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Abstract. We study the residual diffusion phenomenon in chaotic advection com-

putationally via adaptive orthogonal basis. The chaotic advection is generated by a
class of time periodic cellular flows arising in modeling transition to turbulence in

Rayleigh-Bénard experiments. The residual diffusion refers to the non-zero effective

(homogenized) diffusion in the limit of zero molecular diffusion as a result of chaotic
mixing of the streamlines. In this limit, the solutions of the advection-diffusion

equation develop sharp gradients, and demand a large number of Fourier modes to
resolve, rendering computation expensive. We construct adaptive orthogonal basis

(training) with built-in sharp gradient structures from fully resolved spectral solu-

tions at few sampled molecular diffusivities. This is done by taking snapshots of
solutions in time, and performing singular value decomposition of the matrix con-

sisting of these snapshots as column vectors. The singular values decay rapidly and

allow us to extract a small percentage of left singular vectors corresponding to the
top singular values as adaptive basis vectors. The trained orthogonal adaptive basis

makes possible low cost computation of the effective diffusivities at smaller molecu-
lar diffusivities (testing). The testing errors decrease as the training occurs at smaller

molecular diffusivities. We make use of the Poincaré map of the advection-diffusion

equation to bypass long time simulation and gain accuracy in computing effective
diffusivity and learning adaptive basis. We observe a non-monotone relationship

between residual diffusivity and the amount of chaos in the advection, though the

overall trend is that sufficient chaos leads to higher residual diffusivity.
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1. Introduction

Diffusion enhancement in fluid advection has been studied for nearly a century,

dating back to the pioneering work of Taylor [13] in 1921. It is a fundamental problem

to characterize and quantify the large scale effective diffusion (denoted by DE) in fluid

flows containing complex and turbulent streamlines. Much progress has been made

based on the passive scalar model [9]:

Tt + (v ·D)T = D0∆T, (1.1)

where T is a scalar function (e.g., temperature or concentration), D0 > 0 is a constant

(the so called molecular diffusion), v (x, t) is a prescribed incompressible velocity field,

D and ∆ are the spatial gradient and Laplacian operators.

When the flow is steady, periodic and two dimensional, precise asymptotics of DE

are known. A prototypical example is the steady cellular flow [4, 5], v = (−Hy,Hx),
H = sinx sin y, see also [11, 14, 15] for its application in effective speeds of front

propagation. The asymptotics of the effective diffusion along any unit direction in the

cellular flow obeys the square root law in the advection dominated regime: DE =
O(

√
D0) ≫ D0 as D0 ↓ 0, [5, 6]. This is intuitively due to the ordered streamlines

of the steady cellular flows where enhanced transport occurs along saddle to saddle

connections and a diffusing particle escapes closed streamlines by hopping from cell

to cell. However, if the streamlines are fully chaotic (well-mixed), the enhancement

can follow a very different law. The simplest such example is the time periodic cellular

flow:

v = (cos(y), cos(x)) + θ cos(t)(sin(y), sin(x)), θ ∈ (0, 1]. (1.2)

The first term of (1.2) is a steady cellular flow with a π/4 rotation, and the second

term is a time periodic perturbation that introduces an increasing amount of disorder

in the flow trajectories as θ becomes larger. At θ = 1, it is fully mixing, and empiri-

cally sub-diffusive [17]. The flow (1.2) has served as a model of chaotic advection for

Rayleigh-Bénard experiment [3]. Numerical simulations [2, 10] suggest that at θ = 1,

the effective diffusion along the x-axis, DE
11 = O(1) as D0 ↓ 0, the so called residual

diffusion arises. As D0 ↓ 0, the solutions develop sharp gradients, and render accurate

computation costly, especially if one is interested in DE parametrized by θ.

Let us recall the formula for effective diffusivity tensor [2]:

DE
ij = D0 (δij + 〈Dwi ·Dwj〉) , (1.3)

where w is a mean zero space-time periodic vector solution of:

wt + (v ·Dw)−D0∆w = −v, (1.4)

and the bracket denotes space-time average over the periods. The solution of (1.4) is

unique by the Fredholm alternative. The correction to D0 is positive definite in (1.3).

In this paper, we shall construct adaptive basis functions to handle the singular

solutions of (1.4) at small D0. First, we compute w by the spectral method, because
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Computing Residual Diffusivity by Adaptive Basis Learning 353

Fourier basis can represent cellular flow with few modes. By truncating the Fourier

expansion, we find an approximate system of ordinary differential equations (ODEs).

The time periodic solution is constructed as the unique fixed point of the Poincaré

map of the ODE’s time 2π flow. The snapshots of solutions in the time interval [0, 2π]
are saved into columns of a matrix W . The adaptive basis functions are left singular

eigenvectors corresponding to the top singular values of W . This is the training process

for adaptive basis, and is done at a few sampled D0 or θ values. The Eq. (1.4) at other

D0 or θ ∈ (0, 1] will be solved in terms of the adaptive basis trained at the closest

sample D0 or θ value. Then formula (1.3) is used to calculate DE. We shall see that

the number of adaptive basis functions is under a few hundred, much less than that of

Fourier basis by several orders of magnitude. The relative error of the adaptive solution

from a resolved spectral solution is under 6.5 % when testing at D0 = 10−5 and training

at D0 = 10−4. Thus we manage to achieve accurate enough solutions at much lower

costs in the regime of small D0 where the number of Fourier basis functions grows

rapidly.

The procedure of taking snapshots and performing singular value decomposition

(SVD) is standard in reduced order modeling [12] and is known as proper orthogonal

decomposition (POD) in the fluid dynamics literature [7, 8]. The residual diffusiv-

ity problem we study here however offers an ideal testing ground for the evaluation

of POD which lacks theoretical guarantees in general. The success of POD relies on

the underlying dynamics being governed by a unique low dimensional attractor. In

our case, the time periodicity of v helps to reduce the evolution problem (1.4) to a

Poincaré map problem. The snapshots (training data) are directly drawn from the time

periodic solution, hence more effective for learning. The testing of adaptive basis and

the resulting error rates at the out-of-sample D0 or θ values also provide quantitative

measures for future development of adaptive basis.

The rest of the paper is organized as follows. In section 2, we derive (1.3)-(1.4),

and project (1.4) onto Fourier basis functions to arrive at a finite system of ODEs upon

truncation. We then formulate the periodic solution w as a fixed point of Poincaré map,

show related numerical scheme and computational results on residual diffusion. A new

finding is that the residual diffusion has a non-monotone dependence on θ. In section 3,

we outline the adaptive basis training procedure and present testing results on a broad

range of out-of-sample D0 or θ values. The energy distribution across the adaptive

basis functions is much more localized than that over the Fourier basis, indicating that

the sharp gradient structures are captured in the adaptive basis functions. Concluding

remarks are in section 4.

2. Residual diffusivity and Poincaré map

2.1. Effective diffusivity

Let v (x, t) be a velocity flow periodic in x ∈ R2 and t, ∇ · v = 0 and have mean

zero. The advection-diffusion (passive scalar) equation is
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ut + (v · ∇)u = D0∆u, (2.1)

where D0 > 0 is a constant.

Remark 2.1. Since v (x, t) is incompressible and has mean zero in space, there exists

a 2 × 2 skew-symmetric matrix H = (Hij (x, t)) such that ∇ ·H = v. In fact, without

loss of generality, suppose v (x, t) is 2π-periodic in spatial and temporal variables, and

v = (v1, v2). Define

Hpq (x, t) =
1

i

∑

k 6=0

eik·x
kpvq,k (t)− kqvp,k (t)

|k|2
,

for p, q = 1, 2, where

vp (x, t) =
∑

k∈Z2

eik·xvp,k (t) , p = 1, 2.

It follows from ∇ · v = 0 that ∇ ·H = v. Hence Eq. (2.1) can be written in the form

ut −
(

aij (x, t) uxj

)

xi
= 0,

where

aij (x, t) = D0δij +Hij (x, t) .

The matrix (aij (x, t)) is periodic and uniformly elliptic for D0 > 0.

In the large-distance and large-time scaling x → x/ǫ, t → t/ǫ2, Eq. (2.1) becomes

uǫt (x, t) +
1

ǫ

(

v

(

x

ǫ
,
t

ǫ2

)

· ∇
)

uǫ (x, t) = D0∆uǫ (x, t) .

Initial data are independent of ǫ,

uǫ (x, 0) = U (x) .

Solution can be sought as a multi-scale expansion of the form:

uǫ (x, t) = u(0) (x, t;y, τ) + ǫu(1) (x, t;y, τ) + ǫ2u(2) (x, t;y, τ) + · · · ,

where y = x/ǫ and τ = t/ǫ2.

Let ∂ and ∇ denote gradient operator with respect to fast and slow space variables

respectively, w (x, t) be the periodic solution with vanishing average over periodicities

to the cell problem

wt (x, t) + (v (x, t) · ∇)w (x, t)−D0∇2w (x, t) = −v (x, t) . (2.2)
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It can be calculated directly that u(0) and u(1) are in the form

u(0) (x, t;y, τ) = u(0) (x, t) ,

u(1) (x, t;y, τ) = u(1) (x, t) +w (y, τ) · ∇u(0) (x, t) .

Solvability of the equation

u(2)τ + (v ·∂)u(2) −D0∂
2u(2) = −u

(0)
t − (v ·∇)u(1) +D0∇2u(0) + 2D0∂ ·∇u(1)

implies the zero average of the right-hand side, so u(0) satisfies the effective equation

u
(0)
t (x, t) = DE

ij∇2u(0) (x, t) ,

u(0) (x, 0) = U (x) ,

where the effective diffusivity tensor

DE
ij = D0 (δij + 〈∂wi · ∂wj〉) ,

and 〈·〉 denotes space time average. Given (aij (x, t)) defined in Remark 2.1 being

periodic and uniformly elliptic, Theorem 2.1 in Chapter 2 of [1] says that uǫ converges

to u(0) weakly in the L2 sense as ǫ ↓ 0.

Explicit upper and lower bounds of DE are known [6] when v (x, t) = ∇⊥H (x) is

time independent. Under appropriate assumptions on H (x), in particular for steady

cellular flows (Eq. (1.2) with θ = 0),

DE
ii = O

(

√

D0

)

, i = 1, 2, D0 ↓ 0.

For n-dimensional steady flow, n ≥ 2, see [16] for the asymptotic limit of D0D
E as

D0 tends to zero. Shear layer structure is the typical case when the limit is not zero.

Numerical results [2,10] suggest that if the streamlines of the flow are chaotic,

DE
11 = O (1) , D0 ↓ 0.

We shall recover this result and compute also DE
12 with our method.

2.2. ODEs from Fourier basis

Let us write v = (v, ṽ) and w = (w, w̃) in component form. Consider the first

equation in the cell problem (2.2):

wt + (v · ∂)w −D0∂
2w = −v. (2.3)

Eq. (2.3) can be rewritten as an infinite system of ODEs of Fourier modes

dwk

dt
+D0 |k|2 wk + i

∑

j∈Z2

[(k1 − j1) vj (t) + (k2 − j2) ṽj (t)]wk−j = −vk (t) ,
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where

w =
∑

k∈Z2

wk (t) e
ik·x, v =

∑

k∈Z2

vk (t) e
ik·x, ṽ =

∑

k∈Z2

ṽk (t) e
ik·x.

Set ‖k‖ = max {|k1| , |k2|}. A truncated solution with (2N + 1)2 modes

wN (x, t) =
∑

‖k‖≤N

wN
k (t) eik·x (2.4)

solves

dwN
k

dt
+D0 |k|2 wN

k + i
∑

‖k−j‖≤N

[(k1 − j1) vj (t) + (k2 − j2) ṽj (t)]w
N
k−j

=− vk (t) . (2.5)

Thus DE
11 is approximated by

DE
11,N = D0



1 +
∑

‖k‖≤N

|k|2
〈

wN
k wN

k

〉



 .

2.3. Poincaré map

Vectorize
{

wN
k (t)

}

‖k‖≤N
column-wise and denote the vector by wN (t), then

dwN

dt
= AN (t)wN + v

N (t) , (2.6)

where AN is a (2N + 1)2 × (2N + 1)2 matrix and vN is a (2N + 1)2 × 1 vector deter-

mined by (2.5).

Define the Poincaré map P : R(2N+1)2 → R(2N+1)2 as:

P (x) = X (2π) , x ∈ R
(2N+1)2 ,

where X (t) solves







dX

dt
= AN (t)X+ vN (t) ,

X (0) = x.
(2.7)

Also define P0 : R
(2N+1)2 → R(2N+1)2 ,

P0 (x) = X0 (2π) , x ∈ R
(2N+1)2 ,
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where X0 (t) solves






dX0

dt
= AN (t)X0,

X0 (0) = x.
(2.8)

Let e1, e2, · · · , e(2N+1)2 be the standard basis of R(2N+1)2,

M =
[

P0 (e1) P0 (e2) · · · P0

(

e(2N+1)2

)]

, b = P (0) ,

then

P (x) = Mx+ b, x ∈ R
(2N+1)2 .

Let us impose
∫

[0,2π]2
wN (x, t) dx = 0,

then wN
0
(t) = 0. Hence the initial value of wN (t) is the solution to

x = Mx+ b

with x2N2+2N+1 = 0.

2.4. Numerical method

We shall use Nt + 1 equally spaced grid points in the time interval [0, 2π].

2.4.1. Assemble M and b in the Poincaré map

Apply the classical Runge-Kutta method (e.g., RK4) to ODE (2.7) with zero initial value

for Nt steps,

X̂0 = 0,

X̂n+1 = L
(

AN ,vN ; X̂n, tn

)

,

where L is the induction operator in RK4. Approximate b by b̂ = X̂Nt+1. Similarly,

apply RK4 to ODE (2.8) with initial value ej,

X̂j,0 = ej,

X̂j,n+1 = L
(

AN ,0; X̂j,n, tn

)

,

for j = 1, · · · , (2N + 1)2. Approximate P0 (ej) by m̂j = X̂j,Nt+1 and M by

M̂ =
[

m̂1 m̂2 · · · m̂(2N+1)2

]

.
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In practice, only half of m̂j ’s are computed since wN
−k = w̄N

k
. It follows from (2.5)

that m̂2N2+2N+1 = e2N2+2N+1. Let j1, j2, · · · , jl be the vector indices corresponding to

Fourier modes indices

{k = (k1, k2) |k 6= 0, k1 ≤ k2 } ,

where l = 2N2 + 2N , and

X̂0 = [ej1 ej2 · · · ejl] ,

then the following iteration for matrix

X̂n+1 = L
(

AN ,0; X̂n, tn

)

gives

[m̂j1 m̂j2 · · · m̂jl ] = X̂Nt+1,

thus the matrix M in the Poincaré map is assembled. We note that the assembling of

matrix M can be implemented in parallel.

2.4.2. Solve ODE (2.6) and estimate DE
11,N

The initial data x̂0 for discretized form of ODE (2.6) is solved from the linear system

x̂0 = M̂ x̂0 + b̂.

Again by RK4, the numerical periodic solution to ODE (2.6) is computed as

ŵ
N
0 = x̂0,

ŵ
N
n+1 = L

(

AN ,vN ; ŵN
n , tn

)

.

For n = 0, 1, · · · , Nt, reorder ŵN
n as Fourier modes

{

ŵN
k,n

}

‖k‖≤N
, then DE

11,N is esti-

mated by

D̂E
11,N = D0



1 +
1

Nt

Nt
∑

n=1

∑

‖k‖≤N

|k|2
∣

∣ŵN
k,n

∣

∣

2



 .

2.5. Numerical results

In this section, we first present computational results of DE
11 by spectral method

and Poincaré map for small D0, recovering the early finding in [2] on time periodic

cellular flows. We then perform a parameter dependence study of DE
11 on a family of

such flows, and discover a non-monotone relationship between DE
11 and the amount of

chaos in the flows. Similar results hold for DE
12.
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2.5.1. Two-dimensional time-dependent flow

As in [2], we consider the time periodic cellular flow with chaotic Lagrangian trajecto-

ries:

v (x, t) = cos (x2) + sin (x2) cos (t) , (2.9a)

ṽ (x, t) = cos (x1) + sin (x1) cos (t) . (2.9b)

Rewrite

v (x, t) =
1

2
(1− i cos t) eix2 +

1

2
(1 + i cos t) e−ix2 ,

ṽ (x, t) =
1

2
(1− i cos t) eix1 +

1

2
(1 + i cos t) e−ix1 .

Set e1 = (1, 0), e2 = (0, 1), then

v±e2 (t) = ṽ±e1 (t) =
1

2
(1∓ i cos t) ,

vk (t) = 0, k 6= ±e2,

ṽk (t) = 0, k 6= ±e1.

Hence (2.5) is reduced to

dwN
k

dt
+D0 |k|2wN

k +
1

2

[

k1 (i+ cos t)wN
k−e2

+ k1 (i− cos t)wN
k+e2

+k2 (i+ cos t)wN
k−e1

+ k2 (i− cos t)wN
k+e1

]

+ vk = 0.

Both AN and vN are sparse. Estimates of DE
11,N for some varied D0/N/Nt ’s are shown

in Tables 1-5. DE
11,N ’s vs. D0 are plotted in Fig. 1 which resembles Fig. 4 of [2] in the

regime D0 ≤ 0.1.

Table 1: D̂E
11,N for flow (2.9) with D0 = 10

−2.

Nt

D̂E
11,N

N
30 35 40 45 50

1000 1.3412 1.3412 1.3412 1.3412 1.3412
1500 1.3412 1.3412 1.3412 1.3412 1.3412

Table 2: D̂E
11,N for flow (2.9) with D0 = 10

−3.

Nt

D̂E
11,N

N
40 45 50 55 60

1000 1.3847 1.3787 1.3790 1.3795 1.3778
1500 1.3790 1.3795 1.3778 1.3773 1.3772
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Table 3: D̂E
11,N for flow (2.9) with D0 = 10

−4.

Nt

D̂E
11,N

N
40 45 50 55 60

1000 1.5448 1.5961 1.5087 1.5035 1.4936
1500 1.5459 1.5971 1.5099 1.5050 1.4949
2000 1.5460 1.5972 1.5101 1.5051 1.4951

Table 4: D̂E
11,N for flow (2.9) with D0 = 10

−5.

Nt

D̂E
11,N

N
55 60 65 70 75 80

2000 1.6774 1.6268 1.7604 1.7528 1.8265 1.6984
2500 1.6793 1.6301 1.7651 1.7558 1.8336 1.7056

Table 5: D̂E
11,N for flow (2.9) with D0 = 10

−6.

Nt

D̂E
11,N

N
55 60 65 70 75 80

2000 1.5676 1.6114 1.7351 1.7074 2.0494 1.5528
2500 1.6270 1.7410 1.8016 1.7882 2.1849 1.6831

2.5.2. Two-dimensional time-dependent flow with θ ∈ (0, 1]

Let us consider now the one parameter family of time periodic cellular flows

v (x, t) = cos (x2) + θ sin (x2) cos (t) , (2.10a)

ṽ (x, t) = cos (x1) + θ sin (x1) cos (t) . (2.10b)

As θ increases, the flow trajectories are more and more mixing and chaotic [17]. The

Fourier modes for the flow are:

v±e2 (t) = ṽ±e1 (t) =
1

2
(1∓ iθ cos t) ,

vk (t) = 0, k 6= ±e2,

ṽk (t) = 0, k 6= ±e1.

Similarly, (2.5) is reduced to

dwN
k

dt
+D0 |k|2 wN

k +
1

2

[

k1 (i+ θ cos t)wN
k−e2

+ k1 (i− θ cos t)wN
k+e2

+k2 (i+ θ cos t)wN
k−e1

+ k2 (i− θ cos t)wN
k+e1

]

+ vk = 0.
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Figure 1: Computed DE
11,N vs. D0 for flow (2.9), resembling Fig. 4 of [2] in the regime D0 ≤ 0.1.
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Figure 2: DE
11,N vs. θ for the time periodic cellular flow (2.10) with numerical parameters in Table 7.

AN and vN are still sparse. Estimates D̂E
11,N are shown in Table 6 and plotted

in Fig. 2. These results are computed according to numerical parameters in Table

7. Larger values of N/Nt did not alter the results significantly. We observed a non-

monotone dependence of DE
11 vs. θ in the small D0 regime, though the overall trend is

that DE
11 increases with the amount of chaos in the flows.

2.5.3. Estimates of DE
12

The second component of w = (w, w̃) can be approximated by Fourier modes in a

similar way to (2.4),

w̃N (x, t) =
∑

‖k‖≤N

w̃N
k (t) eik·x.
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Table 6: Computed DE
11,N vs. θ for the time periodic cellular flow (2.10).

θ

D̂E
11,N

D0
10−2 10−3 10−4 10−5 10−6

0.1 0.1625 0.0733 0.0466 0.0560 0.0954
0.2 0.2079 0.1507 0.1270 0.1054 0.1573
0.3 0.3020 0.3754 0.5615 0.7544 1.0406
0.4 0.3967 0.3921 0.3887 0.3820 0.4040
0.5 0.4315 0.3348 0.3432 0.3063 0.2563
0.6 0.4129 0.2823 0.2425 0.2120 0.2934
0.7 0.3954 0.2177 0.1708 0.1612 0.2156
0.8 0.5740 0.4902 0.5625 0.5708 0.5497
0.9 0.9543 1.1608 1.3140 1.2939 1.1494
1.0 1.3412 1.3778 1.4951 1.6301 1.7410

Table 7: Numerical parameters for computing D̂E
11,N .

D0 10−2 10−3 10−4 10−5 10−6

N 50 60 60 60 60
Nt 1500 1500 2000 2500 2500

Hence an estimate of DE
12 is

DE
12,N = D0

∑

‖k‖≤N

|k|2
〈

wN
k w̃

N

k

〉

.

Computed DE
12,N vs. D0 for flow (2.9) are plotted in Fig. 3. DE

12,N ’s vs. θ for flow (2.10)

with the same numerical parameters in Table 7 are plotted in Fig. 4.

3. Orthogonal adaptive basis learning

In this section, we discuss orthogonal adaptive basis construction via a learning

process based on the spectral solutions.

3.1. Snapshots of periodic solutions and SVD

Let
{

ŵ∗N
n

}Nt

n=0
be a numerical periodic solution to (2.5) for some D∗

0, form the

matrix

W =
[

ŵ
∗N
0 ŵ

∗N
1 · · · ŵ

∗N
Nt

]

,

and apply singular value decomposition to W ,

W = UΣV.
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Figure 3: Computed DE
12,N vs. D0 for flow (2.9).
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Figure 4: DE
12,N vs. θ for the time periodic cellular flow (2.10) with numerical parameters in Table 7.

Consider SVD of numerical solutions for the time periodic cellular flow (2.9)

v (x, t) = cos (x2) + sin (x2) cos (t) ,

ṽ (x, t) = cos (x1) + sin (x1) cos (t) .

Snapshots of numerical solutions to (2.3) at D∗
0 = 10−3, 10−4 are shown in Figs. 5-6

where we see thinner layered structures arise as D0 becomes smaller. Singular values

of W for several D0’s are plotted in Fig. 7 which shows rapid decay beyond 250 out of

3000 modes, uniformly as D0 ↓ 0.

3.2. ODEs from adaptive basis and poincaré map

Denote by uj the jth column of U . For m > 0, the adaptive orthogonal basis consists

of the columns of the matrix:

Um = [u1 u2 · · · um] .
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Figure 5: Sampled snapshots of solution to (2.3) with D∗

0 = 10
−3, appearance of layered structures.
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Figure 6: Sampled snapshots of solution to (2.3) with D∗

0 = 10
−4, formation of thin layers.
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Figure 7: Singular values of numerical periodic solution matrices, rapid decay uniformly in D0 ↓ 0.

Figs. 8-9 are visualizations of u1, u2, u5, u6 for the flow (2.9).

Given D0 > 0, let us write the solution to (2.6) in the orthogonal adaptive basis as:

w
N (t) = Uma

N (t) ,

where a (t) = [a1 (t) , a2 (t) , · · · , am (t)]T is periodic, then

daN

dt
= ŪT

mAN (t)Uma
N + ŪT

mv
N (t) . (3.1)

Hence an approximation of solution to (2.6) can be obtained by solving (3.1).

Similar to the approach used for the Fourier modes, let us define the Poincaré map

associated to the ODE (3.1)

P a (x) = Ma
x+ b

a, x ∈ R
m,

where Ma is an m×m matrix and ba is an m× 1 vector.

• ba can be solved numerically by

X̂0 = 0,

X̂n+1 = L
(

ŪT
mANUm, ŪT

mv
N ; X̂n, tn

)

,

and b̂ = X̂Nt+1. For j = 1, · · · ,m, the jth column of the numerical approximation M̂a

for Ma is computed by m̂a
j = X̂j,Nt+1 through iteration

X̂j,0 = ej ,

X̂j,n+1 = L
(

ŪT
mANUm,0; X̂j,n, tn

)

,

where e1, · · · , em are standard basis of Rm.
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Figure 8: Sampled singular vectors with D∗

0 = 10
−3, N = 60, Nt = 1500.
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Figure 9: Sampled singular vectors with D∗

0 = 10
−4, N = 60, Nt = 2000.
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• The numerical periodic solution to ODE (3.1) is computed as

â
N
0 = x̂0,

â
N
n+1 = L

(

ŪT
mANUm, ŪT

mv
N ; âNn , tn

)

,

where x̂0 solves

x̂0 = M̂a
x̂0 + b̂

a.

• Reorder

ŵ
N
n = Umâ

N
n

as Fourier modes
{

ŵN
k,n

}

‖k‖≤N
, n = 0, 1, · · · , Nt. D

E
11,N is estimated by

D̂E,a
11,N = D0



1 +
1

Nt

Nt
∑

n=1

∑

‖k‖≤N

|k|2
∣

∣ŵN
k,n

∣

∣

2



 .

3.3. Numerical results of orthogonal adaptive basis

We show computational results on residual diffusion from the orthogonal adaptive

basis on time periodic cellular flows. The main goal is to maintain enough accuracy at

low costs.

3.3.1. Two-dimensional time-dependent flow (2.9)

• D∗
0 = 10−3, N = 60, Nt = 1500 with m = 100 (the number of adaptive basis

functions).

In Table 8, DE
11,N from the Fourier basis (with Nt = 2000) for flow (2.9) at varied

D0’s are shown along with those from the orthogonal adaptive basis, denoted by D̂E,a
11,N .

To measure the reduction in the number of basis functions, we define r = m/ (2N + 1)2

as the ratio of the number of adaptive basis functions and that of the Fourier basis func-

tions. The estimates by adaptive basis are close to those from the Fourier basis when

D0 is not far from D∗
0 = 10−3 (the D0 value where the adaptive basis is constructed or

trained). The robustness of adaptive basis hinges on how fast the error grows as the

testing occurs at a D0 value deviating from the training value D∗
0.

The energy of a truncated Fourier expansion is:

E





∑

‖k‖≤N

zNk (t) eik·x



 = D0

∑

‖k‖≤N

|k|2
〈

zNk zNk
〉

.
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Table 8: D̂E,a

11,N and D̂E
11,N for flow (2.9) with D∗

0 = 10
−3, r = 0.68%.

D0 10−3 9× 10−4 8× 10−4 7× 10−4 6× 10−4

D̂E,a

11,N 1.3772 1.4050 1.4337 1.4632 1.4931

D̂E
11,N 1.3772 1.3765 1.3763 1.3772 1.3796

relative error 0 2.1% 4.2% 6.3% 8.2%

D0 5× 10−4 4× 10−4 3× 10−4 2× 10−4 10−4

D̂E,a

11,N 1.5229 1.5515 1.5775 1.6047 1.7191

D̂E
11,N 1.3847 1.3940 1.4105 1.4395 1.4951

relative error 10.0% 11.3% 11.8% 11.5% 15.0%

Table 9: D̂E,a

11,N and D̂E
11,N for flow (2.9) with D∗

0 = 10
−4, r = 1.37%.

D0 10−4 9× 10−5 8× 10−5 7× 10−5 6× 10−5

D̂E,a

11,N 1.4951 1.5042 1.5129 1.5208 1.5272

D̂E
11,N 1.4951 1.5036 1.5131 1.5236 1.5355

relative error 0 0 0 0.2% 0.5%

D0 5× 10−5 4× 10−5 3× 10−5 2× 10−5 10−5

D̂E,a

11,N 1.5314 1.5313 1.5242 1.5107 1.5243

D̂E
11,N 1.5492 1.5649 1.5834 1.6052 1.6301

relative error 1.1% 2.1% 3.7% 5.9% 6.5%

Let {ẑNk,n}Nt+1
n=1 be the numerical approximation of zNk (t), then the energy for

∑

‖k‖≤N zNk (t) · eik·x can be approximated by

E





∑

‖k‖≤N

zNk (t) eik·x



 ≈ D0

Nt

Nt
∑

n=1

∑

‖k‖≤N

|k|2
∣

∣ẑNk,n
∣

∣

2
.

Figs. 10-11 show the energy vs. the number of modes in the solutions solved by Fourier

basis and the learned orthogonal adaptive basis. Clearly, a much smaller number of

basis functions is needed to represent the same level of energy by the adaptive basis

than by the Fourier basis.

• D∗
0 = 10−4, N = 60, Nt = 2000 with m = 200

Computations of DE
11,N and D̂E,a

11,N for the flow (2.9) at smaller D0’s are shown in

Table 9. The comparisons of energy growth vs. the number of basis functions are

shown in Figs. 12-13. Here Nt = 2500 in computation of D̂E
11,N with the Fourier basis.

Interestingly, the relative errors of solutions via the orthogonal adaptive basis drop

considerably at smaller D0, suggesting that the basis learning is effective for computing

residual diffusion.
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Figure 10: Energy growth vs. the number of adaptive (dashdot, red) and Fourier (solid, blue) basis functions
for D0 = 9× 10

−4.
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Figure 11: Energy growth vs. the number of adaptive (dashdot, red) and Fourier (solid, blue) basis functions
for D0 = 5× 10

−4.
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Figure 12: Energy growth vs. the number of adaptive (dashdot, red) and Fourier (solid, blue) basis functions
for D0 = 9× 10

−5.
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Figure 13: Energy growth vs. the number of adaptive (dashdot, red) and Fourier (solid, blue) basis functions
for D0 = 5× 10

−5.

3.3.2. Two-dimensional time-dependent flow (2.10) with θ ∈ (0, 1 ]

Adaptive orthogonal basis can also be trained from a periodic solution at a θ value and

applied to another flow at a nearby θ value. For instance, assemble W in Section 3.1

with snapshots of a periodic solution for some D∗
0 and flow (2.10) with parameter θ∗.

Periodic solutions as well as effective diffusivities at the same D∗
0 but different θ’s can

be approximated as in Section 3.2. However, the dependence of DE
11 on θ seems very

sensitive especially at small D0, as the test results indicate below.

• θ∗ = 0.7,D0 = 10−3, 10−4 with m = 100

Estimates of DE
11,N for flow (2.10) with D0 = 10−3, 10−4 and varied θ’s by reduced

basis trained with θ∗ = 0.7, denoted by D̂E,a
11,N , as well as results from Fourier basis, are

presented in Tables 10-11.

• θ∗ = 0.4, D0 = 10−3, 10−4 with m = 100

Table 10: D̂E,a

11,N and D̂E
11,N for flow (2.10) with D0 = 10

−3 and θ∗ = 0.7, N = 60, Nt = 1500, r = 0.68%.

θ 0.7 0.71 0.72 0.73 0.74 0.75

D̂E,a

11,N 0.2177 0.2138 0.2101 0.2065 0.2029 0.1993

D̂E
11,N 0.2177 0.2251 0.2368 0.2509 0.2715 0.2978

relative error 0 5.0% 10.9% 17.7% 25.3% 33.1%

Table 11: D̂E,a

11,N and D̂E
11,N for flow (2.10) with D0 = 10

−4 and θ∗ = 0.7, N = 60, Nt = 2000, r = 0.68%.

θ 0.7 0.71 0.72 0.73 0.74 0.75

D̂E,a

11,N 0.1725 0.1636 0.1571 0.1536 0.1518 0.1491

D̂E
11,N 0.1708 0.1838 0.1957 0.2063 0.2360 0.2849

relative error 1.0% 10.1% 19.7% 25.5% 35.7% 47.7%
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Table 12: D̂E,a

11,N and D̂E
11,N for flow (2.10) with D0 = 10

−3 and θ∗ = 0.4, N = 60, Nt = 1500, r = 0.68%.

θ 0.4 0.41 0.42 0.43 0.44 0.45

D̂E,a

11,N 0.3921 0.3700 0.3523 0.3380 0.3261 0.3161

D̂E
11,N 0.3921 0.3772 0.3637 0.3528 0.3451 0.3405

relative error 0 2.0% 3.1% 4.2% 5.5% 7.2%

Table 13: D̂E,a

11,N and D̂E
11,N for flow (2.10) with D0 = 10

−4 and θ∗ = 0.4, N = 60, Nt = 2000, r = 0.68%.

θ 0.4 0.41 0.42 0.43 0.44 0.45

D̂E,a

11,N 0.3888 0.3795 0.3788 0.3810 0.3823 0.3792

D̂E
11,N 0.3887 0.3516 0.3187 0.3027 0.3041 0.3195

relative error 0 8.0% 18.9% 25.9% 25.7% 18.7%

Estimates of DE
11,N for flow (2.10) with D0 = 10−3, 10−4 and varied θ’s by reduced

basis trained with θ∗ = 0.4 as well as results from Fourier basis are shown in Tables

12-13.

4. Concluding remarks

We constructed orthogonal adaptive basis functions based on learning from the fully

resolved spectral method at sampled small molecular diffusivities to aid the low cost

computation of residual diffusivities. Even though solutions develop large gradients

and demand a large number of Fourier modes to resolve, the adaptive basis functions

maintain accuracy of residual diffusivities at much smaller number of basis functions,

uniform in the limit of zero molecular diffusivity. A line of future work is to increase

the generalization and robustness of the adaptive basis functions by learning through

robust versions of singular value decomposition techniques such as robust principal

component analysis.
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