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Abstract: The nonlinear Schr¨odinger equation (NLS) has been a fundamental model
for understanding vortex motion in superfluids. The vortex motion law has been formally
derived on various physical grounds and has been around for almost half a century. We
study the nonlinear Schr¨odinger equation in the incompressible fluid limit on a bounded
domain with Dirichlet or Neumann boundary condition. The initial condition contains
any finite number of degree±1 vortices.We prove that the NLS linear momentum weakly
converges to a solution of the incompressible Euler equation away from the vortices. If
the initial NLS energy is almost minimizing, we show that the vortex motion obeys the
classical Kirchhoff law for fluid point vortices. Similar results hold for the entire plane
and periodic cases, and a related complex Ginzburg–Landau equation. We treat as well
the semi-classical (WKB) limit of NLS in the presence of vortices. In this limit, sound
waves propagate through steady vortices.

1. Introduction

We study the two dimensional nonlinear Schr¨odinger (NLS) equation:

iuε,t = 1xuε + ε−2(1 − |uε|2)uε, x ∈ �, (1.1)

whereuε = uε(t, x) is a complex valued function defined for eacht > 0; ε a small
positive parameter;x = (x1, x2) ∈ �, a simply connected bounded domain with smooth
boundary inR

2; 1 = ∂x1x1 + ∂x2x2 denotes the two-dimensional Laplacian. The NLS
(1.1) has been proposed and studied as the fundamental equation for understanding
superfluids, see Ginzburg and Pitaevskii [14], Landau and Lifschitz [19], Donnelly [9],
Frisch, Pomeau and Rica [13], Josserand and Pomeau [18], and many others.

We shall consider (1.1) with the prescribed Dirichlet boundary condition:

u|∂� = g(x), |g| = 1, deg(g, ∂�) = ±n, (1.2)
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wheren is a given positive integer, and the zero Neumann boundary condition:

uν |∂� = 0, (1.3)

ν the normal direction. Our method is general enough that we can handle the entire plane
case (� = R

2) and the periodic case too.
We will see that asε ↓ 0, the Dirichlet boundary condition corresponds to applying

a tangential force at the boundary so that the tangential fluid velocity isg ∧ gτ , τ the
tangential unit direction. The Neumann boundary condition corresponds to zero normal
fluid velocity (no fluid penetration) at the boundary. For ease of presentation, we shall
work with the Dirichlet case first, then comment on all necessary modifications in the
proof to reach a similar conclusion for the Neumann case. Subsequently, we also remark
on the entire plane and periodic cases.

The NLS (1.1) preserves the total energy:

Eε(uε) =
∫

�

eε(uε) ≡
∫

�

1
2
|∇uε|2 +

(1 − |uε|2)2

4ε2
, (1.4)

and admits vortices in solutions, which are points where|uε| becomes zero and the phase
of uε or uε

|uε| has singularities. These points are the locations of regular fluids, which are
surrounded by superfluids. If there aren degree one point vortices in the solution, the
energyEε(uε) has the asymptotic expression:

Eε(uε)(t) = Eε(uε)(0) = nπ log
1
ε

+O(1). (1.5)

So we shall consider initial datauε(0, x) = u0
ε(x) with n degree one vortices, and

belonging toH2(�) for eachε > 0 so that (1.5) holds. With initial and boundary data
(1.5) and (1.2), it is well-known [3] that the defocusing NLS (1.1) is globally well-posed
in C(R+, H2) ∩C1(R+, L2) for eachε > 0. Our goal is to analyze the limiting behavior
of solutions asε ↓ 0.

The systematic matched asymptotic derivation of the limiting vortex motion law was
carried out by Neu [28] for� = R

2. The motion law is the classical Kirchhoff law for
fluid point vortices [1], and was known to Onsager [30] in 1949. The connection between
Schrödinger equations and the classical fluid mechanics was already noted in 1927 by
Madelung [26], which applies to NLS (1.1) as well. Along this line, there have been
over the years many formal derivations of Kirchhoff law based on Madelung’s fluid
mechanical formulation, see Creswick and Morrison [7], Ercolani and Montgomery
[11], among others. Madelung’s idea was to identify|u|2 as the fluid densityρ, and
∇θ = ∇ argu, as the fluid velocityv. Then he defined the linear momentump = ρ∇θ.
In the new variables (ρ, v), the NLS (1.1) becomes:

ρt − 2∇ · p = 0, (1.6)

pt − 2∇ · (ρv ⊗ v) = −∇P (ρ) − 1
2
∇ · (ρHess(logρ)), (1.7)

whereP = 1
2ε2 (1 − ρ2) is the pressure, and Hess denotes the Hessian. Madelung’s

formulation of course relies on the assumption that the amplitude ofu is not zero and
the phaseθ is not singular, otherwise the transform is not well-defined and (1.6)–(1.7)
gets singular even though NLS itself is still regular. When we are studying solutions
with vortices, this singular case is however just what we have to deal with, and so an
alternative intepretation of the fluid formalism related to but different from Madelung’s
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transform must be used instead. In view of the energy functional (1.4),ρ is close to
one almost everywhere asε ↓ 0, and (1.6) implies formally that∇ · v = 0, provided
v converges. Hence the limiting problem we are considering is an incompressible fluid
limit involving vortices. We also see that the Neumann boundary condition (1.3) says
that θν = v · ν = 0, if we writeu = ρ1/2eiθ and assume that vortices are away from
the boundary (soρ ∼ 1). Hence (1.3) reduces to the zero normal velocity boundary
condition for ideal classical fluids.

Let us mention that a modified Madelung’s transform has been utilized in the study
of the semi-classical limit (WKB limit) of NLS:

iuεt = ε1xu
ε + ε−1|uε|2uε, (1.8)

with initial data:u(0, x) = a0(x)eiS0(x)/ε. Grenier [15] showed in particular that fora0
andS0 in Hs(Rd), s > 2 + d/2, solutionsuε exist on a small time interval [0, T ], T
independent ofε. Moreover,uε = a(t, x, ε)eiS(t,x,ε)/ε, with a andS in L∞([0, T ];Hs)
uniformly in ε, and (ρ,∇S) converge to the solution (ρ, v) of the isentropic compressible
Euler equation:

ρt + ∇ · (ρv) = 0,

vt + ∇(
|v|2
2

+ ρ) = 0. (1.9)

In one space dimension, using integrable machinery, Jin, Levermore and McLaughlin
[17] obtained the above convergence results globally in time. These works on the com-
pressible fluid limit treated only the regime of smooth phase functions, and there are no
vortices involved.

Since the formation of vortices, their motion, and the resulting drag force are of
tremendous physical significance in superfluids, [13, 18], it has been a longstanding
fundamental problem to understand how to rigorously pass to the classical fluid limit in
the presence of vortices.

Our approach begins with writing the conservation laws of NLS in the form of fluid
dynamic representation. However, in contrast to all earlier applications of the Madelung
transform, we avoid making explicit use of the phase variableθ and do not work with
(1.6)–(1.7). The conservation laws of NLS are put into the form:

• Conservation of mass:

∂t|uε|2 = 2∇ · p(uε), (1.10)

where in vector notationp(uε) = uε ∧ ∇uε, the linear momentum.
• Conservation of linear momentum:

∂tp(uε) = 2div (∇uε ⊗ ∇uε) − ∇Pε, (1.11)

where:

Pε = |∇uε|2 + uε · 1uε − |uε|4 − 1
2ε2

, (1.12)

is the pressure.
• Conservation of energy:

∂teε(uε) = div (uε,t∇uε). (1.13)
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Then we study convergence of various terms in (1.10)–(1.11) using the above three
conservation laws (in particular the projection of (1.11) onto divergence free fields),
and perform various circulation calculations involving the linear momentump and its
first moments. We show that vortices do not move on the slower time scalet ∼ O(λε),
λε → 0 asε → 0, and they move continuously on the scalet ∼ O(1). With precise
characterization of weak limits of linear momentump, we are able to show thatp
converges locally in space tov, the solution of the two-dimensional incompressible
Euler equation away from then continuously moving point vortices, and moreover,
v is curl-free. Thatv is curl-free away from vortices agrees with the physical picture
that superfluids are potential flows [19]. Finally, the motion law of point vortices (the
Kirchhoff law) follows from the limiting linear momentum equation. Our main results
are:

Theorem 1.1 (Weak convergence and fluid limit). Let us consider NLS (1.1) with Dirich-
let boundary condition (1.2), and initial energy (1.5) withn degreenj = ±1 vortices.
Then asε ↓ 0, the energy densityeε(uε) concentrates as Radon measures inM(�) for
any fixed timet ≥ 0:

e(uε)dx

πn log 1
ε
⇀

n∑
j=1

δaj (t),

and vortices ofuε converge toaj(t) moving continuously in time oft ∼ O(1) (or
t ∈ [0, T ], T any fixed constant) asε ↓ 0. Vortices ofuε do not move on any slower
time scalet ∼ O(λε) = o(1) (or t = λετ , τ ∈ [0, T ], T any fixed positive constant, and
λε → 0) as ε ↓ 0. Moreover on the time scalet ∼ O(1), the linear momentump(uε)
converges weakly inL1([0, T ]; L1

loc(�a)) to a solutionv of the incompressible Euler
equation:

vt = 2v · ∇v − 2∇P, div v = 0, x ∈ �a ≡ {�\(a1(t), · · · , an(t))}
with boundary condition:v ·τ = g∧gτ , τ the unit tangential vector on∂�. The function
v is precisely characterized as:

v = ∇(2a + ha),

where

2a =
n∑

j=1

arg

(
x− aj(t)
|x− aj(t)|

)nj

,

andha is harmonic on� satisfying the boundary condition:ha,τ = −2a,τ + g ∧ gτ , on
∂�. Soh is unique up to an additive constant. The total pressure2P is a single-valued
function on�, and is smooth on�a. The quadratic tensor product weakly converges as:

∇uε ⊗ ∇uε ⇀ v ⊗ v + µ, M(�a), (1.14)

whereµ is a symmetric tensorial Radon defect measure of finite mass over�; and
div(µ) = ∇Pµ on�a, wherePµ is a well-defined distribution function on�a.

Theorem 1.2 (Vortex motion law). Consider the same assumptions as in Theorem 1.1,
and in addition assume that the initial NLS energy is almost minimizing, namely

Eε(uε)(0) = nπ log
1
ε

+ πW (a(0)) + o(1),
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asε goes to zero. LetHj = Hj(a), a = (a1, · · · , an), denote the smooth part of2a +ha

near each vortex, and define the renormalized energy function as:

∇aj
W (a) = 2nj

(
−∂Hj

∂x2
(aj),

∂Hj

∂x1
(aj)

)
,

j = 1, · · · , n. The vortex motion obeys the classical Kirchhoff law:

a′
j(t) = njJ∇ajW (a) = −2∇Hj(a),

j = 1, · · · , n, where

J =

(
0 −1
1 0

)
,

and
W (a) = −

∑
l 6=j

nlnj log |al − aj | + boundary contributions.

We remark that the total initial NLS energyEε(uε) in (1.5) can be decomposed into
a sum of three parts: the vortex self-energynπ log 1

ε , the Kirchhoff energyπW (a(0)),
and the remainingO(1) excessive energy in general. The Kirchhoff energy facilitates the
vortex motion. The remaining energy creates the defect measureµ. The total pressure
consists of the contribution from the original NLS pressure and the contribution from
the defect measure (the defect pressure). If the excessive energy is absent, or in other
words the initial energy satisfies:

Eε(uε)(0) = nπ log
1
ε

+ πW (a(0)) + o(1), (1.15)

which also means thatuε is almost energy minimizing for the given vortex locations,
the linear momentump(uε) converges strongly inL1([0, T ]; L1

loc(�a)) and the defect
measureµ = 0. In general, withO(1) excessive energy, to prove the same motion
law requires further information onµ; either that the divergence of the defect measure
µ is a gradient of a distribution on the entire domain� (i.e. is globally curl-free as
a distribution) or that the support ofµ is away from the vicinities of vortex locations.
Physically the excessive energy is carried by sound waves (time dependent phase waves),
see the discussion of the WKB limit in Sect. 7. It is conceivable that vortices still move
according to Kirchhoff law when sound waves have propagated away from them, either
absorbed by the vortex cores or the physical boundary. Otherwise, sound waves may
modify the motion of vortices by creating oscillations, [13]. It is very interesting to
understand the vortex sound interaction (Nore et al. [29]) in terms of the structure of the
defect measureµ based on our results here.

Due to the local nature of our method, we are able to prove the same theorems for the
zero Neumann case (1.3), with the modification that the boundary condition is instead
v · ν = 0, andha,ν = −2a,ν . Similar results are established for the entire plane and the
periodic cases, as long as the sum of vortex degrees is zero and the total energy obeys
(1.5). Our results on the Dirichlet and Neumann cases easily extend to the situation
where there are 2k +n vortices in a bounded domain,n+k being of degree +1, andk of
degree−1. Due to the possibility of finite time vortex collisions in Kirchhoff law in the
case of signed vortices [27], the results are meant for any time before any two vortices
come together.

It is remarkable that NLS vortices obey the Kirchhoff law in the incompressible fluid
limit, considering that the±1 vortices are only known to be dynamically marginally
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stable in the spectral sense, see Weinstein and Xin [32]. For this reason, it seems im-
possible to prove the validity of the motion law for the above mentioned initial and
boundary conditions by attempting to justify the matched asymptotic derivation of Neu
[28] which relied on linearization about vortices. The fluid dynamic approach developed
here has been extended by the authors [25] to establish the vortex motion laws of the
analogous nonlinear wave (NLW) equation, and the nonlinear heat (NLH) equation. In
NLW and NLH, Euler-like equations also appear and lead to the motion laws. Under
a similar energy almost minimizing assumption (1.15), the NLW vortex motion law is:
a′′

j = −nj∇aj
W , on the time scalet ∼ O(log

1
2 1

ε ).
During the preparation of this paper, we learned of Colliander and Jerrard [5] on the

periodic case of NLS. They showed the motion law under the energy almost minimizing
assumption, however, did not study the defect measure and the general fluid limit.

The rest of the paper is organized as follows. In Sect. 2, we state and prove energy
concentration, and show its direct consequences on convergence of linear momentum
away from vortices and basic energy type bounds. In Sect. 3, we study mobility and
continuity of vortex locations based on linear momentum equation and subsequently
refine the form of weak limit of solutions based on conservation of mass. We also prove
a key energy estimate which is used later to control the defect measure. In Sect. 4, we
show using all results in previous sections that the NLS linear momentum converges to
a solution of the two dimensional incompressible Euler equation away from vortices.
The Kirchhoff law then follows from the limiting linear momentum equation under the
energy minimizing assumption. In Sect. 5, we comment on all necessary modifications
to establish the similar results for the zero Neumann case, as well as the entire plane
and periodic cases. In Sect. 6, we apply our method to show the vortex motion law
for a related complex Ginzburg–Landau (CGL) equation. Besides the interest of CGL
vortices in its own right, this result provides another proof of NLS vortex motion law
by passing the CGL to NLS limit. In Sect. 7, we study the semi-classical (WKB) limit
of NLS. Due to the slow time scaleO(ε), vortices do not move, and the regular part
of the phase function of the solution satisfies the linear wave equation, indicating the
propagation of sound waves through vortices.

2. Energy Concentration and Basic Weak Limits

In this section, we present weak convergence results on two basic physical quantities:
the energye(uε) and the linear momentump(uε). Consequently, we deduce the weak
convergence of the curl ofp(uε). The one half curl ofp(uε) is equal to the Jacobian of
the mapuε, hence it will be denoted byJac(uε), and it is also known as vorticity. All the
results follow from energy concentration and energy comparisons, and are independent
of dynamics.

Lemma 2.1. Supposeuεk
is a sequence ofH1-maps from� into C (the complex plane)

satisfying the Dirichlet boundary conditionuεk
|∂� = g. Suppose also that for a positive

εk independent constantC0 the energy satisfies:

Eεk
(uεk

) =
∫

�

eεk
(uεk

) ≡
∫

�

1
2
|∇uεk

|2 +
(1 − |uεk

|2)2

4ε2
k

≤ πn log
1
εk

+C0.

Then taking a subsequence inεk if necessary, we have asε = εk ↓ 0 that
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eε(uε)dx

πn log 1
ε
⇀

n∑
j=1

δaj
, (2.1)

as Radon measures. Moreover,

min{|al − aj |, dist(al, ∂�), l, j = 1, · · · , n, l 6= j} ≥ δ0(g,�, C0) > 0.

Proof. This lemma is same as Proposition 1 of Lin [23], where the earlier structure
theorem of Lin [20] (Theorem 2.4) is extended to show that there are small positive
numbersε0 andα0 such that forεk ∈ (0, ε0), there aren distinct ballsBj ’s with radii
ε
αj

k , αj ∈ [α0,1/2], which contain vortices of degrees±1. In other words, vortex
locations are known up to an error ofO(εαj

k ). �
Lemma 2.2. Under the assumptions of Lemma 2.1, we have up to a subsequence if
necessary:

uε ⇀

n∏
j=1

(
x− aj

|x− aj |
)nj

eiha(x) ≡ ua, (2.2)

nj = ±1, weakly inH1
loc(�\{a1, · · · , an}) ≡ H1

loc(�a) for someha ∈ H1(�). More-
over, ∫

�

|∇ha|2 ≤ C1, (2.3)∫
�

(1 − |uε|2)2

ε2
≤ C1, (2.4)∫

�

|∇|uε||2 ≤ C1, (2.5)

for a positive constantC1, uniformly inε.

Proof. These results follow from energy comparisons. For the weak convergence (2.2)
and inequality (2.3), see the general convergence theorem of [20] and also Proposition
2 of [23]. The inequality (2.4) is shown in Lecture 1 of [21]. For (2.5), we use the fact
that∇|uε| = 0, a.e. on the set{x ∈ � : |uε| = 0}, and writeuε = |uε|eiHε whenever
|uε| 6= 0. Substituting this expression into the total energy, which is uniformly bounded
away from the set{x ∈ � : |uε| = 0}, gives (2.5). Intuitively, the singular part of energy
that contributes tonπ log 1

ε comes from the singular part of the phase ofuε (the sum of
vortex phases). The above three inequalities are valid since they either involve only the
amplitude|uε| or the regular part of the phaseha. �
Remark 2.1.Under the same assumptions as in Lemma 2.1, the renormalized energy is
defined as (γ a universal constant):

W = W (a1, · · · , an) = lim
r↓0

[
1

2π

∫
�\
⋃n

j=1
Br(aj )

|∇ua|2 − n log 1/r

]
+ γn, (2.6)

see Bethuel, Brezis and H´elein [2]. Hereua is a harmonic map of the form (2.2). The
W function has the properties that:W → +∞ if someaj reaches the boundary∂� or
aj = al for somej 6= l; otherwise, it is locally analytic ina. Due toγn, W (a) is also
local energy minimizing.
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Lemma 2.3. Under the same assumptions as Lemma 2.1, the linear momentump(uε)
is uniformly bounded inL1

loc(�a), and up to a subsequence if necessary:

p(uε) ⇀ v = ∇2a + ∇ha, (2.7)

in L1
loc(�a), where

2a =
n∑

j=1

arg

(
x− aj

|x− aj |
)nj

. (2.8)

Moreover,

2Jac(uε) dx = curl (p(uε)) dx ⇀ 0, (2.9)

in the sense of bounded measuresM(�a).

Proof. We see from Lemmas 2.1 and 2.2 thatp(uε) is uniformly bounded inL1 away
from vortices{a1, · · · , an}. Since∇uε is weakly compact inH1(�a), anduε compact
in L2(�a), we have:

p(uε) = uε ∧ ∇uε ⇀ v = ∇2a + ∇ha,

in L1
loc(�a). Noticing thatv is a gradient of anH1 function, we have by taking the curl

of p(uε) and the weak continuity of Jacobians with respect toH1 weak convergence that

2Jac(uε) dx = curlp(uε) dx ⇀ 0, (2.10)

in M(�a). Note thatJac(uε) ∈ L1
loc(�a). The proof is complete. �

Lemma 2.4. The linear momentump(uε) ∈ L1(�) uniformly in ε. Letϕ ∈ C∞
0 (�),

ϕ = x1 for x ∈ BR/2(aj), ϕ = 0, for x 6∈ BR(aj), whereR ∈ (0, δ0). Then we have
with aj = (ξj , ηj): ∫

BR(aj )
∇⊥ϕ · p(uε) → 2πξj . (2.11)

A similar convergence holds withx2 in place ofx1, ηj in place ofξj .

Proof. The integral in (2.11) is the projection of the linear momentum onto a divergence
free field. We have from Lemma 2.2 that|uε| ∈ H1(�), uniformly in ε. Hence|uε| ∈
Lq(�), uniformly in ε, for any q < ∞ by the Gagliardo–Nirenberg inequality. We
shall establish that∇uε ∈ Lp′

(�), uniformly in ε, for p′ ∈ [1,2). Given this fact,
p(uε) = uε ∧ ∇uε ∈ Lr(�), uniformly in ε for any r ∈ [1,2). This and Lemma 2.3
imply that: ∫

BR

∇⊥ϕ · p(uε) →
∫

BR

∇⊥ϕ · (∇2a + ha)

=
∫

BR

∇⊥ϕ · ∇θj

=
∫

Bε′ (aj )
∇⊥ϕ · ∇θj +

∫
∂Bε′

x1∂τθj ,



Incompressible Fluid Limit and the Vortex Motion Law of NLS Equation 257

whereBε′ is a small ball of radiusε′ aboutaj , and∂τ is the tangential derivative. The
first integral clearly goes to zero asε′ → 0, and the second integral goes to 2πξj by a
direct calculation. The convergence (2.11) follows.

Now we show that∇uε ∈ Lp′
(�), uniformly in ε, for p′ ∈ [1,2), by an energy

argument. It is sufficient to consider a finite neighborhood of a single, say plus one,
vortex. Without loss of generality, we can assume that the essential zero ofuε is inside
B(0, εα), for someα ∈ (1/4,1/2), and thatB(0,1) is inside� and contains the essential
zero. We have then from Lin [20]:

Eε(uε,B(0,1)) ≤ π log
1
ε

+C1,

εα
∫

∂B(0,εα)
eε(uε) ≤ C2(α,C1),

deg(uε/|uε|, ∂B(0, εα)) = 1. (2.12)

It follows from (2.12) that there exists aθε ∈ (1/4,1/2), and a constantε0(C1) such that
if ε ≤ ε0(C1): ∫

B(0,1)\B(0,θε)
eε(uε) ≥ π log

1
θε

− C0ε. (2.13)

In fact, there existsθε ∈ (1/4,1/2) such thatuε ⇀ ei(2+h), in H1
loc(B(0,1)\0); uε ⇀

ei(2+h) in H1(∂B(0, θε)); θε
∫

∂B(0,θε) eε(uε) ≤ C(C1). So
∫

B(0,1)\B(0,θε) eε(uε) ≤ C.

Now as in Lin [20], replaceuε by the minimizer ˜uε of the energy
∫

B(0,1)\B(0,θε) eε(uε)
subject to the Dirichlet boundary condition ˜uε = uε, on∂B(0, θε), and zero Neumann
on∂B(0,1). Such a minimizer satisfies|ũε| ≥ 1/2 onB(0,1)\B(0, θε) and that:∫

B(0,1)\B(0,θε)
eε(ũε) ≥ π log

1
θε

− C0ε, (2.14)

proving (2.13).
Combining (2.13) and (2.12), we have:∫

B(0,θε)
eε(uε) ≤ π log

θε
ε

+C1 +C0ε. (2.15)

Now we iterate (2.15) to a sequence of ballsB(0, r(n)
ε ), r(n)

ε = θ(1)
ε · · · θ(n−1)

ε , θ(1)
ε = θε,

andθ(j)
ε ’s ∈ (1/4,1/2), n = 1,2, · · · , N , whereN is such thatr(N )

ε ≥ 2εα. At eachn,
the lower energy bound on the annuli becomes:∫

B(0,r(n)
ε )\B(0,r(n+1)

ε )
eε(uε) ≥ π log

1

θ(n+1)
ε

− C0
ε

r(n)
ε
, (2.16)

and the upper bound is:∫
B(0,r(n)

ε )
eε(uε) ≤ π log

r(n)
ε
ε

+C1 + εC0(1 +
n∑

j=1

1/r(j)
ε ). (2.17)

The sum of the second term in (2.17) is bounded by a geometric sum from above since
θ(j)
ε ∈ (1/4,1/2), and its upper bound is const.ε−α. Hence the energy upper bound

finally is:
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∫
B(0,r)

eε(uε) ≤ π log
r

ε
+C1 +C3ε

1−α ≤ π log
r

ε
+C1 + 2C0, (2.18)

for smallε, andr ∈ (2εα,1).
With a similar argument via the energy minimizer, we also have:∫

B(0,r′)
eε(uε) ≥ π log

r′

ε
− C4, (2.19)

for anyr′ ∈ (2εα,1). Combining (2.18) and (2.19), we infer that forr ≥ 2εα:∫
B(0,2r)\B(0,r)

eε(uε) ≤ C5. (2.20)

Now we bound for anyp′ ∈ [1,2) (2N+1εα ∈ (1/2,2/3)) using the H¨older inequality:

∫
B(0,1/2)

|∇uε|p′ ≤
∫

B(0,2εα)
|∇uε|p′

+
N∑
j=1

∫
B(0,2j+1εα)\B(0,2jεα))

|∇uε|p′

≤
(

2
∫

B(0,2εα)
eε(uε)

)p′/2

cp′ε(2−p′)α

+
N∑
j=1

c(p′, C5)(|B(0,2j+1εα)\B(0,2jεα)|)(2−p′)/2

≤ o(1) + c(p′, C5)(3π)(2−p′)/2
N∑
j=1

(2jεα)2−p′ ≤ C6(p′, C5). (2.21)

The proof is complete. �

3. Mobility and Continuity of Vortex Motion

In the previous section, we obtained in Lemma 2.2 the weak limit of solutions based
on the energy consideration. Due to conservation of energy, Lemma 2.2 applies to each
time slice of evolution, and so Lemma 2.2 holds withaj = aj(t), andha = ha(t, x). In
this section, we shall utilize the conservation of linear momentum to show the mobility
and continuity of vortex motion. With the additional help of conservation of mass, we
also refine the weak limit of solutionuε in that we find out how the functionh depends
on vortex locationsa′

js, and that it is harmonic in space. Subsequently, we also prove a
key energy estimate for the later analysis of the defect measure.

Proposition 3.1. The vortices inuε do not move in any slower time scalet ∼ o(1), as
ε → 0. On the time scalet ∼ O(1), the vortex locationsaε,j(t) are uniformly continuous
in t asε → 0.

Proof. By Lemma 2.1:

uε(0, x) ⇀
n∏

j=1

x− a0
j

|x− a0
j |
eih0(x),
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in H1
loc(�a0) with ‖h0‖H1(�) ≤ C0. LetR > 0 be a small number,R � 1

4R0, where

R0 = min{|al − aj |, dist(al, ∂�), l, j = 1, · · · , n, l 6= j}.
Due to energy conservation, the numberR0 remains positive for all time. Lettε be such
that ∀t ∈ [0, tε), uε(t, x) has vortices inside∪n

l=1BR/4(a0
l ), and tε is the maximum

time with this property. In other words, for somej, aε,j(tε) ∈ ∂BR/4(a0
j). By theH1

continuity ofuε in time for eachε > 0, suchtε > 0 exists.We prove that lim infε→0+ tε >
0.

Suppose otherwise, at least for a subsequence ofε, still denoted the same,tε → 0.
Write vε(t, x) = uε(x, tεt), then the NLS forvε becomes

ivε,t = tε1vε +
tε
ε2

(1 − |vε|2)vε,

and the linear momentum equation:

∂tp(vε) = 2tε div (∇vε ⊗ ∇vε) − ∇(tεPε). (3.1)

The vortices ofvε lie in ∪n
l=1BR/4(a0

l ) for all t ∈ [0,1), and att = 1, one of the
vortices, sayaε,j(1), reaches∪n

l=1∂BR/4(a0
l ). The vortex locations are well-defined up

to a small error ofO(εα0). With no loss of generality, let us assume thataε,j(0) = 0. Let
ϕ ∈ C∞

0 (BR0/2), andϕ = x1 for x ∈ BR0/4. Multiplying both sides of (3.1) by∇⊥ϕ
and integrating overBR0/2 × [0,1], we obtain with integration by parts:

∫
∂BR0/2

∇⊥ϕ · p(uε)|10 = −2tε

∫ 1

0
dt

∫
∂BR0/2

(∇uε ⊗ ∇uε) : ∇∇⊥ ϕ. (3.2)

The right side integral is in fact overBR0/2\BR0/4, hence is uniformly bounded by a
constantC independent ofε. Passingε ↓ 0, by Lemma 2.4, the left hand side converges
to 2π(ξj(1)−ξj(0)). Sincetε → 0,ξj(1) = ξj(0). Similarly,ηj(1) = ηj(0), contradicting
the assumption thataj travels a distanceR/4 att = 1.

Hencetε is bounded away from zero uniformly inε. SinceR can be any small
number, we have proved that vorticesaε,l(t), l = 1, · · · , n are uniformly continuous in
t, or the limiting locationsal(t) are continuous int. As a byproduct, we have also shown
that vortices inuε do not move on any slow time scalet ∼ o(1) asε → 0. �

Replacingtε by t = O(1) in the above proof, we in fact have shown that:

Corollary 3.1. On the time scalet ∼ O(1), the limiting vortex locationsal(t), are
Lipschitz continuous, wherel = 1, · · · , n.

Now let us characterize the functionha = ha(t, x) in:

Proposition 3.2. The functionha(t, x) in the weak limit (2.2) of Lemma 2.1 satisfies:

1ha = 0, x ∈ �,

ha,τ = −2a,τ + g ∧ gτ , x ∈ ∂�, (3.3)

where2a is given in (2.8). Soha is unique up to an additive constant, and depends on
time via vortex locationsaj(t).
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Proof. By Lemma 2.3 and dominated convergence, for any functionψ1(x) ∈ C∞
0 (�a)

andϕ(t) ∈ C∞
0 ((0, T )), we have:

lim
ε→0

∫ T

0
ϕ(t)

∫
�a

p(uε)ψ1(x) =
∫ T

0
ϕ(t)

∫
�a

∇(2a + ha)ψ1(x). (3.4)

In addition, using the mass conservation law (1.10), we also have:∫ T

0
ϕ(t)

∫
�a

p(uε) · ∇ψ1(x) =
1
2

∫ T

0
ϕt(t)

∫
�a

|uε|2ψ1(x)

→ 1
2

∫
�a

ψ1(x)
∫ T

0
ϕt(t) = 0, (3.5)

where the convergence is due to (2.4) of Lemma 2.2. It follows that the weak limit
of p(uε) is divergence free. It follows thatha is a harmonic function on�a and is
alsoH1(�) by Lemma 2.2. Thusha can have at worst removable singularities and is
a harmonic function on the whole domain�. The functionha then has a well-defined
boundary value, which we identify next.

Let ψ = ψ(t, x) be a compactly supported function in a small region�′ near the
boundary∂�; for eacht, supp{ψ} ∩ ∂� contains a finite curve;ψ is also compactly
supported inside the time interval [0, T ], T > 0. Note that near the boundary, there are
no vortices, hence2a is a single valued function. Let us calculate:∫

∂�′
ψp(ua) · τds =

∮
∂�′

ψp(ua) · d~l =
∫

�′
curl (ψp(ua)) =

∫
�′

∇ψ ∧ p(ua)

= lim
ε↓0

∫
�′

∇ψ ∧ p(uε) = lim
ε↓0

[
∫

�′
curl (ψp(uε)) −

∫
�′
ψcurlp(uε)]

= lim
ε↓0

∮
∂�′

ψp(uε) · d~l =
∫

∂�′
ψ(g ∧ gτ )ds, (3.6)

implying that:p(ua) = ∂τ (2a + ha) = g ∧ gτ , on the boundary∂� for all t ≥ 0.
Hence the harmonic functionha is uniquely determined up to an additive constant, due
to integrating the tangential derivative once along the boundary to recover the related
Dirichlet boundary data. Prescribing the boundary mapg with certain degree for NLS
implies a boundary force along the tangential direction for the limiting fluid motion. We
complete the proof. �

Proposition 3.3. Lett > 0 anduε = uε(t, x) be as in Lemma 2.1, with vortex locations
(a1, a2, · · · , an). If for someω0 > 0:

lim sup
ε→0

(
Eε(uε) − πn log

1
ε

)
≤ πW (a) + ω0,

then for anyr > 0, there is a constantC independent ofε andr such that for anyt > 0:

lim sup
ε→0

∥∥∥∥pε(uε)|uε| − v

∥∥∥∥
2

L2(�\Un
j=1Br(aj ))

≤ Cω0, (3.7)

lim sup
ε→0

‖ ∇|uε| ‖2
L2(�\Un

j=1Br(aj )) ≤ Cω0. (3.8)
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Proof. We first letεk → 0 such that

lim sup
ε→0

‖ ∇|uε| ‖2
L2(�\Un

j=1Br(aj )) = lim sup
εk→0

‖ ∇|uεk
| ‖2

L2(�\Un
j=1Br(aj )).

By Lemma 2.2, we can assume without loss of generality that

uεk

H1
loc(�a)
⇀ ei(2a+h),

for someh ∈ H1(�). Hereei2a =
∏n

j=1
x−aj

|x−aj | . Hence

pεk
(uεk

)
|uεk

|
L2

loc(�a)
⇀ ∇(2a + h).

For anyρ > 0, then

Eεk
(uεk

,�\Un
j=1Bρ(aj))

≡ 1
2

∫
�\Un

j=1Bρ(aj )

[
|∇|uεk

| |2 +

∣∣∣∣pεk
(uεk

)
|uεk

|
∣∣∣∣
2

+
1

2ε2
k

(1 − |uεk
|2)2

]

≥ 1
2

∫
�\Un

j=1Bρ(aj )
|∇|uεk

| |2 +

∣∣∣∣pεk
(uεk

)
|uεk

| − ∇(2a + h)

∣∣∣∣
2

+
1
2

∫
�\Un

j=1Bρ(aj )
|∇(2a + h)|2 dx + oεk

(1), (3.9)

hereoεk
(1) → 0 ask → ∞. Next, we letuεk

(h, ρ) be such thatuεk
(h, ρ) = ei(2a+h) on

�\Un
j=1Bρ(aj); and on eachBρ(aj), uεk

(h, ρ) is a minimizer ofEεk
on eachBρ(aj)

with boundary valueei(2a+h). We chooseρ ∈ ( r
2 , r) so thatuεk

|∂Bρ
⇀ e(2a+h) in

H1(∂Bρ(aj)) for j = 1, · · · , n, by taking the subsequence ofεk as needed. Then it is
easy to see by a simple comparison that forj = 1, · · · , n:

Eεk
(uεk

, Bρ(aj)) ≥ E(uεk
(h, ρ), Bρ(aj)) + o(ρ, εk),

hereo(ρ, εk) → 0 ask → ∞. Therefore

πW (a) + oεk
(1) ≤ Eεk

(uεk
(h, ρ)) − πn log

1
εk

≤ Eεk
(uεk

) − nπ log
1
εk

+ o(ρ, εk) − 1
2

∫
�\Un

j=1Bρ(aj )
| ∇|uεk

| |2dx

− 1
2

∫
�\Un

j=1Bρ(aj )

∣∣∣∣pεk
(uεk

)
|uεk

| − ∇(2a + h)

∣∣∣∣
2

dx. (3.10)

SinceEε(uεk
) − πn log 1

εk
≤ πW (a) +w0, we thus conclude that

lim
εk→0

∫
�\Un

j=1Br(aj )
|∇|uεk

| |2 ≤ 2w0, (3.11)
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which implies (3.8) and that

lim sup
εk→0

∫
�\Un

j=1Br(aj )

∣∣∣∣pεk
(uεk

)
|uεk

| − ∇(2a + h)

∣∣∣∣
2

≤ 2w0. (3.12)

We observe now ifεk → 0 is so that

lim
εk→0

∫
�\Un

j=1Br(aj )

∣∣∣∣pεk
(uεk

)
|uεk

| − v

∣∣∣∣
2

dx,

is the left-hand side of (3.7), then by (3.12):

lim sup
ε→0

∫
�\Un

j=1Br(aj )

∣∣∣∣pε(uε)|uε| − v

∣∣∣∣
2

dx ≤ 4w0 + 2
∫

�\Un
j=1Br(aj )

|∇h− ∇ha|2.
(3.13)

Herev = ∇(2a + ha).
Now we show that ∫

�\Un
j=1Br(aj )

|∇h− ∇ha|2 ≤ w0.

To do this, we observe that for aρ > 0 with∫
∂Bρ

|∇h|2 ≤ 2
ρ

∫
B2ρ\Bρ/2

|∇h|2dx ≤ C

ρ
,

we have
Eε(uε(h, ρ), Un

j=1Bρ(aj)) ≥ πn log
ρ

ε
+ γn + o(ρ, ε).

This follows from an easy energy estimate, see [22]. Hereo(ρ, ε) → 0 asε → 0+. This
implies in turn that

Eε(uε(h, ρ),�\Un
j=1Bρ(aj)) =

1
2

∫
�\Un

j=1Bρ(aj )
|∇(2a + h)|2

≤ πW (a) − γn +w0 + o(ρ, ε) + nπ log
1
ρ
. (3.14)

On the other hand, we have:

1
2

∫
�\Un

j=1Bρ(aj )
|∇(2a + ha)|2 = nπ log

1
ρ

+ πW (a) − γn + o(ρ), (3.15)

whereo(ρ) → 0+, asρ → 0. We also note for anyh ∈ H1(�):∫
�\Un

j=1Bρ(aj )
|∇(2a + h)|2dx =

∫
�\Un

j=1Bρ(aj )
|∇2a|2 + |∇h|2

+ 2
∫

∂�

∂2a

∂ν
· h− 2

n∑
j=1

∫
∂Bρ(aj )

(h− h̄)
∂2a

∂n
, (3.16)
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where the last term is bounded by const.
∑n

j=1 ρ
∫

∂Bρ
|∇h|, which goes to zero asρ → 0.

By sendingε → 0, thenρ → 0, we therefore obtain by combining (3.14), (3.15), and
(3.16) that ∫

�

|∇h|2 ≤
∫

�

|∇ha|2 +w0. (3.17)

Inequality (3.17), along with the fact thatha is harmonic, andh|∂� = ha|∂�, yields∫
�

|∇(h− ha)|2 ≤ w0. The proof is complete. �

We end this section with an interesting conjugation property of the regular part of
the vortex phase in terms of the renormalized energy functionW . Near each vortexaj ,
write the weak limit asei arg(x−aj )+iHj , whereHj is harmonic. Then:

Lemma 3.1.

∇aj
W (a) = 2nj

(
−∂Hj

∂x2
(aj),

∂Hj

∂x1
(aj)

)
. (3.18)

For a proof, see [2] (Theorem 8.3).

4. Convergence to Incompressible Euler Equation and Vortex Motion Law

In this section, we use continuity of vortices, the weak convergence and the precise
form of the weak limit discussed in the previous sections to pass the linear momentum
equation (1.11) to the incompressible limit on the punctured domain�a, and show that
the limiting equation is the two dimensional Euler equation. We show properties of
defect measures and total pressureP to finish proving Theorem 1.1. We then establish
the Kirchhoff law for vortex motion based on the limiting projected linear momentum
equation. Finally, we show strong convergence of the linear momentum under the initial
energy almost minimizing assumption.

Let us write the linear momentum equation in component form:

pm(uε)t = 2(uε,xm
· uε,xj

)xj
− Pxm

, m = 1,2. (4.1)

Direct calculation shows that if|uε| > 0 then

uε,xm =
pm(uε)

|uε|
iuε
|uε| + |uε|xm

uε
|uε| . (4.2)

Note that|∇uε| = 0, a.e, on the set{|uε| = 0}. Hence, we only need to consider the set
{|uε| > 0}. It follows from (4.2) that

uε,xm · uε,xj =
pm(uε) · pj(uε)

|uε|2 + |uε|xm |uε|xj

=

(
pm(uε)

|uε| − vm

)(
pj(uε)
|uε| − vj

)
+ |uε|xm |uε|xj

+ vm
pj(uε)
|uε| + vj

pm(uε)
|uε| − vmvj . (4.3)

Note that‖|uε|−1p(uε)‖L2
loc

(�a) ≤ C, for a positive constant independent ofε, and

t ∈ [0, T ]. Hence|uε|−1p(uε) is weakly compact inL2(�a × [0, T ]). Since|uε| → 1
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in L2(�a × [0, T ]), the weakL1(�a × [0, T ]) limit of p(uε) equal tov = ∇(2a + ha)
coincides with the weakL2(�a × [0, T ]) limit of |uε|−1p(uε). It follows that

vm
pj(uε)
|uε| ⇀ vmvj , vj

pm(uε)
|uε| ⇀ vjvm (4.4)

in L2(�a × [0, T ]).
The product terms(

pm(uε)
|uε| − vm

)(
pj(uε)
|uε| − vj

)
+ |uε|xm |uε|xj ⇀ µm,j , (4.5)

as measures to a symmetric tensorial measureµm,j ∈ M(�a). We prove:

Proposition 4.1. The defect measureµ = (µm,j) is a finite mass Radon measure on the
domain�. Its divergencediv(µm,j) is curl free in the sense of a distribution, and can be
written into∇Pµ on�a, wherePµ is a distribution function well-defined on the entire
domain�a. The weak limitv is a solution of the incompressible Euler equation:

vt = 2v · ∇v − 2∇P, div v = 0, ∀x ∈ �a,

where the total pressure2P is a single-valued function, and smooth in�a.

Proof. That the defect measureµ ≥ 0 is a finite mass Radon measure on the entire
domain� follows from Proposition 3.3. Let us takeψ ∈ (C∞

0 (�a × [0, T )))2, divψ = 0,
form the inner product ofψ with both sides of the linear momentum equation (1.11),
and integrate by parts to get∫

ψ(0, x)p(u0
ε) +

∫ ∫
ψt · p(uε) − 2(∇uε ⊗ ∇uε) : ∇ψ = 0.

Passing to the limit, we get∫
ψ(0, x)v0 +

∫ ∫
ψtv − 2(v ⊗ v + µ) : ∇ψ = 0. (4.6)

In particular, we chooseψ to be of the form:

ψ = α(t)(−ϕx2
, ϕx1

) = α(t)∇⊥ϕ, (4.7)

whereϕ ∈ C∞
0 (�a), α(0) = 0. Then due tov being curl free on�a, (4.6) reduces to∫ ∫

α(t)µ : ∇∇⊥ϕ = 0, (4.8)

which means that the weak divergence of the measureµ is a weak gradient away from
vortices, hence can be written locally into a gradient of another distribution, by an
approximation argument. We denotediv µ = ∇Pµ, Pµ is a local distribution for now. It
follows that (4.6) reduces to∫

ψ(0, x)v0 +
∫ ∫

ψtv − 2(v ⊗ v) : ∇ψ = 0. (4.9)

Sincev is harmonic inx and Lipschitz continuous in time, it is easy to bootstrap on (4.9)
to show thatv is smooth in (x, t) ∈ �a × (0, T ). We can now write (4.9) into the strong
form of the Euler equation:
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vt = 2v · ∇v − 2∇P, x ∈ �a, div v = 0, v(0, x) = v0(x) (4.10)

for some function 2P locally defined on�a × (0, T ). Taking the divergence of (4.10)
gives1P = div(v · ∇v). Thatv is harmonic in�a then implies thatP is smooth in�a.

Using (4.10), we see that the integral around each vortex:

−
∫

∂BR(aj )

∂P

∂θ
=

1
2

∮
∂BR(aj )

vt · d~l −
∮

∂BR(aj )
v · ∇v · d~l.

By the form of weak limitv, the circulation ofvt is zero. The circulation of thev · ∇v
term is also zero by a direct calculation withv = ∇(2a + ha). First we note that
curl (v · ∇v) = v · ∇ curlv = 0,x ∈ �a. Hence it is enough to calculate the circulation
on a very small circle aroundaj and show that it goes to zero as the radius of the circle
goes to zero. Letaj = (ξj , ηj), andx = (ξ, η). Let us writeH = 2a+ha = arg x−aj

|x−aj | +Hj

and so

Hξ = (Hj)ξ +
−(η − ηj)

(ξ − ξj)2 + (η − ηj)2
,

Hη = (Hj)η +
(ξ − ξj)

(ξ − ξj)2 + (η − ηj)2
, (4.11)

and below we denote∇Hj = (I, II). Noticing thatIξ + IIη = 1Hj = 0, we have

∮
∂BR(aj )

v · ∇v · d~l =
∫ 2π

0
R[v · ∇v1(− sinθ) + v · ∇v2 cosθ]dθ

=
∫ 2π

0
R[(I −R−1 sinθ)(Iξ + 2R−2 sinθ cosθ)(− sinθ)

+(II +R−1 cosθ)(Iη −R−2 cos 2θ)(− sinθ)]

+
∫ 2π

0
R[(I −R−1 sinθ)(IIξ −R−2 cos 2θ) cosθ

+(II +R−1 cosθ)(IIη −R−2 sin 2θ) cosθ]dθ

=
∫ 2π

0
[Iξ sin2 θ + IIη cos2 θ]dθ +O(R)

= π(Iξ(aj) + IIη(aj)) +O(R) = O(R) → 0. (4.12)

Thus the total pressure 2P is a well-defined single-valued function over the whole domain
�. It consists of the defect pressure fromµ and the contribution from the original NLS
pressure.

Finally, we show that the defect pressurePµ is a well-defined distribution on�.
Forψ = ψ(r), supported in the annulusBR(aj(s))\BR/2(aj(s)) = BR\BR/2, it follows
from the linear momentum equation fort nears that

d

dt

∫
BR\BR/2

p(uε)(ψτ ) = −2
∫

BR\BR/2

∇uε ⊗ ∇uε : ∇(ψτ ),

where the NLS pressure has zero circulation and is removed. Passingε ↓ 0 and using
the fact thatv · ∇v has zero circulation as proved above, we have
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0 =
∫

BR\BR/2

(µ + v ⊗ v) : ∇(ψτ ) = −
∫

BR\BR/2

(div µ + v · ∇v) · (ψτ )

= −
∫ R

R/2
dr ϕ(r)

∫
∂Br

∂Pµ

∂θ
,

implying that
∫

∂Br

∂Pµ

∂θ = 0 for anyr > 0, hencePµ is a well-defined distribution on
�a. The proof of the proposition and also that of Theorem 1.1 is complete.�

Proof of Theorem 1.2.Let us consider the time interval [t, t + k], with k small, and the
ball BR = BR(aj(t)) inside the annulusBR0/2 as in the proof of Proposition 3.1. The
numberR is much smaller thanR0 and is large enough to containaj(s), s ∈ [t, t + k].
For example,R = Ck, for a suitable constantC depending on the Lipschitz constant
of aj . Proceeding as in Proposition 3.1, withϕ = x1 in BR(aj(t)) and supported inside
BR0/2, we find:

∫
BR0/2

∇⊥ ϕp(uε)|t+k
t

= −2
∫ t+k

t

ds

∫
BR0/2\BR

(∇uε ⊗ ∇uε) : ∇ ∇⊥ ϕ

→ 2
∫ t+k

t

ds

∫
BR0/2\BR

−(µ + v ⊗ v) : ∇∇⊥ ϕ. (4.13)

Hereµ ∈ M(�) andv ⊗ v 6∈ L1(�). As in Proposition 3.1, the left hand side of (4.13)
converges to 2π(ξj(t + k) − ξj(t)).

For the right-hand side, we calculate the second term in (4.13):

∫ s+k

s

ds

∫
BR0/2(aj (s))\BR(aj (s))

−(v ⊗ v) : ∇∇⊥ϕ

=
∫ s+k

s

ds

∫
BR0/2(aj (s))\BR(aj (s))

v · ∇v · ∇⊥ϕ

−
∫ s+k

s

ds

∫
∂BR(aj (s))

(v ⊗ v) : (ν ⊗ n⊥)

=
∫ s+k

s

ds

∫
∂BR(aj (s))

(v · ∇v · ν⊥)(n · x)

+
∫ s+k

s

ds

∫
∂BR(aj (s))

−(v ⊗ v) : (ν ⊗ n⊥), (4.14)

wheren = (1,0) andν is the normal direction at∂BR(aj(s)).
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Let us calculate the inner part of the first integral of the right-hand side of (4.14) as
follows: ∫ 2π

0
(ξj(t)R +R2 cosθ)[v · ∇v1(− sinθ) + v · ∇v2 cosθ]dθ

=
∫ 2π

0
(ξj(t)R +R2 cosθ)[(I −R−1 sinθ)(Iξ + 2R−2 sinθ cosθ)(− sinθ)

+(II +R−1 cosθ)(Iη −R−2 cos 2θ)(− sinθ)] dθ

+
∫ 2π

0
(ξj(t)R +R2 cosθ)[(I −R−1 sinθ)(IIξ −R−2 cos 2θ) cosθ

+(II +R−1 cosθ)(IIη −R−2 sin 2θ) cosθ]dθ

= −I
∫ 2π

0
2(sinθ cosθ)2dθ − I

∫ 2π

0
cos2 θ cos 2θdθ +O(R)

= −I
∫ 2π

0
cos2 θ = −πI. (4.15)

Similarly, the inner part of the second integral of the right hand side of (4.14) also
contributes−πI. Therefore dividing byk and lettingk → 0, we have from (4.13)–
(4.15) thatξ′

j = −2Hj,ξ + fj,1(µ).With a similar equation forηj , we conclude that

a′
j = −2∇Hj + fj(µ), (4.16)

wherefj(µ) is a possible correction due to the defect measureµ. Using the conjugation
of Hj with the renormalized energy, we rewrite (4.16) into

a′
j = njJ∇aj

W (a) + fj(µ), (4.17)

where

J =

(
0 −1
1 0

)
,

and
W (a) = −

∑
l 6=j

nlnj log |al − aj | + boundary contributions.

The Kirchhoff law follows iffj(µ) = 0, which we show below under the energy almost
minimizing assumption.

Since the Kirchhoff law may encounter finite time collapse for signed vortices, the
validity established here applies also to any time prior to the collapse in the signed vortex
situation. �

Proposition 4.2. Under the almost minimizing initial energy assumption, we have

p(uε)
|uε| − v → 0, ∇|uε| → 0,

in L2(�a), and the defect measureµ = 0. The Kirchhoff law holds.



268 F.-H. Lin, J. X. Xin

Proof. For simplicity, let us consider vortices of the same sign plus one. Let ˜aj,t =
J∇ãj

W (ã), ã(0) = a(0); and define

m(t) =
n∑

j=1

|aj(t) − ãj(t)|.

Take a small time intervalt ∈ [0, tδ ] so that|m(t)| ≤ δ, with δ a small number to be
selected. Lipschitz continuity ofm implies that it is differentiable a.e. int. We have

m′(t) ≤
n∑

j=1

|a′
j(t) − ã′

j(t)|

≤
n∑

j=1

|a′
j(t) − J∇aj

W (a)| +
n∑

j=1

|J∇aj
W (a) − J∇ãj

W (ã)|

≤
n∑

j=1

|a′
j(t) − J∇aj

W (a)| +Cm(t). (4.18)

As before, consider the time interval [t, t+k], with k small, and the ballBR = BR(aj(t))
insideBR0/2. Proceeding as before, we find

LHS =
∫

BR0/2

∇⊥ ϕp(uε)|t+k
t

= −2
∫ t+k

t

ds

∫
BR0/2\BR

(∇uε ⊗ ∇uε) : ∇∇⊥ϕ

= −2
∫ t+k

t

ds

∫
BR0/2\BR

(
v ⊗ p(uε)

|uε| +

[
v ⊗ p(uε)

|uε|
]T

− v ⊗ v

)
: ∇∇⊥ϕ

+ (−2)
∫ t+k

t

ds

∫
BR0/2\BR

[

(
p(uε)
|uε| − v

)

⊗
(
p(uε)
|uε| − v

)
+ ∇|uε| ⊗ ∇|uε|] : ∇∇⊥ϕ

= RHS1 +RHS2. (4.19)

Now the almost minimizing energy assumption gives:

E(uε) = nπ log
1
ε

+W (a(0)) + o(1)

= nπ log
1
ε

+W (ã(t)) + o(1)

≤ nπ log
1
ε

+W (a(t)) +Cm(t) + o(1). (4.20)

SelectingδC ≤ ω0 ∈ (0,1), we infer from Proposition 3.3 that for allt ∈ (0, tδ):

lim sup
ε→0

‖p(uε)|uε| − v‖L2(BR0/2\BR) ≤ C1m(t),
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and

lim sup
ε→0

‖∇|uε|‖L2(BR0/2\BR) ≤ C1m(t). (4.21)

Passingε → 0 in (4.19), then dividing and sendingk ↓ 0, we get (a = (ξ, η)):

LHS → 2πξ′
j(t), RHS1 → 2πJWξj

(a(t)).

In view of (4.21), we have from (4.19) that|ξ′
j(t) −JWξj

(a)| ≤ C2m(t). With a similar
estimate onηj(t), we get|a′

j(t)−J∇aj
W (a)| ≤ C2m(t). It follows thatm′(t) ≤ Cm(t),

with m(0) = 0, hencem(t) = 0 for all t ∈ [0, tδ ]. Induction in time showsa(t) ≡ ã for
all t ≥ 0. Hence the Kirchhoff law holds with strong convergence ofpε and∇|uε|. The
proof is complete. �

5. Zero Neumann and Other Boundary Conditions

In this section, we comment on all necessary modifications in the proofs of previous
sections to establish similar results for the zero Neumann case, the entire space case,
and the periodic case.

For the Neumann boundary case, theha in the weak limit is harmonic and satisfies
the boundary condition:ha,ν = −2a,ν . The resulting renormalized energyW goes to
−∞ if one of the vortices goes near∂�. To establish a uniform bound onW , we proceed
by first showing the vortex continuous motion in time, then using the dynamical law to
deduce that the renormalized energy is conserved. Thus the vortices never come close
to each other or to the boundary∂� since initiallyW is finite. The energy arguments
can be modified as in Lin [22] and [23]. What remains is the treatment of the boundary
value ofha.

Let us derive the Neumann boundary condition onha. First, near the boundary∂�,

there are no vortices by induction in time. So we can writeuε = ρεeiHε , where bothρε

andHε are real functions. Direct calculation shows:

p(uε) = (ρε)2∇Hε,
p(uε) · ν = (ρε)2Hεν , x ∈ ∂�. (5.1)

Similarly

uεν = (ρεν + iHεν )eiHε,

and so zero Neumann boundary condition (1.3) says

ρεν = 0, Hεν = 0, ∂�, (5.2)

implying in view of (5.1):

p(uε) · ν = 0, ∂�, ∀ ε > 0. (5.3)

Letψ = ψ(t, x) be a compactly supported function in a small region near the boundary;
for eacht, supp{ψ} ∩ ∂� contains a finite curve;ψ is also compactly supported inside
the time interval [0, T ], T > 0.
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Due to divp(ua) = 0 on�a, we have using (5.3) and mass conservation:∫
∂�

ψ p(ua) · ν =
∫

�a

p(ua) · ∇ψ = lim
ε→0

∫
�a

p(uε) · ∇ψ

= − lim
ε→0

∫
�a

div p(uε)ψ = −1
2

lim
ε→0

∫
�a

|uε|2tψ, (5.4)

which upon integration over [0, T ] and integration by parts gives∫ T

0

∫
∂�

ψ p(ua) · ν =
1
2

lim
ε→0

∫ T

0

∫
�a

|uε|2ψt = 0. (5.5)

It follows from arbitrariness ofψ and smoothness ofp(ua) thatp(ua) · ν = 0 on∂�,
which is just the desired boundary conditionha,ν = −2a,ν . Physically,ha plays the
role of correcting2a on the boundary so that there is no flow into the wall.

Let us turn to the entire spaceR
2 case and the periodic case. For these two cases, we

assume that the sum of degrees
∑n

j=1nj = 0 (zero sum condition). Under this condition

and thatuε(0, x) converges to a constanteiθ0 atx = ∞ sufficiently fast, the total energy
Eε on R

2 remains the same asymptotic expressionnπ log 1
ε + O(1). Otherwise, the

energy is infinite, and one has to look at the energy distribution over finite domains
to locate vortices. The analogous problem onR

2 with infinite initial energy has been
solved recently for the Ginzburg–Landau equation in Lin and Xin [24]. When the sum of
vortex degrees is zero, the harmonic functionha having a finiteL2 gradient overR2 is a
constant. The renormalized energy simplifies toWR2 = −∑l 6=j nlnj log |al − aj |, free
of boundary contributions. The zero sum condition is needed in the periodic case in order
to maintain the boundary condition for solutions containing vortices. The renormalized
energy is similar:Wper = −∑l 6=j nlnjG(al −aj), withG the periodic Green’s function
for the Laplacian on the two dimensional torus (1G = 2π(δ0 − 1)).

6. Vortex Motion Law of a CGL

In this section, we apply our method to establish the vortex motion law of a related
complex Ginzburg–Landau (CGL) equation:

δ

log 1
ε
uε,t + iuε,t = 1uε + ε−2(1 − |uε|2)uε, (6.1)

whereδ > 0 is a fixed positive number. We shall only consider the Dirichlet boundary
condition (1.2), with extensions to other boundary conditions the same as remarked in
the last section.

The energy conservation is

d

dt

∫
�

eε(uε)(t, x) dx = − δ

log 1
ε

∫
�

|uε,t|2, (6.2)

which implies via Lemma 2.1:∫ T

0

∫
�

δu2
ε,t

log 1
ε
dx ≤ C0, (6.3)
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and energy concentration:

µε(t, x) =
eε(uε)(t, x) dx

π log 1
ε

⇀ µ(t, x) =
n∑

j=1

δaj (t). (6.4)

It follows from (6.3) thataj(t) are Lipschitz continuous int for anyδ > 0, see [20, 22]
for details.

The conservation of mass is now

∂t|uε|2 = 2divp(uε) − 2δ

log 1
ε
uε ∧ uε,t, (6.5)

and the conservation of linear momentum is

∂tp(uε) = 2div (∇uε ⊗ ∇uε) − ∇Pε − 2δ

log 1
ε
uε,t · ∇uε, (6.6)

with the pressure

Pε = |∇uε|2 + uε · 1uε − |uε|4 − 1
2ε2

− δ

log 1
ε
uε · uε,t. (6.7)

We observe that

δ

log 1
ε
uε ∧ uε,t → 0, L1([0, T ]; L1(�)),

by (6.3), and similarly

δ

log 1
ε
uε,t · ∇uε → 0, L1([0, T ]; L1(�a)).

Using the same arguments as before for NLS, we deduce thatp(uε) ⇀ v satisfying the
Euler equation on�a; moreover, the vorticesaj(t) obey the same Kirchhoff law as in
Theorem 1.2. Since the results are independent ofδ, we have as a byproduct another
proof of continuity and the dynamical law for NLS vortices sendingδ ↓ 0.

7. Semiclassical Limit of NLS

In this section, we consider the semiclassical (WKB) limit of NLS:

εivε,t = ε21vε + (1− |vε|2)vε, (7.1)

with the Dirichlet boundary condition (1.2) and initial data satisfying (1.5). The case
when there are no vortices in solutions (uniformly bounded energy asε ↓ 0), has been
studied in Colin and Soyeur [4]. Here we are concerned with the case when there are
vortices. We show:
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Theorem 7.1. Suppose that the initial data

vε(0, x) ⇀
n∏

j=1

x− aj

|x− aj |e
ih(x),

weakly inH1(�a), h(x) ∈ H1(�), and that|vε(0,x)|−1
ε → 0 in L2(�′), for any compact

subset�′ of �a. Then there is no vortex motion at a later time and

vε(t, x) ⇀
n∏

j=1

x− aj

|x− aj |e
ih(t,x), (7.2)

where the phase functionh(t, x) ∈ H1(�) and is the weak solution of the finite energy
of the following initial-boundary value problem of the linear wave equation:

htt − 21h = 0, x ∈ �,

h(t, x) = h(x), x ∈ ∂�,

h(0, x) = h(x), ht(0, x) = 0. (7.3)

Proof. By Proposition 3.1 (tε = ε), we know that vortices do not move on this slow
WKB time scale. By Lemma 2.1 and Lemma 2.2:

vε(t, x) ⇀
n∏

j=1

x− aj

|x− aj |e
ih(t,x), (7.4)

whereh(t, x) ∈ H1(�) for each timet. The conservation of mass is now(
1 − |vε|2

ε

)
t

+ 2div(p(vε)) = 0, (7.5)

and the conservation of energy implies∫
�′

|∇vε|2 +
∫

�

(1 − |vε|2)2

2ε2
≤ C0, (7.6)

where�′ is a compact subset of�a,C0 a positive constant independent ofε. It follows
thatvε is bounded inL∞([0, T ];H1(�′)); vε,t bounded inL∞([0, T ];H−1(�′)) in view

of (7.6) and (7.1); and(1−|vε|2)
ε bounded inL∞([0, T ], L2). Sovε is strongly compact in

C([0, T ], L2(�′)) and weakly compact inL∞([0, T ], H1(�′)). Up to a subsequence if
necessary:vε → v strongly inL∞([0, T ]; L2(�′)) and weakly inL∞([0, T ];H1(�′)).
In the meantime, (7.5) gives:

1 − |vε|2
ε

= −2
∫ t

0
div p(vε)(t

′) dt′ +
1 − |vε(0, x)|2

ε
⇀ −2

∫ t

0
div p(v)(t′) dt′,

(7.7)

in the sense of the distribution on�′. This then allows us to passε ↓ 0 in (7.1) and obtain

ivt = −2v
∫ t

0
div p(v)(t′) dt′,
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in the distribution sense on�′. Also |v| = 1, limt↓0+ v(t, x) = h(x) in L2(�′), and
limt↓0+ vt(t, x) = 0, inH−1(�′). Writing v = eiH shows

Ht − 2
∫ t

0
1H(t′)dt′ = 0, x ∈ �′

and further lettingH = 2a + h(t, x), with 2a harmonic on�′, yields

ht − 2
∫ t

0
1h(t′)dt′ = 0, x ∈ �′, (7.8)

or by arbitrariness of�′:

htt − 21h = 0, D′(�a × [0, T ]). (7.9)

It follows thath is a distribution solution of the linear wave equation on�a.The boundary
datah(t, x) = h(x),x ∈ ∂�, follows fromvε → v inHs,s ∈ (1/2,1), near the boundary
and the standard trace imbedding. Finally,h(t, x) ∈ H1(�) implies thath is the unique
weak solution of (7.3) with finite total energy. The proof is complete.�
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