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Abstract. We study the asymptotics of two space dimensional reaction-diffusion front speeds
through mean zero space-time periodic shears using both analytical and numerical methods. The
analysis hinges on traveling fronts and their estimates based on qualitative properties such as mono-
tonicity and a priori integral inequalities. The computation uses an explicit second order upwind
finite difference method to provide more quantitative information. At small shear amplitudes, front
speeds are enhanced by an amount proportional to shear amplitude squared. The proportionality
constant has a closed form expression. It decreases with increasing shear temporal frequency and
is independent of the form of the known reaction nonlinearities. At large shear amplitudes and for
all reaction nonlinearities, the enhanced speeds grow proportional to shear amplitude and are again
decreasing with increasing shear temporal frequencies. The results extend previous ones in the liter-
ature on front speeds through spatially periodic shears and show front speed slowdown due to shear
direction switching in time.
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1. Introduction. Front propagation in heterogeneous media appears in many
scientific disciplines such as combustion of premixed flames, reactive pollutant trans-
port in porous media, and invasion of biological species, just to name a few [7], [33],
[24], [30]. Though heterogeneities are dominantly spatial in the latter two areas of ap-
plication, in combustion, especially turbulent premixed flame problems, a wide range
of spatial and temporal scales can arise in the multiscale environment (i.e., fluid ad-
vection) where flames are moving; see, e.g., [13], [19], [20], and the references therein.
The large time propagation speed of a flame front is an upscaled quantity depending
on both flow and chemistry, and is often much larger than a pure reaction-diffusion
front speed (called laminar speed). It is open in general how to mathematically es-
tablish the existence and properties of the upscaled speed, denoted by c∗, from now
on, when the flow velocity has turbulence spectrum. For related data and empirical
laws, see [22], [32], [16], among others.

When the flow structures and scales are simplified, much recent progress has been
made in analyzing the asymptotic behaviors of upscaled front speeds in the regimes
of weak and strong advection. To introduce some of the existing results related to
our work here, let us consider the scalar reaction-diffusion-advection equation (R-D)
of the form

ut = ∆yu + δW · ∇u + f(u), y = (y1, y2) ∈ R2,(1.1)

where W = (0, w(y1, t)), a mean zero space-time periodic shear flow, δ > 0 being a
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parameter measuring the shear strength; ∆y = ∂2
y1y1

+ ∂2
y2y2

, f(u) being the reaction
nonlinearity. The nonlinear function f(u) can be

(1) the bistable nonlinearity: f(u) = u(1 − u)(u− θ), θ ∈ (0, 1/2);
(2) the quadratic nonlinearity: f(u) = u(1−u), known as Kolmogorov–Petrovsky–

Piskunov (KPP);
(3) the higher order KPP nonlinearity: f(u) = um(1−u), m ≥ 2, integer (m = 2,

called Zeldovich nonlinearity);
(4) the combustion nonlinearity with ignition temperature cutoff: f(u) = 0, u ∈

[0, θ], θ ∈ (0, 1); f(u) > 0, u ∈ (θ, 1), f(1) = 0;
(5) Arrhenius-type combustion nonlinearity: f(u) = e−E/u(1 − u), E > 0, the

activation energy (often large).
When δ is small, and w = w(y1) for types (1), (2), and (4) nonlinearities, the

large scale front speed obeys a quadratic law of enhancement (w̃y1 = w(y1), w̃ mean
zero):

c∗ = c0

(
1 +

1

2
‖w̃(y1)‖2

2 δ
2 + h.o.t.

)
,(1.2)

c0 being the laminar speed; see [21] for perturbation calculations on types (1) and (2),
and [15] for variational methods on types (1) and (4). The quadratic law goes back to
Clavin and Williams [7] for turbulent flame speed and is challenged in [16] regarding
its validity for random flows. A systematic case study of its validity and failure for
mean zero stationary ergodic Gaussian random shears was recently presented in [31].

When δ is large, and w = w(y1, t) for type (2) nonlinearity (see [9]) or w = w(y1)
for type (4) nonlinearity (see [17]),

c∗ = O(δ),(1.3)

and c∗ ∼ b0δ, b0 being constant, for type (2) and w = w(y1) [2]. In fact, (1.3) holds
for a class of more general time independent flows, percolating flows (which contain at
least two infinitely long channels of flow trajectories) [9], [17]. Sublinear enhancement
for flows with closed streamlines are studied in [1], [9], [17]. Speed enhancement
through large time independent shear and cellular flows is numerically investigated
in [25] for types (2) and (4), in agreement with analytical predictions. The linear
law c∗ = b0δ + b1 holds for the large shear case. A simple proof of O(δ) growth for
time independent shears for types (2)–(5), based on equations of traveling fronts, was
recently given in [14]. For types (2), (3), and (5), the speed is understood as minimal
speed.

In this paper, we analyze the asymptotics of c∗ for space-time periodic shears
based on traveling front solutions of the form u = ϕ(y2 − c∗t, y1, t), periodic in y1

and t. For small δ, combined with a variational calculation of type (2), we derive the
quadratic enhancement law, however with a new prefactor that is monotone decreasing
in the shear temporal frequency, for f of types (1), (2), and (4). For large δ, we prove
the linear growth law (1.3) for types (2)–(5) by extending the method of [14]. A finite
difference simulation of (1.1) is performed on a rectangular domain with zero Neumann
boundary data and f of types (1)–(4). Numerical results support the quadratic law
for small δ and linear growth law for large δ for f of types (1)–(5). Moreover, the
front speeds at all δ’s simulated are monotone decreasing in shear temporal frequency
and tend to converge for large enough frequencies.

The reduction of front speed enhancement due to temporal oscillation of shear
flows was studied earlier for KPP reaction in [18]. The authors parametrized the
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amount of reduction in terms of a nondimensional flame residence time, which is the
ratio of shear time period over the front wrinkling time. The latter time scale refers
to how long it takes a spatial shear field to distort a flat flame front to reach the
enhanced steady speed.

The rest of the paper is organized as follows. Section 2 analyzes quadratic speed
enhancement for small shears, and section 3 analyzes linear growth in large shears.
Section 4 contains the numerical method and numerical results in agreement with
analysis in previous sections. We observe that type (1) fronts behave similarly to
type (4) in large shears. Conclusions and remarks on future work are in section 5. In
the appendix, we outline a proof of type (4) traveling front existence and qualitative
properties, useful for estimating front speeds.

2. Front speeds in small amplitude shears.

2.1. Bistable fronts. Let us first consider bistable fronts in a two-dimensional
shear flow. The equation is

ut = ∆u + W · ∇u + f(u),(2.1)

where W = (0, w(y1, t)), ∆ = ∂2
y1y1

+ ∂2
y2y2

, f(u) = u(1 − u)(u − θ), θ ∈ (0, 1
2 );

moreover, w(y1, t) is a smooth periodic function with period 2π in y1 and 2π/ω ≡ T
in t, and its space-time mean equals zero. A traveling wave moving in the y2-direction
has the form

u = ϕ(y2 − c∗t, y1, t) ≡ ϕ(s, y1, τ), s = y2 − c∗t, τ = t,

c∗ being the constant large time front speed. This form includes as a special case
traveling fronts in time independent shears [3]. Substituting the above into (2.1), we
see that ϕ satisfies

ϕss + ϕy1y1
+ (c∗ + w(y1, τ))ϕs − ϕτ + f(ϕ) = 0,

ϕ(−∞, y1, τ) = 0, ϕ(+∞, y1, τ) = 1, ϕ(s, ·, ·) (2π, T )-periodic,(2.2)

and we add a normalization condition

1

2πT

∫ 2π

0

∫ T

0

ϕ(0, y1, τ) dy1 dτ = 1/2(2.3)

to fix the translation constant in s. Equation (2.2) has unique solution up to a constant
translation in s; see the appendix.

We are interested here in the effects of w(y1, τ) on the speed c∗. Let us expand
w(y1, τ) in terms of a small parameter δ,

w(y1, τ) = δw1(y1, τ) + δ2w2(y1, τ) + · · · ,(2.4)

where wi(y1, τ) (i = 1, 2, . . .) are all mean zero over [0, 2π] × [0, T ]. Now expand the
traveling wave and the speed

ϕ = ϕ0(s) + δϕ1(s, y, τ) + δ2ϕ2(s, y, τ) + · · · ,(2.5)

c∗ = c0 + δc1 + δ2c2 + · · · ,(2.6)

and plug these expansions into (2.2). We obtain the following equations up to O(δ2):
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O(1),

ϕ0,ss + c0ϕ0,s + f(ϕ0) = 0,(2.7)

O(δ),

ϕ1,ss + ϕ1,y1y1
+ c0ϕ1,s − ϕ1,τ + f ′(ϕ0)ϕ1 = −(c1 + w1(y1, τ))ϕ0,s,(2.8)

O(δ2),

ϕ2,ss + ϕ2,y1y1
+ c0ϕ2,s − ϕ2,τ + f ′(ϕ0)ϕ2

= −c1ϕ1,s − c2ϕ0,s − w1(y, τ)ϕ1,s − w2(y, τ)ϕ0,s − 1/2f ′′(ϕ0)ϕ
2
1.(2.9)

From (2.7), we get ϕ0 = ϕ0(s), ϕ0(0) = 1/2, and c0 = c0(f), the solution of the usual
traveling wave equation:

ϕ′′ + cϕ′ + f(ϕ) = 0,

ϕ(−∞) = 0, ϕ(0) = 1/2, ϕ(+∞) = 1.

Solvability condition of (2.8) is

∫
R1×[0,2π]×[0,T ]

(c1 + w1(y1, τ))ϕ0,s ψ ds dy1 dτ = 0,

where ψ = ec0sϕ0,s; thus c1 = −〈w1(y1, τ)〉 = 0. We use 〈·〉 to denote the average of
the function inside the bracket over [0, 2π] × [0, T ]. Equation (2.8) then becomes

ϕ1,ss + ϕ1,y1y1
+ c0ϕ1,s + f ′(ϕ0)ϕ1 − ϕ1,τ = −w1(y1, τ)ϕ0,s.(2.10)

Denoting the L2 inner product by (·, ·) and using solvability condition for (2.9), we
find

c2(ϕ0,s, ψ) + (w1ϕ1,s, ψ) +
1

2
(f ′′(ϕ0)ϕ

2
1, ψ) + (w2ϕ0,s, ψ) = 0,(2.11)

where the last term on the left-hand side is equal to zero due to w2 being mean zero,
so

c2(ϕ0,s, ψ) = −1

2
(f ′′(ϕ0)ϕ

2
1, ψ) − (w1ϕ1,s, ψ).(2.12)

Let us solve (2.10) by Fourier series. If we define Z2
0 = Z2\{(0, 0)}, then

w1(y1, τ) =
∑
Z2

0

bm,le
imy1+iωlτ , b−m,−l = bm,l,

and we write

ϕ1(s, y1, τ) =
∑
Z2

0

am,l(s)e
imy1+iωlτ .

Substituting it into (2.10) gives

a′′m,l + c0a
′
m,l + (f ′(ϕ0) −m2 − ilω)am,l = −bm,lϕ0,s.(2.13)
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Note that ϕ0,s satisfies

a′′m,l + c0a
′
m,l + f ′(ϕ0)am,l = 0.

So (2.13) is easily seen to admit a unique solution:

am,l =
bm,l

m2 + ilω
ϕ0,s;(2.14)

thus

〈ϕ2
1〉 =

∑
Z2

0

|bm,l|2
m4 + l2ω2

ϕ2
0,s

≡ βϕ2
0,s.

Now let I = − 1
2

∫
R1 f

′′(ϕ0)ϕ
3
0,se

c0sds, J = −(w1ϕ1,s, ψ); then

c2 =
β

α
I +

J

α
,

where α =
∫
s
ϕ2

0,se
c0sds. By (2.14), we have

w1(y1, τ) =
∑
Z2

0

bm,le
imy1+ilωτ ,

ϕ1(s, y1, τ) = ϕ0,s

∑
Z2

0

bm,l

m2 + ilω
eimy1+ilωτ ,

so

J = −(w1ϕ1,s, ψ) = −
∫
R1

〈w1ϕ1,s〉ψds

= −
∫
R1

⎛
⎝∑

Z2
0

|bm,l|2
m2 − ilω

⎞
⎠ϕ0,ssϕ0,se

c0s ds

= −
∫
R1

⎛
⎝∑

m�=0

|bm,0|2
m2

+
∑

m>0,l>0

|bm,l|2
2m2

m4 + l2ω2

⎞
⎠ ϕ0,ss ϕ0,s e

c0s ds.

Let

γ =
∑
m�=0

|bm,0|2
m2

+
∑

m>0,l>0

|bm,l|2
2m2

m4 + l2ω2
;(2.15)

then

J = −γ

∫
R1

ϕ0,ssϕ0,se
c0sds = −γ

2

∫
R1

(ϕ2
0,s)se

c0sds

=
γ

2
c0

∫
R1

ϕ2
0,se

c0sds =
γ

2
αc0;

therefore

c2 =
β

α
I +

γ

2
c0.(2.16)
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Now we show that I = 0. In fact, differentiating (2.7) twice, we have the identity
(superscripts denoting number of s derivatives):

Lϕ0,ss ≡ ϕ
(2)
0,ss + c0ϕ

(1)
0,ss + f ′(ϕ0)ϕ0,ss = −f ′′(ϕ0)(ϕ0,s)

2.(2.17)

Then using the property that L∗(ϕ0,se
c0s) = 0, L∗ being the adjoint operator of L,

we deduce that the right-hand side of (2.17) is orthogonal to ϕ0,se
c0s, which is I = 0.

It follows that c2 = γ
2 c0 and

c∗ = c0

(
1 +

γ

2
δ2 + h.o.t.

)
.(2.18)

Formula (2.18) says that bistable front propagation in mean zero spatially-
temporally periodic shear is faster than that in a mean zero spatially periodic shear
(bm,l = 0, ∀ l �= 0). The enhancement is, however, monotonely decreasing with in-
creasing temporal frequency ω, showing that the direction switching in time slows
down fronts. Note that the above derivation does not use the cubic form of f .

2.2. Other nonlinearities and front speeds. For C2 combustion nonlinearity
with cutoff, type (4), the calculations are similar, except that the linear operators are
invertible in a weighted L2 space [23]. The vanishing of integral I is true also. Notice
that γ is independent of nonlinearity and depends only on the shear. Up to O(δ2), c∗
is the same for bistable and type (4) nonlinearities. In the case of types (3) and (5),
one needs only to verify that the integral

∫
ϕ2

0,s e
c0s ds converges to reach the same

conclusion (e.g., true for m = 2). We now show that formula (2.18) remains true for
KPP.

To this end, we notice that the calculations for the bistable and combustion cases
are no longer valid for KPP; e.g., the integral

∫
ϕ2

0,s e
c0s ds diverges for KPP minimal

fronts; clearly, I cannot be zero either. The calculation can be done instead using
variational characterization of KPP minimal speed [30]. The KPP minimal speed

c∗ = inf
λ>0

H(−λ)

λ
,(2.19)

where H = H(λ) = λ2 + η(λ), η being the principle eigenvalue of the parabolic oper-
ator ∂yy · −∂τ ·+λδw(y, τ)· on the torus T 2

y,τ . For δ small, the principle eigenfunction
ψ has the expansion ψ ∼ 1 + δψ1 + δ2ψ2 + h.o.t., and η = δ2η2 + h.o.t. The equation
at O(δ) is

ψ1,yy − ψ1,τ = −λw1(y, τ)(2.20)

and at O(δ2) is

ψ2,yy − ψ2,τ + λw1ψ1 = η2.(2.21)

Solvability condition of (2.21) says that η2 = λ〈w1ψ1〉. Equation (2.20) can be solved
by Fourier series for ψ1, then used to express η2; the upshot is that η2 = λ2γ, with γ
given by (2.15). Now, up to O(δ2),

c∗ = inf
λ>0

[f ′(0)/λ + (1 + δ2 γ)λ] = c0

(
1 +

γ

2
δ2
)
,

c0 = 2
√
f ′(0), which is in the form of (2.18).
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3. Front speeds in large amplitude shears. For large amplitude shears, we
show lower bounds linearly growing in shear amplitude if f(u) ≥ 0 for u ∈ [0, 1]. The
upper bound of the type c0 + ‖W‖∞ is straightforward by comparison principle. We
generalize the method of [14] for the spatially dependent shear flows. Derivation of a
lower bound is based on the properties that ϕs > 0, 0 < ϕ < 1, where ϕ approaches
zero or one with exponential rates as s → ±∞. We state the following theorem.

Theorem 3.1 (existence, uniqueness, monotonicity). Consider continuous shear

flow (0, w(y1, t)), w being (2π, T ) periodic with
∫ 2π

0

∫ T

0
w(y1, τ) dy1 dτ = 0, and let the

nonlinearity f be type (4). Then there exists a classical solution ϕ(s, y, τ) of (2.2),
which is unique up to a constant shift in the s variable and strictly monotone in s.
Moreover, 0 < ϕ < 1 for any (s, y, τ), ϕ tends to 0 or 1 exponentially fast in s,
and the wave speed c∗ ≤ −Cw < 0, where constant Cw depends only on w(y1, τ), T ,
and f .

The proof is outlined in the appendix.

Proposition 3.1 (linear growth). Consider traveling front solutions in Theo-

rem 3.1, and assume in addition that
∫ 2π

0
w(y1, τ) dy1 = 0, for any τ . If the shear

field is magnified by a factor A � 1, then c∗ = O(A).

Proof. Integrate (2.2) over R1 × (0, 2π) × (0, T ) ≡ R1 × Ω to get

−c∗|Ω| =

∫
R1×Ω

f(ϕ) ds dy1 dτ,(3.1)

c∗ < 0. Multiply (2.2) by ϕ; then integrate over R1 ×Ω to get (ϕ ∈ (0, 1), f(ϕ) ≥ 0):

−c∗|Ω|/2 = −
∫
R1×Ω

|∇s,y1
ϕ|2 ds dy1 dτ +

∫
R1×Ω

ϕf(ϕ) ds dy1 dτ

≤ −
∫
R1×Ω

|∇s,y1
ϕ|2 ds dy1 dτ − c∗|Ω|,

implying

∫
R1×Ω

|∇s,y1
ϕ|2 ds dy1 dτ ≤ −c∗|Ω|/2.(3.2)

By ϕs > 0, and (3.1)–(3.2),

∫ 1

0

√
2f(s′) ds′ =

1

|Ω|

∫
R1×Ω

√
2f(ϕ)ϕs ds dy1 dτ

≤ 1

|Ω|

(
2

∫
R1×Ω

f(ϕ) ds dy dτ

∫
R1×Ω

|ϕs|2 ds dy1 dτ

)1/2

≤ |c∗|.(3.3)

Finally, we multiply (2.2) by χ(y1, τ)f(ϕ) and integrate, where χ solves χy1,y1
−χτ =

−w(y1, τ) subject to periodic boundary conditions. Solution χ is easily obtained by
Fourier series and can be made mean zero. We find

0 =

∫
R1×Ω

(−|∇s,y1
ϕ|2 χf ′(ϕ) − χy1

ϕy1
f(ϕ) + χf(ϕ)2)

−
∫
R1×Ω

χ(F (ϕ))τ + F (1)

∫
Ω

wχ,(3.4)
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where F (u) =
∫ u

0
f(s′) ds′, u ∈ (0, 1). In the last term of (3.4),

F (1)

∫
Ω

wχ = F (1)

∫
Ω

|χy1
|2.

The second to last term is estimated as follows. Notice that (F (ϕ))τ = (G(ϕ−1))τ ,
where G(u) =

∫ u

0
f(s′ + 1) ds′, u ∈ (−1, 0). Let χ0(y1, τ) =

∫ y1

0
w(y1, τ) dy1, which is

periodic and bounded in L∞ by our assumption on w. Then

∫
R1×Ω

χ (F (ϕ))τ

= −
∫
R1

−×Ω

χτ F (ϕ) −
∫
R1

+
×Ω

χτ G(ϕ− 1)

= −
∫
R1

−×Ω

(χ0 + χy1)y1 F (ϕ) −
∫
R1

+
×Ω

(χ0 + χy1)y1 G(ϕ− 1)

=

∫
R1

−×Ω

(χ0 + χy1)ϕy1
f(ϕ) +

∫
R1

+
×Ω

(χ0 + χy1)ϕy1
f(ϕ)

=

∫
R1×Ω

(χ0 + χy1)ϕy1
f(ϕ)

≤ (‖χ0‖∞ + ‖χy1‖∞)‖ϕy1
‖2‖f(ϕ)‖2.(3.5)

We have from (3.5) and (3.4) that

F (1)

∫
Ω

|χy1 |2 dy1 dτ ≤
∫
R1×Ω

(
|∇s,y1ϕ|2χf ′(ϕ) + χy1ϕy1

f(ϕ) − χf(ϕ)2
)

+ (‖χ0‖∞ + ‖χy1
‖∞)‖ϕy1

‖2‖f(ϕ)‖2

≤ |c∗||Ω|
2

‖χ‖∞‖f ′‖∞ +
|c∗||Ω|
21/2

‖χy1‖∞‖f‖1/2
∞ + |c∗||Ω|‖χ‖∞‖f‖∞

+ |Ω|(‖χ0‖∞ + ‖χy1
‖∞)|c∗|‖f‖1/2

∞ ,

implying the lower bound

|c∗| ≥
‖χy1‖2

2F (1)

|Ω| B−1,

B =
1

2
‖χ‖∞|f ′|∞ + (1 + 2−1/2)‖χy1‖∞‖f‖1/2

∞ + ‖χ‖∞‖f‖∞ + ‖χ0‖∞‖f‖1/2
∞ .(3.6)

We see that for large amplitude shear flows, i.e., replacing w by Aw(y1, τ), A being
a large parameter, the front speed c∗ ≥ O(A). Combining with the upper bound
|c∗| ≤ |c0| + A‖w‖∞, we have c∗ = O(A), A � 1.

We remark that if the minimal speed traveling fronts exist for types (2), (3), and
(5) nonlinearities and share the qualitative properties as for type (4), the above proof
works also to yield O(A) speed growth. The existence of such fronts for types (1), (2),
(3), and (5) is left for future publications. Instead, we shall demonstrate numerically
in the next section that both the quadratic speed enhancement for small shears and
linear speed growth for large shears are observed for the types (1), (2), and (3) with
m = 2, and for (4). Comparison principle implies that the results also hold for type
(3) at any m > 2, and for type (5), in the large A regime.
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4. Numerical results on front speeds.

4.1. Numerical method. We use an explicit second order finite difference
method to compute the front solutions to the equation

ut = α∆x,yu + δb(y, t)ux + f(u),(4.1)

where α, δ > 0, b(y, t) being a spatially-temporally periodic function with mean zero
in y for any t; (x, y) ∈ Ω = (0, Xf )× (0, Yf ), with zero Neumann boundary condition
and front like initial data (e.g., characteristic function over [0, X0) × (0, Yf ), X0 <
Xf ). The ∆x,yu term is discretized with standard second order central differencing.
The advection term δb(y, t)ux is discretized with second order upwind and Van Leer
limiter [8], which is chosen because α typically is small in our simulations; e.g., α =
0.025. Time stepping is the two-step second order Adams–Bashforth scheme [12]. The
Neumann boundary condition is discretized by one-sided second order differencing.
The time step is small enough to maintain numerical stability and accuracy for chosen
spatial grids. Once solutions are computed, we find the average front location in x by
integrating the solution over the entire domain and dividing by the domain width:

I(t) =
1

Yf

∫
Ω

u(x, y, t) dx dy.(4.2)

We then approximate the average front speed c∗(δ) by

c∗(δ) ∼
I(tf ) − I(t1)

tf − t1
, t1 < tf .(4.3)

We take t1 suitably large to allow time for the front to form and choose tf large
enough for the resulting speeds to stabilize. The integral I in (4.2) is computed with
the composite Simpson’s rule.

4.2. Numerical parameters. The function b(y, t) is of the form

b(y, t) = (1 + sin(ωt)) sin(10y),(4.4)

and we vary the shear amplitude δ and frequency ω. For small amplitude shears, the
computational domain consisted of 875×157 grid points with grid size dx = dy = 0.04,
corresponding to the domain of (0, 35) × (0, 2π). The diffusion constant was chosen
to be α = 0.025, which produced moderately steep front profiles.

For larger amplitudes δ, however, the faster front speeds necessitated a larger com-
putational domain. The grid points reach 2000 × 157 with grid size dx = dy = 0.05,
corresponding to the numerical domain of (0, 100) × (0, 2π). For each simulation,
the discrete time step is dt = 0.004. The initial data is u0(x) = 1, x ≤ 10,
u0(x) = 0, x > 10. Each of the samples was evolved in time until tf = 30, at
which point the front speed is stabilized and estimated using (4.3) with t1 = 5. With
these parameters, the effect of numerical diffusion does not significantly change the
results, thanks to the second order accuracy of the method in both time and space.
Further grid refinement (e.g., dx → dx/2, dt → dt/4) shows that changes of front
speeds are under 0.4%.

The following nonlinear functions are used in the simulation:
(1) bistable nonlinearity: f(u) = u(1 − u)(u− 0.25);
(2) combustion nonlinearity: f(u) = (1 − u)(u − 0.5) if u > 0.5; f(u) = 0 if

u ≤ 0.5;
(3) KPP nonlinearity: f(u) = u(1 − u);
(4) Zeldovich nonlinearity: f(u) = u2(1 − u).
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4.3. Numerical results. We are interested in testing how c∗(δ)−c0 scales with
δp, especially whether p is near 2 for δ small and p = 1 for δ large. Using the numer-
ically calculated speeds c0 and c∗(δ), we determined the exponents p using the least
squares method to fit a line to a log-log plot of speed versus amplitude. That is, we
determined the slope of the best-fit line through the data points (log(δ), log(c(δ)−c0))
for each shear amplitude δ. For each nonlinearity we computed the exponent p for
both the small amplitude and the large amplitude regimes, using a variety of frequen-
cies for the time dependent shear. For the small amplitude regime, δ values range
from 0.005 to 0.10 with increment 0.005. For the large amplitude regime, δ values
range from 3.5 to 4.0 with increment 0.10. The exponent is observed to converge at
and beyond this range of δ.

The calculated exponents are shown in Tables 1–4 below for each nonlinearity and
a sequence of temporal frequencies. These results show that with each nonlinearity,
c∗(δ)−c0 ∼ O(δ2) when the amplitude is small, and c∗(δ) ∼ O(δ) when the amplitude
is large. These results agree with and complement our analytical findings. In particu-
lar, the growth of large amplitude bistable front speeds in shears shows an interesting
contrast with the bistable front quenching (propagation failure) phenomena when
either the reaction or the diffusion coefficients become strongly heterogeneous [29].

Table 1

Case 1: Bistable nonlinearity.

δ � 1 δ � 1
Frequency (ω) Exponent (p) Exponent (p)

5.0 1.998 1.064
10.0 1.999 1.069
15.0 1.999 1.070
20.0 1.998 1.071

Table 2

Case 2: Combustion nonlinearity.

δ � 1 δ � 1
Frequency (ω) Exponent (p) Exponent (p)

5.0 1.995 1.033
10.0 1.990 1.065
15.0 1.993 1.067
20.0 1.992 1.068

Table 3

Case 3: KPP nonlinearity.

δ � 1 δ � 1
Frequency (ω) Exponent (p) Exponent (p)

5.0 1.977 1.075
10.0 1.981 1.080
15.0 1.980 1.080
20.0 1.996 1.080

We also observe that for a fixed amplitude, the speed enhancement decreases with
increasing temporal frequency ω of the shear. This can be observed clearly in the plots
of the front speeds for larger amplitude shears.

Figure 1 shows a comparison of speeds for bistable fronts at moderately large
amplitude as temporal frequency ω varies at 5, 10, 15, 20. Clearly, the speeds go
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Table 4

Case 4: Zeldovich nonlinearity.

δ � 1 δ � 1
Frequency (ω) Exponent (p) Exponent (p)

5.0 1.991 1.038
10.0 1.991 1.045
15.0 1.993 1.046
20.0 1.992 1.047
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Fig. 1. Comparison of bistable front speeds at moderately large amplitudes as temporal shear
frequency varies; ω = 5, 10, 15, 20.

down with increasing ω and converge to a limiting value for large ω. Also the slopes
are the same for different ω’s, suggesting that

c∗(δ) ∼ k0 δ + k1(ω), δ � 1,(4.5)

where k0 (k1) is constant independent of (decreasing in) ω.

Figure 2 shows a similar comparison of combustion front speeds at the same
temporal frequency values. Figures 3 and 4 illustrate the same speed slow down with
increasing ω at the small shear amplitude regime. We plot only ω = 5, 15, as the
speed curves get much closer to each other in this regime.

A plot of speed versus amplitude is in Figure 5 for bistable nonlinearity at ω = 10.
Such curves for other nonlinearities are quite similar. Figure 6 is a representative plot
for combustion nonlinearity at ω = 15. The transition between the two scaling regimes
(p = 2 and p = 1) appears in δ ∈ [0.5, 1].



FRONT SPEEDS IN SPACE-TIME PERIODIC SHEARS 565

3.6 3.65 3.7 3.75 3.8 3.85 3.9 3.95 4
0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.5

0.51

0.52
Front Speed Enhancement (Combustion)

Amplitude

F
ro

nt
 S

pe
ed

 c
*

ω = 5
ω = 10
ω = 15
ω = 20

Fig. 2. Comparison of combustion front speeds at moderately large amplitudes as temporal
shear frequency varies; ω = 5, 10, 15, 20.

5. Conclusions. Using combined analytical and numerical methods, we find
that reaction-diffusion front speeds through mean zero spatially-temporally periodic
shears obey robust asymptotics in both the small and large amplitude regimes. In
the small amplitude regime, the enhanced speeds are proportional to shear amplitude
squared, universal to all known nonlinearities. In the large amplitude regime, the en-
hanced speeds scale linearly with shear amplitude, again for all known nonlinearities.
In both regimes, the enhancement decreases with increasing shear temporal frequency,
indicating a slowdown of front speeds under shear direction changing in time.

In future work, it will be interesting to consider spatially-temporally quasi-
periodic, as well as random, shear fields and investigate efficient numerical methods
that can compute large time front speeds accurately without fully resolving solutions;
see [10], [6], among others.

Appendix. Traveling front existence and qualitative properties. We
outline the proof of Theorem 3.1 in the case of type (4) nonlinearity. A key property
is that the operator in the linear part of (2.2),

Lϕ ≡ ϕss + ϕy1y1
+ (c∗ + w(y1, τ))ϕs − ϕτ ,(A.1)

satisfies the strong maximum principle for (s, y1, τ) ∈ R1 × T 2 (assume without loss
of generality that ω = 1), even though locally it is parabolic. That is to say, if
Lϕ ≥ (≤) 0 on R1 × T 2, where ϕ attains its maximum (minimum) at a finite point
(s0, y1,0, τ0), then ϕ is identically a constant. In fact, the standard parabolic maximum
principle implies that ϕ is a constant for τ ≥ τ0, but now periodicity in τ extends
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Fig. 3. Comparison of bistable front speeds at small amplitudes as temporal shear frequency
varies; ω = 5, 15.

it to all τ . Based on the strong maximum principle, we apply the sliding domain
method [4] to show that ϕs > 0, and 0 < ϕ < 1, and to show the uniqueness of
solutions up to a constant translation in s as in [27]. The existence can be established
by the method of continuation as in [30]. Let us first assume that f(u) ∈ C2. For
small δ, existence under the normalization condition maxT 2 ψ(0, y, τ) = θ follows
from contraction mapping principle [26]. Monotonicity ϕs implies that the linearized
operator around any solution is Fredholm and has one-dimensional kernel; hence it
allows the local continuation of solution (both ϕ and wave speed c∗) in δ. To ensure
the continuation to any given value of δ, we show the closeness of continuation; namely,
the limit of any sequence of solutions remains a solution. Compactness on any finite
domain [−M,M ] × T 2 is provided by parabolicity of L. Additionally, we need to
control s at infinity. We construct upper solutions for s ≤ 0 of the form eµsψ(y1, τ),
where µ > 0, ψ(y1, τ) > 0 uniformly in the limit so that the limiting solution decays
to zero exponentially fast as s → −∞. Such upper solutions exist as long as the wave
speed c∗ < 0 is uniformly bounded away from zero, which we show below. Thereafter,
f(u) ≥ 0 and strong maximum principle of L implies that ψ(+∞) = θ or 1. That
ψ = θ is impossible, as otherwise ψ will be constant by strong maximum principle of
L (contradicting its decay to zero at −∞). Existence of global solutions follows. An
approximation argument takes care of less smooth reaction nonlinearities.

Now we show that c∗ is bounded away from zero. If w(y1, τ) has mean zero in
y1 for any τ , this is done already in Proposition 3.1. Now with only space and time
mean being zero, we shall pick up additional terms to estimate. The integral∫ y1

0

w(y, τ) dy = χ0(y1, τ) + av′(τ)y1,
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Fig. 4. Comparison of combustion front speeds at small amplitudes as temporal shear frequency
varies; ω = 5, 15.

where χ0(y1, τ) and av = av(τ) are periodic. The estimate (3.5) becomes∫
R1×Ω

χ (F (ϕ))τ

= −
∫
R1

−×Ω

χτ F (ϕ) −
∫
R1

+
×Ω

χτ G(ϕ− 1)

= −
∫
R1

−×Ω

(χ0 + av′ y1 + χy1)y1 F (ϕ) −
∫
R1

+
×Ω

(χ0 + av′ y1 + χy1)y1 G(ϕ− 1)

=

∫
R1×Ω

(χ0 + χy1)ϕy1
f(ϕ) +

∫
R1×Ω

av(τ) f(ϕ)ϕτ

≤ (‖χ0‖∞ + ‖χy1‖∞)‖ϕy1
‖2‖f(ϕ)‖2 + ‖av‖∞‖f(ϕ)‖2‖ϕτ‖2.(A.2)

Next we bound ‖ϕτ‖2. Multiply (2.2) by ϕτ , integrate over R1 ×Ω, and integrate by
parts to get ∫

R1×Ω

(c∗ + w(y1, τ))ϕs ϕτ −
∫
R1×Ω

ϕ2
τ = 0,

implying via Cauchy–Schwarz inequality that

‖ϕτ‖2
2 ≤ (|c0| + 2‖w‖∞)‖ϕs‖2 ‖ϕτ‖2

or, in view of (3.2),

‖ϕτ‖2 ≤ (|c0| + 2‖w‖∞)‖ϕs‖2 ≤ (|c0| + 2‖w‖∞)|Ω|1/2|c∗|1/2.(A.3)
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Fig. 5. Bistable front speeds versus amplitude at temporal shear frequency ω = 10.

Plugging (A.3) into (A.2), along with ‖f(ϕ)‖2 ≤ ‖f‖1/2
∞ |c∗|1/2|Ω|1/2, we have the

lower bound on c∗:

|c∗| ≥
‖χy1‖2

2F (1)

|Ω| B−1,

B =
1

2
‖χ‖∞|f ′|∞ + (1 + 2−1/2)‖χy1‖∞‖f‖1/2

∞ + ‖χ‖∞‖f‖∞ + ‖χ0‖∞‖f‖1/2
∞

+ ‖f‖1/2
∞ (|c0| + 2‖w‖∞)‖av‖∞.(A.4)

We note that the monotonicity of traveling fronts implies the attractivity of front
speeds among the time dependent solutions with front initial data as in [28]. Fi-
nally, we remark that uniqueness and monotonicity hold for type (1) nonlinearity,
and type (1) existence for small δ follows from [26]. With additional work, as in [5],
existence for any δ and for other nonlinearities can be established. However, we shall
not pursue it here.
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