03193, 2019.
[41] J. Lyu, Z. Wang, J. Xin, Z. Zhang, A convergent interacting particle method and computation of KPP front speeds in chaotic flows, SIAM J. Numer. Anal.

(2022), https://doi .org /10 .1137 /21M1410786, in press.
[42] J. Lyu, J. Xin, Y. Yu, Computing residual diffusivity by adaptive basis learning via spectral method, Numer. Math., Theory Methods Appl. 10 (2) (2017)

351–372.
[43] J. Lyu, J. Xin, Y. Yu, Computing residual diffusivity by adaptive basis learning via super-resolution deep neural networks, in: H.A. Le Thi, et al. (Eds.),

Advanced Computational Methods for Knowledge Engineering, ICCSAMA 2019, in: Advances in Intelligent Systems and Computing, vol. 1121, 2020,
pp. 279–290.

[44] A. Meade, A. Fernandez, The numerical solution of linear ordinary differential equations by feedforward neural networks, Math. Comput. Model. 19 (12)
(1994) 1–25.

[45] H. Montanelli, Q. Du, New error bounds for deep ReLU networks using sparse grids, SIAM J. Math. Data Sci. 1 (1) (2019) 78–92.
[46] J. Nolen, M. Rudd, J. Xin, Existence of KPP fronts in spatially-temporally periodic advection and variational principle for propagation speeds, Dyn. Partial

Differ. Equ. 2 (1) (2005) 1–24.
[47] G. Peyré, M. Cuturi, Computational optimal transport, Found. Trends Mach. Learn. 11 (5–6) (2019) 355–607.
[48] A. Pinkus, Approximation theory of the MLP model in neural networks, Acta Numer. 8 (1999) 143–195.
[49] T. Qin, K. Wu, D. Xiu, Data driven governing equations approximation using deep neural networks, J. Comput. Phys. 395 (2019) 620–635.
[50] M. Raissi, P. Perdikaris, G. Karniadakis, Multistep neural networks for data-driven discovery of nonlinear dynamical systems, arXiv:1801.01236, 2018.
[51] M. Raissi, P. Perdikaris, G. Karniadakis, Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involv-

ing nonlinear partial differential equations, J. Comput. Phys. 378 (2019) 686–707.
[52] S. Rudy, J.N. Kutz, S. Brunton, Deep learning of dynamics and signal-noise decomposition with time-stepping constraints, J. Comput. Phys. 396 (2019)

483–506.
[53] L. Ruthotto, S. Osher, W. Li, L. Nurbekyan, S. Fung, A machine learning framework for solving high-dimensional mean field game and mean field control

problems, Proc. Natl. Acad. Sci. 117 (17) (2020) 9183–9193.
[54] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency, vol. 24, Springer Science & Business Media, 2003.
[55] C. Schwab, J. Zech, Deep learning in high dimension, Res. Rep. 2017 (2017).
[56] L. Shen, J. Xin, A. Zhou, Finite element computation of KPP front speeds in 3D cellular and ABC flows, Math. Model. Nat. Phenom. 8 (3) (2013) 182–197.
[57] L. Shen, J. Xin, A. Zhou, Finite element computation of KPP front speeds in cellular and cat’s eye flows, J. Sci. Comput. 55 (2) (2013) 455–470.
[58] Z. Shen, H. Yang, S. Zhang, Deep network with approximation error being reciprocal of width to power of square root of depth, Neural Comput. 33 (4)

(2021) 1005–1036.
[59] R. Sinkhorn, A relationship between arbitrary positive matrices and doubly stochastic matrices, Ann. Math. Stat. 35 (2) (1964) 876–879.
[60] J. Sirignano, K. Spiliopoulos, DGM: a deep learning algorithm for solving partial differential equations, J. Comput. Phys. 375 (2018) 1339–1364.
[61] C. Villani, Topics in Optimal Transportation, vol. 58, American Math. Soc., 2021.
[62] Q. Wang, N. Ripamonti, J. Hesthaven, Recurrent neural network closure of parametric POD-Galerkin reduced-order models based on the Mori-Zwanzig

formalism, J. Comput. Phys. 410 (2020) 109402.
[63] Y. Wang, S. Cheung, E. Chung, Y. Efendiev, M. Wang, Deep multiscale model learning, J. Comput. Phys. 406 (2020) 109071.
[64] Z. Wang, Z. Zhang, A mesh-free method for interface problems using the deep learning approach, J. Comput. Phys. 400 (2020) 108963.
[65] S. Wright, Primal-Dual Interior-Point Methods, SIAM, 1997.
14

http://refhub.elsevier.com/S0021-9991(22)00371-0/bib67F4470D38CD48C122E6F9FB6BD2BE2Bs1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib67F4470D38CD48C122E6F9FB6BD2BE2Bs1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bibE1D45266B3CB135F7D49959138A80E72s1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bibA0F50C1E433A0849555781424D91CD7Bs1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bibE4D249C8D9ECACCA05A8822775153B4Fs1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib379B5402A47C72C9098151A28A448188s1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib47F0FA1194A7FD04DA0AEA385E98910Bs1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib47F0FA1194A7FD04DA0AEA385E98910Bs1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib8CA40B5FB63ACBACC3522FE830F81DF5s1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bibF122A436FAD35079450CBA637A27CAEBs1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib05CE0CA40C64A151830B17316AF5ED51s1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bibB552F98C7E0C024B25FE654A214EE2E1s1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bibF78C277491234A955048560FCEC4A8DAs1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bibF78C277491234A955048560FCEC4A8DAs1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib234FD77FD030F86AA2F2A7081A6C260As1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib234FD77FD030F86AA2F2A7081A6C260As1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bibFEBD4FDB2059E7ECA110DE72CFC5828Fs1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bibFEBD4FDB2059E7ECA110DE72CFC5828Fs1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib35B20A18AAE7E2F1C89DC79BAB6804A0s1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib40460E97A57F0338EB7A0BC05102A1C4s1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib40460E97A57F0338EB7A0BC05102A1C4s1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib7CFCBB6A5002ECE1E76B1992ACE60AADs1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib95F7610D68E9F0B4C9DE7BDD507AFFE9s1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib95F7610D68E9F0B4C9DE7BDD507AFFE9s1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bibDC27EB94C773F24746A96FC0013D6A0Ds1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib8B2675712C6B350BA835699C05A0418As1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib2153366AF848FBB52FCA9A9F925A1BAEs1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bibFDE60BE1F87D6EAE6208A390FE5D3BCAs1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bibFDE60BE1F87D6EAE6208A390FE5D3BCAs1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bibDD1990CDEFBEE35322BCB87580E132F7s1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bibDD1990CDEFBEE35322BCB87580E132F7s1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib4689D31297C895977448F083C4DE656Fs1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib0B43F078455F44BC35C7395829925187s1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib1C1A3123934A79B3756EFB0F46A95B3Fs1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib1C1A3123934A79B3756EFB0F46A95B3Fs1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib485E15A8A2F6EBDE2193CC8C26A5BF18s1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib23E38C199B2207CC4F12E545FB59F6D7s1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib23E38C199B2207CC4F12E545FB59F6D7s1
https://doi.org/10.1137/21M1410786
http://refhub.elsevier.com/S0021-9991(22)00371-0/bibB94E9D56F0BA1D173FBA868124F1E96Cs1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bibB94E9D56F0BA1D173FBA868124F1E96Cs1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib1749A2B57CCC316C719A50D02E817EAEs1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib1749A2B57CCC316C719A50D02E817EAEs1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib1749A2B57CCC316C719A50D02E817EAEs1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib6D29642AFE460B1E46721977492C11ADs1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib6D29642AFE460B1E46721977492C11ADs1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib00C9D8C949BE8A6740C8AA4AA8F93F95s1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bibAC4F9CB561D5569F2D3466DA58EC3664s1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bibAC4F9CB561D5569F2D3466DA58EC3664s1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib4EB221D572DB2E0BCC2ADD14BF500115s1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bibEA08F01AB02A25A30A0F81C02F1414ABs1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bibE187E6F9943A6B4D3F123B7C74A9EBCDs1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bibB9711C18F802B995C02546C21FF1E541s1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib53EF7BEEFFBCC434AC4215FA1276D943s1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib53EF7BEEFFBCC434AC4215FA1276D943s1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib6C3F0F3CB242B9E891857FB63B52ECEBs1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib6C3F0F3CB242B9E891857FB63B52ECEBs1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib167BC6F3A20A557850B676DE1E44AFE8s1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib167BC6F3A20A557850B676DE1E44AFE8s1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib21F51046417F500EEDF71D34AA6DF19As1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bibBC648A7F10342548520359AAFDDDD30Es1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib6FCF485E61F1F6AB665BD68D6C0CA5A2s1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib0FD6BC6CD4AEAFA7455EC065078C813Es1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib9615A6AD8D5E0393BCB4F2A1591C03AFs1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib9615A6AD8D5E0393BCB4F2A1591C03AFs1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib5979D2087E3DFC2D808D28B610C1E6F0s1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib8B90E81BB28AC40F01D08933FA24746Es1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bibB9E090102CA7C0A0D387F3D1F5443D65s1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bibCB97C8915B5F5759935B221AC6AAC886s1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bibCB97C8915B5F5759935B221AC6AAC886s1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib79840E2099A3470DBA6BE2FFD408C1EFs1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib217EB843D9C4D4C15FBBB34E7D3C707Bs1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bibF433AEF2346232C060EE53D3E9846669s1

Z. Wang, J. Xin and Z. Zhang Journal of Computational Physics 464 (2022) 111309
[66] K. Wu, D. Xiu, Data-driven deep learning of partial differential equations in modal space, J. Comput. Phys. (2020) 109307.
[67] J. Xin, An Introduction to Fronts in Random Media, vol. 5, Springer Science & Business Media, 2009.
[68] L. Yang, X. Meng, G.E. Karniadakis, B-PINNS: Bayesian physics-informed neural networks for forward and inverse PDE problems with noisy data, J.

Comput. Phys. 425 (2021) 109913.
[69] D. Yarotsky, Error bounds for approximations with deep ReLU networks, Neural Netw. 94 (2017) 103–114.
[70] G. Yoo, H. Owhadi, Deep regularization and direct training of the inner layers of neural networks with kernel flows, arXiv:2002 .08335, 2020.
[71] Y. Zang, G. Bao, X. Ye, H. Zhou, Weak adversarial networks for high-dimensional partial differential equations, J. Comput. Phys. 411 (2020) 109409.
[72] Y. Zhu, N. Zabaras, Bayesian deep convolutional encoder-decoder networks for surrogate modeling and uncertainty quantification, J. Comput. Phys. 366

(2018) 415–447.
[73] Y. Zhu, N. Zabaras, P. Koutsourelakis, P. Perdikaris, Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quan-

tification without labeled data, J. Comput. Phys. 394 (2019) 56–81.
[74] P. Zu, L. Chen, J. Xin, A computational study of residual KPP front speeds in time-periodic cellular flows in the small diffusion limit, Physica D 311

(2015) 37–44.
15

http://refhub.elsevier.com/S0021-9991(22)00371-0/bib623F81C94BFB6BC9BF864A4473A18A1Cs1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib0473206EB4A5C183D5D262FBD0D30D3Cs1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bibFA2141A98F2106861B38133FEEC4E693s1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bibFA2141A98F2106861B38133FEEC4E693s1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bibC1E384A582D4A3A2CF18007C99233581s1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib877220E3F1356E4AEECF5880CAED3CB1s1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib963754C4972D13D7D2ECC951B51CE6E9s1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bibB5AABE9D88744578C643BDF16C15D226s1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bibB5AABE9D88744578C643BDF16C15D226s1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bibA9CEDAFF449F99AF2ADC9EF8243EED8Es1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bibA9CEDAFF449F99AF2ADC9EF8243EED8Es1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib07A5B0FD1A6222B7E35DBEE1C3D6CB96s1
http://refhub.elsevier.com/S0021-9991(22)00371-0/bib07A5B0FD1A6222B7E35DBEE1C3D6CB96s1

	DeepParticle: Learning invariant measure by a deep neural network minimizing Wasserstein distance on data generated from an...
	1 Introduction
	2 Preliminaries
	2.1 Artificial neural network
	2.2 Wasserstein distance and optimal transportation

	3 Methodology
	3.1 Physical parameter dependent neural networks
	3.2 DeepParticle algorithms

	4 Numerical examples
	4.1 Mapping uniform to normal distribution
	4.2 Computing front speeds in complex fluid flows

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References

