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Abstract
The variational principle for Kolmogorov–Petrovsky–Piskunov (KPP) minimal
front speeds provides an efficient tool for statistical speed analysis, as well as
a fast and accurate method for speed computation. A variational principle
based analysis is carried out on the ensemble of KPP speeds through spatially
stationary random shear flows inside infinite channel domains. In the regime of
small root mean square (rms) shear amplitude, the enhancement of the ensemble
averaged KPP front speeds is proved to obey the quadratic law under certain
shear moment conditions. Similarly, in the large rms amplitude regime, the
enhancement follows the linear law. In particular, both laws hold for the
Ornstein–Uhlenbeck (O–U) process in the case of two-dimensional channels.
An asymptotic ensemble averaged speed formula is derived in the small rms
regime and is explicit in the case of the O–U process of the shear. The variational
principle based computation agrees with these analytical findings, and allows
further study of the speed enhancement distributions as well as the dependence
of the enhancement on the shear covariance. Direct simulations in the small rms
regime suggest a quadratic speed enhancement law for non-KPP nonlinearities.

Mathematics Subject Classification: 35K57, 41A60, 65D99

1. Introduction

Front propagation in heterogeneous fluid flows has been an active research topic for
decades (see [7, 15, 18, 24–26, 28] and references therein). That the large time (large
scale) front speed can be enhanced due to the presence of multiple scales in fluid flows
is a fascinating phenomenon. Speed characterizations and enhancement laws have been
studied mathematically for various flow patterns by analysis of the prototype models, e.g. the
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reaction–diffusion–advection equations (see [3, 5, 8, 13, 16, 18–20, 22, 23, 25–27] and
references therein). The enhancement obeys a quadratic law in the small amplitude flow regime,
known as the Clavin–Williams relation [7], which was proved to be true for deterministic
shear flows [13, 21–23]. The enhancement was proved to grow linearly in large amplitudes
of deterministic flows (shear and percolating flows), see [4, 8, 11, 16, 21, 22]. However,
an enhancement exponent of 4

3 was reported based on numerical simulation of random
Hamilton–Jacobi models (so called G-equation or KPZ models) on fronts in a weak randomly
stirred array of vortices [16]. Likewise, the formal renormalization group method [28]
suggested that front speeds may grow sublinearly (slower than linear by a logarithmic factor)
in the strong random flow regime. These two findings raised the issue as to what extent the
speed enhancement laws in the deterministic flows are valid for random flows. Recently, one of
the present authors [27] showed that both the quadratic and linear laws hold almost surely for
Kolmogorov–Petrovsky–Piskunov (KPP) minimal front speeds through white in time spatially
Gaussian random shear flows on the plane. Yet the KPP front speeds diverge almost surely in
spatially Gaussian random shears. A powerful tool is the variational principle of KPP minimal
front speeds.

In this paper, we consider KPP front speeds through random shear flows in channel domains
D ≡ R × �, where � ⊂ Rn−1, n � 2, a bounded simply connected domain with a smooth
boundary. We shall address the enhancement laws of the ensemble averaged front speeds. The
model equation is:

ut = �x,yu + B · ∇x,yu + f (u), (1.1)

where t ∈ R+, �x,y the n-dimensional Laplacian, (x, y) ∈ D. The nonlinearity f = u(1−u),
the so called KPP reaction. Other nonlinearities [26] will be discussed later. The vector field
B = (b(y, ω), 0), where b(y, ω), is a stationary continuous scalar random process in y, its
ensemble mean equal to zero. The zero Neumann boundary condition is imposed at ∂�:
∂u/∂ν = 0, ν is the unit outward normal.

For nonnegative initial data approaching zero and one at x infinities rapidly enough, the
KPP solutions propagate as fronts with speed c∗, given by the variational principle [5, 6, 26],

c∗ = c∗(ω) = inf
λ>0

µ(λ, ω)

λ
, (1.2)

where µ(λ, ω) is the principal eigenvalue, with corresponding eigenfunction φ > 0, of the
problem:

L̄λφ = �yφ + [λ2 + λb(y, ω) + f ′(0)]φ = µ(λ, ω)φ, y ∈ �, (1.3)
∂φ

∂ν
= 0, y ∈ ∂�. (1.4)

The variational speed formula (1.2) makes possible an analysis of ensemble averaged
random front speeds. Using variational formulae on the principal eigenvalue, µ, we are able to
obtain tight upper and lower bounds on c∗ and estimate E[c∗] in terms of moments of suitable
norms of the shear over �. For small root mean square (rms) shear, the quadratic enhancement
law is proved and is explicit in the case of the Ornstein–Uhlenbeck (O–U) process when n = 2.
The linear growth law holds in the large rms regime under weaker moment conditions on the
shear. In both regimes, the moment conditions are satisfied by the O–U process when n = 2.

The variational formula (1.2) also offers an efficient and accurate way of computing a large
ensemble of random front speeds. Directly solving the original time dependent equation (1.1)
to obtain steady propagating states can be both slow and less accurate. A large ensemble of
random fronts and occasional excursions in b require a large enough truncated channel domain



A variational principle based study of KPP minimal front speeds 1657

to contain the front over large times. As a result, direct simulation is prohibitively expensive
in the regime of large rms shears.

The variational formula (1.2) allows us to compute quickly and accurately the ensemble
averaged speeds in both small and large shear rms regimes when n = 2. An interesting
difference from the deterministic case is that the integral average of b(y, ω) in y ∈ �, i.e.
b̄ = b̄(ω) = |�|−1

∫
�

b(y, ω) dy, is a random constant not equal to zero. This quantity can
be of either sign, and influence greatly the numerical approximation of E[c∗] in the small rms
regime, even though it does not contribute to the exact E[c∗], since E[b̄] = 0. To assess
the speed enhancement accurately, we subtract this random constant from each c∗(ω) before
evaluating the expectation numerically. This way, we are able to minimize the errors in
approximating E[c∗] in a finite ensemble. In our computation, b is a discrete O–U process.

In complete agreement with analysis, we find numerically that the ensemble averaged
speeds obey a quadratic law in the small rms regime and a linear law in the large rms regime.
Without the b̄ subtraction technique, the computed average speed enhancement in the small
rms regime can give inaccurate scaling exponents significantly below 2. The same technique
and direct simulations for other nonlinearities (combustion, bistable) suggest quadratic speed
enhancement in the small rms regime. The computed speed ensemble then permits us to study
further the enhancement distribution and its dependence on the variation of shear covariance
functions.

This paper is organized as follows. In section 2, we prove the enhancement laws of
ensemble averaged speeds based on variational principles, and derive a closed form speed
asymptotic formula in the case of O–U process. In section 3, we describe numerical methods
for computing a speed ensemble with the variational formula (1.2) and speed statistics and
then show numerical results. We also make comparisons with the prediction of the asymptotic
formula and with direct simulations. In section 4, we conclude with a remark on future work.

2. Average speed asymptotics

Consider a scaling shear amplitude b(y) �→ δb(y), and denote by c∗(δ) the minimal KPP
speed corresponding to shear δb. Let c0 = c∗(0) = 2

√
f ′(0) denote the minimal speed

in the case of zero advection. If the shear b = b(y) has zero integral average over �,
〈b〉 = (1/|�|) ∫

�
b(y) dy = 0, the corresponding minimal speed, c∗(ω), is always enhanced

by the shear. This is true also for time dependent shears (see [21, 22] and references therein).
For each realization, c∗(δ, ω) = c∗

0 + O(δ2) as δ � 1; c∗(δ, ω) = c∗
0 + O(δ) as δ  1. For

each realization, as δ � 1, we have:

Proposition 2.1. Let χ = χ(y) solve the equation �yχ = −b, y ∈ �, with zero Neumann
boundary condition, where b ∈ C(�), has zero mean over �. Then for δ sufficiently small,
the minimal speed has the expansion

c∗(δ) = c0 +
c0δ

2

2|�|
∫

�

|∇χ |2 dy + O(δ3). (2.5)

Up to O(δ2), the formula (2.5) is independent of the nonlinearity, see [13,23] for f being
bistable or combustion nonlinearity and [22] for more general nonlinearities and time periodic
shears. We shall give a proof of proposition 2.1 using variational formulae, and later generalize
it to the random case. That the infimum in (1.2) can be restricted to a bounded set independent
of b and δ, as stated in the following lemma, is a helpful fact:

Lemma 2.1. Let b ∈ C(�) have zero mean over �, and let λ0 = √
f ′(0). Then

inf
λ>0

µ(λ)

λ
= inf

0<λ�λ0

µ(λ)

λ
. (2.6)
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Figure 1. Intersecting curves ρc and −λ2.

Proof. For each c > 0, we let ρc(λ) = µ(λ) − λc − λ2. So, if φ > 0 is the eigenfunction
defined by (1.3), then ρc(λ) is the principal eigenvalue defined by the equation

�yφ + [λb(y) − λc + f ′(0)]φ = ρc(λ)φ, y ∈ �. (2.7)

One can readily verify that ∂λρc(λ)|λ=0 = −c < 0. The variational formula (1.2) can be
expressed as

c∗ = inf{c|∃λ > 0, λc = µ(λ)}
= inf

{
c|∃λ > 0, ρc(λ) = −λ2

}
. (2.8)

Consider the points where ρc(λ) = −λ2. By proposition 2.1 of [6], the continuous curve
λ �→ ρc(λ) is convex in λ, for each c > 0. Also, ρc(0) = f ′(0) > 0. Therefore, for a
given c > 0, there can be at most two values of λ > 0 such that ρc(λ) = −λ2. The line
ρ∗(λ) = −2

√
f ′(0)λ + f ′(0) satisfies ρ∗(λ) � −λ2, with equality holding only at one point:

λ0 = √
f ′(0). Since ρ∗(0) = ρc(0) and ρc(λ) is convex and ρ∗ is a line, ρc(λ) = −λ2 for some

λ > 0 only if ρc(λ1) = −λ2
1 for some λ1 ∈ (0, λ0]. This point is illustrated in figure 1. The

solid curve represents the parabola −λ2. If ρc(λ) intersects −λ2, then one of the intersection
points must be to the left of λ0 = √

f ′(0). Therefore, from (2.8),{
c|∃λ > 0, ρc(λ) = −λ2

} = {
c|∃λ ∈ (0, λ0], ρc(λ) = −λ2

}
. (2.9)

So, we conclude that

c∗(δ) = inf
0<λ

µ(λ)

λ
= inf

0<λ�λ0

µ(λ)

λ
. (2.10)

�

Proof of proposition 2.1. To estimate c∗(δ), we bound the principal eigenvalue µ(λ) using
two different representations of µ. First, since L̄ is a self-adjoint operator, we have

µ = sup
(L̄λψ, ψ)

‖ψ‖2
2

, (2.11)
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where the supremum is taken over all ψ ∈ H 2(�) such that ∂ψ/∂ν = 0 on ∂�. The other
representation is

µ = inf
ψ

sup
y∈�

L̄λψ

ψ
= inf

ψ
sup
y∈�

(
�ψ

ψ
+ λδb + λ2 + f ′(0)

)
, (2.12)

where the infimum can be taken over all ψ ∈ C1(�) such that �ψ ∈ C(�), ψ > 0 and
∂ψ/∂ν = 0 on ∂�. This representation follows from the fact that the eigenfunction φ > 0
lies in the kernel of the self-adjoint operator (L̄λ − µ(λ)I) = (L̄λ − µ(λ)I)∗. So, if we have
the strict inequality

L̄λψ − µ(λ)ψ = m < 0, (2.13)

then the Fredholm alternative implies that (φ, m)L2 = 0, a contradiction since φ > 0, m < 0.
Hence,

sup
y∈�

L̄λψ

ψ
� µ(λ). (2.14)

Since L̄λφ = µ(λ)φ, the formula (2.12) follows. Note that we do not require the test functions
ψ to be C2(�), only �ψ ∈ C(�). This is important since we do not want to require the shear
b(y) to be any more regular than b ∈ C(�̄).

Let us derive upper and lower bounds for µ(λ) by choosing test functions ψ as

ψ = 1 + λδχ + λ2δ2h, (2.15)

where χ = χ(y) and h = h(y) solve

�χ = −b,

�h = −bχ + k,
(2.16)

with zero Neumann boundary conditions at ∂�, and k a constant equal to

k = 1

|�|
∫

�

bχ dy = 1

|�|
∫

�

|∇χ |2 dy. (2.17)

We normalize χ and h so that

inf
x∈�

χ(x) = 0 and inf
x∈�

h(x) = 0. (2.18)

Then

L̄λψ = λ2δ2k + λ3δ3bh + (λ2 + f ′(0))ψ

and

(L̄λψ, ψ)

‖ψ‖2
2

= λ2δ2k

∫
ψ∫
ψ2

+ λ3δ3

∫
bhψ∫
ψ2

+ λ2 + f ′(0). (2.19)

Using the definition of ψ , we see that ψ = ψ2 − λδχψ − λ2δ2hψ and∫
�

ψ dy∫
�

ψ2 dy
= 1 − λδ

∫
�

χψ dy∫
�

ψ2 dy
− λ2δ2

∫
�

hψ dy∫
�

ψ2 dy
.

Now from (2.11) and (2.19) we have the lower bound

µ(λ) � λ2 + f ′(0) + λ2δ2k + R1 (2.20)

with

R1 = − λ3δ3∫
�

ψ2

(
k

∫
�

χψ + kλδ

∫
�

hψ −
∫

�

bhψ

)
. (2.21)
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By choice of χ � 0 and h � 0, we have
∫
�

ψ2 � |�| for all δ � 0 and λ > 0. Hence,
R1 = O(δ3) for λ bounded. Returning to the variational formula (2.10), we now have a lower
bound on c∗(δ):

c∗(δ) = inf
0<λ�λ0

µ(λ)

λ
� inf

0<λ�λ0

(
λ +

f ′(0)

λ
+ λδ2k +

R1

λ

)

� inf
λ>0

(
λ +

f ′(0)

λ
+ λδ2k

)
+ O(δ3)

= 2
√

f ′(0)(1 + δ2k) + O(δ3)

= c0 +
c0δ

2k

2
+ O(δ3). (2.22)

To obtain an upper bound on c∗(δ), we use (2.12) and calculate

L̄λψ

ψ
= �ψ

ψ
+ λδb + λ2 + f ′(0)

= λ2δ2k + λ3δ3bh

1 + λδχ + λ2δ2h
+ λ2 + f ′(0). (2.23)

Since χ � 0 and h � 0, we see from (2.12) and (2.23) that

µ(λ) � sup
y∈�

L̄λψ

ψ
� λ2 + f ′(0) + λ2δ2k + R2 (2.24)

with

R2 = λ3δ3‖bh‖∞. (2.25)

The variational formula (2.10) implies

c∗(δ) = inf
0<λ�λ0

µ(λ)

λ
� inf

0<λ�λ0

(
λ +

f ′(0)

λ
+ λδ2k + R2

)

= c0 +
c0δ

2k

2
+ O(δ3), (2.26)

thus completing the proof. �
When the shear b(y, ω) is a random process, the corresponding minimal speed c∗(δ) =

c∗(δ, ω) is a random variable for each δ, and we consider how the expectation E[c∗(δ)] scales
with the parameter δ by finding an exponent p such that E[c∗(δ)] = c∗(0) + O(δp). Each
realization of the process b(y, ω) restricted to the domain � does not necessarily have zero
integral over �. Nevertheless, each realization can be written in the form

b(y, ω) = b̄(ω) + b1(y, ω), (2.27)

where b̄(ω) = 〈b(y, ω)〉 is the mean of b over �, and b1(y, ω) is the variation about the mean
value. For a fixed realization, the minimal speed c∗(δ) will be affected by both the scaling of
the mean b̄(ω) and the scaling of the variation b1(y, ω). That is,

c∗(δ, ω) = c∗
0 + δb̄(ω) + M(δ, ω), (2.28)

where the remainder M(δ, ω) is the enhancement due to the variation b1(y, ω), different for
each realization. Taking the expectation of both sides of (2.28), we have

E[c∗(δ)] = c∗
0 + δE[b̄(ω)] + E[M(δ, ω)]. (2.29)

For each sample, M(δ, ω) is O(δ2) for δ small. Though E[M(δ)] might exhibit scaling
different from quadratic, we show that the quadratic scaling law remains for enhancement of
averaged front speeds under suitable moment conditions of the shear.
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Theorem 2.1. Let b(y, ω) be a stationary random process in Rn−1 (n � 2) so that its sample
paths are almost surely continuous and

E[‖b‖6
∞] < +∞. (2.30)

Then for δ small, the expectation E[c∗(δ)] has the expansion

E[c∗(δ)] = c0 + δE[〈b〉] +
c0δ

2

2|�|
∫

�

E[|∇χ |2] dy + O(δ3), (2.31)

where b(y, ω) = 〈b〉(ω) + b1(y, ω); and χ = χ(y, ω) solves �yχ = −b1, y ∈ �, subject to
zero Neumann boundary condition.

Proof. As the contribution of 〈b〉 to c∗ is just an additive constant, it suffices to consider shear
flow b1 and show that it gives the averaged speed

E[c∗(δ)] = c0 +
c0δ

2

2|�|
∫

�

E[|∇χ |2] dy + O(δ3). (2.32)

We adapt the proof of proposition 2.1, noting that in the stochastic case the remainders R1 and
R2 defined by (2.21) and (2.25) are random and not bounded uniformly for all realizations.
Instead, we will show that for λ in a bounded interval,

E[|R1|] � O(δ3) and E[|R2|] � O(δ3).

To this end, we estimate χ and h, with C denoting a generic positive constant depending only
on the domain � and its dimension. Let χ and h solve (2.16) with 〈χ〉 = 〈h〉 = 0. Applying
W 2,p estimates [9, 10], we have

‖χ‖W 2,p(�) � C‖b1‖Lp(�) � C|�|1/p‖b1‖∞ (2.33)

and

‖h‖W 2,p(�) � C‖b1χ + k‖Lp(�)

� C‖b1‖∞‖χ‖Lp(�) + Ck|�|1/p

� C‖b1‖2
∞ (2.34)

since

k = 〈|∇χ |2〉 � C‖b1‖2
∞. (2.35)

Given α ∈ (0, 1), we can choose p > 1 sufficiently large, depending on n, such that W 2,p(�)

embeds continuously into C1,α(�̄). It follows that there is a constant C > 0 independent of b

such that

‖χ‖C1(�̄) � C‖b1‖∞ and ‖h‖C1(�̄) � C‖b1‖2
∞. (2.36)

If instead we normalize χ and h by (2.18), then the bounds (2.36) still hold, with different
constants. Note that adding a constant to χ and h does not alter the quantity

∫
�

|∇χ |2 that
appears in the asymptotic expansion.

Now by (2.36), the integrals in R1 are easily bounded as∫
�

χψ =
∫

�

χ + λδχ2 + λ2δ2χh

� C
(‖b1‖∞ + λδ‖b1‖2

∞ + λ2δ2‖b1‖3
∞

)
.

Similarly, ∫
�

hψ =
∫

�

h + λδχh + λ2δ2h2

� C
(‖b1‖2

∞ + λδ‖b1‖3
∞ + λ2δ2‖b1‖4

∞
)
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and ∣∣∣∣
∫

�

b1hψ dy

∣∣∣∣ =
∣∣∣∣
∫

b1h + λδ

∫
b1hχ + λ2δ2

∫
b1h

2

∣∣∣∣
� C

(‖b1‖3
∞ + λδ‖b1‖4

∞ + λ2δ2‖b1‖5
∞

)
.

Since χ and h are nonnegative,
∫
�

ψ2dy � C
∫
�

ψ = C|�| > 0 for any realization.
So for λ in a bounded interval and δ small, we bound (2.21) by

|R1| � Cδ3λ3(1 + ‖b1‖6
∞),

so that E[|R1|] � O(δ3).
To bound E[|R2|], we use the normalization (2.18) and the above estimates:

|R2| = λ3δ3 ‖b1h‖∞ � C λ3δ3 ‖b1‖3
∞. (2.37)

Hence E[R2] � O(δ3) for λ in a finite interval. Now we return to (2.22) to conclude

E[c∗(δ)] � E
[
2
√

f ′(0)(1 + δ2k)
]

+ O(δ3)

= c0 +
c0δ

2E[k]

2
+ O(δ3)

since E[k2] � CE[‖b‖4
∞] < ∞.

The opposite inequality follows from (2.26) since E[R2] = O(δ3) for λ ∈ (0, λ0). Thus
formula (2.32) holds. For general b, not necessarily mean zero,

E[c∗(δ)] = c0 + δE[〈b〉] +
c0δ

2

2
E[k] + O(δ3)

= c0 + δE[〈b〉] +
c0δ

2

2|�|
∫

�

E[|∇χ |2] dy + O(δ3).

The proof is complete. �
In our numerical computation of front speeds in two-dimensional channels, we use the

O–U process for shear b, and so E[〈b〉] = 0. Let us show below that the O–U process, denoted
by X(y, ω), satisfies the conditions in theorem 2.1, and so E[c∗(δ)] scales quadratically with
δ for δ small.

Corollary 2.1 (explicit average speed formula). Consider the O–U process b(y, ω) as a
solution of the Ito equation:

dX(y) = −aX(y) dy + r dW(y), y ∈ [0, L], (2.38)

where W(y, ω) is the standard Wiener process, X(0, ω) = X0(ω) is a Gaussian random
variable with mean zero and variance ρ = r2/(2a). Then X(y, ω) satisfies the moment
conditions in theorem 2.1. The averaged KPP front speed in the channel R × [0, L] is given by

E[c∗(δ)] = c0 +
c0δ

2

2
enh + O(δ3), δ � 1, (2.39)

where

enh = r2

2a

(
e−aL

(
4

L2a4
− 1

3a2

)
+

L

3a
− 4

L2a4
− 5

3a2
+

4

La3

)
.

Proof. The O–U process is stationary and Markov. Its sample paths are almost surely Hölder
continuous though nowhere differentiable. The process can be written as

b(y, ω) = e−ayb(0, ω) + r

∫ y

0
e−a(y−s) dWs(ω). (2.40)
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The covariance function of this process is ρe−a|y−s|. Letting g(y, ω) denote the process

g(y) = eayb(y, ω) = g(0, ω) + r

∫ y

0
easdWs(ω), (2.41)

we see that g(y, ω) is a martingale [14]. By Doob’s martingale moment inequality [14], for
any p ∈ (1, +∞),

E[sup0<y<L|g(y)|p] �
(

p

p − 1

)p

E[|g(L)|p]. (2.42)

Since the process b(y, ω) is Gaussian, (2.41) and (2.42) imply that

E[‖b‖6
∞] � CE[|b(L)|6] < +∞. (2.43)

Formula (2.39) now applies to the average speed. Note that

(χx(x))2 =
∫ x

0

∫ x

0
b1(s)b1(y) ds dy

and

E[(χx(x))2] =
∫ x

0

∫ x

0
E[b1(s)b1(y)] ds dy. (2.44)

Let us calculate E[b1(s)b1(y)] in terms of E[b(s)b(y)]. Define

g(y) = 〈f (·, y)〉 or g(s) = 〈f (s, ·)〉,
so that

E[b1(y)b1(s)] = E[b(s)b(y)] − E[b(s)b̄] − E[b(y)b̄] + E[b̄2],

E[b(s)b̄] = 1

L

∫ L

0
E[b(y)b(s)] dy = g(s),

E[b̄2] = 1

L2

∫ L

0

∫ L

0
E[b(s)b(y)] dy ds = 〈g〉.

Thus

E[b1(y)b1(s)] = f (s, y) + 〈g〉 − g(y) − g(s).

Now, we have

E[(χx(x))2] =
∫ x

0

∫ x

0
E[b1(s)b1(y)] ds dy

=
∫ x

0

∫ x

0
f (s, y) + 〈g〉 − g(y) − g(s) ds dy

= x2〈g〉 − 2x2〈g〉x +
∫ x

0

∫ x

0
f (s, y) ds dy,

where 〈g〉x denotes the average of g over the interval [0, x], for 0 < x � L. Consequently,
we have

E[〈|χx |2〉] = 1

L

∫ L

0

(
x2〈g〉 − 2x2〈g〉x +

∫ x

0

∫ x

0
f (s, y) ds dy

)
dx. (2.45)

Using the O–U covariance function, we proceed as

g(s) = 1

L

∫ L

0
f (s, y) dy = r2

2a

1

L

∫ L

0
e−a|y−s| dy

= r2

2a

(
1 − e−as

La
+

1 − e−a(L−s)

La

)
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and

〈g〉x = r2

2a

1

x

∫ x

0

(
1 − e−as

La
+

1 − e−a(L−s)

La

)
ds

= r2

2a

(
2

La
+

1

xLa2
(e−ax − 1) +

1

xLa2
(e−aL − e−a(L−x))

)
.

Letting x = L, we have

〈g〉 = r2

2a

(
2

La
+

2

L2a2
(e−aL − 1)

)
.

Similarly, ∫ x

0

∫ x

0
f (s, y) ds dy = r2

2a

(
2x

a
+

2

a2
(e−ax − 1)

)
.

Combining the above, we have

E[〈|χx |2〉] = r2

2a

(
2L

3a
+

2

3a2
(e−aL − 1)

)

− r2

2a

2

L

∫ L

0

2x2

La
+

x

La2
(e−ax − 1) +

x

La2
(e−aL − e−a(L−x)) dx

+
r2

2a

1

L

∫ L

0

2x

a
+

2

a2
(e−ax − 1) dx

= r2

2a

(
e−aL

(
4

L2a4
− 1

3a2

)
+

L

3a
− 4

L2a4
− 5

3a2
+

4

La3

)
. (2.46)

In view of (2.39), the proof is complete. �

Theorem 2.2 (linear growth). If the stationary shear process b(y, ω) has almost surely
continuous sample paths and satisfies E[‖b‖∞] < ∞, then the amplified shear field δb(y, ω)

generates the average front speed:

E[|c∗(δ, ω)|] = O(δ), δ  1.

Moreover, limδ→∞ E[|c∗(δ, ω)|]/δ exists.

Proof. By theorem 5.1 of [4], |c∗(δ, ω)|/δ → d∗(ω) as δ → ∞, where d∗ is finite for
each ω. Now recall the upper bound |c∗(δ, ω)| � |c0| + δ‖b‖∞. Hence for δ > |c0|,
|c∗(δ, ω)|δ � 1+‖b‖∞ ≡ Y and E(Y ) < ∞. The dominated convergence theorem implies that

E

[ |c∗(δ, ω)|
δ

]
→ E[d∗(ω)] � E(Y ).

The proof is complete. Clearly, the O–U process satisfies the required condition for linear
average speed growth. �

Remark 2.1. The limiting value or the linear growth rate, d∗(ω), depends on b(y, ω) in a
rather implicit way. After completion of this work, the authors learned of a recent variational
formula by Heinze [12]:

d∗(ω) = sup
ψ∈D1

∫
�

b(y, ω)ψ2(y) dy,

where

D1 = {ψ ∈ H 1(�): ‖∇ψ‖2
2 � f ′(0), ‖ψ‖2 = 1}.
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If a realization of b were to have a flat piece near the maximal point of b in �, d∗(ω) would
be equal to sup� b(y, ω). However, this happens with zero probability for the O–U process
among other stationary Gaussian random fields. It appears that the distribution of d∗(ω) is
analytically unknown. In fact, even the distribution of sup� b(y, ω) is known only in a few
special cases [1], not including O–U. For this reason, an efficient numerical technique like the
one described in the following section is very useful for analysis of the statistical behaviour of
c∗(δ) as δ → ∞.

3. Computation by variational principle

3.1. Numerical methods

Let n = 2. For a given λ > 0, we compute the principal eigenvalue, µ(λ), with corresponding
eigenfunction φ = φ(y) > 0, y ∈ [0, L], by solving

φyy + [λ2 + λb(y) + f ′(0)]φ = µ(λ)φ, y ∈ (0, L),

∂φ

∂y
= 0, y = 0, L,

(3.1)

using a standard second-order finite-difference method. Here we suppress the random
parameter ω, as computation is done realization by realization. Denote the uniform partition of
the domain by points {yi}mi=1, and the numerical solution by φ̄ = {φ̄i}mi=1, where h = L/(m−1),
yi = (i − 1)h and φ̄i ≈ φ(yi). The discretized system is

1

h2
φ̄i−1 +

(
λ2 + λbi + f ′(0) − 2

h2

)
φ̄i +

1

h2
φ̄i+1 = µ(λ)φ̄i i = 2, . . . , m − 1,

with second-order approximation of the Neumann boundary conditions. This reduces to finding
the principal eigenvalue of a symmetric tridiagonal matrix, easily accomplished with double
precision LAPACK routines [2]. Then we compute points on the curve H(λ) = µ(λ)/λ and
minimize over λ using Newton’s method with line search. Our approximation decreases with
each iteration and converges quadratically in the region near the infimum. Two illustrative
curves, H(λ), are shown in figure 2 for two different realizations of the shear.

We generate realizations of the shear process b(y, ω) by numerically evaluating the
stochastic ODE (2.38) with the Milstein scheme (see [17]). Although this scheme is first
order, we use a discrete spacing h̄ � h2, where h is the discrete grid spacing for the eigenvalue
problem, so that the method is still second order accurate in the parameter h. Figure 3 shows
a sample path, and figure 4 compares exact and numerical covariance functions constructed
from 5000 samples.

To approximate the expectation E[c∗(δ)], we generate N independent realizations
(indexed by i = 1, . . . , N) of the shear and compute the corresponding minimal speeds {c∗

i }
for each δ. Then we compute the average,

E[c∗(δ)] ≈ Ē(δ) = c∗
0 +

1

N

N∑
i=1

Mi(δ), (3.2)

where Mi(δ) = c∗
i (δ) − c∗

0 − δb̄i . That is, we subtract the linear part due to the mean of the
shear being nonzero, as in (2.28).

Once we have the averages Ē(δ) for each δ, we compute the exponents p using the least
squares method to fit a line to a log–log plot of speed versus amplitude. That is, the exponent
p is the slope of the best-fit line through the data points (log(δ), log(Ē[c∗(δ)] − c∗(0))) for
each shear amplitude δ.
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Figure 2. Two curves λ �→ µ(λ)/λ.
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Figure 3. One sample path of the O–U process b(y, ω).

3.2. Numerical results

3.2.1. Scaling with shear amplitude δ. In figures 5 and 6, we show the results of a simulation
using N = 100 000 realizations of a shear in small and large rms amplitudes, respectively. As
shown later in figure 11, we find that the choice of N = 100 000 samples was more than enough
to obtain good convergence of the speed distribution functions. The covariance function of the
process is E[b(y)b(s)] = 2e−4|y−s|. In each plot, we show multiple curves, corresponding to
various domain sizes. In figure 5, corresponding to small δ, the solid curves are the numerically
computed values; the dotted curves are given by formula (2.39). We find that the enhancement
of the minimal speed scales quadratically for small amplitudes and linearly for large amplitudes.
The computed exponents are shown in table 1.

As an application of the numerical results for large amplitudes, we compare the distribution
of c∗(δ) with the distributions of the random variables g1(ω) = 2κf ′(0) + δ‖b‖∞ and
g2(ω) = 2

√
κ + δ2/κ‖∇χ‖∞, where κ is the diffusion constant (equal to 1 in equation (1.1)).

Theorem 2 of [11] shows the upper bound:

c∗(δ, ω) � min(g1(ω), g2(ω)) (3.3)
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Figure 4. Numerical and exact covariance functions of the O–U process b(y, ω).
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Figure 5. Average enhancement of minimal speed in small amplitude shears. The solid curves are
the numerically computed values and the dotted curves are given by formula (2.39).

and g1 < g2, provided that
√

κ/f ′(0) is sufficiently small, depending on the realization.
In figure 7 we compare the distributions for c∗(50), g1 and g2 for κ = 0.01. The asymmetry
is seen in all three curves.

3.2.2. Dependence on covariance. Next, we consider the effect of the covariance on the
enhancement of the minimal speed. The covariance E[b(y)b(s)] is a function of |t | = |s − y|,
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Figure 6. Average enhancement of minimal speed and large amplitude shears.

Table 1. Computed scaling exponents p for E[c∗(δ)] = c∗
0 + O(δp).

L = 1.0 L = 2.0 L = 3.0 L = 4.0

δ � 1 2.00 1.98 1.96 1.93
δ  1 1.09 1.05 1.04 1.03
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Figure 7. Distributions of speed enhancement and lower and upper bounds at δ = 50.

and so we will write V (t) = E[b(y)b(s)]. By choosing r = √
2α3/4, we constructed O–U

processes with covariances given by

V (t) = √
αe−α|t |. (3.4)
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Figure 8. Effect of covariance on minimal speed enhancement at δ = 1.0.

By this choice of r , the L2 norm of V (t) remains constant as α changes, so that the total
energy in the power spectrum of the signal remains constant. Since r2/2a = √

a, we see from
equation (2.39) that for fixed L,

lim
α→+∞ E[〈|χx |2〉] = lim

α→0+
E[〈|χx |2〉] = 0 (3.5)

and that E[〈|χx |2〉] attains a maximum for some finite value of α ∈ (0, ∞). This suggests
that there is some optimal α, depending on the domain size L, such that the enhancement of
E[c∗(δ)] is maximized.

Fixing the grid spacing dx = 0.002, we computed the expected value E[c∗(δ)] for a range
of α and for L = 1.0, 2.0, 3.0, 4.0. Note that for each α, we must choose the initial points b0

to have variance E[b2
0] = √

α so that the process remains stationary for each α. Varying the
covariance does not affect the order of the scaling in δ. That is, in each case the enhancement
scales like O(δ2) for small δ and O(δ) for large δ, as in the preceding simulation.

Figure 8 shows the enhancement E[c∗(δ)] for a fixed δ = 1.0 and a range of α. Figure 9
shows the results of the same computation for δ = 15.0, corresponding to the large δ regime.
In this case, formula (2.39) is no longer valid. Nevertheless, we see the same effect as in the
small amplitude regime: the existence of an optimal covariance parameter α.

This effect can be interpreted in terms of V (t) and its Fourier transform or power spectrum:

V̂ (w) =
√

2

πα

(
1 +

(w

α

)2
)−1

. (3.6)

As α → 0, V̂ (w) concentrates at the origin, and so the energy of the shear process is
concentrated more in the large scale spatial modes. The domain �, to which the process
is restricted, is bounded, and variations over a length scale that is much greater than the
diameter of � have little effect on the average enhancement of the front. As a result, E[c∗]
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Figure 9. Effect of covariance on minimal speed enhancement at δ = 15.0.

decreases as α → 0+. In the other limit, α → ∞, V̂ spreads out so that the energy over any
finite band of frequencies goes to zero, causing E[c∗] to decrease as well. Note that V → 0
in L1 as α → ∞, and so even though V̂ spreads out more uniformly as α → 0, the family of
processes does not converge to white noise, whose covariance function is equal to the Dirac
delta function.

3.2.3. Speed distribution. For a fixed δ = 1 and δ = 14 (corresponding to small and large
amplitudes), we computed the distributions of the numerically computed values M(δ). The
distributions are shown in figure 10. To compute these distributions, we partition the range
of values into Q disjoint intervals: {[xj , xj+1)}Qj=1. Then, we let

pdf(x) = 1

N

N∑
i=1

χj (Mi(δ))

(xj+1 − xj )
if x ∈ [xj , xj+1), (3.7)

where χj (x) is the characteristic function of the interval [xj , xj+1). The distributions in
figure 10 were computed with N = 100 000 samples and Q = 300.

The values M(δ) are the enhancement of the minimal speeds due to the variation
of the shear, after the effect of the mean field has been subtracted. Since a mean zero
shear always enhances the minimal speeds, we should expect M(δ) > 0 for all δ, for all
realizations. As already noted, figure 11 shows good convergence of the distributions when
using N = 100 000 samples.

3.2.4. Comparison with direct simulation. When comparing the results of the previous
sections with results from direct simulation, we find that computing the minimal speeds
using the variational formula offers significant advantages. As in [22], we first computed
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Figure 10. Computed probability distribution functions (pdfs) of enhancement M(δ): δ = 1.0
(bottom), δ = 14.0 (top).
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Figure 11. Convergence of speed enhancement distribution at δ = 14.0.

the quantities E[c∗(δ)] via direct simulation of the original equation (1.1) on a truncated
domain using an explicit second order upwind finite-difference scheme. We chose the diffusion
constant in the direct simulations to be κ = 0.025 and the grid spacing to be dx = 0.05,
dt = 0.004. For each realization of the shear, we evolved the solution of (1.1) for a sufficiently
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Figure 12. Distribution of speed enhancement via direct simulation, KPP nonlinearity, δ = 0.5.

long time until the front moved at a more or less constant speed (see [22] for details of the
method). In this way, we approximated the minimal speed for each realization; then we
repeated the process for a large ensemble of shears to compute the expectations E[c∗(δ)].

We considered three nonlinearities in our direct simulations:

• KPP nonlinearity: f (u) = u(1 − u).
• Combustion nonlinearity: f (u) ≡ 0 for u ∈ [0, θ ], and f (u) > 0 for u ∈ (θ, 1], for some

θ ∈ (0, 1). Also, f ′(1) < 0.
• Bistable nonlinearity: f (u) = u(1 − u)(u − µ) for some µ ∈ (0, 1/2).

Although there is no known variational formula as simple as formula (1.2) for the bistable
and combustion nonlinearities, the expansion (2.5) holds for each of the nonlinearities (see
also theorem 4.2 of [13]). Therefore, we should expect that for small δ, the computed
values

M(δ, ω)

c∗
0

≈ δ2

2|�|
∫

�

|∇χ(y, ω)|2 dy + O(δ3) (3.8)

have approximately the same distribution, independent of the nonlinearity. For each
nonlinearity, we computed more than 700 realizations of the shear and evolved the solution,
as described in [22]. The relatively smaller number of samples was due to the long
time required to compute each sample (not a problem with the variational formula in the
KPP case). After subtracting the linear part of the enhancement (due to the mean field),
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Figure 13. Distribution of speed enhancement via direct simulation, combustion nonlinearity,
δ = 0.5.

we computed the enhancement exponent as described in section 3. The results of the direct
simulation confirm that, for small amplitudes, E[c∗(δ)] scales like O(δ2). Figures 12–14
show the distributions of the computed values M(δ)/c∗

0 for the KPP, combustion and bistable
nonlinearities, respectively, for L = 1. We see that the distributions are roughly the same,
independent of the nonlinearity, as should be expected. While computationally expensive, the
direct simulation method reveals the universal O(δ2) scaling of the front speeds for small δ

(albeit on smaller ensembles than in the variational computations), for each of the nonlinearities
considered.

Because the shears are random and may greatly distort the wave front, one major challenge
in accurately approximating the (minimal) speeds is tracking the widely varying front region
over a long time. In the region of the front, gradients are relatively large, and so accurately
tracking the front requires either a very fine uniform grid spanning a large domain or some kind
of adaptive-mesh scheme. In either case, accurate direct simulation is prohibitively expensive
compared with the simple variational method. In contrast to the direct simulation method, the
variational formula allowed us to compute a much larger number of samples in a fraction of
the time and avoid the inaccuracies resulting from truncation of the channel domain.

Finally, we note that if � is unbounded, then the quadratic asymptotic behaviour of c∗(δ)
cannot hold in general. For example, in [27], it was shown that if the channel R × [0, L] is
replaced by R2, then the front velocities obtained through a comparable variational principle
diverge due to the almost sure growth of the running maximum of the process b(y, ω). This
effect can be clearly seen in our results, as E[〈|∇χ |2〉] given by (2.39) diverges as L → +∞.
In our application of theorem 2.1 to a stationary Gaussian process, the boundedness of the
domain � is crucial for achieving the necessary bound on ‖b‖∞ (through the martingale
moment inequality), and in turn the bound on c∗.
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Figure 14. Distribution of speed enhancement via direct simulation, bistable nonlinearity, δ = 0.5.

4. Conclusions

Sufficient moment conditions are obtained to ensure the quadratic (linear) KPP average front
speed enhancement through small (large) rms random shear flows in channel domains. The
conditions are realized by the O–U process, for which an explicit average front speed formula
is derived. The variational principle based computation is carried out for the speed ensemble.
The numerically computed speed enhancement is in agreement with theoretical analysis, and
provides data for studying speed distributions and the dependence on the shear covariance.
Comparison with direct simulations of random fronts in the case of non-KPP nonlinearities
showed the same enhancement scaling laws. It would be interesting to investigate front speeds
through time dependent random shear flows or nonshear random flows in channel domains for
future studies.
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