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Abstract

In this short note, we give a unified rigorous derivation of vortex motion laws
of nonlinear wave (NLW) and nonlinear heat (NLH) equations based on the fluid
dynamic approach the authors recently developed in solving the nonlinear Schrödinger
(NLS) equation. Hence in all three complex scalar field equations, the motion laws
follow from the Euler-type equations, and the knowledge of the finite mass Radon
defect measure.
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1 A Summary of Basic Facts

Let us consider as ε ↓ 0 the two-dimensional complex scalar field equations:

1

log ε−1
uε,tt = ∆uε + ε−2uε(1− |uε|2), (1.1)

the nonlinear wave (NLW) equation;

1

log ε−1
uε,t = ∆uε + ε−2uε(1− |uε|2), (1.2)

the nonlinear heat (NLH) equation, or the Ginzburg-Landau equation; and

iuε,t = ∆uε + ε−2uε(1− |uε|2), (1.3)

the nonlinear Schrödinger (NLS) equation, on a bounded domain Ω ⊂ R2 with smooth

boundary. The boundary condition is: uε|∂Ω = g(x), with g : ∂Ω → S
1 a smooth map of

degree d > 0. The initial condition contains d vortices of degree one so that the total initial

energy has the asymptotic expression:

Eε(uε(0, x)) =

∫
Ω

eε(uε(0, x)) ≡
∫

Ω

1

2
|∇uε|2 +

(1− |uε|2)2

4ε2
= dπ log

1

ε
+O(1), (1.4)

for NLH and NLS; and

Eε(uε(0, x)) +
1

2 log 1
ε

∫
Ω

|uε,t(0, x)|2 = dπ log
1

ε
+O(1), (1.5)

for NLW.

The basic property independent of the equations is energy concentration:

eε(uε)dx

π log 1
ε

⇀

d∑
j=1

δaj , M(Ω), (1.6)

for a sequence ε = εk ↓ 0, where aj’s are distinct d points inside Ω, see Lin [3] and [4].

However, the dynamics of these points depends critically on the equations.

Recently, the present authors [5] formulated the conservation of linear momentum of

NLS as the Euler equation:

∂tp(uε) = 2div (∇uε ⊗∇uε)−∇Pε, (1.7)
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where the linear momentum p(uε) = uε ∧∇uε, and the pressure is:

Pε = |∇uε|2 + uε ·∆uε −
|uε|4 − 1

2ε2
,

They then projected (1.7) onto the locally divergence-free fields, and analyzed the resulting

equation. It follows that the vortices move Lipschitz continuously on the time scale t ∼
O(1). Also the solution uε has weak limit:

uε ⇀ eiha(x)

d∏
j=1

x− aj
|x− aj|

≡ ua, (1.8)

away from aj’s in space time L1, and that ha is a harmonic function on Ω satisfying

ha,τ |∂Ω = −Θa,τ + g ∧ gτ , Θ the total phase of the product term in (1.8), and τ the

tangential unit vector. It then follows from a refined energy argument that the quadratic

tensor product weakly converges as:

∇uε ⊗∇uε ⇀ v ⊗ v + µ, M(Ωa), (1.9)

where µ is a symmetric tensorial Radon defect measure of finite mass over Ω. Under the

energy almost minimizing condition on the initial data:

Eε(uε)(0) = dπ log
1

ε
+ πW (a(0)) + o(1), (1.10)

where W = W (a) = W (a1, · · · , ad) the renormalized energy, see [1], [3], it is shown in [5]

that the defect measure µ = 0 in (1.9) and the vortex motion law is: a′j = −J∇ajW ,

J being the clockwise rotation matrix. If the initial energy is an O(1) amount above

the minimum value (for the prescribed initial vortex locations a(0)), the defect measure

µ 6= 0, and further knowledge of its structure is necessary to deduce the law. Physically,

an excessive O(1) energy can allow phase (sound) waves to form and interact with vortices,

while almost energy minimizing condition (1.10) provides only vortex self-energy dπ log 1
ε

and vortex-vortex interaction energy πW (a(0)).

For NLW, the analogous Euler equation is:(
uε,t∇uε
log ε−1

)
t

= div (∇uε ⊗∇uε) +∇Pε, (1.11)

with the pressure:

Pε =
u2
ε,t

2 log ε−1
− (1− |uε|2)2

4ε2
− |∇uε|

2

2
.
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To analyze (1.11), the following energy (in)equalities are needed:

Eε(uε) ≤ dπ log
1

ε
+O(1),

1

log 1
ε

∫
Ω

|uε,t|2 ≤ C, (1.12)

d

dt

∫
BR

x
eε(uε)

log 1
ε

= −
∫
BR

uε,t · ∇u
log 1

ε
− d

dt

∫
BR

|uε,t|2

2 log2 1
ε
−
∫
∂BR

x · uε,ν
uε,t

log 1
ε
, (1.13)

with BR ⊂ Ω, any small ball of radius R. These and related energy inequalities imply

the Lipschitz continuous motion of vortices, see [4]. From (1.12), (1.13) and the energy

concentration, it follows that as measures:

uε,t∇uε
π log 1

ε
⇀ −

d∑
j=1

a′j(t)δaj(t). (1.14)

Moreover, the weak limit and quadratic terms also obey (1.8) and (1.9). The same energy

argument [5] shows µ ∈M(Ω). In addition under the energy almost minimizing condition

(1.10), the defect measure µ = 0.

For NLH, energy inequalities similar to (1.12) hold, and the Euler equation is:

d

dt

(
xeε(uε)

log 1
ε

)
= −(log

1

ε
)−2x|uε,τ |2 + div(∇uε ⊗∇uε) +∇Pε, (1.15)

with pressure:

Pε =
1

log 1
ε
x · uε,t · ∇uε +

1

2
|∇uε|2 +

1

4ε2
(1− |uε|2)2.

The first term on the right hand side of (1.15) tends to zero in L1([0, T ];L1(Ω)).

The rest of the note is organized as follows. In section 2, we derive the vortex motion

law for NLW: a′′j = −∇ajW , under the energy almost minimizing condition (1.10) and so

µ = 0. The proof also works for the motion law of NLH: a′j = −∇ajW , which was proved

earlier in Lin [3]. In this case, energy minimizing condition (1.10) is not needed at t = 0.

The defect measure µ = 0 due to energy dissipation and gradient dynamics, which imply

the strong convergence of solutions away from vortices [3]. We end the note with a few

remarks, comparing the three equations.

2 Motion Law of NLW and Remarks

Let us consider a test function ϕ ∈ C∞0 (Ω), ϕ = n · x, for x ∈ BR/2(aj(s)), and ϕ = 0, for

x 6∈ BR(aj(s)), where R is a small positive number, and n is a fixed unit direction. Let
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time t ∈ [s, s + k] with k a fixed small positive number. Multiplying ∇⊥ϕ = (−ϕx2
, ϕx1

)

on both sides of NLW Euler (1.11), integrating over BR(aj(s))× [s, s+ k], we get:∫
BR(aj)

uε,t∇uε
log ε−1

· ∇⊥ϕ|s+ks =

∫ s+k

s

dt

∫
BR(aj)

div (∇uε ⊗∇uε) · ∇⊥ϕ. (2.1)

Passing ε ↓ 0, we find using basic facts of section 1 that:

πa′j(t) · n⊥|
s+k
s = lim

ε↓0

∫ s+k

s

dt

∫
BR(aj)

(∇uε ⊗∇uε) : ∇∇⊥ϕ

= lim
ε↓0

∫ s+k

s

dt

∫
BR(aj)\BR/2(aj)

(∇uε ⊗∇uε) : ∇∇⊥ϕ

=

∫ s+k

s

dt

∫
BR(aj)\BR/2(aj)

(v ⊗ v + µ) : ∇∇⊥ϕ

=

∫ s+k

s

dt

∫
BR(aj)

(v ⊗ v + µ) : ∇∇⊥ϕ

=

∫ s+k

s

dt

∫
BR(aj)

v ⊗ v : ∇∇⊥ϕ, (2.2)

where in the last equality we have used the almost energy minimizing assumption (1.10)

to exclude µ. We also see that in general µ does not contribute if divµ = −∇Pµ, globally

on Ω for a distribution Pµ.

It follows via integration by parts that:

πa′j(t) · n⊥|
s+k
s =

∫ s+k

s

dt

∫
BR(aj(s))\BR/2(aj(s))

(v ⊗ v) : ∇∇⊥ϕ

= −
∫ s+k

s

dt

∫
BR(aj(s))\BR/2(aj(s))

v · ∇v · ∇⊥ϕ

+

∫ s+k

s

dt

∫
∂BR/2(aj(s))

(v ⊗ v) : (ν ⊗ n⊥)

= −
∫ s+k

s

dt

∫
∂BR/2(aj(s))

(v · ∇v · ν⊥)(n · x)

+

∫ s+k

s

dt

∫
∂BR/2(aj(s))

(v ⊗ v) : (ν ⊗ n⊥). (2.3)

Dividing (2.3) by k and letting k ↓ 0, we obtain:

πa′′j (s) · n⊥ = −
∫
∂BR/2(aj(s))

(v · ∇v · ν⊥)(n · x) +

∫
∂BR/2(aj(s))

(v ⊗ v) : (ν ⊗ n⊥). (2.4)
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Letting n = (1, 0), and aj = (ξj, ηj), we calculate with the explicit expression for v = (v1, v2)

as x ∼ aj: v1 = Hj,ξ − r−1 sin θ, v2 = Hj,η + r−1 cos θ, where Hj is the smooth part of the

vortex phase Θa + ha at aj, (r, θ) is the local polar coordinate. We find that each term on

the right hand side of (2.4) contributes −πHj,ξ, and so: πη′′(s) = −2πHj,ξ. Similarly with

n = (0, 1), we find: −πξ′′(s) = −2πHj,η. By the conjugation relation between Hj and W ,

[1], we have: Ja′′j = −2∇Hj = −J∇ajW, where J is the π/2 clockwise rotation matrix.

The vortex motion law: a′′j = −∇ajW follows. For NLH, the argument is the same except

the left hand side of the motion law is a′j due to (1.6) and (1.15). We have completed the

proof of the vortex motion laws of NLW and NLH.

A few remarks are in order. The left hand sides of the Euler-like equations of NLW and

NLH concentrate. Hence away from vortices, we have essentially the steady state Euler

equation. The pressure Pε is in L1([0, T ];L1(Ωa)), Ωa = {Ω\(a1, · · · , ad)}. Letting P ′ be

the weak L1 limit of Pε, and passing ε ↓ 0 on Ωa, we have from (1.11) or (1.15) that:

div(v ⊗ v) +∇P = 0, div v = 0, P = Pµ + P ′, (2.5)

in the sense of distribution, where P is the total pressure. It follows that div(v·∇v) = −∆P ,

and P is smooth on Ωa. Solving for P near each vortex aj gives the general expression of:

P =
1

2
r−2 + αr−1 cos θ + βr−1 sin θ + γ log r + · · · ,

where · · · are either higher spherical harmonic terms with frequencies at least two or

bounded regular terms, r = |x − aj|. Calculating circulation from (2.5) gives to leading

order:

πβ =

∫
∂Br(aj)

ξPθ = −
∮
∂Br(aj)

ξv · ∇v d~l = πHj,ξ(aj),

So β = Hj,ξ(aj). Similarly, α = −Hj,η(aj).

In contrast, the NLS pressure Pε is not controled by energy inequality and not known to

stay in L1 as ε ↓ 0. Also the left hand side p(uε) converges to a smooth function away from

vortices, and p(uε) itself does not concentrate. Hence it is convenient to project the Euler

equation to divergence free fields and calculate circulations [5]. The limiting equation is

the time dependent Euler. It turns out that in the asymptotic expression for the limiting

total pressure P , α and β are undertermined in general. The energy almost minimizing

condition (1.10) of course implies that α = β = 0 in this case.

Last but not the least, we remark that the regime where defect measure forms is beyond

the reach of early formal asymptotic derivations, see [6], [7], among others. From our
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analysis, we gain new understanding that the motion law holds as suggested in formal

derivations if the divergence of the finite mass defect measure is a global pressure gradient

or if the defect measure is supported away from the vicinities of vortices. In most early

formal works, the connection with the field aspect of the problem, namely pressure, is

not exploited, much less the fluid dynamic perspective of all three scalar field equations.

Analogous defect measure is well-known to play a significant role in the study of weak

solutions of two-dimensional incompressible Euler equation in fluid dynamics [2].
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