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Abstract
G-equations are well-known front propagation models in combustion
and are Hamilton–Jacobi type equations with convex but non-coercive
Hamiltonians. Viscous G-equations arise from numerical discretization or
modeling dissipative mechanisms. Although viscosity helps to overcome
non-coercivity, we prove homogenization of an inviscid G-equation based
on approximate correctors and attainability of controlled flow trajectories.
We verify the attainability for two-dimensional mean zero incompressible
flows, and demonstrate asymptotically and numerically that viscosity reduces
the homogenized Hamiltonian in cellular flows. In the case of one-
dimensional compressible flows, we found an explicit formula of homogenized
Hamiltonians, as well as necessary and sufficient conditions for wave trapping
(effective Hamiltonian vanishes identically). Viscosity restores coercivity and
wave propagation.

Mathematics Subject Classification: 70H20, 76M50, 76M45, 76N20

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Front or interface propagation in fluid flows is a robust nonlinear phenomenon arising in liquid
phase chemical reactions and premixed flame propagation in fluid turbulence [13, 34, 35, 41]
among other applications. Mathematical models range from reaction–diffusion–advection
equations to advective Hamilton–Jacobi equations (HJ) [10, 14, 17, 42, 43]. A particular HJ
equation, the so called G-equation, is the most popular in the combustion science literature
[16, 25, 38, 45]. The G-equation is

Gt + V (x, t) · DxG = sl|DxG| + d�xG, (1.1)
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where G is a scalar function (the level set function of the interface), V (x, t) is a prescribed flow
velocity field, sl is a positive constant (laminar front speed), d � 0 is a diffusion coefficient.
If d = 0 (inviscid regime), the G-equation (1.1) is the level set equation of the interface
motion law: the exterior normal velocity of the interface equals the laminar speed sl plus the
projection of the fluid velocity along the normal, see chapter 6 of [32, 33]. The viscous term
d�xG introduces an additional length scale; d > 0 is proportional to the so-called Markstein
length [16, 33]. The viscous term arises from numerical discretization [32] or a simplification
of curvature [16].

A fundamental problem in turbulent combustion is to study the large time front speed, or
the asymptotic growth rate limt→+∞ G(x, t)/t , and analyse its dependence on the advection
field V . Such a limit (if it exists) is called the turbulent front speed (sT ) [34, 43]. The large time
front speed may be captured by first performing a scaling transform Gε(x, t) = εG(x/ε, t/ε),
then taking the limit ε → 0. The transformed equation is

Gε
t + V (x/ε, t/ε) · DxG

ε = sl|DxG
ε | + ε d �xG

ε, (1.2)

which is a homogenization problem. Here ε → 0 plays the role of t → +∞. We shall see later
that the travelling front solution of G-equation satisfies the cell problem of homogenization,
and that front speed is associated with the homogenized Hamiltonian.

Homogenization of HJ equation

uε
t + H

(x

ε
, Dxu

ε
)

= 0, (1.3)

when Hamiltonian H = H(x, p) is a periodic function in x (so-called periodic
homogenization), was originated in [23] in the 1980s, and further developed [18, 19] to include
viscous HJs and fully nonlinear equations. Besides periodicity of H in x, the Hamiltonian is
usually required to be coercive:

|H(x, p)| → +∞ as |p| → +∞, uniformly in x. (1.4)

Recently, much progress has been made in extending homogenization to stationary ergodic
media for convex and coercive inviscid and viscous HJs [20, 21, 24, 36, 37, 39, 40].

The Hamiltonian of G-equation is H(x, p) = −sl|P | + V (x) · P , which is not coercive
if V changes sign and has large enough amplitude as in a strong advection regime. In
this paper, we study the role of viscosity (or parameter d) in periodic homogenization and
qualitative properties of homogenized Hamiltonian H of G-equations. In the viscous case, H

is given by the cell (corrector) problem whose solution is classical. Homogenization of inviscid
G-equation is more interesting in that exact solutions of the cell problem may not exist due to
the lack of coercivity. There are quite a few papers in the literature on homogenization of non-
coercive HJs, see [2–7, 11] among others. However, the inviscid G-equation does not satisfy
assumptions in the quoted papers. To carry out homogenization, we construct approximate
solutions of the cell problem under specific conditions of the flows.

In one space dimensional compressible flows, the effective Hamiltonian is given by an
explicit formula which may be zero and cause wave trapping (propagation failure). Necessary
and sufficient condition of trapping is found in closed form. In particular, trapping occurs for a
gradient flow with large enough amplitude. If viscosity is present however, trapping disappears
for any mean zero spatial flow.

In multi-dimensional mean zero incompressible flows, we identify a sufficient condition
for approximate correctors in terms of global attainability of controlled flow trajectories. This
property is verifiable for two-dimensional Hamiltonian flows, and it implies homogenization.
Our proof is based on a combined use of PDE and one-sided controllability. The H is coercive.
We demonstrate via cellular flows that viscosity reduces H or the effective speed of front
propagation.
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The paper is organized as follows. In section 2, we review and present homogenization
results of viscous G-equation for spatially periodic flows. In section 3, we prove
homogenization of one space dimensional inviscid G-equation with spatial compressible flows,
and state necessary and sufficient trapping conditions. The corresponding trapping condition
of the viscous G-equation demonstrates the dramatic difference a positive viscosity makes.
In section 4, we prove homogenization of inviscid G-equation in two-dimensional mean zero
incompressible flows based on the global attainability property of controlled flows. We also
show the viscosity effect on H in cellular flows. In section 5, we conclude with remarks on
future work.

Since this work was completed and submitted for review, much exciting progress has been
made on homogenization of inviscid G-equation in multi-dimensions. A local attainability
property of the controlled flow trajectory is utilized by two of the authors here [44] to extend
periodic homogenization to any space dimensions for incompressible flows. Although global
attainability in section 4 is more elegant than the local attainability [44], it may not hold in
dimensions three and above. By a different method, homogenization is shown for more general
periodic flows in [12]. More recently, through analysis of sub-additivity of travel time of the
controlled flow trajectory, homogenization for stationary ergodic incompressible flows has
been established in two space dimensions [26]. Similar results are stated in higher dimensions
under sufficient conditions of travel times [26].

2. Viscous G-equation and effective Hamiltonian

Let us set sl = 1 with no loss of generality, and consider 1-periodic Lipschitz continuous
vector field V = V (x), u = −G. Then (1.2) becomes

uε,t + V
(x

ε

)
· Duε + |Duε | − εd�uε = 0, (2.1)

where d is a positive constant, V is periodic and Lipschitz continuous; g(x) is uniformly
continuous and grows at most linearly, |g(x)| � C1|x|+C2 for two constants C1 and C2. Such
initial data include the affine function for initiating travelling fronts. For each ε > 0, there
exists a unique viscosity solution uε ∈ C(Rn × [0, +∞)) which grows at most linearly in t

and x. The existence and uniqueness of uε follow from corollary 2.1 in [8]. The existence
part can also be deduced from the optimal control (Lagrangian) formulation (see [20, 28] and
references therein).

The formal two-scale homogenization ansatz

uε(x, t) = u0(x, t) + ε u1

(
x, t,

x

ε

)
+ · · · , (2.2)

gives to leading order

u0,t + V (y) · (Dxu0 + Dyu1) + |Dxu0 + Dyu1| − d�yu1 = 0. (2.3)

The cell problem is as follows: given any vector P ∈ R
n, find a unique number H(P ) such

that the equation

− d�yu + |P + Dy u| + (P + Dyu) · V (y) = H(P ), y ∈ T
n (2.4)

has a periodic solution u = u(y) on T
n. If the cell problem is solvable, u0 then formally

satisfies the homogenized HJ equation

u0,t + H(Dxu0) = 0. (2.5)
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Equation (2.4) of the cell problem also arrives from seeking a travelling front solution to
(2.1) of the form

u = P · x − Ht + ε w(x/ε), (2.6)

where w = w(y) is periodic. Upon substitution, we see immediately that (w, H) satisfies the
cell problem (2.4). If P is a unit vector, H(P ) is the front speed in direction P .

The cell problem has a C2 solution u corresponding to a unique convex function H(P ).
Convergence of uε to a solution of (2.5) then follows from the perturbed test function
method [18]. The proofs may be adapted from [5, 19]. We skip the details and state the
results below.

Theorem 2.1.

(1) Given any P ∈ R
n, there exists a unique number H(P ) such that the cell problem (2.4)

has a periodic solution u ∈ C2,α(Tn), for any α ∈ (0, 1).
(2) The effective Hamiltonian H is given by the min–max formula

H(P ) = min
φ∈C2(Tn)

max
Tn

(−d�φ + |P + Dφ| + (P + Dφ) · V ), (2.7)

and so H is convex and homogeneous of degree one in P .
(3) As ε → 0, uε locally uniformly converges to u which grows at most linearly in (x, t) and

is the unique viscosity solution of

ut + H(Du) = 0,

u(x, 0) = g.
(2.8)

Although the Hamiltonian of the G-equation H(x, p) = |p| + V (x) · p is non-coercive in
p when V has large enough amplitude, the homogenized H may be coercive. This is the case
when V is mean zero and divergence free. Integrating equation (2.4) over T

n and applying
Jensen’s inequality show that

H(P ) =
∫

Tn

|P + Dyu| dy � |P |,

implying coercivity of H .

3. Viscosity effect and wave trapping in 1D

In this section, we consider homogenization of the inviscid G-equation in one space
dimensional compressible flows, and present formulae of H in closed form. Explicit formulae
of inviscid H in shear flows (uni-directional incompressible flows) are known [17], where the
cell problem reduces to an ordinary differential equation (ODE) with exact solution.

An interesting feature of the inviscid G-equation in one-dimensional compressible flows
is that the cell problem (an ODE) may not have exact solutions. However, we show that
approximate solutions to cell problem exist and this is enough to establish homogenization.
If the variation of the flow is large enough, then H(p) ≡ 0, implying wave front trapping
by the flow, and non-coercivity of H . Non-coercivity of the inhomogeneous Hamiltonian,
H(x, p) = |p| + V (x)p, persists in the effective Hamiltonian. In contrast, we show that in
the one space dimensional viscous G-equation (d > 0), H(p) is generically coercive. In
particular, if the flow has mean equal to zero, H(±1) > 0, H(p) = H(sgn(p))|p|, and so the
effective Hamiltonian is coercive. Homogenization overcomes non-coercivity with the help
of diffusivity.
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3.1. Wave trapping and non-coercivity in inviscid G-equation

Let us define the effective Hamiltonian H as follows:

Case I. If maxT1 |V | < 1 or minT1 |V | > 1 (i.e. V �= ±1), then

H(p) = p

(∫ 1

0

1

V (x) + sign (p)
dx

)−1

.

Case II. If {x ∈ T
1| V (x) = 1} �= ∅ and minT1 V > −1, then

(i) (one-sided wave trapping) H(p) = 0 for p � 0;
(ii) for p > 0,

H(p) = p

(∫ 1

0

1

V (x) + 1
dx

)−1

.

Case III. If {x ∈ T
1| V (x) = −1} �= ∅ and maxT1 V < 1, then

(i) (one-sided wave trapping) H(p) = 0 for p � 0;
(ii) for p < 0,

H(p) = p

(∫ 1

0

1

V (x) − 1
dx

)−1

.

Case IV. If {x ∈ T
1| V (x) = −1} �= ∅ and {x ∈ T

1| V (x) = 1} �= ∅, then (bi-directional
wave trapping)

H ≡ 0.

The non-zero part of the H formula comes from solving the cell problem

|p + u′| + V (x)(p + u′) = H. (3.1)

Since H(p) �= 0, p + u′ does not change sign. Hence we have that either

p + u′ = H/(V (x) − 1)

or

p + u′ = H/(V (x) + 1)

depending on the sign of p. When H(p) = 0, the cell problem in general does not admit
continuous viscosity solution. Instead, we construct approximate solutions explicitly below.
Zero H means wave trapping by the flow. The definition of H implies that the necessary and
sufficient condition for wave trapping at p �= 0 is

H(p) = 0 iff {x ∈ T
1| V (x) + sign(p) = 0} �= ∅. (3.2)

We state the following theorem:

Theorem 3.1. For any ε > 0, there exists a function uε ∈ C1(T1) such that

H(p) − ε � |p + u
′
ε | + V (x)(p + u

′
ε) � H(p) + ε. (3.3)

Moreover, H satisfies the inf-max formula

H(p) = inf
φ∈C1(T1)

max
x∈T1

(|p + φ′(x)| + V (x)(p + φ′(x))). (3.4)
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Proof. We prove the case of p = 1. The other p numbers are similar. If
{x ∈ T

1| V (x) = −1} = ∅, then it is easy to check that the cell problem

|1 + u′| + V (x)(1 + u′) = H(1)

has a C1 periodic solution u satisfying 1 + u′ = H/(1 + V (x)).
So let us look at the case {x ∈ T

1| V (x) = −1} �= ∅. Without loss of generality, we
assume that V (0) = −1. Since V is Lipschitz continuous, there exists a constant K � 1 such
that |V (x) + 1| � K|x|. Then

c =
∫ 1

0

ε

|1 + V (x)| + e
−K
ε

dx (3.5)

�
∫ 1

0

ε

Kx + e
−K
ε

dx � 1. (3.6)

Now let us choose

uε(x) =
∫ x

0

ε

c|1 + V (s)| + ce
−K
ε

ds − x,

which satisfies inequality (3.3) with H = 0.
The inf-max formula (3.4) follows from a similar argument as in theorem 2.1 of the viscous

case. We omit details. �

Homogenization follows from the approximate solution of the cell problem and the
perturbed test function method [19], and the result is the following theorem:

Theorem 3.2. For ε > 0, let uε be the unique viscosity solution of the inviscid G-equation
with at most linear growth:

uε,t + |u′
ε | + V

(
x

ε

)
u

′
ε = 0 in (0, +∞) × R,

uε(x, 0) = g(x).

Then uε locally uniformly converges to the unique viscosity solution u with at most linear
growth of the effective equation:

ut + H(u′) = 0 in (0, +∞) × R,

u(x, 0) = g(x).
(3.7)

3.2. Viscosity and absence of wave trapping

When d > 0, we prove that generically wave trapping does not occur and H(p) is coercive.

Theorem 3.3. Consider H of the homogenized one space dimensional viscous G-equation.
Let p �= 0. Then

H(p) = 0 iff
∫ 1

0
V dx + sign(p) = 0. (3.8)

Remark 3.1. Trapping condition (3.8) for the viscous G-equation is a non-local version of the
pointwise trapping condition (3.2) of the inviscid G-equation.
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Proof of theorem 3.3. Let us assume that p = 1. The other cases are similar. ‘�⇒’ We first
prove the necessity part. Suppose that H(1) = 0. By theorem 2.1, there exists u ∈ C2(T1)

satisfying

|1 + u′| + V (x)(1 + u′) = du′′.

Then w = 1 + u′ satisfies

|w| + V (x)w = dw′

subject to ∫ 1

0
w dx = 1. (3.9)

We claim that w(x) > 0, ∀ x ∈ R
1. In fact, according to (3.9), there exists x0 ∈ R

1 such
that w(x0) > 0. If our claim is not true, by periodicity of w(x), we find x1 < x0 such that
w(x1) = 0 and w > 0 in (x1, x0). Note that

dw′ = w(1 + V ) in (x1, x0).

Hence w ≡ 0 in (x1, x0). This contradicts the fact that w(x0) > 0. The claim holds, and so

dw′ = w(1 + V ) in R.

So

w(x) = w(0)e
∫ x

0 ( 1+V (s)

d
) ds .

Since w(1) = w(0), we have∫ 1

0
(1 + V (s)) ds = 0,

or ∫ 1

0
V (x) dx + 1 = 0.

‘⇐�’ Now let us prove the sufficiency part. Assume that∫ 1

0
V (x) dx = −1.

Then it is clear that

u(x) = λ

∫ x

0
e
∫ y

0 ( 1+V (s)

d
) ds dy − x

is a solution of

|1 + u′| + V (x)(1 + u′) = du′′,

if the constant λ satisfies

λ

∫ 1

0
e
∫ y

0 ( 1+V (s)

d
) ds dy = 1.

So H(1) = 0. �

Corollary 3.1. If V (x) has mean zero, then the effective Hamiltonian of the viscous G-equation
satisfies H(±1) > 0 and

H(p) = c∗(sign(p))|p|, (3.10)

for positive constants c∗(±1). Coercivity is valid for H .



2358 Y-Y Liu et al

Proof. It follows from theorem 3.3 that H(±1) �= 0. Scale V to δ V . By the estimates in
the proof of theorem 2.1 and min–max formula, Hδ = H(±1, δ) is a continuous function in
δ ∈ [0, 1], and is positive when δ is small enough such that δ‖V (x)‖∞ < 1. Theorem 3.3
implies that H(±1, δ) �= 0 for any δ ∈ [0, 1]. By continuity in δ, H(±1, δ) > 0, for
any δ ∈ [0, 1]. Setting δ = 1, we obtain H(±1) > 0. Degree one homogeneity of H

gives (3.10). �

Remark 3.2. The absence of trapping also appears in reaction–diffusion front propagation
through one-dimensional spatial compressible flows [27]. When the reaction is quadratic (or
Kolmogorov–Petrovsky–Piskunov) type, mean zero spatial flow (compressible flow) in one
space dimension slows down the front speed. However, front speed is always positive. This is
similar to corollary 3.1.

4. Two space dimensional inviscid G-equations

In this section, we formulate a sufficient condition on the two space dimensional flow field
V for the existence of approximate solution of cell problem and homogenization of inviscid
G-equation. In one space dimension, approximate solutions are explicitly constructed in the
last section. In multi-dimensions, the approximate solvability of cell problem is more delicate.
We show below that it is related to whether any point in the flow field may be connected by
a controlled flow trajectory to another point where |V | is small enough and coercivity holds
locally (|p| dominates the Hamiltonian). We also illustrate the role of viscosity on H with
numerical examples.

4.1. Homogenization by controlled flows

Let n = 2, ∇ · V = 0,
∫

T2 V dx = 0. There exists H ∈ C1,1(T2) such that

V = ∇⊥H.

Definition 4.1 (Controlled flow trajectory). A controlled flow trajectory associated with V

is ξ ∈ W 1,∞([0, T ]; R
n) such that for a.e. t ∈ (0, T )

ξ̇ (t) = α(t) + V (ξ(t))

where control α(t) ∈ L∞([0, T ]; B1(0)).

Lemma 4.1 (Attainability by controlled flow trajectory in 2D). For any x ∈ R
2, there

exists a controlled flow trajectory ξ : [0, Tx] → R
2 satisfying (i) ξ(0) = x, |V (ξ(Tx))| � 1

2 ;
(ii) Tx � 4 maxT2 |H|.

Proof. If |V (x)| � 1
2 , it is obvious. Assume that |V (x)| > 1

2 and choose ξ as
ξ̇ (t) = DH(ξ(t))

|DH(ξ(t))| + V (ξ(t)),

ξ(0) = x.

Note that

d

dt
H(ξ(t)) = |DH(ξ(t))| = |V (ξ(t))|.
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Since H is bounded, there must exist t1 > 0 such that |V (ξ(t))| > 1
2 for t ∈ [0, t1) and

|V (ξ(t1))| = 1
2 . Accordingly,

H(ξ(t1)) − H(x) =
∫ t1

0

d

dt
H(ξ(t)) dt � t1

2
.

So

t1 � 4 max
T2

|H|. �
Next we establish an inequality for a subsolution of the modified cell problem at two

points connected by a controlled flow trajectory.

Lemma 4.2. Suppose that u ∈ C(Tn) is a viscosity subsolution of

λu + |P + Du| + V (x) · (P + Du) = 0 in R
n.

Then for any controlled flow trajectory ξ : [0, T ] → R
n,

u(ξ(T )) − e−λT u(ξ(0)) � −
∫ T

0
P · ξ̇eλ(s−T ) ds.

Proof. For δ > 0, consider the super involution

uδ(x) = sup
y∈Rn

(
u(y) − 1

δ
|x − y|2

)
= sup

z∈Rn

(
u(x + z) − 1

δ
|z|2

)
.

It is clear that uδ is periodic, semiconvex and Lipschitz continuous. Since u is bounded,

uδ(x) = sup
z∈BC̃

√
δ(0)

(
u(x + z) − 1

δ
|z|2

)
,

where C̃ = √
2 maxTn |u|. Hence uδ is a viscosity subsolution of

λuδ + (1 − Cu

√
δ)|P + Duδ| + V (x) · (P + Duδ) � o(1)

for some constant Cu which is independent of δ and limδ→0 o(1) = 0. Since the Hamiltonian
is convex in P , by mollifying uδ , we may assume that uδ is C1. Suppose that ξ̇ (t) =
α(t) + V (ξ(t)). Let ξδ : [0, T ] → R

n be the control satisfying{
ξ̇δ = (1 − Cu

√
δ)α + V (ξδ),

ξδ(0) = ξ(0).

Then for a.e. t

d(P · ξδ + uδ(ξδ))

dt
= (P + Duδ(ξδ)) · ((1 − Cu

√
δ)α(t) + V (ξδ(t)))

� (1 − Cu

√
δ)|P + Duδ(ξδ)| + V (ξδ)(P + Duδ(ξδ))

� −λuδ(ξδ) + o(1).

So
d

dt
(eλtuδ(ξδ(t))) � −eλtP · ξ̇δ(t) + o(1).

Therefore

uδ(ξδ(T )) − e−λT u(ξδ(0)) � −
∫ T

0
P · ξ̇δeλ(s−T ) ds + o(1).

Sending δ → 0, the above lemma holds. �
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Standard Perron’s method implies that for given λ > 0, there exists a unique periodic
viscosity solution uλ ∈ C(Tn) of

λuλ + |P + Duλ| + V (x) · (P + Duλ) = 0 in R
n.

We refer to [15] for details. By maximum principle,

|λuλ| � |P |
(

1 + max
Tn

|V |
)

.

The following is the key lemma of this section.

Lemma 4.3. For any sequence λm → 0 as m → +∞, there exists a subsequence λmk
→ 0 as

k → +∞ such that

lim
k→+∞

λmk
uλmk

= c uniformly in R
2

for some constant c ∈ R.

Proof.
Step I. Clearly, within the region W = {x ∈ R

2| |V (x)| < 1}, uλ is locally Lipschitz

continuous and

|Duλ(x)| � |P |(1 + maxTn |V |)
1 − V (x)

for a.e. x ∈ W.

Therefore there exists a subsequence λmk
→ 0 as k → +∞ such that

lim
k→+∞

λmk
uλmk

= g(x) uniformly in W 3
4

= {x ∈ R
2| |V (x)| � 3

4 }, (4.1)

for some continuous function g ∈ C(W 3
4
).

Step II. Note that vk = λmk
uλmk

is a viscosity solution of

λmk
vk + |λmk

P + Dvk| + V (x) · (λmk
P + Dvk) = 0.

Let v̄ = lim supk→∞,y→x vk . Then v̄ is bounded, upper semicontinuous and a viscosity
subsolution of

|Dv̄| + V (x) · Dv̄ � 0 in R
2.

As in the proof of lemma 4.2, we consider the super involution v̄δ of v̄. Then when δ is small
enough, v̄δ is a viscosity subsolution of

1
2 |Dv̄δ| + V (x) · Dv̄δ � 0 in R

2.

Note that there is no error term o(1) on the right-hand side since the above equation does not
involve the zeroth order term. Taking integration over T

2, we derive that∫
T2

|Dv̄δ| dx = 0.

Hence v̄δ(x) ≡ cδ for some constant cδ ∈ R. Upon a subsequence if necessary, we may assume
that limδ→0 cδ = c. Since limδ→0 v̄δ = v̄, we get that

v̄(x) ≡ c (4.2)

for some constant c ∈ R.

Step III. It is easy to see that

g(x) ≡ c in W 1
2

= {x ∈ R
2| |V (x)| < 1

2 }.
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Step IV. Now for any y ∈ R
2, let ξ : [0, Ty] → R

2 be the control from lemma 4.1. Thanks to
lemma 4.2,

uλmk
(ξ(Ty)) − e−λmk

Ty uλmk
(y) � −

∫ Ty

0
P · ξ̇eλmk

(s−T ) ds � Ty |P |
(

1 + max
Tn

|V |
)

� C.

Since |V (ξ(Ty))| � 1
2 , thanks to (4.1), (4.2) and step III, we get for all x ∈ R

2

lim inf
k→∞,y→x

λmk
uλmk

(y) � c = lim sup
k→∞,y→x

λmk
uλmk

(y).

So

lim
k→∞

λmk
uλmk

(x) = c uniformly in R
2.

�

Lemma 4.4.

lim
λ→0

λuλ = −H(P ), uniformly in R
2,

where H(P ) is a constant. As a function of P , it is Lipschitz continuous, convex and
homogeneous of degree one.

Proof. By lemma 4.3, we find a subsequence λm → 0 as m → +∞ such that

lim
m→+∞ λmuλm

= c uniformly in R
2.

We show that

lim
λ→0

λuλ = c uniformly in R
2.

If not, owing to lemma 4.3, then there exists another subsequence λ
′
m → 0 as m → +∞

such that

lim
m→+∞ λ

′
muλ

′
m

= c′ �= c uniformly in R
2.

Without loss of generality, we assume that c′ > c. Choose c′ > t2 > t1 > c. Then when m is
sufficiently large, uλm

is a viscosity subsolution of

|P + Duλm
| + V (x) · (P + Duλm

) � −t1

and uλ
′
m

is a viscosity supersolution of

|P + Duλ
′
m
| + V (x) · (P + Duλ

′
m
) � −t2.

This is impossible if we consider the place where uλm
− uλ

′
m

attains minimum via a double

variable method [15]. Let us denote H(P ) = −c.
Next we prove that H(P ) is Lipschitz continuous. In fact, fix λ, let uP and uQ be unique

periodic viscosity solutions of the following two equations, respectively:

λuP + |P + DuP | + V (x) · (P + DuP ) = 0

and

λuQ + |Q + DuQ| + V (x) · (Q + DuQ) = 0.

Then it is clear that ũP = uP + |P−Q|(1+maxTn |V |)
λ

is a viscosity supersolution of

λũP + |Q + DũP | + V (x) · (Q + DũP ) � 0.
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Hence comparison principle implies that λuQ � λuP + |P − Q|(1 + maxTn |V |). Sending
λ → 0, we get that

|H(P ) − H(Q)| � |P − Q|
(

1 + max
Tn

|V |
)

.

Next we prove that H is convex. Using super involution as in the proof of lemma 4.2, it
is not hard to prove that ũ = uP +uQ

2 is a viscosity subsolution of

λũ +

∣∣∣∣P + Q

2
+ Dũ

∣∣∣∣ + V (x) ·
(

P + Q

2
+ Dũ

)
� 0.

Hence comparison principle implies that

λũ � λuP +Q

2
.

Convexity follows after sending λ → 0.
Finally, it is clear that for s > 0, us = suλ is a viscosity solution of

λus + |sP + Dus | + V (x) · (sP + Dus) = 0.

So H(P ) is homogeneous of positive degree one. �

It is not clear whether the H(P ) is given by the inf-max formula as in the one-dimensional
case (theorem 5.1). Regardless, convexity and degree one homogeneity of H are established.

According to lemma 4.4, we can find approximate viscosity solution of the cell problem,
i.e. for any τ > 0, there exists a viscosity solution uτ ∈ C(T2) of

H(P ) − τ � |P + Duτ | + V (x) · (P + Duτ ) � H(P ) + τ.

By the perturbed test function method [18, 19], we have the following theorem:

Theorem 4.1 (Homogenization). Consider a two-dimensional spatially periodic flow field
V (x), which is mean zero and divergence free. For ε > 0, let uε be the unique viscosity
solution of the inviscid G-equation with at most linear growth:

uε,t + |Duε | + V

(
x

ε

)
· Duε = 0 in (0, +∞) × R

2

uε(x, 0) = g(x).

Then uε locally uniformly converges to the unique viscosity solution u with at most linear
growth of the effective equation:

ut + H(Du) = 0 in (0, +∞) × R
2

u(x, 0) = g(x),
(4.3)

where H is Lipschitz continuous, convex and homogeneous of degree one.

A non-trapping (coercivity) result holds as in the viscous case.

Corollary 4.1 (Coercivity of H ). The effective Hamiltonian in a mean zero divergence free
two space dimensional periodic flow satisfies

H(P ) � |P |.
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Proof. For any τ > 0, by lemma 4.4, there exists a viscosity subsolution uτ ∈ C(T2) of

|P + Duτ | + V (x) · (P + Duτ ) � H(P ) + τ.

By considering super involution of uτ as in the proof of lemma 4.2, given δ′ ∈ (0, 1), there
exists a viscosity subsolution ũ ∈ W 1,∞(T2) of

(1 − δ′)|P + Dũ| + V (x) · (P + Dũ) � H(P ) + τ.

Taking integration on both sides, we have by Jensen’s inequality that

H(P ) + τ � (1 − δ′)
∫

T2
|P + Dũ| dx � (1 − δ′)|P |.

Sending τ → 0 then δ′ → 0, we have

H(P ) � |P |. �

Remark 4.1. A general control system is called ‘uniform exact controllable’ [4] if there exists
T > 0 such that any two points can be connected by a controlled trajectory within time �T . It
was proved in [4] that uniform exact controllability implies homogenization. See also [2] for
generalization to two-player differential games. However, the uniform exact controllability is
either false or hard to verify for the control system associated with the inviscid G-equation.
The main novelty of this section is that, due to the special structure of the G-equation, a point
only needs to reach the region where |V | < 1 via a controlled flow trajectory to achieve
homogenization when the flow field is mean zero and divergence free. The relation between
ergodicity and controllability to a subset is also discussed in [4] (attractor) and [6] (target) with
very restrictive assumptions which do not apply to the G-equation.

4.2. Viscosity effect on H in 2-D

Although homogenization proofs show the enhancement of H(P ) over the laminar speed |P |
in two-dimensional incompressible flows, they do not reveal the qualitative and quantitative
effects of viscosity. In one space dimensional compressible flows, viscosity arrests trapping
and promotes transport. In two-dimensional incompressible flows, viscosity may slow down
the effective transport.

Let us consider cellular flow with amplitude A:

V (x1, x2) = A(sin(2πx1) cos(2πx2), − sin(2πx1) cos(2πx2)). (4.4)

corresponding to Hamiltonian H(x1, x2) = (A/2π) sin(2πx1) sin(2πx2). The effective
Hamiltonian H = H(A, d) is a function of two variables (A, d). It is known [1, 28, 31]
that the inviscid H grows with A like

H(A, 0) ∼ O(A/ log A), A � 1, (4.5)

and with enough viscosity d � 1 (independent of A), the viscous H is slowed down
significantly as [28]

H(A, d) � O(
√

log A), A � d � 1. (4.6)

The proof of (4.6) is based on the viscous cell problem, equation (2.4). Numerical
computation of H(A, d) for d above a moderately small value (d � 0.1) can be done by
the finite difference method on (2.4). H is approximated by the iteration scheme

− d�huk+1 + V (y) · Dhuk+1 = Hk(P ) − |P + Dhuk| − V (y) · P,

Hk(P ) = 〈|P + Dh uk|〉, (4.7)
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Figure 1. H is monotone decreasing as d increases for a range of A values.

where �h (Dh) is the central (upwind) difference approximation of Laplacian and gradient
operators, and the bracket denotes the integral average over the periodic cell [0, 1]2. For
d < 0.1, we integrate the time-dependent G-equation with affine data:

ut + V (x) · Du = |Du| + d �u, u(x, 0) = P · x,

whose solution is written as u = w(x, t)+P ·x, and w(x, t) is periodic in x. The w equation is

wt + V (x) · (Dw + P) = |Dw + P | + d�w, w(x, 0) = 0. (4.8)

In our computation, P = (1, 0). Equation (4.8) is discretized semi-implicitly over the periodic
cell and integrated over a long time interval to extract the linear growth rate of solution which
is H . The scheme is explicitly upwind in the nonlinear term, and implicit Euler in �w and
the advection term V (x) · Dw. The iterative scheme (4.7) converges much faster at d � 0.1
than the large time method (4.8) which can also handle smaller d values. The two methods
give the same result at d = 0.1. Figure 1 shows that H is monotone decreasing in small values
of d for A = 4, 6, 8, 12. Figure 2 shows that H is growing sublinearly in A ∈ [0, 50] for
d = 0.05, 0.1, 0.2, 0.4. Both properties of H remain for future analytical study.

5. Conclusions

G-equations are HJ models for studying front propagation in fluid flows, especially in turbulent
combustion. We compared results on the periodic homogenization of viscous and inviscid
G-equations which have convex yet non-coercive Hamiltonians. In the case of the inviscid
G-equation, the cell (corrector) problem may not have exact solution due to non-coercivity
of the Hamiltonian. However, homogenization suffices with an approximate corrector whose
existence depends on connectivity of a controlled flow trajectory. When the flow field is mean
zero and incompressible, we only need such connectivity from a point to the region where
|V | < 1 and coercivity holds locally. We verify it for two-dimensional incompressible flows.
The effective Hamiltonians of both the viscous and inviscid G-equations are coercive. For
cellular flows, we demonstrate both asymptotically and numerically that viscosity reduces H

or travelling front speed. In one space dimensional compressible flows, trapping may occur
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Figure 2. Sublinear growth of H in A for a range of d values.

and H vanishes (non-coercivity persists). Necessary and sufficient conditions of trapping are
found for both the viscous and inviscid G-equations. If the flow field has mean zero and large
enough amplitude, wave trapping occurs in the inviscid G-equation but not in the viscous
G-equation. Viscosity restores coercivity in H .

In future work, we shall continue to study H of the slightly viscous G-equation in concrete
flows and compare with enhanced propagation and diffusion in quadratic HJ or linear transport
equations [1, 29, 30]. We also plan to address similar issues for flows in three space dimensions.
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