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Abstract

We study the Ginzburg-Landau equation on the plane with initial data being the
product ofn well-separated+1 vortices and spatially decaying perturbations. If
the separation distances areO(ε−1), ε � 1, we prove that then vortices do not
move on the time scaleO(ε−2λε), λε = o(log 1

ε ); instead, they move on the time
scaleO(ε−2 log 1

ε ) according to the law ˙xj = −∇xj W, W = −∑l 6= j log|xl −xj |,
xj = (ξ j ,η j) ∈ R

2, the location of thej th vortex. The main ingredients of our
proof consist of estimating the large space behavior of solutions, a monotonicity
inequality for the energy density of solutions, and energy comparisons. Com-
bining these, we overcome the infinite energy difficulty of the planar vortices to
establish the dynamical law.c© 1999 John Wiley & Sons, Inc.

1 Introduction

We consider the Ginzburg-Landau (G-L) equation,

ut = ∆xu+(1−|u|2)u, x∈ R
2 ,(1.1)

whereu = u(t,x) is a complex-valued function defined for eacht > 0 andx =
(ξ,η) ∈ R

2; ∆ = ∂ξξ +∂ηη denotes the two-dimensional Laplacian. The G-L equa-
tion (1.1) admits vortex solutions of the form,

Ψn(x) = Un(r)einθ , n = ±1,±2, . . . , Un(0) = 0, Un(+∞) = 1,(1.2)

where(r,θ) denote the polar coordinates onR
2. The functionsΨn(x) define com-

plex planar vector fields, whose zeros are called vortices or defects. Among them,
only the degree 1 vortices are dynamically stable; see Weinstein and Xin [10] for
the whole-plane case, and Mironescu [7] and Lieb and Loss [3] for the related
bounded domain case. Hence it makes sense to inquire about the motion law of the
degree 1 vortices. Hereafter, we shall be concerned with degree+1 vortices, and
useU to denote the profile of such a vortex.

The G-L equation (1.1) defines a continuous-in-time deformation of the com-
plex vector fieldu(·,x). So if the initial total winding number or degree at infinity
is different from zero, one expects the dynamics to be organized around the motion
of the zeros ofu(t,x). A description of the dynamics of an ensemble of spatially
separated vortices is a fundamental problem. The systematic formal asymptotic
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study was initiated by Neu [8] and was further developed in the works of Pismen
and Rubinstein [9] and E [2]. In these works, the regime of smallε, the ratio of
vortex core size to the separation distance between vortices, is considered. Forε
small, a solution is sought in the form of a product of degree 1 vortices plus small
error terms of higher order. In the smallε limit, matched asymptotic analysis was
used to derive a coupled system of ordinary differential equations for the centers
of the widely separated vortices.

The early formal asymptotic results suggest the initial data

u(0,x) =
n

∏
j=1

Ψ

(
x,

xin
j

ε

)
+ û(0,x) ,(1.3)

where

(H1) Ψ(x,xin
j /ε) denotes a+1 vortex located atxin

j /ε and has the form

Ψ

(
x,

xin
j

ε

)
= U

(∣∣∣∣∣x− xin
j

ε

∣∣∣∣∣
)

eiθ j , θ j = arg

(
x− xin

j

ε

)
, xin

j ∼ O(1) .(1.4)

(H2) û(0,x) is a bounded, twice continuously differentiable function and decays
along with all its derivatives as fast asO(|x|−γ) for someγ > 2 as|x| → ∞.

(H3) |u(0,x)| ≤ 1.

The Cauchy problem (1.1)–(1.3) is globally well-posed inC([0,+∞);Cb(R2)),
Cb the space of bounded continuous functions. Moreover, by the maximum princi-
ple, |u(t,x)| ≤ 1,∀t ≥ 0. Our main result is the following:

THEOREM 1.1 Let u= u(t,x,ε) be the solution to the initial value problem of the
Ginzburg-Landau equation(1.1)on the whole plane with initial data(1.3). If time
t is on the order O(ε−2λε), λε = o(log 1

ε ), then the initial vortices at xinj do not

move asε → 0. If time t is on the order O(ε−2 log 1
ε ) and t≤ Tε−2 log 1

ε for a finite
T > 0, the rescaled solution

ũε = ũε(τ,X) ≡ u

(
t = τε−2 log

1
ε
, x = Xε−1

)

converges asε → 0 for τ ∈ [0,T]

ũε(τ,X) → eiθ0
n

∏
j=1

X−xj(τ)
|X−xj(τ)| ,(1.5)

weakly in H1
loc(R

2\{x1(τ),x2(τ), . . . ,xn(τ)}), whereθ0 is a real constant.
Furthermore, the vortex locations xj(τ) are continuous inτ and satisfy the dy-

namical law

d
dτ

xj = −∇xjW , ∀τ ∈ (0,T] ,(1.6)
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with xj(0) = xin
j , and

W = W(x1,x2, . . . ,xn) = −∑
l 6= j

log|xl −xj | , xj = (ξ j ,η j) ∈ R
2 .

As natural as it seems to obtain a similar result by making rigorous the formal
matched asymptotics [2, 8, 9], such a task has defied many efforts and has never
been carried out yet. Our approach here is motivated by recent work of F.-H. Lin
[4, 5], on the dynamical law of vortices of the rescaled G-L equation on a bounded
domain with prescribed Dirichlet data

1

log 1
ε

ut = ∆u+ ε−2(1−|u|2)u, (t,x) ∈ R+×Ω ,

u(0,x) = g(x) , x∈ R+×∂Ω ,

(1.7)

where the degree ofg : ∂Ω → S
1 is n. For similar initial data withn degree+1 vor-

tices, the dynamical law is (1.6), withW the renormalized energy given in Bethuel,
Brézis, and Hélein [1]. The basic tools in [4, 5] are energy comparison and the
energy inequalities ∫

Ω
eε(u) ≤ nπ log

1
ε

+C(Ω) ,(1.8)
∫ T

0

∫
Ω
|ut |2 ≤C(Ω) log

1
ε

, ∀T > 0,(1.9)

whereeε(u) = 1
2|∇u|2 + 1

4ε2 (1−|u|2)2, andC is a positive constant depending on
the size of the domain. See also Lin [6] for the dynamical law under the Neumann
boundary conditionuν|∂Ω = 0.

An immediate difficulty in the whole-plane case is that the degree+1 vortex has
infinite energy, even more so then degree+1 vortices. Hence a renormalization
of the energy is necessary. The first cure is to consider the energy on a sufficiently
large ball of radiusRso that outside of this ball the solutionu is not doing much; in
particular, it has no vortices. This step requires an estimate ofu near spatial infinity
for a given time interval. The energy of initial datau(0,x) on such a ballBR is∫

BR

eε(u(0,x)) = nπ log
1
ε

+n2π logR+O(1) ,(1.10)

where the second termn2π logR is due to the fact that from a large distance then
degree 1 vortices look like a single degreen vortex to leading order. SinceR is
typically much larger than1ε , we need to bound the energy locally (on subdomains
of BR) from above and below in order to locate the vortices and also to derive the
key inequality ∫ T

0

∫
BR

|uε
t |2 ≤C log

1
ε

(1.11)

for positive constantsT andC independent ofR→ ∞ andε → 0. Actually, we
decomposeBR into a union of two annuli and an inner ball of radius independent
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of ε. We use a monotonicity formula of the energy to show that there are no vortices
in the outside annuli, and by a series of energy comparisons that (1.10) holds for
u(τ,X) at any later time. As a result, (1.11) holds for anyR. Then the dynamical
law (1.6) follows from the weak convergence ofeε(u)/ log 1

ε to a sum of delta
functions located atxj(τ) and the weak limit ofuε(τ,X) of the form (1.5).

The rest of the paper is organized as follows: In Section 2 we analyze the
large space behavior of solutions. We do this on the original G-L equation (1.1)
and show thatu decays as inverse powers of|x| as we move sufficiently far out
(|x| ≥ R∗, R∗ larger than any powers ofε−1). We linearize about the product of the
initial n vortices and control the error terms based on the comparison of solution
kernels with the free space heat kernel. In Section 3, we look at the rescaled G-L
and derive the monotonicity formula. The monotonicity formula helps us define
the two annular subdomains and the inner ball, on which detailed energy upper
and lower bounds are derived. Results of Section 2 are employed to deduce the
energy upper bound onBR∗ , which is needed for establishing the inequality (1.11).
In Section 4 we calculate the first moment of the measureeε(u)/ log 1

ε , derive the
dynamical law (1.6), and complete the proof of Theorem 1.1.

2 Large Space Estimates of Solutions

In this section, we are concerned with the large space behavior of solutions to
(1.1)–(1.3). Let us write

u(t,x) = (u0(x)+v(t,x))einθ ,(2.1)

where

u0(x) = u0(x,ε) = e−inθ
n

∏
j=1

Φ
(

x,
xj

ε

)
, θ = arg(x) .

We calculate

∆u = ∆
(
u0einθ)+∆

(
veinθ)

= einθ(∆u0 +2nir−2u0,θ −n2r−2u0
)

+einθ(∆v+2nir−2vθ −n2r−2v
)

and (
1−|u|2)u =

(
1−|u0 +v|2)(u0 +v)einθ ,

where we have used

e−inθ∆
(
veinθ)= ∆v+2nir−2vθ −n2r−2v,

∇θ = r−1(−sinθ,cosθ), r = |x| .
Substituting (2.1) into (1.1) shows thatv satisfies the equation

vt = ∆v+2nir−2vθ −n2r−2v+
(
1−|u0 +v|2)(u0 +v)

+∆u0 +2nir−2u0,θ −n2r−2u0
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or

vt = ∆v+2nir−2vθ +
(
1−2|u0|2−n2r−2)v−u2

0v?

+
(−2Re{u0v?}−|v|2)v−|v|2u0

+
(
1−|u0|2

)
u0 +∆u0 +2nir−2u0,θ −n2r−2u0

(2.2)

with initial datav(0,x) = û(0,x)e−inθ wherex = reiθ.

We shall consider (2.2) in the exterior of a disc of radiusR, whose size is to be
determined. Recall that the vortex profileU has the properties

U = U(s) ∼ as

(
1− s2

8

)
, s→ 0,(2.3)

for some positive constanta > 0, and

U = U(s) ∼ 1− 1
2s2 +O

(
s−4) , s→ ∞ .(2.4)

For a large enough positive constantL0, it follows that if |x| = r ≥ L0
ε ≡ R0, then

u0(x) = e−inθ
n

∏
j=1

(
1− 1

2|x− xj

ε |2
+O

(∣∣∣x− xj

ε

∣∣∣−4
))

ei arg(x− xj
ε ) .(2.5)

Note that ∣∣∣∣x− xj

ε

∣∣∣∣
−2

= |x|−2
(

1+ |x|−2
(
−2ε−1x ·xj + ε−2|xj |2

))−1

=
1
|x|2
(

1+O

(
1

ε|x|
))

=
1
|x|2 +O

(
1

ε|x|3
)

.

(2.6)

So

|u0(x)| =
n

∏
j=1

(
1− 1

2|x|2 +O

(
1

ε|x|3
))

= 1− n
2|x|2 +O

(
1

ε|x|3
)

(2.7)

if |x| ≥ R0. It follows that

1−|u0|2− n2

r2 = 1−
(

1− n
2|x|2 +O

(
1

ε|x|3
))2

− n2

r2

= 1−
(

1− n
r2 +O

(
1

εr3

))
− n2

r2 = O

(
1

εr3

)
+

n−n2

r2 .

(2.8)
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We use (2.7) to simplifyu0(x) into

u0(x) =
(

1− n
2|x|2 +O

(
1

ε|x|3
))

exp

{
i

(
n

∑
j=1

arg

(
x− xj

ε

)
−narg(x)

)}
,

(2.9)

if |x| ≥ R0. A direct calculation shows (x = (ξ,η), xj = (ξ j ,η j))

arg

(
x− xj

ε

)
−arg(x) = arctan

η− η j

ε

ξ− ξ j

ε

−arctan
η
ξ

= arctan
1

ε|x|
ξ j

η
|x| −η j

ξ
|x|

1− x·xj

ε|x|2

=
1

ε|x|
(

ξ j
η
|x| −η j

ξ
|x|
)

+O

(
1

ε2|x|2
)

(2.10)

if |x| ≥ R0, implying

n

∑
j=1

arg

(
x− xj

ε

)
−narg(x) =

1
ε|x|

(
n

∑
j=1

ξ j
η
|x| −η j

ξ
|x|

)
+O

(
1

ε2|x|2
)

=
1

ε|x|F(θ)+O

(
1

ε2|x|2
)

,

(2.11)

whereF is smooth inθ = arg(x). By (2.9) and (2.11) we have now a concise
expression

u0(x) =
(

1− n
2|x|2 +O

(
1

ε|x|3
))

exp

{
i

(
F(θ)
ε|x| +O

(
1

ε2|x|2
))}

(2.12)

for |x| ≥ R0. It is straightforward to verify that

u0,θ = O

(
1
εr

)
, ∆u0 = O

(
1

εr3

)
,

which together with (2.8) shows that the inhomogeneous term in (2.2)

(
1−|u0|2

)
u0 +∆u0 +2nir−2u0,θ −n2r−2u0 = O

(
1

εr3

)
+

n−n2

r2

= O
(
r−2) .(2.13)

Upon lettingv = α+ iβ, (2.2) becomes the real system (r ≥ R0)

αt = ∆α− 2n
r2 βθ +

(
−n2

r2 +1−3|u0|2
)

α

−(2Re{u0(α− iβ)}+α2 +β2)α−(α2 +β2)Re{u0}+O

(
1
r2

)
,

(2.14)
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βt = ∆β+
2n
r2 αθ +

(
− n2

r2 +1−|u0|2
)

β

−(2Re{u0(α− iβ)}+α2 +β2)β−(α2 +β2) Im{u0}+O

(
1
r2

)
.

(2.15)

Let us now consider the initial boundary value problem for (2.14)–(2.15) with
boundary data

(α+ iβ)(t,R0) = u(t,R0)e−inθ −u0(R0) ≡ (α1 + iβ1)(t)

and initial data(α + iβ)(0,x) = û(0,x)e−inθ. By the maximum principle,(α2
1 +

β2
1) ≤ 4 for anyt ≥ 0. It is convenient to subtract the nonzero boundary data off.

There exists a smooth functionb(t,x) = b1(t,x)+ ib2(t,x), b1, b2 real, such that
b1(t, |x| = R0) = α1(t), b2(t, |x| = R0) = β1(t), and thatb(t,x) is supported in the
annulusR0 ≤ |x| ≤ R0+1. Now settingα = α̃+b1, β = β̃+b2, (2.14)–(2.15) give

α̃t = ∆α̃− 2n
r2 β̃θ +

(
−n2

r2 +1−3|u0|2
)

α̃

−(2Re{u0(α̃− iβ̃)}+ α̃2 + β̃2)α̃−(α̃2 + β̃2)Re{u0}+O

(
1
r2

)
+e1 ,

(2.16)

β̃t = ∆β̃+
2n
r2 α̃θ +

(
−n2

r2 +1−|u0|2
)

β̃

−(2Re{u0(α̃− iβ̃)}+ α̃2 + β̃2)β̃−(α̃2 + β̃2) Im{u0}+O

(
1
r2

)
+e2 ,

(2.17)

wheree1 ande2 depend onb and are zero ifr > R0 + 1. The initial data become
(α̃, β̃)(0,x) = û(0,x)e−inθ − b(0,x). Note that(α̃, β̃)(t,x) = (α,β)(t,x) if |x| >
R0 + 1. Skipping the tildes of (2.16)–(2.17) and using (2.7) and (2.8), we write
(2.16)–(2.17) as

αt = ∆α− 2n
r2 βθ +

(
−2+

3n−n2

r2

)
α

−(2Re{u0(α− iβ)}+α2 +β2)α−(α2 +β2)Re{u0}+O

(
1
r2

)
+e1 ,

(2.18)

βt = ∆β+
2n
r2 αθ

−(2Re{u0(α− iβ)}+α2 +β2)β−(α2 +β2) Im{u0}+O

(
1
r2

)
+e2 .

(2.19)
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‖r−1(βθ,αθ)‖∞ ≤ ‖∇(α,β)‖∞ ≤ C for all t ≥ 0, by the maximum principle and
parabolic regularity. LetΩR0 = R

2\B(0,R0). From (2.18), we get

α(t,x) =
∫

Ω0

K1(t,x,y)α(0,y)dy

+
∫ t

0
ds
∫

Ω0

[(
− 2n

|y|2 βθ −
(
2Re{u0(α− iβ)}+α2 +β2)α

−(α2 +β2)Re{u0}
)

+O

(
1
|y|2
)

+e1

]
× (s,y)K1(t −s,x,y)dy

or

|α(t,x)| ≤
∫

Ω0

K1(t,x,y)|α(0,y)|dy+9
∫ t

0
ds
∫

Ω0

(
α2 +β2)K1dy

+C
∫ t

0
ds
∫

Ω0

(
|y|−1 +O

(
1
|y|2
)

+e1

)
K1dy,

(2.20)

whereK1 is the solution kernel of the linear exterior parabolic equation

αt = ∆α+
(
−2+

3n−n2

r2

)
α , α(t, |x| = R0) = 0, α(0,x) = δ(y) .

By the comparison principle

0≤ K1(t,x,y) ≤ K(t,x,y)e−t , ∀(t,x,y) ,(2.21)

whereK is the two-dimensional heat kernel onR
2. It follows from (2.20) that

|α(t,x)| ≤ e−t
∫

Ω0

K(t,x,y)|α(0,y)|dy

+9
∫ t

0
ds
∫

Ω0

es−t(α2 +β2)K dy

+C
∫ t

0
ds
∫

Ω0

es−t
[
|y|−1 +O

(
1
|y|2
)

+e1

]
K dy.

(2.22)

Let us show two lemmas before proceeding with estimating (2.22).

LEMMA 2.1 If v0(x) is bounded and decays as|x| → ∞, then∣∣∣∣
∫

Ω0

v0(y)K(t,x,y)dy

∣∣∣∣≤ sup
{y:|y−x|≤|x|/2}∩Ω0

|v0(y)|+C‖v0‖∞e−|x|2/4t(2.23)

for a positive constant C.

PROOF:∣∣∣∣
∫

Ω0

v0(y)K(t,x,y)dy

∣∣∣∣≤
∣∣∣∣
∫
{y:|y−x|≤|x|/2}∩Ω0

v0(y)K(t,x,y)dy

∣∣∣∣
+
∣∣∣∣
∫
{y:|y−x|≥|x|/2}∩Ω0

v0(y)K(t,x,y)dy

∣∣∣∣
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≤ sup
{y:|y−x|≤|x|/2}∩Ω0

|v0(y)|

+C
∫
{y′:|y′|≥|x|/2}

v0(x+y′)t−1e−|y′|2/4t dy′

≤ sup
{y:|y−x|≤|x|/2}∩Ω0

|v0(y)|

+C‖v0‖∞

∫
{y′:|y′|≥|x|/2}

t−1e−|y′|2/4t dy′ .

Changing variableξ = y′t−1/2/2, we find the last integral is

4
∫
|ξ|≥|x|t−1/2/2

e−|ξ|2 dξ = 16πe−|x|2/4t ,

hence ∣∣∣∣
∫

Ω0

v0(y)K(t,x,y)dy

∣∣∣∣≤ sup
{y:|y−x|≤|x|/2}∩Ω0

|v0(y)|+C‖v0‖∞e−|x|2/4t .

The proof is complete.

LEMMA 2.2 Let f(t,x) be a bounded and spatially decaying function. Then∣∣∣∣
∫ t

0
ds
∫

Ω0

f (s,y)K(t −s,x,y)dy

∣∣∣∣≤ t sup
s∈[0,t],{y:|y−x|≤|x|/2}∩Ω0

| f (s,y)|

+Cte−|x|2/4t sup
s∈[0,t],y∈Ω0

| f (s,y)| .
(2.24)

PROOF:∣∣∣∣
∫ t

0
ds
∫

Ω0

f (s,y)K(t −s,x,y)dy

∣∣∣∣
≤
∣∣∣∣
∫ t

0

∫
{y:|y−x|≤|x|/2}∩Ω0

· · ·
∣∣∣∣+
∣∣∣∣
∫ t

0

∫
{y:|y−x|>|x|/2}∩Ω0

· · ·
∣∣∣∣

≤ sup
s∈[0,t],{y:|y−x|≤|x|/2}∩Ω0

| f (s,y)|
∫ t

0
ds
∫
{y:|y−x|≤|x|/2}

(4π)−1(t −s)−1

×e−|x−y|2/4(t−s) dy

+C sup
s∈[0,t],y∈Ω0

| f (s,y)|
∫ t

0
ds
∫
{y:|y−x|>|x|/2}

(t −s)−1e−|x−y|2/4(t−s) dy

≤ t sup
s∈[0,t],{y:|y−x|≤|x|/2}∩Ω0

| f (s,y)|+C sup
s∈[0,t],y∈Ω0

| f (s,y)|
∫ t

0
dse−|x|2/4(t−s)

≤ t sup
s∈[0,t],{y:|y−x|≤|x|/2}∩Ω0

| f (s,y)|+Cte−|x|2/4t sup
s∈[0,t],x∈Ω0

| f (s,y)| .
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The proof is complete.

It follows from (2.22) and the lemmas that fort ∈ (0,1)

|α(t,x)| ≤ sup
{|y−x|≤|x|/2}∩Ω0

|α(0,y)|+C‖α(0,y)‖∞e−|x|2/4t

+Ct

[
|x|−1 +

1
|x|2 + sup

s∈[0,t],{|y−x|≤|x|/2}∩Ω0

|e1|+e−|x|2/4t
]

+9 sup
s∈[0,t],{|y−x|≤|x|/2}∩Ω0

(
α2 +β2) .

(2.25)

Similarly, equation (2.19) gives

|β(t,x)| ≤ K ? |β(0,x)|+
∫ t

0
ds
∫

Ω0

[
2n
|y|2 αθ −

(
2Re{u0(α− iβ)}+α2 +β2)β

−(α2 +β2) Im{u0}+O

(
1
|y|2
)

+e2

]
×K(t −s,x,y)dy

≤ sup
{|y−x|≤|x|/2}∩Ω0

|β(0,y)|+Ce−|x|2/4t

+C sup
{|y−x|≤|x|/2}∩Ω0

|y|−1 +9t sup
s∈[0,t],{|y−x|≤|x|/2}∩Ω0

(
α2 +β2)

+Ct sup
{|y−x|≤|x|/2}∩Ω0

1
|y|2 +Ct sup

s∈[0,t],{|y−x|≤|x|/2}∩Ω0

|e2|+Cte−|x|2/4t ,

(2.26)

by parabolic regularity, and so

|β(t,x)| ≤ sup
{|y−x|≤|x|/2}∩Ω0

|β(0,y)|+C sup
{|y−x|≤|x|/2}∩Ω0

|y|−1

+9t sup
s∈[0,t],{|y−x|≤|x|/2}∩Ω0

(
α2 +β2)+C sup

{|y−x|≤|x|/2}∩Ω0

1
|y|2

+Ct sup
s∈[0,t],{|y−x|≤|x|/2}∩Ω0

|e2|+C(1+ t)e−|x|2/4t .

(2.27)

ChooseR1 ≥ R0 +1 such thate1(t,x) = e2(t,x) = 0 if |x| ≥ R1 for all t ≥ 0.

Let us consider (2.25) and (2.27) with|x| ≥ 2R1 +2, and define the norm

‖α‖ = sup
s∈[0,t]

sup
|x|≥R1

(|x|R−1
1

)p|α(t,x)|, p∈ (2
3,1) .(2.28)



GINZBURG-LANDAU VORTICES ON THE PLANE 1199

It follows by multiplying (|x|R−1
1 )p to (2.25) and (2.27), taking the supremum over

s∈ [0, t], and|x| ≥ 2R1 +2 that

sup
s∈[0,t],{|x|≥2R1+2}

(|x|R−1
1

)p|α(s,x)| ≤ 2p‖α(0,x)‖+C‖α(0,x)‖∞‖e−|x|2/4t‖

+CR−1
1 +CR−2

1 +9t
(‖α‖2 +‖β‖2)

+C‖e−x2/4t‖

(2.29)

and

sup
s∈[0,t],{|x|≥2R1+2}

(|x|R−1
1

)p|β(s,x)| ≤ 2p‖β(0,x)‖+CR−1
1 +CR−2

1

+9t
(‖α‖2 +‖β‖2)+C‖(1+ t)e−x2/4t‖ .

(2.30)

We have from (2.29)–(2.30) that

‖(α,β)‖ ≡ ‖α‖+‖β‖ ≤ sup
s∈[0,t],{R1≤|x|≤2R1+2}

(
R−1

1 |x|)p(|α(s,x)|+ |β(s,x)|)

+ sup
s∈[0,t],{|x|≥2R1+2}

(
R−1

1 |x|)p(|α(s,x)|+ |β(s,x)|)

≤ 4(2p +1)+2p‖(α,β)(0,x)‖+18t
(‖α‖2 +‖β‖2)

+CR−1
1 +CR−2

1 +C‖e−|x|2/4t‖
≤ 4(2p +1)+2p‖(α,β)(0,x)‖+18t

(‖α‖2 +‖β‖2)
+O

(
R−1

1

)
,

implying

‖(α,β)‖ ≤ 4(2p +2)+2p‖(α,β)(0,x)‖+18t‖(α,β)‖2 .

So if 0< t < 1
72(4(2p+2)+2p‖(α,β)(0,x)‖) ≡ t0,

‖(α,β)‖ ≤ 2(4(2p +2)+2p‖(α,β)(0,x)‖) ,(2.31)

which yields

sup
s∈[0,t]

|(α,β)|(s,x) ≤ (R−1
1 |x|)−p

2(4(2p +2)+2p‖(α,β)(0,x)‖) ,(2.32)

if |x| ≥ R1, 0≤ t ≤ t0/2≡ t1.
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Let R2,0 = Rq
1, q� 2 to be chosen. Then (2.32) implies that if|x| ≥ R2,0,

sup
s∈[0,t]

|(α,β)(s,x)| ≤ (|x|(q−2)/q|x|1/q|x|1/qR−1
1

)−p
2(4(2p +2)+2p‖(α,β)(0,x)‖)

≤ |x|−p(q−2)/qR−p
1 2(4(2p +2)+2p‖(α,β)(0,x)‖)

≤ |x|−p(q−2)/q‖(α,β)(0,x)‖ .

(2.33)

Letting R2 ≥ R2,0 + 1 and introducing the tilde functions, we repeat the previous
analysis on (2.18) and (2.19) withR2,0 replacingR0, R2 replacingR1, [t1,2t1] re-
placing[0, t1], (α,β)(t1) replacing(α0,β0), andp(q−2)/q in place ofp. The result
is

(2.34) sup
s∈[t1,2t1]

|(α,β)|(s,x) ≤
(
R−1

2 |x|)−p(q−2)/q
2
[
4
(
2p(q−2)/q +2

)
+2p(q−2)/q‖(α0,β0‖

]
if |x| ≥ R2. If we chooseR3,0 = Rq

2, then (2.34) implies

sup
s∈[t1,2t1]

|(α,β)|(s,x) ≤ |x|−p( q−2
q )2‖(α0,β0)‖(2.35)

if |x| ≥ R3,0. Iterating the above procedurem times such thatT ∈ [(m−1)t1,mt1],
then

sup
s∈[(m−1)t1,mt1]

|(α,β)|(s,x) ≤ |x|−p( q−2
q )m‖(α0,β0)‖(2.36)

if |x| ≥ Rm+1,0 = Rq
m. We impose the condition that

p

(
q−2

q

)m

≥ p′, p′ ∈ [2
3, p) ,

which holds if

p

(
q−2

q

) T
t1

+1

≥ p′ ,

or

q≥ 2

1−exp
{

log p′
p

T
t1

+1

} ∼ −2

log p′
p

(
T
t1

+1

)
+higher order terms(2.37)

Now for any givenT ≥ 1, selectingq > 0 as in (2.37), withm such thatT ∈
[(m−1)t1,mt1], we have

sup
s∈[0,T]

|(α,β)|(x) ≤ |x|−p′‖(α0,β0)‖ , p′ ∈ [2
3,1) ,(2.38)
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if |x| ≥ Rq
m. By local existence and parabolic regularity, if|x| ≥ Rq

m+1, then

sup
s∈[0,T]

|(α,β,∇(α,β),∆(α,β))|(s,x) ≤C|x|−p′‖(α0,β0,∇(α0,β0),∆(α0,β0))‖
(2.39)

with p′ ∈ [2
3,1). Finally, we can use (2.38) and (2.39) in (2.14)–(2.15) to improve

the decay exponentp′ to any number≤ 2. Summarizing, we have proven the
following:

PROPOSITION2.3 Consider(2.14)–(2.15)and fix a p′ ∈ [2
3,2]. Then for any T>

0, ∃R∗ = R∗(T,ε) such that if|x| ≥ R∗, R∗ is larger than any powers ofε−1 if
T = ε−2 or ε−2 logε−1, the inequalities(2.38)and(2.39)hold with p′ ∈ [2

3,2] with
a positive constant C uniformly in T andε.

3 Energy Comparison on the Rescaled Solutions

In this section, we scale G-L solutions in space and timex → X
ε , t → ε−2λετ,

with λε = 1 or logε−1. The results of last section easily translate into analogous
ones in(τ,X). If λε = 1, the rescaled equation is

uτ = ∆u+ ε−2(1−|u|2)u, u(0,X) = u0(X,ε) ,(3.1)

whereu0(X,ε) converges inL2
loc(R

2) to ∏n
j=1 (X−xin

j )/|X−xin
j |. This is seen from

(1.3)–(1.4). Each factorΨ(X/ε,xin
j /ε) is bounded by one in absolute value and

converges inL2
loc(R

2) to eiθ j , since the amplitude goes to 1 pointwise except at
X = xin

j . The remainder ˆu(0, X
ε ) clearly goes to 0 inL2

loc(R
2). The result is the

desired product consisting of all initial vortex phases.

Let us define

Φ(R) =
∫

R2
eε(u)

(−R2,X
)

exp

{
−|X−x0|2

4R2

}
dX ,(3.2)

whereR> 0, x0 is any point on the plane, and

eε(u) =
1
2
|∇u|2 +

1
4ε2

(
1−|u|2)2

,

the energy density. We show the monotonicity inequality

Φ(R) ≤ Φ(R′) , ∀R< R′ .(3.3)
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Calculating d
dRΦ(R), we have, using (3.1) and integration by parts,

d
dR

Φ(R) =
∫

(−2R)eε,t exp

{
−|X−x0|2

4R2

}
+

|X−x0|2
2R3 eε(u)exp

{
−|X−x0|2

4R2

}

=
∫

(−2R)exp

{
−|X−x0|2

4R2

}[
∇u·∇uτ + ε−2(1−|u|2)(−uuτ

)]
+
∫ |X−x0|2

2R3 eε(u)exp

{
−|X−x0|2

4R2

}

=
∫

2R|uτ|2exp

{
−|X−x0|2

4R2

}
+
∫

(−2R)uτ exp

{
−|X−x0|2

4R2

}

× X−x0

2R2 ·∇u+
∫ |X−x0|2

2R3 eε(u)exp

{
−|X−x0|2

4R2

}

≥
∫ [

2R|uτ|2−R−1uτ(X−x0) ·∇u+
|X−x0|2

4R3 |∇u|2
]

×exp

{
− |X−x0|2

4R2

}

≥
∫ [√

2R−1|uτ||∇u||X−x0|−R−1uτ(X−x0) ·∇u
]

×exp

{
−|X−x0|2

4R2

}
≥ 0,

(3.4)

which gives (3.3).
From now on, let us translateτ → τ− τ2

0, with a fixed constantτ0 > 0, so that
the initial datau0 is now at the timeτ = −τ2

0. We have from (3.2) and (3.3)∫
eε(u)

(− τ2
1,X
)

exp

{
−|X−x0|2

4τ2
1

}
≤
∫

eε(u0)exp

{
−|X−x0|2

4τ2
0

}
(3.5)

for anyτ1 ∈ (0,τ0). Hereτ = −τ2
1 is a later time.

Now we study the energy distribution on a series of annular domains that par-
tition the ballBR4 = B(0,R4), whereR4 = 2εR∗, R∗ = R∗(T,ε) being the radius in
Proposition 2.1 so that outside ofB(0,R4), the solutionuε essentially behaves as
einθ plus a small perturbation. We have the factorε because we are measuring in
the scaled variableX. Let us defineR3 = 2τ0

√
log log(1/ε) and chooseR2 to be

larger than 2L0 so that expression (2.12) is valid. Note that the radius of validityR0

of (2.12) has to be multiplied byε to becomeL0 due to the scalingx→ X
ε . Finally,

let R1 be a finite number large enough so thatB(0,R1) encloses all initial vortices,
R1 > ∑n

j=1 |xin
j |+1, andR1 < R2.

Next we defineTε
e to be the first time a vortex (sayXε

j (τ)) exits the ballB(Xε
j , r0),

wherer0 is half the size of the minimum of the distances between all initial vortices
and between initial vortices and∂BR1. TheTε

e is well-defined because vorticesXε
j
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move continuously, and its size will be clear from the coming energy estimates.
The time interval we shall be concerned with isτ ∈ [−τ2

0,−τ2
0 +Tε

s ], with the time
spent being

Tε
s = min

(
Tε

e ,
τ2

0

2

)
.(3.6)

We first observe that for smallε∫
BR1

eε(u0)dX = nπ log
1
ε

+C0 +o(1) .(3.7)

In fact, we can findr ′j < r j , all O(1), so that
n⋃

j=1

B
(
xin

j , r ′j
)⊂ BR1 ⊂

n⋃
j=1

B
(
xin

j , r j
)
, xin

j 6∈
⋃
j ′ 6= j

B
(
xin

j ′ , r j ′
)
.

On eachB(xin
j , r ′j) or B(xin

j , r j), u0 is well approximated by a single one vortex with

core sizeO(ε) located atxin
j . The energy of such a single vortex isπ log 1

ε +O(1)
by a direct calculation. In fact, theπ log 1

ε contribution comes from the integral of
1
2|∇u0|2, in particular, the derivative with respect to the vortex phase. The contri-
bution from the derivative of the vortex amplitude and the remaining part of the
energy functional giveO(1). Summing up all the contributions yields (3.7). Over
the annulusR1 ≤ |X| ≤ R2, u0 has finiteH1 norm uniformly inε; hence∫

BR2\BR1

eε(u0)dX ≤C1 = C1
(
R1,L0

)
.(3.8)

Next, if |X| = R> R2, by (2.1) and (2.12),u0 = u0(X,ε) can be written as

u0 =
(

1− nε2

2|X|2 +O

(
ε2

|X|3
))

exp
{

inθ+ iF (θ)|X|−1 +O
(|X|−2)}

≡ An(R,ε)exp{· · ·} .

(3.9)

So

∫
BR\BR2

eε(u0)dX = O(1)+
∫

BR\BR2

1
2
|∇u0|2

= O(1)+
1
2

∫
θ∈[0,2π]

∫ R

R2

RdR
[(

An,R− iR−2F(θ)+O(R−3)
)2

+R−2(n+O(R−1))2]
= πn2 log

R
R2

+O(1) = πn2 logR+O(1) .

(3.10)

Summing up (3.7), (3.8), and (3.10), we find there is a positive constantC indepen-
dent ofε such that∫

BR

eε(u0)dX = nπ logε−1 +πn2 logR+C+o(1)(3.11)
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for all R> R2.
Now let us proceed with energy estimates of solutionuε on annular domains in

four steps.

3.1 Step 1

There are no essential zeros ofuε in BR4\BR3 for τ ∈ [−τ2
0,−τ2

0 + Tε
s ]. By an

essential zero, we mean the zero that carries an energy of the orderO(log(1
ε )); see

[4].
Suppose otherwise, and there is an essential zero atx0 ∈BR4\BR3 whenτ =−τ2

1.
Clearlyτ2

1 ∈ (τ2
0/2,τ2

0). We can find a positive numberδ ∈ (0,τ1) independent ofε
such thatB(x0,δ) ⊂ BR4+δ\BR3−δ. Then by (3.5)

e−δ2/4τ2
1

∫
|X−x0|≤δ

eε(u)(−τ2
1,X)

≤
∫
|X−x0|≤δ

eε(u)(−τ2
1,X)e−|X−x0|2/4τ2

1

≤
∫

R2
eε(u0)e−|X−x0|2/4τ2

0

=
(∫

BR2

+
∫

R2\BR2

)
eε(u0)e−|X−x0|2/4τ2

0

≤ 1

log 1
ε

∫
BR2

eε(u0)+
∫

R2\BR2

1
2
|∇u0|2e−|X−x0|2/4τ2

0 +C

≤C+C
∫

θ∈[0,2π]

∫ ∞

R2

R dRe−|X−x0|2/4τ2
0

≤C3 = C3(τ0) .

(3.12)

It follows that∫
|X−x0|≤δ

eε(u)(−τ2
1,X) ≤C3(τ0)eδ2/4τ2

1 ≤C3(τ0)e1/4,(3.13)

from which we deduce a contradiction, since bothτ0 andδ are independent ofε.

3.2 Step 2: Energy Inequality and Upper Bound onBR4

We calculate
d
dτ

∫
BR4

eε(u) =
∫

BR4

∇uε ·∇uε
τ + ε−2(1−|uε|2)(−uεuε

τ)

= −
∫

BR4

|uε
τ|2 +

∫
∂BR4

uε
τu

ε
R.

(3.14)

Recall that at∂BR4

u = uε = An(R,ε)exp{inθ+ iF (θ)R−1 +O(R−2)}+vεeinθ ,
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wherevε is thev in Proposition 2.1 scaled according tox→ X
ε , t → τ

ε2 . It follows
that at|X| = R4

uε
R = (An,R+An(−iR−2F(θ)+O(R−3)))exp{· · ·}+vε

Reinθ

∼ O

(
ε2

R3
4

)
+O(R−2

4 )+ ε−1O((ε−1R4)−p)

uε
τ = ε−2vte

inθ = ε−2O((ε−2R4)−p) ,(3.15)

wherep∈ (2
3,2]. It follows that∫

∂BR4

uε
τu

ε
R ∼ ε−3+3pO(R1−2p

4 ) → 0 asε → 0.(3.16)

For (3.16),p > 1
2 suffices. It follows from (3.14) that∫

BR4

eε(u)+
∫ τ

−τ2
0

∫
BR4

u2
τ ≤

∫
BR4

eε(u0)+C(3.17)

for τ ∈ [−τ2
0,−τ2

0 +Tε
s ]. In view of (3.11)∫

BR4

eε(u)+
∫ τ

−τ2
0

∫
BR4

u2
τ ≤ nπ logε−1 +πn2 logR4 +C,(3.18)

whereτ ∈ [−τ2
0,−τ2

0 +Tε
s ].

3.3 Step 3: Energy Inequalities onBR3

By Step 1, there are no essential zeros inBR4\BR3 for τ ∈ [−τ2
0,−τ2

0 +Tε
s ]. For

ε small enough, modifyu to ũ such that|ũ| ≥ 1
2, ũ is an energy minimizer on

the annulusBR4\BR3 with Neumann boundary condition [6]. Then writing ˜u =
Aei(nθ+h) for a well-defined smooth functionh, we calculate∫

BR4\BR3

eε(ũ) =
1
2

∫
BR4\BR3

|∇A|2 + |A|2(n2|∇θ|2 +2n∇θ ·∇h+ |∇h|2)

+
∫

BR4\BR3

(|A|2−1)2

4ε2

=
1
2

∫
BR4\BR3

|A|2|∇h|2 +
2n
r

hθ(|A|2−1)+
(|A|2−1)2

2ε2

+
1
2

∫
BR4\BR3

n2

r2 +
(|A|2−1)n2

r2 + |∇A|2

≥
∫

BR4\BR3

[ |∇h|2
16

+
(|A|2−1)2

4ε2 −c(n)(|A|2−1)2 +
|∇A|2

2

]

+n2π log
R4

R3
−c(n)R−1

3

(∫
BR4\BR3

(|A|2−1)2
)1/2

≥ n2π log
R4

R3
−c(n) .
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It follows that ∫
BR4\BR3

eε(u) ≥
∫

BR4\BR3

eε(ũ) ≥ n2π log
R4

R3
−C.(3.19)

On the other hand, (3.18) implies∫
BR3

eε(u) =
∫

BR4

eε(u)−
∫

BR4\BR3

eε

≤ nπ logε−1 +πn2 logR4 +C−πn2 log
R4

R3
+C

= nπ logε−1 +πn2 logR3 +2C

≤ nπ logε−1 +
1
2

πn2 loglog log
1
ε

+3C.

(3.20)

3.4 Step 4: Energy Lower Bound onBR4

By continuity, we know that there are at leastn essential zeros inBR1. Hence∫
BR1

eε(u) ≥ nπ logε−1−C(3.21)

for τ ∈ [−τ2
0,−τ2

0 +Tε
s ]; see lemma 2 of [6]. It follows from (3.20) and (3.21) that

there are no essential zeros in the annulusBR3\BR1 for τ ∈ [−τ2
0,−τ2

0 +Tε
s ]. As in

Step 3, using an energy minimizer to modifyu, we have the lower bound∫
BR3\BR1

eε(u) ≥ πn2 log
R3

R1
−C, τ ∈ [−τ2

0,−τ2
0 +Tε

s ] .(3.22)

Adding up (3.19), (3.21), (3.22), we find that∫
BR4

eε(u) ≥ nπ log
1
ε

+n2π logR4−C, τ ∈ [−τ2
0,−τ2

0 +Tε
s ] .(3.23)

Combining (3.23) with (3.18), we deduce that∫ τ

−τ2
0

∫
BR4

|uε
τ|2 ≤C, τ ∈ [−τ2

0,−τ2
0 +Tε

s ] .(3.24)

It is easy to see that the above four steps can be carried out for anyR≥ R4 as well;
hence ∫ τ

−τ2
0

∫
BR

|uε
τ|2 ≤C, ∀R> 0, τ ∈ [−τ2

0,−τ2
0 +Tε

s ] ,(3.25)

for a positive constantC uniformly in ε.
We conclude this section with the following:

PROPOSITION3.1 Solution u= uε of the rescaled Ginzburg-Landau equation(3.1)
satisfies the energy estimate for any R> ∑n

j=1 |xin
j |+1, andτ ∈ [−τ2

0,−τ2
0 +Tε

s ]∫
BR

eε(u) = nπ log
1
ε

+n2π logR+O(1) ,(3.26)
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uniformly in ε → 0 and R→ +∞. Moreover, inequality(3.25)holds for the time
derivative over the same time interval.

As a corollary, there are exactlyn essential zeros insideB(0,R1) over the time
intervalτ ∈ [−τ2

0,−τ2
0 +Tε

s ].

4 Vortex Mobility and Dynamical Law

Let us first show that vortices initially located at thexin
j ’s do not move in the

time scalet ∼ O(ε−2). To this end, we look at the rescaled G-L equation (3.1). As
in section 3 and theorem 3.3 of [4], letϕ ∈C∞

0 (BR2), and letϕ be supported away
from small neighborhoods of thexin

j ’s in BR1. The functionϕ is independent ofε.
We calculate

d
dτ

∫
BR2

ϕ2eε(u) =
∫

BR2

ϕ2(∇u·∇uτ + ε−2(−uuτ)(1−|u|2))

= −
∫

BR2

ϕ2|uτ|2−2
∫

BR2

ϕuτ∇u·∇ϕ

≤
∫

BR2

ϕ2 |∇u|2
2

+C(ϕ)
∫

BR2

|uτ|2

≤
∫

BR2

ϕ2eε(u)+C(ϕ)
∫

BR2

|uτ|2 ,

implying via (3.25) and upon integrating inτ ∈ [−τ2
0,T

′], with T ′ ≤ −τ2
0 +Tε

s , that∫
BR2

ϕ2eε(u) ≤ eT ′+τ2
0

∫
BR2

ϕ2eε(u0)+
∫ T ′

−τ2
0

dseT
′−sC(ϕ)

∫
BR2

|uτ|2

≤ eT ′+τ2
0C(ϕ)+eT ′+τ2

0C(ϕ)
∫ T ′

−τ2
0

∫
BR2

|uτ|2 ≤ eτ2
0C1(ϕ) .

(4.1)

Hence vortices do not move forτ ∼ O(1) asε → 0. In other words,Tε
e = +∞,

Tε
s = τ2

0/2.
In general, for time scalet ∼ O(ε−2λε) or τ = ε2λ−1

ε t ∼ O(1), λε → +∞, as
ε → 0, the monotonicity formula and energy comparison arguments in Section 3
apply also. The rescaled equation now becomes

1
λε

uτ = ∆u+ ε−2(1−|u|2)u,(4.2)

except that the factore−|X−x0|2/(4R2) in the definition ofΦ(R) should be

e−|X−x0|2/(4R2λε) .

TheR3 is now 2τ0λ1/2
ε
√

log logε−1. The bound (3.24) is replaced by∫ τ

−τ2
0

dτ
∫

BR4

u2
τ ≤Cλε ,(4.3)
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with τ ∈ [−τ2
0,−τ2

0+Tε
s ], whereC is independent ofε. A calculation similar to that

of (4.1) shows that ∫
BR2

ϕ2eε(u) ≤ λεe
TC(ϕ)(4.4)

over the same time interval, and thus vortices still do not move ifλε = o(logε−1).
We also haveTε

s = τ2
0/2.

Now let us consider the time scalet ∼ O(ε−2 logε−1) or whenλε = logε−1.
The energy bounds are∫

BR

eε(u) ≤ nπ log
1
ε

+πn2 logR+C(4.5)

and

1

log 1
ε

∫ τ

−τ2
0

dτ
∫

BR

|uτ|2 ≤C(4.6)

for anyR> R1 andτ ∈ [−τ2
0,−τ2

0 +Tε
s ]. As in [4, 5], a calculation on

d
dτ

∫
BR2

ϕ2 eε(u)
logε−1

with the help of (4.6) shows that

eε(u)
logε−1 ⇀ π

n

∑
j=1

δxj (τ)(4.7)

in the sense of distribution (as measures), and that thexj(τ) are continuous in time
with the modulus of continuity depending on the energy estimates. Then there is a
constantτ′ = τ′(R1) > 0 independent ofε such that ifτ0 ≤ τ′, Tε

s = τ2
0/2.

PROOF OFTHEOREM 1.1: Let us first consider the small time intervalτ ∈
[−τ2

0,−τ2
0/2]. For convenience, let us translate the time forward byτ2

0 so that
τ ∈ [0,τ2

0/2] with τ0 ≤ τ′. Let R∈ [R0,2R0], R0 > 0 so thatxj(t) ∈ BR(xj(0)) for
τ ∈ [0,τ2

0/2]. We calculate the first moment of the measureeε(u)/ logε−1:

1

log 1
ε

d
dτ

∫
BR(xj (0))

~x

(
1
2
|∇u|2 +

1
4ε2(1−|u|2)2

)
=

− 1

(log 1
ε )

2

∫
BR(xj (0))

|uτ|2~x+
1

log 1
ε

∫
∂BR(xj (0))

~xuτuν − 1

log 1
ε

∫
BR(xj (0))

uτ∇u.

(4.8)

Integrating (4.8) overτ ∈ [0,τ2
0/2] andR∈ [R0,2R0], and dividing byR0, we find

L.H.S. of(4.8) = R−1
0

∫ 2R0

R0

dR
∫

BR(xj (0))
~x

[
eε(u)

logε−1 −
eε(u0)
logε−1

]
(4.9)
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and

R.H.S. of(4.8) = − 1

(log 1
ε )

2

∫ τ

0
R−1

0

∫ 2R0

R0

∫
BR(xj (0))

~x|uτ|2

+
1

log 1
ε

∫ τ

0
R−1

0

∫ 2R0

R0

∫
∂BR(xj (0))

uτuν~x

− 1

log 1
ε

∫ τ

0
R−1

0

∫ 2R0

R0

∫
BR(xj (0))

uτ∇u.

(4.10)

Due to (4.6), the first term of (4.10) converges to zero asε → 0. Similarly, the
second term of (4.10) goes to zero because of (4.6) and

∫ 2R0
R0

∫
∂BR(xj (0)) |uν|2 ≤C as

a consequence of the absence of vortices in the annulusR0 ≤ |x| ≤ 2R0. In view of
(4.2), we have, using integration by parts,

1

log 1
ε

∫
BR(xj (0))

uτ∇u = −
∫

∂BR(xj (0))

1
2
|∇u|2ν+

∫
∂BR(xj (0))

uν∇u

− 1
4ε2

∫
∂BR(xj (0))

(1−|u|2)2ν ;

hence asε → 0,

R.H.S. of(4.8) ∼
∫ τ

0
R−1

0

∫ 2R0

R0

∫
∂BR(xj (0))

1
2
|∇u|2ν+

1
4ε2(1−|u|2)2ν−uν∇u.

(4.11)

By strong convergence ofu = uε in H1 away from vortices [4],∫ τ

0
R−1

0

∫ 2R0

R0

∫
∂BR(xj (0))

1
4ε2(1−|u|2)2ν → 0,(4.12)

and by the general weak convergence [4, 6],

uε → exp

{
i

n

∑
l=1

θl + ih(x)
}

(4.13)

in L2
loc strong butH1

loc weak, whereθl = arg(x− xl ), l = 1,2, . . . ,n, andh(x) is a
harmonic function. It follows that asε → 0

R.H.S. of(4.8) →
∫ τ

0
R−1

0

∫ 2R0

R0

∫
∂RB(xj (0))

1
2
|∇v|2ν−vν∇v,(4.14)

wherev = ei(H+h) and

H =
n

∑
l=1

arctan

(
η−ηl

ξ−ξl

)
,(4.15)

where(ξ,η) = x, (ξl ,ηl ) = xl .
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We show thath≡ const. It follows from energy inequality (4.4)∫
BR\⋃n

j=1 BR0(xj (0))

1
2
|∇v|2 ≤ n2π logR+C(4.16)

asR→ +∞. Plugging in the weak limitei(H+h), we see that∫
BR\⋃n

j=1 BR0(xj (0))
|∇h|2 ≤ O(logR)(4.17)

implying |∇h| ≤ const. Sincehξ andhη are harmonic functions, they must all be
constant. Soh is linear,h= aξ+bη+c. By (4.17),h must be identically a constant.

Now back to (4.14), using polar coordinates, we have asε → 0

R.H.S. of (4.8)→
∫ τ

0
R−1

0

∫ 2R0

R0

∫
∂BR(xj (0))

1
2
|∇H|2ν−Hν∇H

=
∫ τ

0
R−1

0

∫ 2R0

R0

∫
∂BR(xj (0))

(
1
2(H2

ξ +H2
η)cosθ−Hξ(Hξ cosθ+Hη sinθ)

1
2(H2

ξ +H2
η)sinθ−Hη(Hξ cosθ+Hη sinθ)

)

=
∫ τ

0
R−1

0

∫ 2R0

R0

∫
∂BR(xj (0))

(
1
2(H2

η −H2
ξ )cosθ−HξHη sinθ

1
2(H2

ξ −H2
η)sinθ−HξHη cosθ

)
.

(4.18)

The inner boundary integral is on the Hopf differential1
2w(z) = 1

2(Hξ − iHη)2 (see
[1]) and hence is independent of the size of radiusR. It is convenient to take the
limit R→ 0 for evaluation.

We calculate from (4.15) that

Hξ =
n

∑
l=1

−(η−ηl )
(ξ−ξl )2 +(η−ηl )2 ≡

(
∑
l 6= j

· · ·
)

I
+

−(η−η j)
(ξ−ξ j)2 +(η−η j)2 ,

Hη =
n

∑
l=1

(ξ−ξl )
(ξ−ξl )2 +(η−ηl )2 ≡

(
∑
l 6= j

· · ·
)

II
+

(ξ−ξ j)
(ξ−ξ j)2 +(η−η j)2 .

(4.19)

It follows, via polar coordinates, that

1
2
(H2

η −H2
ξ ) =

1
2

(ξ−ξ j)2− (η−η j)2

((ξ−ξ j)2 +(η−η j)2)2 +
(

∑
l 6= j

· · ·
)

II

(ξ−ξ j)
(ξ−ξ j)2 +(η−η j)2

+
(

∑
l 6= j

· · ·
)

I

(η−η j)
(ξ−ξ j)2 +(η−η j)2 + regular terms

=
1
2

cos2θ
r2 +

(
∑
l 6= j

· · ·
)

II

cosθ
r

+
(

∑
l 6= j

· · ·
)

I

sinθ
r

+ regular terms.

(4.20)
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Similarly,

HξHη =
−(ξ−ξ j)(η−η j)

((ξ−ξ j)2 +(η−η j)2)2 +
(

∑
l 6= j

· · ·
)

II

−(η−η j)
(ξ−ξ j)2 +(η−η j)2

+
(

∑
l 6= j

· · ·
)

I

ξ−ξ j

(ξ−ξ j)2 +(η−η j)2 + regular terms

=
−sin2θ

2r2 +
(

∑
l 6= j

· · ·
)

II

(−sinθ
r

)

+
(

∑
l 6= j

· · ·
)

I

cosθ
r

+ regular terms.

(4.21)

It follows from (4.20) that

lim
R→0

∫
∂BR(xj (0))

1
2
(H2

η −H2
ξ )cosθ−HηHξ sinθ

=
(

∑
l 6= j

· · ·
)

II

∫ 2π

0
cos2 θ+

(
∑
l 6= j

· · ·
)

II

∫ 2π

0
sin2 θ

= 2π
(

∑
l 6= j

· · ·
)

II

∣∣∣∣
x=xj

= 2π ∑
l 6= j

ξ j −ξl

(ξ j −ξl )2 +(η j −ηl )2 .

(4.22)

Similarly,

(4.23) lim
R→0

∫
∂BR(xj (0))

1
2
(H2

ξ −H2
η)sinθ−HηHξ cosθ =

2π ∑
l 6= j

η j −ηl

(ξ j −ξl )2 +(η j −ηl )2 .

Define

W = W(x1,x2, . . . ,xn) = −∑
l 6= j

log|xj −xl | ,(4.24)

wherexj = (ξ j ,η j). Then (4.22) and (4.23) form the two components of−π∇xjW.
Therefore, asε → 0, we combine (4.7), (4.9), (4.18), (4.22), and (4.23) to deduce
the vortex dynamical law

xj(τ)−xin
j = −

∫ τ

0
∇xjW

or
d
dτ

xj = −∇xjW ,(4.25)

with xj(0) = xin
j , and over the time intervalτ ∈ [0,τ2

0/2]. The dynamics of (4.25)
implies that vorticesxj(t) repel each other, and the distances between vortices in-
crease in time. So we always havexi(τ) 6= xj(τ) for i 6= j. Now the energy estimate
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at τ = τ2
0/2 is of the same form as whenτ = 0 (Proposition 3.1). We can thus en-

largeR1 andR2 by anO(1) amount if necessary and repeat the above analysis over
the next time interval of lengthτ2

0/2. Since the size ofτ0 depends only on the start-
ing vortex configuration and the energy estimates, we iterate the above procedure
in time to reachτ = T. The proof of Theorem 1.1 is complete.
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