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Abstract. We establish the variational principle of Kolmogorov-Petrovsky-
Piskunov (KPP) front speeds in a one dimensional random drift which is a
mean zero stationary ergodic process with mixing property and local Lips-
chitz continuity. To prove the variational principle, we use the path integral
representation of solutions, hitting time and large deviation estimates of the
associated stochastic flows. The variational principle allows us to derive upper
and lower bounds of the front speeds which decay according to a power law in
the limit of large root mean square amplitude of the drift. This scaling law is
different from that of the effective diffusion (homogenization) approximation

which is valid for front speeds in incompressible periodic advection.

1. Introduction. Reaction-diffusion front propagation in random media arises in
turbulent combustion ([5, 14, 19, 20, 26, 27] and references), interacting particle
systems ([15, 7] and references) and population biology ([23] and references). A
fundamental issue is to characterize, bound and compute the large time front speed,
an upscaled quantity that depends on statistics of the random medium in a highly
nonlinear manner. In [16], the authors established a variational principle and as-
ymptotic growth laws of KPP front speeds in temporally random shear flows in
multiple dimensions. See also [14, 26, 17] for related results in spatially random
shear flows. In either case, the randomness in the flow appears in time or in a
direction orthogonal to that of front propagation. The front speeds are enhanced
due to the spatial inhomogeneity and geometric structure of the flow.

In this paper, we study a case where randomness is in the direction of front prop-
agation, rather than orthogonal to it. We consider solutions to the KPP reaction-
advection-diffusion equation:

ut =
1

2
uxx + b(x)ux + f(u), t > 0, x ∈ R. (1)

Here f(u) is KPP type, f ∈ C1([0, 1]), f(0) = f(1), 0 ≤ f(u) ≤ f ′(0)u for all
u ∈ (0, 1), e.g. f(u) = u(1 − u). The initial data u0(x) ∈ [0, 1] is compactly

supported. For the random drift b(x, ω̂) : R × Ω̂ → R we assume: (1) that b is a

stationary random process on R defined over the probability space (Ω̂, F̂ , Q) with
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zero mean, EQ[b] = 0; (2) that b(·, ω̂) is almost surely locally Lipschitz continuous
and that translation with respect to x generates an ergodic transformation of the

space Ω̂; (3) that the process b(x, ω̂) satisfies

EQ

[

sup
x∈[−2,2]

|b(x, ω̂)|
]

< ∞. (2)

However, we do not assume that the process b is globally bounded or globally
Lipschitz continuous.

We shall describe the asymptotic spreading of the solution as t → ∞, and show
that the solution develops into fronts propagating to the left and to the right with
deterministic constant asymptotic speeds c∗±. The speeds obey a variational prin-
ciple. The fronts separate the region where u ≈ 1 from the region where u ≈ 0,
and their propagation may be interpreted as the spreading of a chemical reaction.
Based on the variational principle, we derive bounds on c∗± implying that the speeds
decrease towards zero in the limit of large root mean square amplitude of the drift b.
Fronts are slowed down to nearly motionless by the presence of the large drift which
plays a role of trapping. Moreover, the front speeds behave quite differently from
what is suggested by a homogenization (diffusion) approximation of the linear part
of the right hand side of (1). This approximation replaces the advection-diffusion
operator 1

2 uxx + b(x)ux by an effective diffusion operator κ̄uxx, with κ̄ a positive

constant, and front speeds are O(
√

κ̄). In periodic incompressible flows, the ho-
mogenization approximation gives the correct scaling behavior of front speeds for
large drift [21]. However, we shall show that the approximation is not correct in
the random setting here, even when front speeds and κ̄ are both finite.

Our analysis of u(x, t) involves large deviations estimates for the associated dif-
fusion process Xx(t) in the random environment. From assumption (2) and the
assumption of stationarity and ergodicity, it follows that almost surely with respect
to Q there is a constant k = k(ω̂) such that |b(x, ω̂)| ≤ k(1 + |x|) for all x ∈ R.

Therefore, for each ω̂ ∈ Ω̂ fixed, we can define Xx(t) to be the strong solution to
the Itô equation:

Xx(t) = x +

∫ t

0

b(Xx(s)) ds + W (t) (3)

where W (t) = W (t, ω) is a one-dimensional Brownian motion defined on (Ω,F , P )
with W (0) = 0, P -a.s.

The idea of analyzing the front speed via large deviation estimates for Xx(t)
stems from the work of Freidlin and Gärtner (see [10, 12], and Chapter VII of [9])
who studied the equation (1) under the assumption that b is uniformly bounded or
when randomness appears in the nonnegative reaction f . In [9], pp. 524-525, the
author remarks that this approach might be used to study fronts in one-dimensional,
uniformly bounded random drift; however, we are not aware that this has been car-
ried out for the present case. Moreover, we obtain nearly optimal asymptotic esti-
mates of front speeds in the large drift limit. Solutions to (1) in multiple dimensions
with uniformly bounded coefficients were also studied more recently by Lions and
Souganidis [13] using nonlinear homogenization techniques. The hyperbolic scaling
of equation (1) in the homogenization approach reveals the asymptotic behavior of
the fronts when the support of the initial data is large with respect to the spatial
correlation length of the drift (∼ O(ǫ)). Here we fix the initial data for (1), and
we consider unbounded coefficients arising naturally in stochastic processes (e.g. a
Gaussian process) and derive estimates on the speed of the propagating fronts. The
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analysis involves techniques used recently by Comets, Gantert, and Zeitouni [6] and
by Taleb [25] to describe large deviations for discrete random walks in a random
environment and for continuous diffusions in random environment.

Our main result on the asymptotic spreading of the solution requires two more
mild assumptions. We assume that for some α1, α2 ∈ R

lim sup
z→∞

Q

(
∫ z

0

b(s, ω̂) ds ≥ α1

)

< 1 (4)

and

lim sup
z→∞

Q

(
∫ 0

−z

b(s, ω̂) ds ≤ α2

)

< 1. (5)

This is not a very restrictive assumption. For example, if b(x, ω̂) is square integrable
and sufficiently mixing with respect to shifts in x, then b satisfies an invariance
principle [3]

1

σ
√

z

∫ z

0

b(x, ω̂) ds → N(0, 1), Q − a.s., (6)

which implies (4). In particular, all the above assumptions on b hold for a mean zero
locally Lipschitz continuous Gaussian process with sufficient decay of correlation
functions, while (2) follows from the Borel inequality, [1]. The first main result is:

Theorem 1.1. Suppose that (4), (5), and the other aforementioned assumptions
hold. Then there are deterministic constants c∗− < 0 and c∗+ > 0 such that for any
closed set F ⊂ (−∞, c∗−) ∪ (c∗+, +∞)

lim
t→∞

sup
c∈F

u(ct, t, ω̂) = 0

for almost every ω̂ ∈ Ω̂. Also, for any compact set K ⊂ (c∗−, c∗+),

lim
t→∞

inf
c∈K

u(ct, t, ω̂) = 1

for almost every ω̂ ∈ Ω̂.

Our next result describes the effect of scaling the drift b 7→ δb where δ ∈ [0,∞) is
a scaling parameter. We show that the corresponding front speed c∗+(δ) decreases
to zero as the flow amplitude increases:

Theorem 1.2. The front speed c∗+(δ) satisfies the lower bound

c∗+(δ) ≥ 1

C
min

(

1,
f ′(0)

1 + δM

)

.

where C is the constant from Lemma 2.1 and M = EQ

[

supx∈[−2,2]|b(x, ω̂)|
]

. More-

over, for any p ∈ (0, 1) there is a constant C = C(p, ω̂) such that

c∗+(δ) ≤ Cδ−p (7)

for all δ > 0. Therefore lim supδ→∞ c∗+(δ) = 0 holds with probability one. Similar
statements hold for |c∗−(δ)|.

When b ≡ 0, the solutions to the initial value problem develop fronts that propa-
gate with speed equal to c∗ = 2

√

κf ′(0), where κ is the diffusion constant (κ = 1/2
in (1)). This suggests that for nonzero b (stationary and ergodic) one might esti-

mate the front speed by c∗ ≈ cκ̄ = 2
√

κ̄f ′(0) where κ̄ = limt→∞ E[|X(t)|2]/t is
the effective diffusivity corresponding to the random medium. For periodic incom-
pressible two-dimensional velocity fields, Ryzhik and Zlatoš [21] have shown that
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the ratio c∗/cκ̄ is bounded away from zero and infinity by constants independent of
the flow. In the case we consider in this paper, however, this result does not hold.
In some cases, cκ̄ = 0 while c∗ > 0. In other cases cκ̄ > 0, but cκ̄ and c∗ scale quite
differently with respect to δ.

Because the domain is one-dimensional, the field b(x, ω̂) is a gradient field, and
from the point of view of the diffusion process Xx(t), the random medium creates
traps along the x axis. It has been shown that for some fields b which are unbounded
in x (see [4, 22, 24]) this trapping can dramatically slow down the diffusion so that
Xx(t) behaves asymptotically like (log t)2, rather than

√
t. Hence, κ̄ = 0 in this

case. Nevertheless, Theorem 1.2 shows that the asymptotic front speed is nonzero;
the random medium cannot trap the fronts, despite the anomalously slow diffusive
behavior.

When b is uniformly bounded, one can show [18, 22] that the process Xx(t) is
diffusive with effective diffusivity

κ̄ =
1

EQ[e−b]EQ[eb]
> 0, (8)

almost surely with respect to Q. Suppose that the distribution of b is sign-symmetric

(i.e. b
L
= −b). Then EQ[e−b] = EQ[eb], so that the effective diffusivity is

κ̄ =
1

(EQ[eb])2
.

In this case, the effective diffusivity (and cκ̄) will decrease exponentially fast as
the scaling parameter δ is increased. However, the lower bound in Theorem 1.2
shows that the corresponding front speed can decrease no faster that O(δ−1) as
δ increases. The reason for this difference is that the front speed is determined
by large deviations of the diffusion process Xx(t), which may not be accurately
predicted by the asymptotic behavior of the variance of the process.

The paper is organized as follows. In Sections 2 and 3 we state and prove large
deviations estimates for the diffusion process Xx(t). These estimates may be con-
verted into estimates on the solution u(x, t) through the Feynman-Kac formula (2),
and in Section 4 we prove Theorem 1.1 using this approach. In Section 5 we prove
Theorem 1.2 using a representation of c∗ in terms of the rate function characterizing
large deviations of Xx(t).

2. Large deviations estimates. The proof of Theorem 1.1 is based on large
deviations estimates for the associated diffusion process Xx(t). These estimates are
stated in Theorem 2.4. To derive these estimates, we first derive estimates for the
hitting time T s

r , which is the first time the process hits the point x = r (from the
right) starting from x = s ≥ r:

T s
r = inf{t > 0 | Xs(t) ≤ r}, (1)

The hitting time estimates are stated in Theorem 2.3. Theorems 2.4 and 2.3 are
similar to the analogous estimates in the work of Comets, Gantert, Zeitouni [6] and
Taleb [25].

First, we define some auxiliary quantities that will be used in the proofs. For
λ ∈ R, let q(r, s, λ) be the moment generating function

q(r, s, λ) = E
[

eλT s
r IT s

r <∞
]

, (2)

which may be infinite for λ > 0.
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Proposition 1. Suppose that λ ∈ R is such that

EQ

[

|log E[eλT 1
0 IT 1

0
<∞]|

]

< ∞. (3)

Let c < v. Then, almost surely with respect to Q, the limit

µ(λ)
∆
= lim

t→∞
1

(v − c)t
log q(ct, vt, λ) = EQ

[

log E[eλT 1
0 IT 1

0
<∞]

]

(4)

holds. The convergence is uniform with respect to v and c, as v and c vary in
a set that is bounded and (v − c) is bounded away from zero. Moreover, µ(λ) is
independent of v and c.

The next lemma shows that the conditions of Proposition 1 are satisfied under
our assumptions on b(x, ω̂):

Lemma 2.1. There is a universal constant C > 0 such that for all λ < 0

EQ

[

|log E[eλT 1
0 IT 1

0
<∞]|

]

≤ C(1 + |λ| + EQ

[

sup
x∈[−2,2]

|b(x, ω̂)|
]

) < ∞ (5)

Consequently, if the process b(x, ω̂) satisfies assumption (2), then (3) and the con-
clusions of Proposition 1 hold for all λ ≤ 0.

Now define the constant

λc = sup{λ ∈ R | µ(λ) < ∞}. (6)

Assumption (2) and Lemma 2.1 imply that λc ≥ 0. For Brownian motion (b(x) ≡ 0),
T 1

0 has a heavy tail so that λc = 0.
The following lemma summarizes the properties of the function µ(λ).

Lemma 2.2. Under the assumption (2), the function µ(λ) satisfies the following
properties:

(i) µ(0) = 0.
(ii) µ(λ) < 0 for λ < 0.
(iii) µ(λ) → −∞ as λ → −∞.
(iv) µ(λ) = +∞ for λ > λc.
(v) µ(λ) is convex for λ ∈ (−∞, λc).
(vi) For λ < λc, µ(λ) is differentiable with

µ′(λ) = EQ

[

E[T 1
0 eλT 1

0 IT 1
0

<∞]

E[eλT 1
0 IT 1

0
<∞]

]

> 0 (7)

In particular, µ′(0) = a0
∆
= EQ

[

E[T 1
0 IT 1

0
<∞]

]

∈ (0,∞].

(vii) µ′(λ) is monotone increasing (strictly) for λ ∈ (−∞, λc).

Chebychev’s inequality implies that for any λ < 0, 0 < α, and c < v

lim sup
t→∞

1

t
log P (

T vt
ct

t
< α) = lim sup

t→∞

1

t
log P (eλT vt

ct > eλαt)

≤ −λα + lim sup
t→∞

1

t
log q(ct, vt, λ)

= −λα + (v − c)µ(λ). (8)
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Since the left hand side is independent of λ, this means that

lim sup
t→∞

1

t
log P (

T vt
ct

t
< α) ≤ − sup

λ<0
(λα − (v − c)µ(λ)) . (9)

The function on the right hand side of (9) suggests defining the function I+(a):

I+(a) = sup
λ≤λc

(aλ − µ(λ)) , (10)

which is the Legendre transform of the function µ(λ). If a ≤ a0 = µ′(0) then the
supremum is achieved at some λ ≤ 0. Therefore, if α

(v−c) ≤ a0, the bound (9) can

be written

lim sup
t→∞

1

t
log P (

T vt
ct

t
< α) ≤ −(v − c)I+(

α

v − c
). (11)

The properties of µ imply that I+(a) satisfies

(i) I+(a) > 0 for a ∈ (0, a0), where a0
∆
= µ′(0).

(ii) I+(a) is convex and decreasing in a for a ∈ (0, a0).
(iii) lima→0+ I+(a) = +∞, and lima→(a0)− I+(a) = 0.

(iv) If a0 < ∞, then I+(a0) = 0, and I+(a) ≥ 0 for a ∈ (a0,∞).
(v) If λc = 0 and a0 < ∞, then I+(a) = 0 for a ∈ (a0,∞).

Now we state the main results of this section:

Theorem 2.3. Suppose b(x, ω̂) satisfies (2). Almost surely with respect to Q, the
following estimates hold. For any v, c ∈ R with c < v and any closed set G ⊂
(0, (v − c)a0)

lim sup
t→∞

1

t
log P

(

T vt
ct

t
∈ G

)

≤ −(v − c) inf
a∈G

I+(
a

v − c
), (12)

and for any open set F ⊂ (0, (v − c)a0),

lim inf
t→∞

1

t
log P

(

T vt
ct

t
∈ F

)

≥ −(v − c) inf
a∈F

I+(
a

v − c
). (13)

Remark 1. If assumption (2) holds for b(x, ω̂), then it also holds for the reflected
process b(−x, ω̂). Therefore, analogous bounds apply to the first hitting times when
the initial point is to the left of the terminal point:

T s
r = inf{t > 0 | Xs(t) ≥ r}, (14)

for s ≤ r. In this way we obtain two functions I+ and I− which may not be equal
in general. Nevertheless, I− satisfies

(i) I−(a) = supλ≤λ−

c
(λa − µ−(λ)), µ−(λ)

∆
= EQ

[

log E[eλT−1

0 IT 1
0

<∞]
]

(ii) I−(a) > 0 for a ∈ (0, a−
0 ), where a−

0
∆
= (µ−)′(0).

(iii) I−(a) is convex and decreasing in a for a ∈ (0, a−
0 ).

(iv) lima→0+ I−(a) = +∞, and lima→(a−

0
)− I−(a) = 0.

(v) If a−
0 < ∞, then I(a−

0 ) = 0, and I−(a) ≥ 0 for a ∈ (a−
0 ,∞).

(vi) If λ−
c = 0 and a−

0 < ∞, then I−(a) = 0 for a ∈ (a−
0 ,∞).

Theorem 2.4. Suppose b(x, ω̂) satisfies (2). Almost surely with respect to Q, the
following estimates hold. Let v ∈ R, κ ∈ (0, 1]. For any closed set G ⊂ [(a+

0 )−1,∞)

lim sup
t→∞

1

κt
log P

(

vt − Xvt(κt)

κt
∈ G

)

≤ − inf
c∈G

cI+(
1

c
), (15)
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and for any open set F ⊂ [(a+
0 )−1,∞),

lim inf
t→∞

1

κt
log P

(

vt − Xvt(κt)

κt
∈ F

)

≥ − inf
c∈F

cI+(
1

c
). (16)

For any closed set G ⊂ (−∞,−(a−
0 )−1]

lim sup
t→∞

1

κt
log P

(

vt − Xvt(κt)

κt
∈ G

)

≤ − inf
c∈G

|c|I−(
1

|c| ), (17)

and for any open set F ⊂ (−∞,−(a−
0 )−1],

lim inf
t→∞

1

κt
log P

(

vt − Xvt(κt)

κt
∈ F

)

≥ − inf
c∈F

|c|I−(
1

|c| ). (18)

We define (a±
0 )−1 = 0 if a±

0 = ∞.

3. Proof of large deviations estimates. In this section we prove the large de-
viations estimates in the preceding section.

Proof of Proposition 1. Let r < s < t. By the Markov property of X ,

E
[

eλT t
r IT t

r <∞
]

= E
[

eλT t
s IT t

s <∞
]

E
[

eλT s
r IT s

r <∞
]

(1)

so that log q(r, t, λ) is an additive process:

log q(r, t, λ) = log q(r, s, λ) + log q(s, t, λ). (2)

Suppose that c > 0 is a real number and 0 ≤ k < n are integers. Then

EQ [log q(ck, cn, λ)] = EQ





n−k
∑

j=1

log q(cj, c(j + 1), λ)





= (n − k)EQ [log q(0, c, λ)] , (3)

since EQ log E[q(cj, c(j + 1), λ)] = EQ log E[q(0, c, λ)] by the stationarity of the
process b. Therefore, the ergodic theorem [2] implies that the limit

µ(λ)
∆
= lim

n→∞
1

cn
log q(0, cn, λ)

=
1

c
EQ

[

log E[eλT c
0 IT c

0
<∞]

]

= EQ

[

log E[eλT 1
0 IT 1

0
<∞]

]

(4)

holds Q-a.s., provided that EQ

[

log E[eλT 1
0 IT 1

0
<∞]

]

is finite.

Now extend the convergence to continuous time. Suppose that t ∈ [n, n + 1]. By
the additive property of log q,

log q(0, ct, λ) = log q(0, cn, λ) + log q(cn, ct, λ)

= log q(0, c(n + 1), λ) − log q(ct, c(n + 1), λ). (5)

If λ < 0, then log q(cn, ct, λ) < 0 and log q(ct, c(n + 1), λ) < 0, so that (5) implies

lim sup
t→∞

1

ct
log q(0, ct, λ) ≤ lim sup

t→∞

1

ct
log q(0, cn, λ)

= lim sup
n→∞

n

t

1

cn
log q(0, cn, λ) = µ(λ),
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and (5) implies

lim inf
t→∞

1

ct
log q(0, ct, λ) ≥ lim inf

t→∞
1

ct
log q(0, c(n + 1), λ)

= lim inf
n→∞

n + 1

t

1

c(n + 1)
log q(0, cn, λ) = µ(λ).

A similar argument applies to the case λ > 0, since log q(cn, ct, λ) and log q(ct, c(n+
1), λ) are both positive in this case.

Suppose c ∈ [c0, c1] ⊂ (0,∞) and ǫ > 0. Then there is a tǫ > 0 such that for
t > tǫ,

∣

∣

∣

∣

1

c0t
log q(0, c0t, λ) − µ(λ)

∣

∣

∣

∣

≤ ǫ (6)

Let t̂ = tǫc/c0. Then t̂ ≥ tǫ so that

ǫ ≥
∣

∣

∣

∣

1

c0t̂
log q(0, c0t̂, λ) − µ(λ)

∣

∣

∣

∣

=

∣

∣

∣

∣

1

ct
log q(0, ct, λ) − µ(λ)

∣

∣

∣

∣

This proves that the convergence to µ(λ) is uniform over c ∈ [c0, c1].
Arguments similar to the above show that for c < 0,

lim
t→∞

1

|c|t log q(ct, 0, λ) = µ(λ) (7)

almost surely with respect to Q and uniformly with respect to c ⊂ [c0, c1] ⊂ (−∞, 0).
If v > c ≥ 0, the additivity of q(r, t, λ) implies that

lim
t→∞

1

(v − c)t
log q(ct, vt, λ)

= lim
t→∞

1

(v − c)t
(log q(0, vt, λ) − log q(0, ct, λ))

=
v

v − c
µ(λ) − c

v − c
µ(λ) = µ(λ) (8)

For c < 0 < v,

lim
t→∞

1

(v − c)t
log q(ct, vt, λ)

= lim
t→∞

1

(v − c)t
(log q(ct, 0, λ) + log q(0, vt, λ))

=
|c|

v − c
µ(λ) +

v

v − c
µ(λ) = µ(λ) (9)

A similar argument holds for c < v ≤ 0. This concludes the proof of Proposition
1.

Proof of Lemma 2.1. Since we are assuming λ ≤ 0, we will need an upper bound
on T 1

0 , which may not be integrable. For convenience in our notation, we prove the
result for T 0

1 (the hitting time to x = 1 starting from x = 0) rather than T 1
0 .

Fix L > 0, and define the random variable

ML = 1 + sup
x∈[−2L,2L]

|b(x, ω̂)|.

Let x0 = 0, so that the process X(s) satisfies

X(s) =

∫ s

0

b(X(τ)) dτ + W (s).
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Let tL = L/ML > 0. Suppose that

W (s) ≥ −L, ∀s ∈ [0, tL] (10)

and that

sup
s∈[0,tL]

W (s) ≥ 2L. (11)

We claim that

T 0
L ≤ tL (12)

under assumptions (10) and (11).
To establish the claim, suppose that T 0

L > tL, and suppose that the process exits
the left end of [−2L, 2L] before time tL. Using the definition of M and X(s) and
assumption (10) we observe that at the first hitting time T 0

−2L ≤ tL < T 0
L

X(T 0
−2L) ≥ −T 0

−2L(ML − 1) − L

> −T 0
−2LML − L

= −T 0
−2L

L

tL
− L ≥ −2L.

However, the inequality X(T 0
−2L) > −2L is a contradiction. Therefore, X(s) ≥ −2L

for s ∈ [0, tL]. Then we see that if T 0
−2L > tL, |b(X(s))| ≤ ML for s ∈ [0, tL], which

implies that

sup
s∈[0,tL]

X(s) ≥ sup
s∈[0,tL]

W (s) + inf
s∈[0,tL]

∫ s

0

b(X(τ)) dτ

≥ sup
s∈[0,tL]

W (s) − MLtL

= sup
s∈[0,tL]

W (s) − L ≥ 2L − L = L.

Therefore, T 0
L ≤ tL, if T 0

−2L > tL. Since we always have T 0
L ≤ T 0

−2L, this establishes

the claim that T 0
L ≤ tL.

Now if we define AL to be the set of paths satisfying assumptions (10) and (11)

AL(ω̂) =

{

ω | W (s) > −L, ∀s ∈ [0, tL]; sup
s;∈[0,tL]

W (s) ≥ 2L

}

, (13)

then for λ < 0,

E
[

eλT 0
LIT 0

L<∞

]

≥ E
[

eλT 0
LχAL

IT 0
L<∞

]

≥ eλtLP (AL) . (14)

The term P (AL) may be bounded by using the reflection principle, as follows. Using
hr to denote the first hitting time of the Wiener process to the level r ∈ R, we have:

P (AL) = P (h2L ≤ tL; h−L > tL)

= P (h2L ≤ tL) − P (h2L ≤ tL; h−L < tL)

≥ 2P (W (tL) ≥ 2L)− P (W (tL) ≤ −3L) .

Therefore,

P (AL) > 2 [P (W (tL) ≥ 2L)− P (W (tL) ≤ −3L)]

=
2√
2π

∫ 3
√

LML

2
√

LML

e−
y2

2 dy ≥ 2
√

LML√
2π

e−
9LML

2 .
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Now returning to (14) and using the fact that ML ≥ 1, λ < 0, we see that

E
[

eλT 0
LIT 0

L<∞

]

≥ eλL/ML
2
√

LML√
2π

e−
9LML

2 ≥ eλL 2
√

L√
2π

e−
9LML

2

This implies that

EQ

[

log E
[

eλT 0
LIT 0

L
<∞

]]

≥ C(λ − 1 − EQ [ML])

for some constant C > 0. The lemma now follows by using L = 1 and the station-
arity of b(x, ω̂).

Proof of Lemma 2.2. Properties (i) - (iv) are clear. Property (iv) follows from
Hölder’s inequality which implies that

E[e
1
2
(λ1+λ2)T 1

0 IT 1
0

<∞] ≤ E[eλ1T 1
0 IT 1

0
<∞]1/2E[eλ2T 1

0 IT 1
0

<∞]1/2. (15)

Now we prove (vi). Let λ < λc. For T1 < ∞, |h| ∈ (0, |λc − λ|/3) the convexity
of ex implies that

|e
(λ+h)T 1

0 − e(λ)T 1
0

h
| ≤ T 1

0 e(λ+|h|)T 1
0 (16)

There is a constant C depending only on λc and λ such that 0 ≤ T1 ≤ CeT1|λc−λ|/3.
Therefore,

0 ≤ T1e
(λ+h)T 1

0 ≤ Ce(λ+|h|+|λc−λ|/3)T 1
0 ≤ Ce(λc−|h|)T1 (17)

Because the term e(λc−|h|)T1IT 1
0

<∞ is integrable, by definition of λc, the dominated
convergence theorem implies that

d

dλ
E
[

eλT 1
0 IT 1

0
<∞

]

= E
[

T 1
0 eλT 1

0 IT 1
0

<∞

]

,

for all λ < λc. Now the chain rule implies that

d

dλ
log E

[

eλT 1
0 IT 1

0
<∞

]

=
E
[

T 1
0 eλT 1

0 IT 1
0

<∞

]

E
[

eλT 1
0 IT 1

0
<∞

] (18)

almost surely with respect to Q.
The function log q(0, 1, λ) is convex with respect to λ, Q-a.s. Therefore,

1

h

(

log E[e(λ+h)T1IT 1
0

<∞] − log E[eλT1IT 1
0

<∞]
)

(19)

is a monotonically increasing sequence of functions (of ω̂) if h < 0 increases to
zero, and it is a monotonically decreasing sequence if h > 0 decreases to zero.
The sequence is always non-negative. Therefore, the fact that expression in (19) is
integrable with respect to Q implies that the expression in (18) is also integrable with
respect to Q. Then, the monotone convergence theorem and dominated convergence
theorem can be applied to show that for λ < λc

µ′(λ) =
d

dλ
EQ

[

log E
[

eλT 1
0 IT 1

0
<∞

]]

= EQ





E
[

T 1
0 eλT 1

0 IT 1
0

<∞

]

E
[

eλT 1
0 IT 1

0
<∞

]



 .

The following lemma is an immediate consequence of the above analysis and will
be used in the proof of Theorem 2.3:
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Lemma 3.1. For c < v, let µt(λ) be defined by

µt(λ) =
1

(v − c)t
log q(ct, vt, λ) (20)

Then almost surely with respect to Q, µt(λ) is differentiable for all λ < λc and

lim
t→∞

d

dλ
µt(λ) = µ′(λ) = EQ





E
[

T 1
0 eλT 1

0 IT 1
0

<∞

]

E
[

eλT 1
0 IT 1

0
<∞

]



 (21)

Proof. The fact that µt(λ) is differentiable in λ follows from the analysis in the proof
of Lemma 2.2. The function µt(λ) is convex in λ for all t. Moreover, µ(λ) is convex
and differentiable. Since µt(λ) → µ(λ), Q-a.s., it follows that µ′

t(λ) → µ′(λ).

The proofs of Theorems 2.3 and 2.4 follow the ideas in [6] and [25]. Here we just
sketch the arguments.

Proof of Theorem 2.3. From (9) we already know that for any α > 0,

lim sup
t→∞

1

t
log P (

T vt
ct

t
< α) ≤ − sup

λ≤0
(λα − (v − c)µ(λ))

If α/(v − c) < a0, then the supremum on the right is obtained at a point λ < 0, so
that this is equivalent to

lim sup
t→∞

1

t
log P (

T vt
ct

t
< α) ≤ −(v − c)I+(

α

v − c
)

This bound and the fact that I+(·) is non-increasing on (0, a0) proves (12) for
G ⊂ (0, (v − c)a0].

The proof of the lower bound (13) follows the change of measure method, as in
[8, 6, 25, 28]. Let u ∈ (0, (v− c)a0) and δ > 0. Let Bδ(u) denote the δ-ball centered
at u. Since u < (v − c)a0, Lemma 2.2 implies that there is a λu < λc such that

µ′(λu) = EQ

[

E(T 1
0 eλuT 1

0 IT 1
0

<∞)

E(eλuT 1
0 IT 1

0
<∞)

]

=
u

(v − c)
. (22)

At this point λu, the supremum in the Legendre transform is achieved:

I+(
u

v − c
) = sup

λ≤0

(

λ
u

v − c
− µ(λ)

)

= λu
u

v − c
− µ(λu) (23)

Then define the measure Pu,t by

dPu,t

dP
=

1

Su,t
eλuT vt

ct IT vt
ct <∞, Su,t = E

[

eλuT vt
ct IT vt

ct <∞

]

(24)

so that

P

(

T vt
ct

t
∈ Bδ(u)

)

≥ e−λuut−δt|λu|Pu,t

(

T vt
ct

t
∈ Bδ(u)

)

E
[

eλuT vt
ct IT vt

ct

]

.

As in [6] (p. 77), one can show that

lim inf
t→∞

1

t
log Pu,t

(

T vt
ct

t
∈ Bδ(u)

)

= 0. (25)
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Using this, (25), and Proposition 1 we find that

lim inf
t→∞

1

t
log P

(

T vt
ct

t
∈ Bδ(u)

)

≥ −λuu − δ|λu| + (v − c)µ(λu)

= (v − c) sup
λ

(

λu
u

v − c
− µ(λu)

)

− δ|λu|

= (v − c)I+(
u

v − c
) − δ|λu|. (26)

This implies the lower bound (13).

Proof of Theorem 2.4. We can use Theorem 2.3 to derive the large deviation bounds
on the velocity variables, (x−Xx(t))/t. We will prove only (15) and (16) since the
proofs of (17) and (18) follow the same argument using the function I−(a) described
in Remark 1.

The proof follows the method in [6] and [25] (see section 5). First, for c ≥ 0,

P

(

vt − Xvt(κt)

κt
> c

)

≤ P

(

T vt
(v−cκ)t

t
< κ

)

. (27)

Applying Theorem 2.3, we conclude that

lim sup
t→∞

1

κt
log P

(

vt − Xvt(κt)

κt
> c

)

≤ −c inf
a∈(0,κ)

I+
( a

cκ

)

= −cI+

(

1

c

)

whenever c ≥ (a0)
−1. This proves the upper bound.

Now let u ≥ (a0)
−1.

P

(

vt − Xvt(κt)

κt
∈ Bδ(u)

)

= P
(

Xvt(κt) ∈ Bκtδ((v − κu)t)
)

≥ P
(

T vt
(v−κu)t ∈ ((1 − ǫ)κt, κt)

)

− P
(

AC
)

,

where ǫ ∈ (0, 1) and A is the set

A =

{

ω | sup
(1−ǫ)κt≤s≤κt

|Xvt(s) − ktu| < κtδ

}

.

By combining the method of [25] (Section 5) with large deviation bounds for hitting
times in the opposite direction (which follow from Remark 1), one can show that

lim
ǫ→0

lim sup
t→∞

1

t
log P

(

AC
)

= −∞. (28)

This implies that

lim inf
t→∞

1

t
log P

(

vt − Xvt(κt)

κt
∈ Bδ(u)

)

≥ lim inf
ǫ→0

lim inf
t→∞

1

t
log P

(

T vt
(v−κu)t ∈ ((1 − ǫ)κt, κt)

)

≥ lim inf
ǫ→0

(−κuI+(
1

u
)) = −κuI+(

1

u
), (29)

where the last inequality follows from Theorem 2.3.
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4. Front propagation. In this section we prove Theorem 1.1. We first make use
of assumption (4) and (5) in the following proposition. Recall that the constants
a±
0 are defined as

a+
0 = (

d

dλ
µ+)(0) = EQ

[

E[T 1
0 IT 1

0
<∞]

]

,

a+
0 = (

d

dλ
µ−)(0) = EQ

[

E[T−1
0 IT−1

0
<∞]

]

.

Proposition 2. Under assumptions (4) and (5), a+
0 = a−

0 = +∞. Consequently,
λ+

c = λ−
c = 0.

As a consequence of Proposition 2, the large deviation estimates of Theorem
2.4 hold along the entire real line (i.e. when the sets G and F are subsets of R).
Moreover, the functions I+(a) and I−(a) are positive for all a ∈ (0,∞). For now,
we postpone the proof of Proposition 2.

Define nonrandom constants c∗+ > 0 and c∗− < 0 by the equations

(c∗+)I+(1/c∗+) = f ′(0), and (|c∗−|)I−(1/|c∗−|) = f ′(0). (1)

Then by the properties of I(a), cI+(1/c) > f ′(0) for all c > c∗+ and |c|I−(1/|c|) >
f ′(0) for all c < c∗− and

Remark 2. Notice that c∗− 6= −c∗+ , in general, since the law of the process b(x, ω̂)
may not be invariant with respect to space reversal.

Proof of Theorem 1.1. The solution u(x, t) may be represented by the Feynman-
Kac formula

u(x, t) = E
[

e
∫

t
0

ζ(Xx(s),t−s) dsu0(X
x(t))

]

, (2)

where

ζ(y, s) =
f(u(y, s))

u(y, s)
. (3)

Since f(u) is the KPP-type nonlinearity, ζ(y, s) ≤ f ′(0)u(y, s) ≤ f ′(0).
First, we prove the upper bound in Theorem 1.1. Let F ⊂ (c∗+,∞). A bound for

the general case follows in the same manner. Without loss of generality, suppose
that u0(x) = χBδ(0). Then

u(ct, t) ≤ E
[

ef ′(0)tu0(X
ct(t))

]

= ef ′(0)tP
(

Xct(t) ∈ Bδ(0)
)

.

By the properties of I+ we can choose ǫ > 0 so that cI+(1/c) > f ′(0) + ǫ for all
c ∈ F . Then the probability on the right can be estimated by Proposition 2.4 with
κ = 1, so that

lim
t→∞

1

t
sup
c∈F

log u(ct, t) ≤ f ′(0) − cI+(
1

c
) < −ǫ.

Since ǫ > 0, the upper bound follows.
The lower bound can be proved as in [16], provided that we have the following

bounds:

Lemma 4.1. For any compact set K ⊂ (c∗+,∞),

lim inf
t→∞

1

t
log inf

c∈K
u(ct, t) ≥ −max

c∈K
(cI+(

1

c
) − f ′(0)).

For any compact set K ⊂ (−∞, c∗−),

lim inf
t→∞

1

t
log inf

c∈K
u(ct, t) ≥ −max

c∈K

(

|c|I−(
1

|c| ) − f ′(0)

)

.
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The proof of this lemma follows from the arguments in [16], and the following
important estimates. In the proof of Lemma 4.1 above and the lower bound in
Theorem 1.1, these estimate plays the role of Corollary 1 in [16], which is applied
at equations (61), (76), and (77) therein. The estimates are:

Lemma 4.2. For any v ∈ R and η > 0,

lim
t→∞

sup
|x|≤|v|t

P

(

sup
s∈[0,t]

|Xx(s) − x| ≥ ηt

)

= 0. (4)

Also, for a given M > 0, there exists κ0 > 0 sufficiently small so that

lim sup
t→∞

sup
|x|≤vt

1

t
log P

(

sup
s∈[0,κt]

|Xx(s) − x| ≥ ηt

)

≤ −M (5)

whenever κ < κ0.

Proof of Lemma 4.2. From Theorem 2.3 and Remark 1, we know that

lim sup
t→∞

1

t
log P

(

T vt
(v−η)t

t
< κ

)

≤ −ηI+

(

κ

η

)

and

lim sup
t→∞

1

t
log P

(

T vt
(v+η)t

t
< κ

)

≤ −ηI−
(

κ

η

)

.

Because a0 = +∞ and a−
0 = +∞ (by Proposition 2), the right hand sides of these

equations are positive for all η > 0. This proves (4). Since I±(a) → ∞ as a → 0,
the right hand sides can be made arbitrarily large by taking κ sufficiently small.
This implies that

lim sup
t→∞

sup
|x|≤vt

1

t
log P

(

sup
s∈[0,κt]

(x − Xx(s)) ≥ ηt

)

≤ −M (6)

and

lim sup
t→∞

sup
|x|≤vt

1

t
log P

(

sup
s∈[0,κt]

(Xx(s) − x) ≥ ηt

)

≤ −M (7)

with κ sufficiently small. This proves (5).

To complete the proof of Theorem 1.1, we now prove Proposition 2. We only
prove that a+

0 = +∞, since the proof that a−
0 = +∞ is similar. We divide the

proof into two steps, stated in the following lemmas. Proposition 2 is an immediate
consequence of Lemma 4.3, Lemma 4.4, and the equivalent statements for a−

0 .

Lemma 4.3. Suppose that EQ[b(x, ω̂)] = 0. If there is a set of nonzero probability
(with respect to Q) on which the limit

lim
L→∞

∫ L

0

e−
∫

z
0

b(s) ds dz = +∞ (8)

diverges, then the condition

a+
0 = EQ

[

E[T 1
0 IT 1

0
<∞]

]

= +∞ (9)

holds.
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Lemma 4.4. Suppose that EQ[b] = 0 and that for some α ∈ R,

lim sup
z→∞

Q

(
∫ z

0

b(s, ω̂) ds ≥ α

)

< 1 (10)

then condition (8) is satisfied.

Proof of Lemma 4.3. First, we claim that under condition (8), P (T 1
0 < ∞) = 1,

almost surely with respect to Q. Thus, EQ[E[T 1
0 IT 1

0
<∞]] = EQ[E[T 1

0 ]]. To see this,

consider the function w(x, L) = P (T x
0 < T x

L) for x ∈ [0, L]. This function solves the
equation

1

2
wxx + b(x)wx = 0

with boundary condition w(0) = 1 and w(L) = 0. Integrating the equation for w
and using the boundary conditions, we find that

w(x, L) = 1 − 1
∫ L

0
e−g(z) dz

∫ x

0

e−g(z) dz,

where g(z) =
∫ z

0 b(s) ds. Therefore,

lim
L→∞

w(1, L) = 1

if and only if the integral
∫ L

0
e−g(z) dz diverges as L → ∞, which is the condition in

(8). Since the limit limL→∞ w(1, L) = 1 if and only if P (T 1
0 < ∞) = 1, this proves

the claim.
Notice that for any h > 0,

∫ L

0

e−
∫

z

0
b(s) ds dz = e−

∫

h

0
b(s) ds

∫ L

0

e−
∫

z−h

0
b(s+h) ds dz

= e−
∫

h
0

b(s) ds

∫ L−h

0

e−
∫

z
0

b(s,τhω̂) ds dz. (11)

This shows that the set where (8) holds is invariant under shifts ω̂ → τhω̂. So, if
(8) holds on a set of nonzero measure, it must hold with probability one, by the
ergodicity assumption on b(x, ω̂).

Now we show that EQ[E[T 1
0 ]] diverges. Let v(x, L) = E[T x

[0,L]], where T x
[0,L] is

the first hitting time from x ∈ [0, L] to either x = 0 or x = L. Then v(x, L) solves

1

2
vxx + b(x)vx = −1

with boundary conditions v(0, L) = v(L, L) = 0. This equation may be transformed
to

1

2
e−g(x)∂xeg(x)∂xv = −1

with g(x) =
∫ x

0 b(s)ds. The general solution is

v(x, L) = C2 + C1

∫ x

0

e−g(z) dz +

∫ x

0

e−g(z)

∫ z

0

−2eg(y) dy dz.

Using the boundary condition we have

v(1, L) =
2
∫ L

0

∫ z

0 eg(y)−g(z) dy dz
∫ L

0
e−g(z) dz

∫ 1

0

e−g(z) dz − 2

∫ 1

0

∫ z

0

eg(y)−g(z) dy dz.
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As L → ∞, consider the behavior of the term

C1 =
2
∫ L

0

∫ z

0
eg(y)−g(z) dy dz

∫ L

0 e−g(z) dz
.

The numerator is

N(L) = 2

∫ L

0

e−g(z)

∫ z

0

eg(y) dy dz

= 2

∫ L

0

e−2
∫

z
0

b(s) ds

∫ z

0

e2
∫

y
0

b(s) ds dy dz,

and the denominator is

D(L) =

∫ L

0

e−g(z) dz =

∫ L

0

e−2
∫

z
0

b(s) ds dz.

All of the integrands are positive.
We claim that the numerator must diverge as L → ∞. To see this, note that

N(L) = 2

∫ L

0

(

d

dz
log(h(z))

)−1

dz (12)

where h(z) =
∫ z

0 eg(y) dy. Using Jensen’s inequality and the fact that the integrands
are positive, we see that for ǫ ∈ (0, L)

N(L) ≥ 2

∫ L

ǫ

(

d

dz
log(h(z))

)−1

dz (integrands are positive)

≥ 2(L − ǫ)

(

1

(L − ǫ)

∫ L

ǫ

d

dz
log(h(z)) dz

)−1

(Jensen’s inequality)

=
2(L − ǫ)2

log(h(L)) − log(h(ǫ))
(13)

Since EQ[b] = 0, it follows that |g(z)|/z → 0 as z → ∞. Therefore, log(h(L)) ≤
C2(1 + L), so that N(L) must diverge to +∞ as L → ∞.

If D(L) remains bounded as L → ∞, then the quotient N(L)/D(L) must diverge
as L → ∞, since we have shown that N(L) diverges. On the other hand, suppose
that D(L) → ∞ as L → ∞. Then L’Hôpital’s rule implies that

lim
L→∞

N(L)

D(L)
= lim

L→∞

N ′(L)

D′(L)
= 2 lim

L→∞

∫ L

0

eg(y) dy (14)

The final limit exists, since the integral
∫ L

0
eg(y) dy is an increasing function of L.

The analysis above shows that

E[T 1
0 ] = lim

L→∞
E[T 1

[0,L]] ≥ lim
L→∞

∫ L

0

eg(y) dy. (15)
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Since the integral on the right is an increasing function of L, Q-a.s., this implies
that

EQ[E[T 1
0 ]] ≥ lim

L→∞

∫ L

0

EQ[eg(y)] dy

≥ lim
L→∞

∫ L

0

eEQ[g(y)] dy (Jensen’s inequality)

= lim
L→∞

∫ L

0

e0 dy = +∞ (16)

Since EQ

[

E[T 1
0 IT 1

0
<∞]

]

= EQ[E[T 1
0 ]] under condition (8), this proves the proposi-

tion.

Proof of Lemma 4.4. Let g(z) =
∫ z

0 b(s) ds, and let γ denote the limit in (8):

γ = lim
L→∞

∫ L

0

e−
∫

z
0

b(s) ds dz = lim
L→∞

∫ L

0

e−g(z) dz.

For α ∈ R, define the random process hα(s, ω̂) as

hα(s, ω̂) =

{

1 if g(s, ω̂) ≥ α
0 if g(s, ω̂) < α

,

and let {rn(ω̂)}∞n=1 be the sequence of random variables

rn(ω̂) =

∫ n+1

n

hα(s, ω̂) ds.

The variable rn is the proportion of time in the interval [n, n+1] during which g(s)
is greater than or equal to α.

First, suppose that for some ǫ > 0 and some set Aα ⊂ F̂ of nonzero measure

lim inf
n→∞

rn(ω̂) < 1 − ǫ (17)

for all ω̂ ∈ Aα. Then for every ω̂ ∈ Aα, there is an increasing sequence of integers
{nk}∞k=1 (depending on ω̂) such that rnk

< 1 − ǫ/2. Therefore,

|{z ∈ [nk, nk + 1] | g(z) < α}| > ǫ/2,

and from this we conclude that
∫ L

0

e−g(z) dz ≥
∑

k>0
nk+1<L

∫ nk+1

nk

e−g(z) dz

≥
∑

k>0
nk+1<L

∫ nk+1

nk

e−g(z)χ{g<α}(z) dz

≥
∑

k>0
nk+1<L

ǫ

2
e−α. (18)

Since ǫ and α are constants, the sum diverges as L → ∞. Hence γ = +∞ for all
ω̂ ∈ Aα, Q(Aα) > 0.

If (17) does not hold, then we are in the situation where

lim inf
n→∞

rn = 1, Q − a.s.
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Since rn ∈ [0, 1], Fatou’s lemma implies that

lim inf
n→∞

EQ [rn] = 1. (19)

However, by definition of rn and Fubini’s Theorem,

lim sup
n→∞

EQ [rn] = lim sup
n→∞

∫ n+1

n

EQ [h(s, ω̂)] ds

= lim sup
n→∞

∫ n+1

n

Q (g(s) ≥ α) ds < 1.

The last inequality follows from our assumption (10). This contradicts (19). There-

fore,
∫ L

0
e−g(z) dz must diverge as L → ∞.

5. Estimating the KPP front speed. In this section we prove Theorem 1.2
using the fact that c∗+ solves

c∗+I+(1/c∗+) = sup
λ≤0

(λ − c∗+µ(λ)) = f ′(0), (20)

where µ(λ) = µ+(λ) = EQ

[

log E[eλT 1
0 ]
]

< 0. From (20) it follows that

c∗+ = inf
λ<0

λ − f ′(0)

µ(λ)
= inf

λ>0

λ + f ′(0)

|µ(−λ)| , (21)

and from Lemma 2.1,

|µ(−λ)| ≤ C(|λ| + 1 + δEQ

[

sup
x∈[−2,2]

|b(x, ω̂)|
]

). (22)

By combining (21) and (22), we see that

c∗+ ≥ 1

C
inf
λ>0

f ′(0) + λ

λ + 1 + Mδ
.

If 1 + δM > f ′(0) , then

d

dλ

[

f ′(0) + λ

(λ + 1 + Mδ)

]

> 0 (23)

for all λ > 0, so the infimum of the quotient is attained at λ = 0. Otherwise, the
infimum is attained in the limit λ → ∞. This implies that c∗+ is bounded below by

c∗+ ≥ 1

C
min

(

1,
f ′(0)

1 + δM

)

.

Now we bound c∗+ from above by bounding µ(λ) from above. Since λ < 0,

EP

[

eλT 1
0

]

=

∫ 1

0

P (T 1
0 < − 1

|λ| log r) dr

= 1 −
∫ 1

0

P (T 1
0 > − 1

|λ| log r) dr (24)

and

P (T 1
0 > r) = P ( inf

s∈[0,r]
X1(s) ≥ 0).

Therefore, to bound µ(λ) from above, we must bound P (T 1
0 > r) from below, which

means that the stopping times T 1
0 can be large with high probability. We expect
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T 1
0 to be large when the wind is blowing to the right in the interval [0, 1]. This

suggests that for h > 0 and ǫ > 0, we define the set Aǫ
h ⊂ Ω̂ by

Aǫ
h = {ω̂ | b(x, ω̂) ≥ h ∀x ∈ [0, ǫ]} .

Since E[b] = 0 and b(x, ω̂) is almost surely continuous, the set Aǫ
h has nonzero

measure if ǫ and h are sufficiently small. Since λ < 0 and T 1 ≥ T ǫ
0 when ǫ ≤ 1, we

can bound µ(λ) by

µ(λ) ≤ EQ

[

χAǫ
h

log E[eλT ǫ
0 ]
]

≤ 0.

by choosing ǫ and h sufficiently small. We will assume without loss of generality
that Q(A1

h) > 0 and ǫ = 1.
For any s1 ≥ 0, the process X1(t) satisfies

X1(t) = X1(s1) +

∫ t

s1

b(X1(s)) ds + W (t) − W (s1)

for all t > s1. If ω̂ ∈ A1
h and X1(s) ∈ [0, 1] for s ∈ [s1, s2], then

X1(t) ≥ X1(s1) + (t − s1)δh + W (t) − W (s1) (25)

for all t ∈ [s1, s2]. So for s2 = T 1
0 , we have X1(s2) = 0 and (25) implies that

W (s2) − W (s1) ≤ −X1(s1) − (s2 − s1)δh. (26)

From (26), it follows that for ω̂ ∈ A1
h, X1(t) will stay to the right of the point z = 0

for all t < r unless W (s) makes a relatively large leap (to the left) during some
interval in [0, r]. If W (s) does not make a relatively large jump over some interval
s ∈ [0, r], then X1(s) cannot overcome the opposing drift while X(s) ∈ [0, 1]. More
precisely,

P (T 1
0 < r) = P ( inf

s∈[0,r]
X1(s) ≤ 0) (27)

≤ P (W (s2) − W (s1) ≤ −1 − δh(s2 − s1), for some [s1, s2] ⊂ [0, r])

= P (W (s2) − W (s1) ≥ 1 + δh(s2 − s1), for some [s1, s2] ⊂ [0, r])

To bound this probability, we need an estimate on the modulus of continuity of
W (s) in over the interval [0, r]. We will let Jr,δ,h denote the set we want to bound:

Jr,δ,h = {ω| W (s2) − W (s1) ≥ 1 + δh(s2 − s1), for some [s1, s2] ⊂ [0, r]} .

(28)

This is the set where W (s) makes relatively large jumps over some interval.
Now we bound the size of the set Jr,δ,h through an estimate on the Hölder

continuity of the sample paths of W . Fix γ > 0, δ > 0, α ∈ (0, 1/2). It is known
that the sample paths of the Wiener process are almost surely α-Hölder continuous
for any α ∈ (0, 1/2). For a given δ, h, α, and γ, let β = β(δ, h, α, γ) > 0 be defined
by

β = inf
s∈[0,γ]

1 + δhs

sα
. (29)

Therefore, βsα ≤ 1 + δhs for all s ∈ [0, γ]. Also, if

|W |α,[0,γ]
∆
= sup

s1,s2∈[0,γ]

|W (s2) − W (s1)|
|s2 − s1|α

< β (30)

then

W (s2) − W (s1) ≤ 1 + δh(s2 − s1) (31)
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for any interval [s1, s2] ⊂ [0, γ]. For an integer n > 0, define the set

Gβ,n,γ =
{

ω| |W |α,[jγ,(j+1)γ] ≤ β ∀j = 0, 1, . . . , n − 1
}

. (32)

This is the set of paths that have α-Hölder seminorm bounded by β on each of the
n blocks [jγ, (j + 1)γ], j = 0, 1, . . . , n − 1. Because the increments of the Wiener
process are independent, the random variables |W |α,[jγ,(j+1)γ], j = 0, 1, . . . , n, are
independent. Therefore, the measure of the set Gβ,n,γ is given by

P (Gβ,n,γ) =
n−1
∏

j=0

P
(

|W |α,[jγ,(j+1)γ] ≤ β
)

= P (Gβ,1,γ)
n

= (Kβ,γ)n. (33)

where Kβ,γ = P (Gβ,1,γ) is a positive constant that depends only on β, γ, and α.
Note that for α and γ fixed, Kβ,γ → 1 as β → +∞.

For γ fixed, we can choose β so that (29) is satisfied. Then, by combining (27),
(28), (31) and (32), we see that

P (T 1
0 < r) ≤ P (Jr,δ,h) ≤ 1 − P (Gβ,n,γ) = 1 − (Kβ,γ)n (34)

whenever n is chosen to the be smallest integer greater than r/γ. Therefore,

P (T 1
0 > r) ≥ (Kβ,γ)n. (35)

Next, we use this information to bound the integral in (24). If γ = 1
|λ| and

r = |log(r′)|
|λ| ,

P (T 1
0 > − 1

|λ| log r′) = P (T 1
0 > r) ≥ (Kβ,γ)n (36)

where n is the smallest integer greater than r/γ = |log(r′)|. Therefore,

(Kβ,γ)n ≥ Kβ,γ(Kβ,γ)− log(r′) = Kβ,γ(r′)− log(Kβ,γ). (37)

Since K < 1, the constant p = − log(Kβ,γ) is positive. Therefore, plugging this
information into (24), we see that for ω̂ ∈ A1

h,

EP

[

eλT 1
0

]

= 1 −
∫ 1

0

P (T 1
0 > − 1

|λ| log r′) dr′

≤ 1 − Kβ,γ

∫ 1

0

(r′)pdr′

= 1 − Kβ,γ

p + 1
= 1 − Kβ,γ

1 − log(Kβ,γ)
(38)

Finally, with γ = |λ|−1,

µ(λ) ≤ E
[

χA1
h

log EP

[

eλT 1
0

]]

≤ Q
(

A1
h

)

log

(

1 − Kβ,γ

1 − log(Kβ,γ)

)

. (39)

The term Q
(

A1
h

)

is a constant that depends only on h, and the properties of the

stochastic field b(x, ω̂). For h fixed, α ∈ (0, 1/2) fixed, and γ = |λ|−1 fixed, β defined
by (29) depends only on δ. As a function of δ, β(δ) → ∞ as δ → ∞. Therefore, as
a function of δ,

lim
δ→∞

Kβ(δ),γ = 1 (40)
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Using this limit in (39), we see that for each λ < 0 fixed, µ diverges to −∞ as
δ → ∞:

lim
δ→+∞

µ(λ, δ) = −∞. (41)

In fact, we can estimate the rate (with respect to δ) at which µ diverges. This
will give us the bound (7). For δ sufficiently large, the infimum in the definition of
β (29) is attained at the point

s0 =
α

1 + δh(1 − α)
= O(1/δ) (42)

Therefore, as a function of δ, β(δ) = O(δα). Using the theorem of Garsia, Rodemich,
and Rumsey [11] one can show that

P (|W |α,[0γ] ≤ β) = 1 − O(e−Cβ2

), (43)

for some C > 0. Hence Kβ,γ = 1−O(e−Cβ2

) = 1−O(e−Cδ2α

). By Taylor expansion,
it now follows that

log

(

1 − Kβ,γ

1 − log(Kβ,γ)

)

≤ −Cδ2α. (44)

Plugging this bound and (39) into the variational formula (21), we now see that for
any α ∈ (0, 1/2) there is a constant C(α) such that

c∗+(δ) ≤ C

δ2α
. (45)

This completes the proof of Theorem 1.2.

6. Conclusions. By hitting time and large deviation analysis of the associated
stochastic flows, we have shown that KPP front speeds are almost surely deter-
ministic and finite in a mean zero stationary ergodic drift satisfying certain mixing
and extremal properties, true in particular for locally Lipschitz continuous Gauss-
ian processes with enough decay of correlations. The front speeds obey variational
principles and power law of decay in the limit of large root mean square amplitude
of the drift process. In contrast, diffusion (homogenization) approximation based on
second order moments of the stochastic flow trajectories may give a rather different
decay law. The existence of finite front speeds in random drifts is more robust than
that of finite effective diffusion in random environments.
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