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G-equations are level-set type Hamilton-Jacobi partial differential equations modeling propagation
of flame front along a flow velocity and a laminar velocity. In consideration of flame stretching,
strain rate may be added into the laminar speed. We perform finite difference computation of
G-equations with the discretized strain term being monotone with respect to one-sided spatial
derivatives. Let the flow velocity be the time-periodic cellular flow (modeling Rayleigh-Bénard
advection), we compute the turbulent flame speeds as the asymptotic propagation speeds from
a planar initial flame front. In strain G-equation model, front propagation is enhanced by the
cellular flow, and flame quenching occurs if the flow intensity is large enough. In contrast to
the results in steady cellular flow, front propagation in time periodic cellular flow may be locked
into certain spatial-temporal periodicity pattern, and turbulent flame speed becomes a piecewise
constant function of flow intensity. Also the disturbed flame front does not cease propagating until
much larger flow intensity.
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1. Introduction
Front propagation in turbulent combustion is a complex multiscale dynamical pro-
cess. To analyze and measure the turbulent burning velocity is of great importance
in both combustion theory and experiment. Important issues include: (i) front
speed enhancement by flow velocity, (ii) bending of front speed growth in large flow
velocity and (iii) flame quenching due to flame stretching [4, 13, 17, 19, 21, 22].
In this paper we consider the inviscid G-equation [16, 20]

∂G

∂t
+V(x, t) · ∇G+ sL|∇G| = 0, (1)

and the strain G-equation
∂G

∂t
+V(x, t) · ∇G+ sL|∇G|+ dM

∇G ·DV · ∇G

|∇G|
= 0 (2)
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in two-dimensional space (x = ⟨x, y⟩ ∈ R2, t > 0). In the corrugated flamelet regime
of premixed turbulent combustion, the flame front is considered as the interface
{G(x, t) = 0} between the burnt region {G < 0} and the unburnt region {G > 0}.
The motion law of the flame front

dx

dt
= V(x, t) + sLn (3)

consists of a prescribed flow velocity V(x, t) and a laminar velocity normal to the
level set n = ∇G/|∇G| with laminar flame speed sL > 0. This motion law gives
the inviscid G-equation (1). To model the flame stretching effect by flow velocity, a
correction term may be added to the laminar speed [11, 16]:

ŝL = sL − dMS,

where S = −nt ·DV ·n is the strain rate with Markstein diffusivity dM > 0. This
modified motion law gives the strain G-equation (2).
For the flow velocity, we consider the steady cellular flow

V(x, y) = A · ⟨cos(y), cos(x)⟩ (4)

and the Rayleigh-Bénard advection [5]

V(x, y, t) = A · ⟨cos(y) + sin(y) cos(ωt), cos(x) + sin(x) cos(ωt)⟩ , (5)

where A is the flow intensity. The Rayleigh-Bénard advection is an unsteady cellular
flow periodic in time upon rewriting in the form:

V(x, y, t) = A · sec(θω(t)) · ⟨cos(y + θω(t)), cos(x+ θω(t))⟩

with θω(t) = tan−1(cos(ωt)). Also the Rayleigh-Bénard advection is known for
chaotic streamlines and diffusion-like transport in diagonal direction [3, 26]. See the
right panel of Figure 1.1.

Figure 1.1: Left panel: phase portrait of steady cellular flow (4). Right panel:
trajectories of unsteady cellular flow (5) with A = 1, ω = 1, time up to 100.



Y.-Y. Liu, J. Xin / Synchronized Front Propagation ... 111

If the initial flame front is planar and the flow velocity is at rest (A = 0), then the
flame front propagates at speed sL. If the flow velocity is in motion (A > 0), then the
flame front is corrugated in time and eventually propagates at an asymptotic speed
sT called the turbulent flame speed. Our goal is to study the growth of turbulent
flame speed with respect to the increase of flow intensity. Specifically, we would like
to see the qualitative difference of function sT (A) between the G-equations (1) and
(2) as well as the cellular flows (4) and (5).
The inviscid G-equation (1) and cellular flow (4) have been studied in many contexts.
In [6, 23], formulation of turbulent flame speed is rigorously justified by periodic
homogenization theory. In [1, 7], motion of level set is simulated by the motion law
(3) with grid points labeled as burnt or unburnt particles. In [14, 24], estimates
of front speed enhancement is obtained using the optimal control representation
of solutions. The problem becomes much more challenging if the strain term is
added. In [11, 12], computational study of strain G-equation is given along with
the curvature term. In [25], flame quenching in steady cellular flow (4) is rigorously
justified using the differential game representation of solutions.
In [11] we consider the full G-equation model with motion law

ŝL = sL − dM(S + sLκ),

where κ = div(n) is the curvature of level set added as the flame stretching effect
by the laminar velocity. The curvature term is a nonlinear diffusion that brings
certain smoothness to the solution. In the framework of monotone discretization of
finite difference computation in Hamilton-Jacobi equations [8], we evaluate the strain
rate S and the curvature κ by central differencing in order to apply the Godunov
scheme on ŝL|∇G|. If the curvature term is removed as in present paper, solutions
of strain G-equation (2) is literally not differentiable. Therefore we shall construct
a numerical Hamiltonian of the strain term in (2) that is genuinely monotone with
respect to all one-sided spatial derivatives of the solutions.
In [12] we consider the inviscid G-equation and the cellular flows that are unsteady
in x-direction (see also [7]), and we evaluate turbulent flame speeds as a function
of the temporal frequency: sT (ω). It is observed that front propagation may be
synchronized with spatial and temporal periodicity of the cellular flow. Then tur-
bulent flame speed is a piecewise linear function of frequency with rational slopes:
sT (ω) = rω, ω ∈ Ir for some r ∈ Q and intervals Ir ⊂ R. In this paper we will
consider sT (A) with the strain term being added.
The rest of the paper is organized as follows. In section 2, we construct the numerical
discretization of G-equation models. In section 3, we present the numerical results
of turbulent flame speeds. In section 4, we conclude the paper with future work and
acknowledgments.

2. Numerical Hamiltonian of G-equations

The general form of Hamilton-Jacobi (HJ) equations are
∂G

∂t
+H(DxG,DyG) = 0 (6)

where G(x, y, t) : R2 × R → R is the solution and H(p, q) : R2 → R is the Hamilto-
nian.
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The solutions are defined in the viscosity sense and may not be differentiable. Let
the uniform discretization of the solutions be Gn

i,j = G(i∆x, j∆y, n∆t), then the
finite difference and forward Euler discretization of (6) is

Gn+1
i,j −Gn

i,j

∆t
+ Ĥ(D−

x G
n
i,j, D

+
x G

n
i,j, D

−
y G

n
i,j, D

+
y G

n
i,j) = 0,

where D−
x G

n
i,j, D−

y G
n
i,j, D−

y G
n
i,j and D+

y G
n
i,j are one-sided approximations of the

spatial derivatives and Ĥ(p−, p+, q−, q+) is the numerical Hamiltonian of H(p, q). To
obtain the numerical stability, Ĥ is chosen to be consistent (Ĥ(p, p, q, q) = H(p, q))
and monotone (symbolically Ĥ(↑, ↓, ↑, ↓)). A popular choice is the Lax-Friedrichs
scheme:

Ĥ(p−, p+, q−, q+) = H(p
−+p+

2
, q

−+q+

2
)− ∥∂H

∂p
∥∞(p

+−p−

2
)− ∥∂H

∂q
∥∞( q

+−q−

2
).

But it is desirable to reduce the artificial diffusion (p+−p−)/2, (q+−q−)/2 whenever
possible.
To improve the accuracy of the solutions, the spatial derivatives are evaluated by
high order WENO (weighted essentially non-oscillatory) scheme, and the time steps
are iterated by high order TVD (total variation diminishing) Runge-Kutta (RK)
scheme. A popular choice is fifth order scheme in space (WENO5) paired with
third order scheme in time (TVD-RK3). Time step size ∆t is determined by the
CFL (Courant–Friedrichs–Lewy) condition. Here we present the construction of
numerical Hamiltonian for inviscid and strain G-equations (1)(2) and refer [10, 15,
18] for implementation of WENO and TVD-RK schemes.
For inviscid G-equation (1), write V = ⟨u, v⟩ and the Hamiltonian is

Hinv(p, q) = up+ vq + sL
√

p2 + q2.

The corresponding numerical Hamiltonian is

Ĥinv(p
−, p+, q−, q+) = upvel + vqvel + sL

√
p2lem + q2lem,

where the spatial derivatives in the velocity term are given by the upwind scheme:

pvel =

{
p− , if u > 0

p+ , if u < 0
, qvel =

{
q− , if v > 0
q+ , if v < 0

,

and the spatial derivatives in the laminar term are given by the Godunov scheme:

p2lem = max(max(p−, 0)2,min(p+, 0)2),

q2lem = max(max(q−, 0)2,min(q+, 0)2).

For strain G-equation (2) it suffices to consider the strain term with Hamiltonian

Hstr(p, q) = a
p2√

p2 + q2
+ b

q2√
p2 + q2

+ c
pq√
p2 + q2

, (7)

where a = dM(∂u/∂x), b = dM(∂v/∂y) and c = dM(∂u/∂y + ∂v/∂x)).



Y.-Y. Liu, J. Xin / Synchronized Front Propagation ... 113

The first term of (7) Hs1(p, q) = a
p2√

p2 + q2

is monotone increasing with respect to p2 and monotone decreasing with respect to
q2 if a > 0 (opposite monotonicity if a < 0). Therefore its numerical Hamiltonian is
given by the Osher-Sethian scheme:

Ĥs1(p
−, p+, q−, q+) = a

p2s1√
p2s1 + q2s1

,

p2s1 =

{
min(p+, 0)2 +max(p−, 0)2 , if a > 0

min(p−, 0)2 +max(p+, 0)2 , if a < 0
,

q2s1 =

{
min(q−, 0)2 +max(q+, 0)2 , if a > 0

min(q+, 0)2 +max(q−, 0)2 , if a < 0
.

The second term of (7)

Hs2(p, q) = b
q2√

p2 + q2

is monotone decreasing with respect to p2 and monotone increasing with respect to
q2 if b > 0 (opposite monotonicity if b < 0). Therefore its numerical Hamiltonian is
given by the Osher-Sethian scheme:

Ĥs2(p
−, p+, q−, q+) = b

p2s2√
p2s2 + q2s2

,

p2s2 =

{
min(p−, 0)2 +max(p+, 0)2 , if b > 0

min(p+, 0)2 +max(p−, 0)2 , if b < 0
,

q2s2 =

{
min(q+, 0)2 +max(q−, 0)2 , if b > 0

min(q−, 0)2 +max(q+, 0)2 , if b < 0
.

Finally consider the third term of (7)

Hs3(p, q) = c
pq√
p2 + q2

.

Observe that
∂Hs3

∂p
=

cq3

(p2 + q2)
3
2

,
∂Hs3

∂q
=

cp3

(p2 + q2)
3
2

.

Then upwind direction of p is determined if q−, q+ have same sign, and upwind
direction of q is determined if p−, p+ have same sign. Also ∂Hs3/∂p > 0 if cq > 0,
∂Hs3/∂p < 0 if cq < 0, ∂Hs3/∂q > 0 if cp > 0 and ∂Hs3/∂q < 0 if cp < 0. Otherwise
the Lax-Friedrichs scheme is applied with |∂Hs3/∂p| ≤ |c| and |∂Hs3/∂q| ≤ |c|.
Therefore its numerical Hamiltonian is given by the Roe scheme:

Ĥs3(p
−, p+, q−, q+) = c

ps3qs3√
p2s3 + q2s3

− c̄p
(p+ − p−)

2
− c̄q

(q+ − q−)

2
,
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ps3 =


p− , if q−q+ > 0 and cq± > 0

p+ , if q−q+ > 0 and cq± < 0
p+ + p−

2
, if q−q+ < 0

,

qs3 =


q− , if p−p+ > 0 and cp± > 0

q+ , if p−p+ > 0 and cp± < 0
q+ + q−

2
, if p−p+ < 0

,

c̄p =

{
0 , if q−q+ > 0

|c| , if q−q+ < 0
, c̄q =

{
0 , if p+p− > 0

|c| , if p+p− < 0
.

Overall the artificial diffusion is added only when the one-sided derivatives have
opposite signs.

3. Numerical results

Let G(x, 0) = x for x ∈ R2, then the flame front is initially {x = 0} and starts
propagating in x-direction. Note that the cellular flows (4)(5) are spatially periodic
on (2πT)2, we may write G(x, t) = x + u(x, t) with u(x, t) spatially periodic for
all t > 0. Therefore we can solve the initial-boundary value problem of inviscid
G-equation (1) in finite spatial domain:

∂G
∂t

+V(x, t) · ∇G+ sL|∇G| = 0 ,x ∈ [0, 2π]2, t > 0

G(x, 0) = x , x ∈ [0, 2π]2

G(x, 2π, t) = G(x, 0, t) , x ∈ [0, 2π], t > 0

G(2π, y, t) = G(0, y, t) + 2π , y ∈ [0, 2π], t > 0

. (8)

Initial-boundary conditions for strain G-equation (2) are exactly the same.

2𝜋𝜋 
 

  

0),( =txG )(tX
0

0

Figure 3.1: Propagation distance X(t).
Numerical computation of (8) is carried out on a 256× 256 uniform mesh of spatial
domain [0, 2π]2. Then we can obtain the solution on stripe domain R×[0, 2π] with

G(x+ 2kπ, y, t) = G(x, y, t) + 2kπ, k ∈ Z

so that we can visualize the level set {G(x, t) = 0}. Denote the propagation distance
of the flame front in x-direction in time as follows:

X(t) = sup{x ∈ R |G(x, t) < 0}. (9)

See Figure 3.1. We see X(0) = 0 and X ′(t) is the instantaneous propagation speed.
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Therefore the turbulent flame speed is defined as the asymptotic propagation speed
in large time as follows:

sT = lim
t→∞

X(t)

t
.

Figure 3.2: Turbulent flame speed sT (A) for inviscid G-equation (1) and strain
G-equation (2) with dM = 0.1, 0.2 and steady cellular flow (4).

Figure 3.2 shows the plots of sT (A) of G-equations (1)(2) with steady cellular flow
(4). For inviscid G-equation, turbulent flame speed is enhanced by the cellular
flow with growth rate sT = O(A/ logA), A ≫ 1. The sublinear growth is due to
slowdown of front propagation near the hyperbolic equilibria of the cellular flow.
For strain G-equation, turbulent flame speed starts to decrease and soon drops to
zero for larger flow intensity.

Figure 3.3: Front propagation in strain G-equation (2) with dM = 0.2 and steady
cellular flow (4) at time t = 4. Upper panel: A = 5 (complete combustion). Middle
panel: A = 9 (incomplete combustion). Lower panel: A = 12 (flame quenching).
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Figure 3.3 further presents three stages of front propagation being affected by the
strain term as the flow intensity increases. When A is relatively small, the strain
rate S is so small that the laminar speed ŝL remains strictly positive. Therefore
the flame front propagates without unburned region being left behind (complete
combustion). When A is moderately larger, the laminar speed ŝL decreases as the
strain rate S increases near the hyperbolic equilibria. The flame front still manages
to propagate forward, but there exists stagnated unburnt regions being left behind
(incomplete combustion). When A exceeds a certain value, the strain rate S is large
enough to negate both the flow velocity and the laminar velocity. Therefore the
flame front ceases to propagate forward (flame quenching).

Figure 3.4: Turbulent flame speed sT (ω) for inviscid G-equation (1) and unsteady
cellular flow (5) with A = 4.

Figure 3.4 shows the plot of sT (ω) for the inviscid G-equation (1) and the unsteady
cellular flow (5) with A = 4. It happens that propagation of flame front is eventually
synchronized with the spatial and temporal periodicity of the cellular flow.

Figure 3.5: Turbulent flame speed sT (A) for inviscid G-equation (1) and unsteady
cellular flow (5) with ω = 2.
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Specifically, the propagation distance is a multiple of the spatial period ∆x = 2π ·N ,
and the propagation time is a multiple of temporal period ∆t = 2π/ω · M . Also
the synchronization pattern N,M ∈ N is robust with respect to small variation of ω
called frequency locking. Therefore the turbulent flame speed sT (ω) = ∆x/∆t = rω
is a piecewise linear function with rational slope r = N/M .

Figure 3.6: Turbulent flame speed sT (A) for strain G-equation (2) and unsteady
cellular flow (5) with ω = 2.

Figure 3.5 and Figure 3.6 are plots of sT (A) for the G-equations (1)–(2) and the
unsteady cellular flow (5) with ω = 2. Two major differences are observed in com-
parison with Figure 3.2 for the steady cellular flow. As the front speed enhancement
being synchronized with the time-periodic cellular flow, sT (A) becomes a piecewise
constant function. Also as the flame front being disturbed by the unsteady cellular
flow, the flame quenching is delayed until a much larger flow intensity.

4. Conclusion

We have performed a computational study on front propagation in G-equation mod-
els and the cellular flows. Two issues have been addressed in comparison to our pre-
vious works [11, 12]. First, a careful makeover of discretization of the strain rate is
given so that the monotonicity (with respect to one-sided derivatives) and hence the
stability are met (even in absence of the curvature effect). Second, synchronization
of front propagation may occur due to temporal oscillation in the Rayleigh-Bénard
advection, and the turbulent flame speeds may locally lock into a constant with
respect to the increase of the flow intensity.
Computation of turbulent flame speeds in G-equation models is rather challenging
due to higher order discretization as well as large time simulation. The only excep-
tion so far might be the viscous G-equation as the curvature term being simplified to
the diffusion term. In [11], turbulent flame speed is obtained as the effective Hamil-
tonian by solving the cell problem in homogenization theory. In [9], the viscous
G-equation is discretized and simulated by the Galerkin proper orthogonal decom-
position (POD) method. In future work, we plan to study accurate and efficient
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algorithms in solving G-equation models and evaluating turbulent flame speeds in
three space dimensions.
Synchronization is a well-known nonlinear phenomena in chaotic dynamical systems.
Besides having appeared in mathematical models like nonlinear oscillators or circle
maps, synchronization has been widely applied in engineering science disciplines (for
example, phase locking in circuit design). See [2] for more details. In case of inviscid
G-equation, its solutions are obtained by optimal control theory:

G(x, t) = inf
y(·)

G(y(t), 0)

with the infimum taken among all trajectories ẏ(·) = V(y(·), ·)+a(·), y(0) = x and
controls satisfying |a(·)| ≤ sL. Even the flow velocity has chaotic streamlines, the
control effect given by the laminar velocity may contribute to self-organization of
the trajectories. In future work, we would like to investigate the mechanism therein.
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