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SHARP ERROR ESTIMATES ON A STOCHASTIC
STRUCTURE-PRESERVING SCHEME IN COMPUTING
EFFECTIVE DIFFUSIVITY OF 3D CHAOTIC FLOWS\ast 

ZHONGJIAN WANG\dagger , JACK XIN\ddagger , AND ZHIWEN ZHANG\S 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . In this paper, we study the problem of computing the effective diffusivity for particles
moving in chaotic flows. Instead of solving a convection-diffusion type cell problem in the Eulerian
formulation (arising from homogenization theory for parabolic equations), we compute the motion of
particles in the Lagrangian formulation, which is modeled by stochastic differential equations (SDEs).
A robust numerical integrator based on a splitting method was proposed to solve the SDEs and
rigorous error analysis for the numerical integrator was provided using the backward error analysis
technique in our previous work. However, the upper bound on the error estimate is not sharp. To
improve our result, we propose a new and uniform in time error analysis for the numerical integrator
that allows us to get rid of the exponential growth factor in our previous error estimate. Our new
error analysis is based on a probabilistic approach, which interprets the solution process generated
by our numerical integrator as a Markov process. By exploring the ergodicity of the solution process,
we prove the convergence analysis of our method in computing effective diffusivity over infinite
time. We present numerical results to verify the accuracy and efficiency of the proposed method
in computing effective diffusivity for several chaotic flows, especially the Arnold--Beltrami--Childress
flow and Kolmogorov flow in three-dimensional space.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . convection-enhanced diffusion, chaotic flows, effective diffusivity, structure-
preserving scheme, ergodic theory, Markov process

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 35B27, 37M25, 60H35, 65P10, 65M75, 76R99

\bfD \bfO \bfI . 10.1137/19M1275516

1. Introduction. Diffusion enhancement in fluid advection is a fundamental
problem to characterize and quantify the large-scale effective diffusion in fluid flows
containing complex and turbulent streamlines, which is of great theoretical and prac-
tical importance; see, e.g., [8, 9, 7, 24, 20, 23, 29, 3, 30, 31, 21, 37] and references
therein. Its applications can be found in many physical and engineering sciences,
including atmosphere science, ocean science, chemical engineering, and combustion.
To study the diffusion enhancement phenomenon, one can consider a passive tracer
model, which describes particle motion with zero inertia,

dX(t) = v(X, t) + \sigma dW(t), X \in \BbbR d,(1)

where X is the position of the particle, \sigma > 0 is the molecular diffusion coefficient,
and W(t) is a d-dimensional Brownian motion. The velocity v(X, t) satisfies either
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1168 ZHONGJIAN WANG, JACK XIN, AND ZHIWEN ZHANG

the Euler or the Navier--Stokes equation. In practice, v(X, t) can be modeled by a
random field that mimics the energy spectra of the turbulent flow [23].

For spatial-temporal periodic velocity fields and random velocity fields with short-
range correlations, the homogenization theory [4, 13, 17, 32] states that the long-
time large-scale behavior of the particles is governed by a Brownian motion. More
precisely, let DE \in Rd\times d denote the effective diffusivity matrix and X\epsilon (t) \equiv \epsilon X(t/\epsilon 2).
Then, X\epsilon (t) converges in distribution to a Brownian motion W(t) with covariance

matrix DE , i.e., X\epsilon (t)
d - \rightarrow 

\surd 
2DEW(t), as \epsilon \rightarrow 0. The effective diffusivity matrix DE

can be expressed in terms of particle ensemble average (Lagrangian framework) or
integration of solutions to cell problems (Eulerian framework). The dependence of
DE on the velocity field of the problem is highly nontrivial. For a time-independent
Taylor--Green velocity field, the authors of [33] proposed a stochastic splitting method
and calculated the effective diffusivity in the limit of vanishing molecular diffusion.
For random velocity fields with long-range correlations, various forms of anomalous
diffusion, such as superdiffusion and subdiffusion, can be obtained for exactly solvable
models (see [23] for a review). However, the long-time large-scale behavior of the
particle motion is in general difficult to study analytically.

In recent work [35], we proposed a numerical integrator to compute the effec-
tive diffusivity of chaotic and stochastic flows using structure-preserving schemes.
We also investigated the existence of residual diffusivity for several different velocity
fields, including the time periodic cellular flows. The residual diffusivity, a special
yet remarkable convection-enhanced diffusion phenomenon, refers to the nonzero and
finite effective diffusivity in the limit of zero molecular diffusivity as a result of a fully
chaotic mixing of the streamlines. Mathematically, we provided a rigorous error es-
timate for the numerical methods in computing the effective diffusivity. Specifically,
let DE denote the exact effective diffusivity matrix and DE,num denote the numerical
result obtained using our method (see the formula in (9)), respectively. We obtained
the error estimate, | DE,num  - DE | \leq C\Delta t + C(T )\Delta t2, where T should be greater
than the mixing time. To the best of our knowledge, this result is the first one in the
literature to study the convergence on the numerical approximation of the effective
diffusivity of chaotic flows, which shows that the main source of error does not depend
on time. However, the prefactor C(T ) in the second term may grow exponentially
fast, which makes the estimate not sharp.

To get a sharp error estimate, we shall develop a new methodology in this paper,
which allows us to get rid of the exponential growth factor C(T ). Our analysis is
based on a probabilistic approach. We interpret the solution process generated by
our numerical integrator as a Markov process, where the transition kernel can be
constructed explicitly due to the additive noise in the passive tracer model (1). By
exploring the ergodicity of the solution process, we succeed in the convergence analysis
of our method and give a sharp error estimate for the numerical solution of the effective
diffusivity. Most importantly, our convergence analysis reveals the ergodic structure
of the solution process, so that we can compute long-time integration of the passive
tracer model in order to accurately compute the effective diffusivity. As we will prove
in Theorem 4.8 the error term of the effective diffusivity does not depend on the
computation time; see Figure 3. Finally, we present numerical results to verify the
accuracy of the proposed method in computing effective diffusivity for several typical
chaotic flow problems of physical interest, including the Arnold--Beltrami--Childress
(ABC) flow and the Kolmogorov flow in three-dimensional space. The phenomenon
of convection-enhanced diffusion for those velocity fields will also be investigated.
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COMPUTE EFFECTIVE DIFFUSIVITY FOR 3D CHAOTIC FLOWS 1169

Our computation of convection-enhanced diffusivity in three-dimensional chaotic
flows appears to be the first in the Lagrangian framework. Alternative computation
in the Eulerian framework involves singularly perturbed advection-diffusion equations
whose solutions develop sharp boundary layers with unknown locations a priori. We
are aware of only [5] on ABC flows, which we recover and go beyond by two orders of
magnitude of molecular diffusivity; see the numerical results in section 5.2 later.

The rest of the paper is organized as follows. In section 2, we shall review the
background of the passive tracer model and the definition of the effective diffusivity
matrix using the Eulerian framework and the Lagrangian framework. In section 3,
we propose our numerical integrator in computing the passive tracer model. Section
4 is the main part of this paper, where we shall provide our new error estimate based
on a probabilistic approach. In addition, we shall show that our method can be used
to solve high-dimensional flow problems and the error estimate can be obtained in a
straightforward way. In section 5, we present numerical results to demonstrate the
accuracy and efficiency of our method. We also investigate the convection-enhanced
diffusivity for several chaotic velocity fields, especially the three-dimensional cases.
Concluding remarks are made in section 6.

2. The definitions of effective diffusivity. We first introduce the definitions
of effective diffusivity for chaotic flows. To be consistent with the setting of the main
results in this paper, we assume that the velocity v in (1) is time independent. Then
the SDE (1) can be simplified to,

dX(t) = v(X) + \sigma dW(t), X \in \BbbR d,(2)

where \sigma > 0 is the molecular diffusion coefficient, X is the position of the particle,
v(X) is the Eulerian velocity field at position X, W(t) is a d-dimensional Brownian
motion. The interested reader is referred to [5, 23, 29, 35] and references therein for
the results of passive tracer models with time-dependent velocities.

There are two main frameworks to compute the effective diffusivity of the passive
tracer models. We first discuss the Eulerian framework. One natural way to study
the expectation of the paths for the SDE given by (2) is to consider its associated
backward Kolmogorov equation. Specifically, given a sufficiently smooth function \phi (x)
in \BbbR d, let u(x, t) = \BbbE [\phi (Xt)| X0 = x], and Xt = (x1(t), . . . , xd(t))

T is the solution to
(2), then u(x, t) satisfies the backward Kolmogorov equation as

ut = \scrL u, u(x, 0) = \phi (x).(3)

In (3), the generator \scrL is defined as

\scrL u = v \cdot \nabla u+D0\Delta u,(4)

where D0 = \sigma 2/2 is the diffusion coefficient and v is the velocity field. When v(x) is
incompressible (i.e., \nabla \bfx \cdot v(x) = 0), deterministic and periodic in O(1) scale, where
we assume the period of v(x) is 1 in each dimension of the physical space, the formula
for the effective diffusivity matrix is [4, 32]

DE = D0I  - 
\bigl\langle 
v(x)\otimes \chi (x)

\bigr\rangle 
p
,(5)

where we have assumed that the fluid velocity v(x) is smooth and the (vector) cor-
rector field \chi (x) satisfies the cell problem,

 - D0\Delta \chi  - v(x) \cdot \nabla \chi = v(x), x \in \BbbT d,(6)
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1170 ZHONGJIAN WANG, JACK XIN, AND ZHIWEN ZHANG

and \langle \cdot \rangle p denotes spatial average over \BbbT d. Since v(x) is incompressible, the solution
\chi (x) to the cell problem (6) is unique up to an additive constant by the Fredholm al-
ternative. By multiplying \chi by (6) and integrating in \BbbT d with consideration of the pe-
riodicity of \chi and v, we will get another equivalent formula for the effective diffusivity,

DE = D0I +D0

\bigl\langle 
\nabla \chi (x)\otimes \nabla \chi (x)

\bigr\rangle 
p
.(7)

The correction to D0 is nonnegative definite in (7). We can see that eTDEe \geq D0

for all unit column vectors e \in \BbbR d, which is called convection-enhanced diffusion. By
an energy estimate of \chi , one can find an upper bound for the effective diffusivity, i.e.,
for any nonzero unit column vector e \in \BbbR d, we have

(8) eTDEe \leq c

D0
, as D0 \rightarrow 0,

where the constant c depends on the flow but not on D0. More details of the deriva-
tion can be found in [5, 26, 8]. We are interested in studying the different scaling laws
(between D0 and 1

D0
) of the convection-enhanced diffusion phenomenon for different

chaotic flows in this paper. The residual diffusivity phenomenon that we studied in
[35] is one case, while the upper bound given by (8) is another case, which is called
convection-enhanced diffusion with maximal enhancement [26]; see Figure 2 for the
result of the ABC flow obtained using our method.

In practice, the cell problem (6) can be solved using numerical methods, such as
spectral methods. In [22], a small set of adaptive basis functions were constructed
from fully resolved spectral solutions to reduce the computation cost. However, when
D0 becomes extremely small, the solutions of (6) develop sharp gradients and de-
mand a large number of Fourier modes to resolve, which makes the spectral method
computationally expensive and unstable.

Remark 2.1. One can define the adjoint operator \scrL \ast as \scrL \ast \rho =  - \nabla \cdot (v\rho )+D0\Delta \rho .
Let \rho (x, t) denote the density function of the particleX(t) of (2). Then, \rho (x, t) satisfies
the Fokker--Planck equation \rho t = \scrL \ast \rho with the initial density \rho (x, 0) = \rho 0(x), where
\rho 0(x) is the density of the particle X(0).

Alternatively, one can use the Lagrangian framework to compute the effective dif-
fusivity matrix, which is defined by (equivalent to (5) via the homogenization theory)

DE
ij = lim

t\rightarrow \infty 

\Bigl\langle \bigl( 
xi(t) - xi(0))(xj(t) - xj(0)

\bigr) \Bigr\rangle 
2t

, 1 \leq i, j \leq d,(9)

where X(t) = (x1(t), . . . , xd(t))
T is the position of a particle tracer at time t and

the average \langle \cdot \rangle is taken over an ensemble of test particles. If the above limit exists,
that means the transport of the particle is a standard diffusion process, at least on
a long-time scale. If the passive tracer model has a deterministic divergence-free and
periodic velocity field, this is the typical situation, i.e., the spreading of the particle
\langle 
\bigl( 
xi(t) - xi(0))(xj(t) - xj(0)

\bigr) 
\rangle grows linearly with respect to the time t. For example

when the velocity field is given by the Taylor--Green velocity field [8, 33], the long-time
and large-scale behavior of the passive tracer model is a diffusion process. However,
there are also cases showing that the spreading of particles does not grow linearly
with time but has a power law t\gamma , where \gamma > 1 and \gamma < 1 correspond to superdiffusive
and subdiffusive behaviors, respectively; see, e.g., [5, 23, 3].

We shall consider the Lagrangian approach in this paper. The Lagrangian frame-
work has the advantages that (1) it is easy to implement; (2) its computational cost
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linearly depends on the dimension of the passive tracer model; and (3) it does not
directly suffer from a small molecular diffusion coefficient \sigma during the computation.
However, we should point out that the major difficulty in solving (2) comes from the
fact that the computational time should be long enough to approach the diffusion
(mixing) time scale. To address this challenge, we shall develop robust numerical
integrators, which are structure preserving and accurate for long-time integration.
Moreover, we aim to develop the convergence analysis of the proposed numerical inte-
grators in long-time integration. Finally, we shall investigate the relationship between
several typical chaotic flows and the corresponding effective diffusivity.

3. Symplectic stochastic integrators.

3.1. Derivation of numerical integrators. To demonstrate the main idea, we
first construct a symplectic stochastic integrator for a two-dimensional passive tracer
model with a separable Hamiltonian. High-dimensional models, including the cases
when the velocity field is given by ABC flow and Kolmogorov flow, will be discussed
in section 4.5. Specifically, let X = (x1, x2)

T denote the position of the particle and
v = ( - f(X), g(X))T = ( - f(x1, x2), g(x1, x2))

T denote the velocity field, then the
passive tracer model can be

(10)

\Biggl\{ 
dx1 =  - f(x1, x2)dt+ \sigma dW1,t, x1(0) = x0

1,

dx2 = g(x1, x2)dt+ \sigma dW2,t, x2(0) = x0
2,

where Wi,t, i = 1, 2, are independent Brownian motions.
Since the velocity v is generated from a separable Hamiltonian function, we as-

sume that there exists a separable function H(x1, x2) = F (x2) + G(x1) such that
f(x1, x2) = Hx2(x1, x2), g(x1, x2) = Hx1(x1, x2), and H(x1, x2) is a periodic function
on \BbbR 2 with period 1. We denote, with slight abuse of notation, by f(x2) and g(x1)
for each component of the velocity v, i.e., f(x2) = f(x1, x2) and g(x1) = g(x1, x2).
These notations simplify our derivation. Whenever a statement corresponds to f(x2)
(or g(x1)) is made, it is equivalent to that for f(x1, x2) or g(x1, x2). Furthermore, we
assume that H(x1, x2) is smooth so the first-order derivatives of f(x2) and g(x1) are
bounded, which guarantee the existence and uniqueness of the solution (x1, x2) to the
SDE (10). The Hamiltonian function is also referred to as the stream function in the
fluid mechanical literature.

In [35], we proposed a structure-preserving scheme based on a Lie--Trotter split-
ting idea to solve the SDE (10). Specifically, we split (10) into a deterministic sub-
problem,

(11)

\Biggl\{ 
dx1 =  - f(x2)dt,

dx2 = g(x1)dt,

which is solved using a symplectic-preserving scheme (the symplectic Euler scheme
for deterministic equations) and a stochastic subproblem,

(12)

\Biggl\{ 
dx1 = \sigma dW1,t,

dx2 = \sigma dW2,t,

which is solved using the Euler--Maruyama scheme [28]. Eventually, the one step
integrator of (10) is given by

(13)

\Biggl\{ 
xn
1 = xn - 1

1  - f(xn - 1
2 )\Delta t+ \sigma 

\surd 
\Delta t\xi 1,

xn
2 = xn - 1

2 + g
\bigl( 
xn - 1
1  - f(xn - 1

2 )\Delta t
\bigr) 
\Delta t+ \sigma 

\surd 
\Delta t\xi 2,
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where \xi 1, \xi 2 \sim \scrN (0, 1) are independent and identically distributed (i.i.d.) normal
random variables. We denote the stochastic process generated by (13) by Xn =
(xn

1 , x
n
2 )

T , which is the numerical approximation to the exact solution X(tn) to the
SDE (10) at each lattice point of time tn = n\Delta t.

When the Hamiltonian system contains additive temporal noise, the noise itself is
considered to be symplectic pathwise [27]. We state that the scheme (13) is stochastic
symplectic-preserving since it preserves symplecticity as a composition of symplectic
transforms and it converges as the time step tends to zero. Though there are several
prior works on developing symplectic-preserving schemes for solving ODEs and PDEs
(see [15, 16, 2] and references therein), the novelty of our work is the rigorous theory
and sharp estimate on the numerical error in computing the effective diffusivity.

Remark 3.1. In general, the second-order Strang splitting [34] is more frequently
adopted to solve ODEs and PDEs. The only difference between the Strang splitting
method and the Lie--Trotter splitting method is that the first and last steps are modi-
fied by half of the time step \Delta t. For the SDEs, however, the dominant source of error
comes from the random subproblem (12). Thus, it is not necessary to implement the
Strang splitting scheme here.

Remark 3.2. The long-time integration for the stochastic Langevin equation was
studied in the literature; see, e.g., [6, 1]. However, the passive tracer model (1) or
(10) studied here has several different features. First, our model problem does not
have a damping term so its dynamic behavior and invariant measure of the system are
totally different. In addition, the quantity of interests is different. One of the main
focuses in [6, 1] is to investigate whether the average energy remains bounded. Our
aim here is to study whether the effective diffusivity exists (see the definition in (9)),
and to investigate the convection-enhanced diffusion phenomenon; see section 5.2.

3.2. The backward Kolmogorov equation and related results. For the
convenience of the reader, we first give a brief review of the theoretical results for
the scheme (13) obtained in [35] and references therein. We first define the backward
Kolmogorov equation associated with (10) as

ut = \scrL u, u(x, 0) = u0(x),(14)

where the generator \scrL (associated with the Markov process in (10)) is given by

\scrL =  - f\partial x1
+ g\partial x2

+
1

2
\sigma 2\partial 2

x1x1
+

1

2
\sigma 2\partial 2

x2x2
.(15)

Recall that the solution u(x, t) to (14) satisfies u(x, t) = \BbbE [\phi (Xt)| X0 = x], where
Xt = (x1(t), x2(t))

T is the solution to (10) and \phi is a smooth function in \BbbR 2.
Similarly, we can study the flow generated by the symplectic splitting scheme

(13). Recalling the splitting method during the derivation of the scheme in section

3.1, we define \scrL 1 =  - f\partial x1
, \scrL 2 = g\partial x2

, and \scrL 3 = \sigma 2

2 (\partial 2
x1x1

+ \partial 2
x2x2

). Starting from
u(\cdot , 0), we compute

(16)

\left\{     
\partial tu

1 = \scrL 1u
1, u1(\cdot , 0) = u(\cdot , 0),

\partial tu
2 = \scrL 2u

2, u2(\cdot , 0) = u1(\cdot ,\Delta t),

\partial tu
3 = \scrL 3u

3, u3(\cdot , 0) = u2(\cdot ,\Delta t).

Then u3(\cdot ,\Delta t) will be the flow at time t = \Delta t generated by our scheme and it
approximates the solution u(\cdot ,\Delta t) to (14). It is also worth mentioning that u2(\cdot ,\Delta t)
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is the exact flow generated by the deterministic symplectic Euler scheme in solving
(11). And u3(\cdot ,\Delta t) is the flow generated by the Euler--Maruyama scheme starting from
u2(\cdot ,\Delta t). The latter is due to the fact that Euler--Maruyama schemes are exact when
solving white noise SDE like (12). Later on, we repeat this process to compute the flow
equations of our scheme at other time steps, which approximate u(\cdot , n\Delta t), n = 2, 3, . . . .

To analyze the error between the flow operator in (14) and the composition of
operators in (16), we shall resort to the Baker--Campbell--Hausdorff (BCH) formula,
which is widely used in noncommutative algebra [14]. For example, in matrix theory,
(17)

exp(tA) exp(tB) = exp

\biggl( 
t(A+B) + t2

[A,B]

2
+

t3

12

\Bigl( \bigl[ 
A, [A,B]

\bigr] 
+
\bigl[ 
B, [B,A]

\bigr] \Bigr) 
+ \cdot \cdot \cdot 

\biggr) 
,

where t is a scalar, A and B are two square matrices with the same size, [, ] is the Lie
bracket, and the remaining terms on the right-hand side are all nested Lie brackets.
In our analysis, we replace the matrices in (17) by differential operators and the
BCH formula yields the local structure of our splitting scheme. Let I\Delta t denote the
composite flow operator associated with (16), i.e.,

(18) I\Delta tu(\cdot , 0) := exp(\Delta t\scrL 3) exp(\Delta t\scrL 2) exp(\Delta t\scrL 1)u(\cdot , 0).

Recall that the exact solution to (14) at time t = \Delta t can be represented as

(19) u(\cdot ,\Delta t) = exp(\Delta t\scrL )u(\cdot , 0) = exp(\Delta t(\scrL 1 + \scrL 2 + \scrL 3))u(\cdot , 0),

or, equivalently, \BbbE [X1| X0 = x] = I\Delta t\phi (x), where expectations are taken over ran-
domness from noise in the scheme (13). Now we can apply the BCH formula and see
that

(20) I\Delta tu(\cdot , 0) - u(\cdot ,\Delta t) =
1

2
\Delta t2

\bigl( 
[\scrL 3,\scrL 2] + [\scrL 3,\scrL 1] + [\scrL 2,\scrL 1]

\bigr) 
u(\cdot , 0) +\scrO (\Delta t3).

Zeros in the \scrO (1) and\scrO (\Delta t) terms show that the splitting scheme is locally consistent,
which can be equivalently achieved by series expansion in terms of \Delta t. Moreover,
we find that computing the kth-order modified equation associated with (10) in the
backward error analysis (BEA) is equivalent to computing the terms of the BCH
formula up to order (\Delta t)k in (18). We can see that the solution generated by (13)
follows a perturbed Hamiltonian system (with divergence-free velocity and additive
noise) at any order k, by considering the (k + 1)-nested Lie bracket consisting of
\{  - f\partial x1

, g\partial x2
, \partial 2

x1x1
+ \partial 2

x2x2
\} . Moreover, we can easily derive that they generate

divergence-free fields.
In [35], we proved that for the SDE (10) with a time-dependent and separa-

ble Hamiltonian H(x1, x2, t) = F (x2, t) + G(x1, t), the numerical solution obtained
by using the symplectic-preserving scheme (13) follows an asymptotic Hamiltonian
H\Delta t(x1, x2, t), which is a first-order approximation to H(x1, x2, t). Equivalently, the
velocity field in the first-order modified backward Kolmogorov equation is divergence-
free and the invariant measure on the torus (defined by \BbbR d/\BbbZ d, when the period is 1)
remains uniform, which is also known as the Haar measure. However, the numerical
solution obtained using the Euler--Maruyama scheme for the SDE (10) does not have
these properties.

Moreover, given any explicit splitting scheme for deterministic systems, by adding
additive noise we shall have a similar form of flow propagation. And we shall see in a
later proof that such operator formulation is very effective in analyzing the order of
convergence and volume-preserving property.
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1174 ZHONGJIAN WANG, JACK XIN, AND ZHIWEN ZHANG

4. Convergence analysis. We shall prove the convergence rate of our symplec-
tic stochastic integrators in computing effective diffusivity based on a probabilistic
approach, which allows us to get rid of the exponential growth factor in our error
estimate. As stated at the beginning of section 3.1, we will first limit our analysis
to two-dimensional separable Hamiltonian velocity fields. We will show in section 4.5
that all the derivations can be generalized to high-dimensional cases.

4.1. Convergence to an invariant measure. The numerical method to com-
pute effective diffusivity of a passive tracer model is closely related to studying the
limit of a sequence generated by the stochastic integrators. Therefore, we can apply
the results from ergodic theory to study the convergence of the solution. The following
result is fundamental for the proof of our convergence analysis.

Proposition 4.1. On the torus space \~Y = \BbbR 2/\BbbZ 2, let I\ast \Delta t denote the transform
of the density function during \Delta t using the numerical scheme (13). Let I\Delta t denote
the adjoint operator (i.e., the flow operator) of I\ast \Delta t in the space of \scrB ( \~Y), which is
the set of bounded measurable functions on \~Y. Then, I\Delta t is a compact operator from
\scrB ( \~Y) to itself. And there exists one and only one invariant probability measure on
( \~Y ,\Sigma ), denoted as \pi , satisfying,

(21) sup
x\in \~Y

\bigm| \bigm| \bigm| (In\Delta t\phi )(x) - 
\int 

\phi (x\prime )\pi (dx\prime )
\bigm| \bigm| \bigm| \leq C| | \phi | | L\infty e - \rho n \forall \phi \in \scrB ( \~Y),

where \rho > 0, C > 0 are independent of \phi (\cdot ).
Proof. We shall verify that the transition kernel associated with the numerical

scheme (13) satisfies the assumptions required by Theorem 3.3.1 (see page 199 in [4]).
First in the \BbbR 2 space, the integration process associated with the numerical scheme
can be expressed as a Markov process with the transition kernel

K\Delta t

\bigl( 
(xn - 1

1 , xn - 1
2 ), (xn

1 , x
n
2 )
\bigr) 
=

1

2\pi \sigma 2\Delta t
exp

(22)

\cdot 
\Biggl( 
 - 

\Bigl( 
xn
1  - xn - 1

1 + f(xn - 1
2 )\Delta t

\Bigr) 2
+
\Bigl( 
xn
2  - xn - 1

2  - g
\bigl( 
xn - 1
1  - f(xn - 1

2 )\Delta t
\bigr) 
\Delta t
\Bigr) 2

2\sigma 2\Delta t

\Biggr) 
,

where(xn
1 , x

n
2 ) is the solution obtained by applying the scheme (13) to (xn - 1

1 , xn - 1
2 )

with time step \Delta t.
Since f and g are periodic functions, we can project the solution of SDE (10)

on the torus space \~Y = \BbbR 2/\BbbZ 2 pathwisely. We denote the solution on the torus as
\~X and its numerical approximation as \~Xn. Given any periodic function f , we know
f(X) = f | \~\bfY ( \~X). Later on, for simplicity reasons, we do not distinguish f and f | \~\bfY .

Moreover, we do not distinguish X and \~X when we apply a periodic function on it.
(22) can be directly extended to the torus space \~Y as

\~K\Delta t

\bigl( 
(xn - 1

1 , xn - 1
2 ), (xn

1 , x
n
2 )
\bigr) 
=
\sum 
i,j\in \BbbZ 

1

2\pi \sigma 2\Delta t

\cdot \mathrm{e}\mathrm{x}\mathrm{p}

\Biggl( 
 - 

\Bigl( 
xn
1 + i - xn - 1

1 + f(xn - 1
2 )\Delta t

\Bigr) 2
+
\Bigl( 
xn
2 + j  - xn - 1

2  - g
\bigl( 
xn - 1
1  - f(xn - 1

2 )\Delta t
\bigr) 
\Delta t
\Bigr) 2

2\sigma 2\Delta t

\Biggr) 
.

(23)
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COMPUTE EFFECTIVE DIFFUSIVITY FOR 3D CHAOTIC FLOWS 1175

One can see that if 0 < \Delta t \ll 1, then \~K is smooth and is essentially bounded above
zero, i.e., essn \~K > 0 \forall 

\bigl( 
(xn - 1

1 , xn - 1
2 ), (xn

1 , x
n
2 )
\bigr) 
\in \~Y \times \~Y . Thus, the operator I\Delta t

is compact since it is an integral operator with a smooth kernel. Then applying the
Theorem 3.3.1 in [4], we prove the assertion of the Proposition 4.1.

Now, we state a corollary that is a simple conclusion of the exponential decay
property proved in Proposition 4.1, which will be useful in the proof of the main
results of this paper.

Corollary 4.2. Given that the assumptions in Proposition 4.1 are satisfied and
\phi \in \scrB ( \~Y ), we have for all initial X0 \in \BbbR 2

(24) lim
n\rightarrow \infty 

1

n

n\sum 
i=1

\BbbE \phi (Xi) =

\int 
\~Y

\phi (x)\pi (dx).

Before we close this subsection, we present a convergence result for the inverse of
operator sequences, which can also be viewed as a modification of Theorem 1.16 in
section IV of [18].

Proposition 4.3. Let \scrX ,\scrY denote two Banach spaces. Assume Tn, T are bounded
linear operators from \scrX to \scrY , satisfying limn\rightarrow \infty | | Tn  - T | | \scrB (\scrX ,\scrY ) = 0, and T - 1 \in 
\scrB (\scrY ,\scrX ). Given f \in \scrY , if T - 1

n f , n = 1, 2, . . . uniquely exist, then we have a conver-
gence estimate as follows:

lim
n\rightarrow \infty 

\bigm| \bigm| \bigm| \bigm| (T - 1
n  - T - 1)f

\bigm| \bigm| \bigm| \bigm| = 0.(25)

Proof. After some simple calculations, we get

T - 1
n  - T - 1 = T - 1(T  - Tn)T

 - 1
n

= T - 1(T  - Tn)T
 - 1 + T - 1(T  - Tn)(T

 - 1
n  - T - 1).(26)

Now applying T - 1
n  - T - 1 on f , we get

| | (T - 1
n  - T - 1)f | | \leq | | T - 1| | 2 \cdot | | T  - Tn| | \cdot | | f | | 

+ | | T - 1| | \cdot | | T  - Tn| | \cdot | | (T - 1
n  - T - 1)f | | .(27)

Since limn\rightarrow \infty | | Tn  - T | | = 0, we assume for n \geq N0, | | Tn  - T | | \cdot | | T - 1| | < 1
2 , that

| | (T - 1
n  - T - 1)f | | \leq 2| | T - 1| | 2 \cdot | | T  - Tn| | \cdot | | f | | \forall n \geq N0,(28)

(25) follows if we take the limit as n \rightarrow \infty on both sides of (28).

4.2. A discrete-type cell problem. In the Eulerian framework, the periodic
solution of the cell problem (6) and the corresponding formula for the effective diffu-
sivity (5) play a key role in studying the behaviors of the chaotic and stochastic flows.
In the Lagrangian framework, we shall define a discrete analogue of the cell problem
that enables us to compute the effective diffusivity. We revisit the scheme (13),

(29)

\Biggl\{ 
xn
1 = xn - 1

1  - f(xn - 1
2 )\Delta t+ \sigma Nn - 1

x1
,

xn
2 = xn - 1

2 + g
\bigl( 
xn - 1
1  - f(xn - 1

2 )\Delta t
\bigr) 
\Delta t+ \sigma Nn - 1

x2
,

where Nn - 1
x1

, Nn - 1
x2

\sim 
\surd 
\Delta t\scrN (0, 1) are i.i.d. normal random variables.
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1176 ZHONGJIAN WANG, JACK XIN, AND ZHIWEN ZHANG

We will show that the solutions xn
1 and xn

2 obtained by scheme (29) have bounded
expectations if the initial values are bounded. Taking the expectation of the first
equation of (29) on both sides, we obtain

\BbbE xn
1 = \BbbE xn - 1

1  - \Delta t\BbbE f(xn - 1
2 ) = \BbbE x0

1  - \Delta t

n - 1\sum 
k=0

\BbbE f(xk
2).(30)

As a symplectic scheme in two dimensions, (29) admits the uniform measure as its
invariant measure. Then applying Proposition 4.1 and using the fact that f is a
periodic function with zero mean, we know that

(31) sup
(x0

1,x
0
2)\in \BbbR 2

\bigm| \bigm| \BbbE f(xk
2)
\bigm| \bigm| \leq e - \rho k| | f | | \infty .

By applying triangle inequalities in (30) and using the result in (31), we arrive at

(32) | \BbbE xn
1 | \leq | \BbbE x0

1| + C1| | f | | \infty ,

where C1 does not depend on n. Using the same approach, we know that \BbbE xn
2 is also

bounded. Now, we are in position to define the discrete-type cell problem. Recalling
that Xn = (xn

1 , x
n
2 )

T denotes the solution of the discrete scheme at tn = n\Delta t, we first
define

(33) \^f(x) =  - \Delta t

\infty \sum 
n=0

\BbbE [f(Xn)| X0 = x], x \in \BbbR 2,

where the summability is guaranteed by (31). f(Xn) is equivalent to f(xn
2 ) in our case.

This is due to that the velocity fields are given by separable Hamiltonian functions,
so f(Xn) = f(xn

1 , x
n
2 ) is independent of x

n
1 . At the same time, we should notice that

\^f(x) relies on the second component of x, as the initial condition is X0 = x. Then,

we shall show that \^f(x) satisfies the following properties.

Lemma 4.4. According to our assumption on the Hamiltonian, which is separable
and periodic along each dimension, we know that f is a periodic function with zero
mean on \~Y , i.e.,

\int 
\~Y
f = 0. Therefore, \^f defined in (33) is the unique solution in

\scrB 0( \~Y ) such that

(34) \^f(X0) + \Delta tf(X0) = \BbbE [ \^f(X1)| X0].

Moreover, \^f is smooth.

Proof. Starting from (33) and by the periodicity of f , we know that \^f is a periodic
function. Then, by using basic properties of conditional expectation, we can get that

\^f(X0) + \Delta tf(X0) = \Delta t\BbbE 
\biggl[ \infty \sum 
m=0

 - f(Xm)| X0

\biggr] 
+\Delta tf(X0) =  - \Delta t\BbbE 

\biggl[ \infty \sum 
m=1

f(Xm)| X0

\biggr] 

=  - \Delta t\BbbE 
\biggl[ 
\BbbE 
\biggl[ \infty \sum 
m=1

f(Xm)| X1

\biggr] 
| X0

\biggr] 
= \BbbE [ \^f(X1)| X0].(35)

Recalling the definition of the operator (18), (35) implies that

(36) (I\Delta t  - Id) \^f = I\Delta t
\^f  - \^f = \Delta tf,
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COMPUTE EFFECTIVE DIFFUSIVITY FOR 3D CHAOTIC FLOWS 1177

where Id is the identity operator. Moreover, since f is smooth and the mapping of the
operator I\Delta t on bounded functions will generate smooth functions, so \^f is smooth.

According to Proposition 4.1, the invariant (measure) of I\ast \Delta t is unique and it is
the uniform measure. In other words, the null space of the operator I\ast \Delta t  - Id consists
of constant functions. Then following the assumption that f is mean zero on \~Y, we
know f is in \scrN (I\ast \Delta t  - Id)

\bot . By the Fredholm alternative with the fact that I\Delta t is a

compact operator, we arrive at the conclusion that the solution \^f to (36) is unique in
\scrB ( \~Y) up to a constant and it smoothly depends on f .

Noticing that the passive tracer model (10) is autonomous, we obtain

(37) \BbbE [ \^f(Xn+1)| Xn] - \^f(Xn) = \Delta tf(Xn), a.s. \forall n \in \BbbN .

Remark 4.5. For the second component of the solution Xn, i.e., xn
2 , we can define

the discrete cell problem in the same manner. Notice the numerical schemes for xn
1

and xn
2 have the same structures. As such, we define

(38) \^g(x) = \Delta t

\infty \sum 
n=0

\BbbE [g(X
\prime ,n)| X0 = x], x \in \BbbR 2,

where X
\prime ,n = Xn - \Delta t (f(Xn), 0)

T
. Under the assumption that the drift terms f and

g in (10) are smooth, we know the leading order term of g(X
\prime ,n) is g(Xn). Then, we

can carry out the analysis for \^g(x) in the same manner as that for \^f(x).

Proposition 4.1 and Lemma 4.4 are very general results. In the remaining part
of this paper, we only need the result that \^f is unique in a H\"older space \BbbC p,\alpha 

0 ( \~Y) \subsetneq 
\scrB ( \~Y). To be precise, given a smooth drift function f , \^f shall be in \BbbC p,\alpha 

0 ( \~Y ), where
p \geq 6, 0 < \alpha < 1, and the subscript index 0 indicates that it is a subspace with
zero-mean functions. To prove that I\Delta t is a compact operator from \BbbC p,\alpha 

0 ( \~Y ) to itself
is quite standard. We can apply the Arzel\`a--Ascoli theorem to verify the relative
compactness of the operator I\Delta t by studying its mapped results on a bounded set.
Both equicontinuity and pointwise boundedness come as the result that I\Delta t is an
integral operator with a smooth kernel. However, we do not want to complicate the
presentation by pursuing this avenue.

4.3. Convergence estimate of the discrete-type cell problem. After defin-
ing the discrete-type cell problem (e.g., (36)) and proving the existence and uniqueness

of the solution \^f , we shall prove that \^f converges to the solution of a continuous cell
problem in a certain subspace, e.g., \BbbC 6,\alpha 

0 ( \~Y). We remark that in the remaining part
of this paper, we shall choose the space \BbbC 6,\alpha 

0 ( \~Y) to carry out our analysis. However
there is no requirement that we have to choose this space. In fact, any space that has
certain regularity (belongs to the domain of the operator \scrL ) will work. To start with,
we define the following continuous cell problem

(39) \scrL \chi 1 = f,

where the operator \scrL is defined in (15). Given f is a smooth function defined on
\~Y with zero mean, (39) admits a unique solution \chi 1 in \BbbC 6,\alpha 

0 ( \~Y). This is a standard
result of elliptic PDEs in H\"older space (see, e.g., Theorem 6.5.3 in [19]). Moreover,
\scrL is a bijection between two Banach spaces \BbbC 6,\alpha 

0 ( \~Y) and \BbbC 4,\alpha 
0 ( \~Y), and its inverse is

bounded. The following theorem states that under certain conditions the solution of
the discrete-type cell problem converges to the solution of the continuous one.
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1178 ZHONGJIAN WANG, JACK XIN, AND ZHIWEN ZHANG

Theorem 4.6. Assume f is a smooth function defined on \~Y with zero mean. Let
\^f and \chi 1 be the solutions to the discrete-type cell problem (36) and continuous cell

problem (39), respectively. When \Delta t \rightarrow 0, the solution \^f converges to the solution \chi 1

in \BbbC p,\alpha 
0 , at the rate of \scrO (\Delta t), where p \geq 6 and 0 < \alpha < 1.

Proof. Integrating (39) along time gives

exp(\Delta t\scrL )\chi 1  - \chi 1 = f\Delta t+\scrO ((\Delta t)2) := \Delta t \=f,(40)

where \=f = f +O(\Delta t). Combining (36) and (40), we obtain

(41) exp(\Delta t\scrL )\chi 1  - I\Delta t
\^f  - (\chi 1  - \^f) = \Delta t( \=f  - f);

(41) shows the connection between \chi 1 and \^f . After some simple calculations, we get

(42) \scrL (\chi 1  - \^f) = (\scrL  - \~L1)(\chi 1  - \^f) + \~L2
\^f + ( \=f  - f),

where

(43) \~L1 :=
exp(\Delta t\scrL ) - Id

\Delta t
and \~L2 :=

I\Delta t  - exp(\Delta t\scrL )
\Delta t

.

One can easily verify that in the space of bounded linear operators from \BbbC 6,\alpha 
0 ( \~Y) to

\BbbC 4,\alpha 
0 ( \~Y), there is a strong convergence in the operator norm | | \cdot | | ,

(44) | | \~L1  - \scrL | | = \scrO (\Delta t) as \Delta t \rightarrow 0.

For the operator \~L2, by using the BCH formula (17) we can obtain

\~L2 \rightarrow 
exp

\Bigl( 
\Delta t2

2

\bigl( 
[L3, L2] + [L2, L1] + [L3, L1]

\bigr) 
+\scrO ((\Delta t)3)

\Bigr) 
 - Id

\Delta t
\cdot exp(\Delta t\scrL )

\rightarrow \Delta t

2

\bigl( 
[L3, L2] + [L2, L1] + [L3, L1]

\bigr) 
+\scrO ((\Delta t)2).(45)

Denoting \~L3 := \~L1 + \~L2 \equiv I\Delta t - Id
\Delta t , we have \~L3 \rightarrow \scrL in \scrB 

\bigl( 
\BbbC 6,\alpha 

0 ( \~Y),\BbbC 4,\alpha 
0 ( \~Y)

\bigr) 
. Finally,

applying Proposition 4.3, we get

(46) lim
\Delta t\rightarrow 0

\^f = lim
\Delta t\rightarrow 0

\~L - 1
3 f = \scrL  - 1f = \chi 1.

In addition, combining the results of (40), (44), (45), and (46) for the right-hand
side of (42), we know that when \Delta t is small enough (does not depend on the total
computational time T , but may depend on the estimates of f , g, and \sigma ), the following
convergence estimate holds:

(47) | | \chi 1  - \^f | | = \scrO (\Delta t).

Thus, the assertion in Theorem 4.6 is proved.

4.4. Convergence estimate for the effective diffusivity. We shall show the
main estimates in this section. We first prove that the second-order moment of the
solution obtained by using our numerical scheme has an (at most) linear growth rate.
Second, we provide the convergence rate of our method in computing the effective
diffusivity.
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Theorem 4.7. Let Xn = (xn
1 , x

n
2 )

T denote the solution of the passive tracer model
(10) obtained by using our numerical scheme with time step \Delta t. If the Hamiltonian
H(x1, x2) is separable, periodic, and smooth enough (in order to guarantee the exis-
tence and uniqueness of the solution to the SDE (10)), then we can prove that the
second-order moment of the solution Xn (a discrete Markov process) is at most linear
in growth, i.e.,

(48) max
n

\biggl\{ 
\BbbE 
| | Xn| | 2

n

\biggr\} 
is bounded.

Proof. We first estimate the second-order moment of the first component of
Xn = (xn

1 , x
n
2 )

T , since the other one can be estimated in the same manner. Sim-
ple calculations show that

\BbbE [(xn
1 )

2| (xn - 1
1 , xn - 1

2 )] = \BbbE 
\bigl( 
xn - 1
1  - f(xn - 1

2 )\Delta t+ \sigma Nn - 1
x1

\bigr) 2
= \BbbE (xn - 1

1 )2 +\Delta t
\bigl( 
\sigma 2  - 2\BbbE [xn - 1

1 f(xn - 1
2 )]

\bigr) 
+ (\Delta t)2\BbbE (f(xn - 1

2 ))2.(49)

We should point out that the term \BbbE [xn - 1
1 f(xn - 1

2 )] corresponds to the convection
enhanced level of the diffusivity. Our goal is to prove that the term \BbbE [xn - 1

1 f(xn - 1
2 )]

is bounded over n, though it may depend on f , g, and \sigma . Note that here we are
calculating the expectation of (xn

1 )
2, which is not defined in the torus space. But in

the following derivation we will show that it can be decomposed into sums of periodic
functions acting on Xn = (xn

1 , x
n
2 )

T . Hence after the decomposition (see (53)) we can
still apply the previous analysis on the torus space.

We now directly compute the contribution of the term \BbbE [xn - 1
1 f(xn - 1

2 )] to the
effective diffusivity with the help of (37):

\Delta t

n - 1\sum 
i=0

\BbbE [xi
1f(x

i
2)] =

n - 1\sum 
i=0

\BbbE 
\bigl[ 
xi
1

\bigl( 
\BbbE [ \^f(Xi+1)| Xi] - \^f(Xi)

\bigr) \bigr] 
.(50)

Throughout the proof, we shall use the fact that if X, Y are random processes and Y
is measurable under a filtration \scrF , then with an appropriate integrability assumption,
we have

(51) \BbbE [XY] = \BbbE 
\Bigl[ 
\BbbE [XY| \scrF ]

\Bigr] 
= \BbbE 

\Bigl[ 
\BbbE [X| \scrF ]Y

\Bigr] 
.

Let \scrF i denote the filtration generated by the solution process until Xi. Noticing that
xi
1 \in \scrF i for the right-hand side (50), we have

RHS =

n - 1\sum 
i=0

\BbbE 
\bigl[ 
xi
1

\bigl( 
\^f(Xi+1) - \^f(Xi)

\bigr) \bigr] 
=

n\sum 
i=1

\BbbE 
\bigl[ 
\^f(Xi)(xi - 1

1  - xi
1)
\bigr] 
 - \^f(X0)x0

1 + \BbbE [ \^f(Xn)xn
1 ]

=

n\sum 
i=1

\BbbE 
\bigl[ 
\^f(Xi)

\bigl( 
f(xi - 1

1 )\Delta t - \sigma N i - 1
x1

\bigr) \bigr] 
 - \^f(X0)x0

1 + \BbbE [ \^f(Xn)xn
1 ].(52)
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Hence,

1

n
\BbbE 
\bigl[ 
(xn

1 )
2| (x0

1, x
0
2)
\bigr] (53)

=
1

n
(x0

1)
2 +\Delta t\sigma 2  - 2\Delta t

1

n

n - 1\sum 
i=0

\BbbE [xi
1f(x

i
2)] + (\Delta t)2

1

n

n - 1\sum 
i=0

\BbbE f2(xi
2)

=
1

n
(x0

1)
2 +\Delta t\sigma 2 + (\Delta t)2

1

n

n - 1\sum 
i=0

\BbbE f2(xi
2) - 

2

n

n\sum 
i=1

\BbbE 
\bigl[ 
\^f(Xi)

\bigl( 
f(xi - 1

2 )\Delta t - \sigma N i - 1
x1

\bigr) \bigr] 
 - 2

n

\bigl( 
\^f(X0)x0

1  - \BbbE [ \^f(Xn)xn
1 ]
\bigr) 
.

Recall the fact that Xn = (xn
1 , x

n
2 ) converges to the uniform measure in distribution.

So given any continuous periodic function f\ast , Corollary 4.2 implies

(54) lim
n\rightarrow \infty 

\BbbE f\ast (Xn) =

\int 
\~Y

f\ast (x)dx.

Furthermore, we have the estimate

(55) lim sup
n\rightarrow \infty 

\BbbE 
1

n

n\sum 
i=0

f\ast (Xi) < \infty .

Applying the Cauchy--Schwarz inequality to the term 2
n

\sum n
i=1 \BbbE 

\bigl[ 
\^f(Xi)

\bigl( 
f(xi - 1

2 )\Delta t  - 
\sigma N i - 1

x1

\bigr) \bigr] 
in (53) and replacing f\ast by f2 and \^f2 in (55), we can prove that

1
n\BbbE 

\bigl[ 
(xn

1 )
2| (x0

1, x
0
2)
\bigr] 
is bounded. Using the same trick, we know that 1

n\BbbE 
\bigl[ 
(xn

2 )
2| (x0

1, x
0
2)
\bigr] 

is also bounded. Thus, the assertion in (48) is proved.

In our numerical scheme (13), we first fix the time step \Delta t and use it to compute
the effective diffusivity until the result converges to a constant, which may depend on
\Delta t. Next, we shall prove that the limit of the constant converges to the exact effective
diffusivity of the original passive tracer model as \Delta t approaches zero. Namely, we shall
prove that our numerical scheme is robust in computing the effective diffusivity.

Theorem 4.8. Let xn
1 , n = 0, 1, . . . , be the numerical solution of the first com-

ponent of the scheme (13) and \Delta t denote the time step. We have the convergence
estimate of the effective diffusivity as

lim
n\rightarrow \infty 

\BbbE (xn
1 )

2

n\Delta t
= \sigma 2  - 2

\int 
\BbbT 2

\chi 1f +\scrO (\Delta t),(56)

where the constant in \scrO (\Delta t) does not depends on the computational time T .

Proof. We divide both sides of (53) by \Delta t and obtain

1

n\Delta t
\BbbE [(xn

1 )
2| (x0

1, x
0
2)] =

1

n\Delta t
(x0

1)
2 + \sigma 2 +

\Delta t

n

n - 1\sum 
i=0

\BbbE f2(xi
2)

 - 2

n\Delta t

n\sum 
i=1

\BbbE 
\bigl[ 
\^f(Xi)

\bigl( 
f(xi - 1

2 )\Delta t - \sigma N i - 1
x1

\bigr) \bigr] 
 - 2

n\Delta t

\bigl( 
\^f(X0)x0

1  - \BbbE [ \^f(Xn)xn
1 ]
\bigr) 
.(57)
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First, we notice that for a fixed \Delta t, the terms 1
n\Delta t (x

0
1)

2 and 2
n\Delta t

\^f(X0)x0
1 converge to

zero as n \rightarrow \infty , where we have used the fact \^f(X0) is bounded. Then, for a fixed \Delta t,
we have

lim
n\rightarrow \infty 

2

n\Delta t

\bigm| \bigm| \BbbE [ \^f(Xn)xn
1 ]
\bigm| \bigm| (58)

\leq lim
n\rightarrow \infty 

2\surd 
n\Delta t

| | \^f | | \infty \BbbE 
\bigm| \bigm| \bigm| \bigm| xn

1\surd 
n

\bigm| \bigm| \bigm| \bigm| \leq lim
n\rightarrow \infty 

1\surd 
n\Delta t

| | \^f | | \infty \BbbE 
\biggl[ 
(xn

1 )
2

n
+ 1

\biggr] 
= 0,

where the term \BbbE [ (x
n
1 )

2

n ] is bounded due to Theorem 4.7 and | | \^f | | \infty \rightarrow | | \chi 1| | \infty < \infty 
due to Theorem 4.6. Therefore, we only need to focus on the estimate of terms in
the second line of (57), which correspond to the convection-enhanced diffusion effect.

Noticing that \^f \in \BbbC 6,\alpha , we compute the Ito--Taylor series approximation of \^f(Xi),

\^f(Xi) = \^f(Xi - 1) + \^fx1
(Xi - 1)

\bigl( 
 - f(xi - 1

2 )\Delta t+ \sigma N i - 1
x1

\bigr) 
(59)

+ \^fx2
(Xi - 1)

\bigl( 
g(xi - 1

1 )\Delta t+ \sigma N i - 1
x2

\bigr) 
+

1

2

\bigl( 
\^fx1x1

(Xi - 1) + \^fx2x2
(Xi - 1)

\bigr) 
\sigma 2\Delta t+\scrO (\Delta t2).

Since \^f \rightarrow \chi 1 in \BbbC 6,\alpha 
0 , the truncated term \scrO (\Delta t2) in (59) is uniformly bounded when

\Delta t is small enough. Substituting the Taylor expansion of \^f(Xi) into the target term
of our estimate, we get

\BbbE [ \^f(Xi)(f(xi - 1
2 )\Delta t - \sigma N i - 1

x1
)] = \BbbE 

\Bigl[ \Bigl( 
f(xi - 1

2 )\Delta t - \sigma N i - 1
x1

\Bigr) 
\cdot 
\Bigl( 
\^f(Xi - 1) + \^fx1(X

i - 1)
\bigl( 
 - f(xi - 1

2 )\Delta t+ \sigma N i - 1
x1

\bigr) 
+ \^fx2

(Xi - 1)
\bigl( 
g(xi - 1

1 )\Delta t+ \sigma N i - 1
x2

\bigr) 
+

1

2

\bigl( 
\^fx1x1(X

i - 1) + \^fx2x2(X
i - 1)

\bigr) 
\sigma 2\Delta t+\scrO (\Delta t2)

\Bigr) \Bigr] 
.(60)

Combining the terms with the same order as \Delta t, we obtain

\BbbE 
\bigl[ 
\^f(Xi)

\bigl( 
f(xi - 1

2 )\Delta t - \sigma N i - 1
x1

\bigr) \bigr] 
= \Delta t\BbbE [ \^f(Xi - 1)f(xi - 1

2 ) - \sigma 2 \^fx1
(Xi - 1)] +\scrO (\Delta t2),

(61)

where we have used the facts that (1) Xi - 1 is independent of N i - 1
x1

and N i - 1
x2

so the
expectations of the corresponding terms vanish; (2) N i - 1

x1
and N i - 1

x2
are independent

so \BbbE N i - 1
x1

N i - 1
x2

= 0; and (3) \BbbE (N i - 1
x1

)2 = \Delta t. Finally, by using Corollary 4.2 and
noticing the invariant measure is the uniform measure, we obtain from (57) that

lim
n\rightarrow \infty 

1

n\Delta t
\BbbE [(xn

1 )
2| (x0

1, x
0
2)] = \sigma 2  - 2

\int 
( \^ff  - \sigma 2 \^fx1) +\scrO (\Delta t).(62)

Thus, our statement in (56) is proved using the facts that \^f converges to \chi 1 (see

Theorem 4.6) and
\int 

\^fx1
= 0.

Remark 4.9. If we divide by two on both sides of (56), we can find that our result
recovers the definition of the effective diffusivity DE

11 defined in (5). This reveals the
connection of the definition of the effective diffusivity using the Eulerian framework
and Lagrangian framework.
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1182 ZHONGJIAN WANG, JACK XIN, AND ZHIWEN ZHANG

4.5. Generalizations to high-dimensional cases. To show the essential idea
of our probabilistic approach, we have carried out our convergence analysis based on
a two-dimensional model problem (10). In fact, the extension of our approach to
higher-dimensional problems is straightforward. Now we consider a high-dimensional
problem as follow:

(63) dX(t) = v(X(t))dt+\Sigma dW(t),

where X = (x1, x2, . . . , xd)
T \in \BbbR d is the position of a particle, v = (v1, v2, . . . , vd)

T \in 
\BbbR d is the Eulerian velocity field at positionX, \Sigma is a d\times d constant nonsingular matrix,
and W(t) is a d-dimensional Brownian motion vector. In particular, we assume vi
does not depend on xi, i = 1, . . . , d. Thus, the incompressible condition for v(X)
(i.e., \nabla \bfX \cdot v(X) = 0) is easily guaranteed. For a deterministic and divergence-free
dynamical system, Feng and Shang proposed a volume-preserving method [10], which
splits a d-dimensional problem into d  - 1 subproblems with each of them being a
two-dimensional problem and thus being volume preserving. We shall modify Feng's
method (first-order case) by including the randomness as the last subproblem to take
into account the additive noise, i.e.,

(64)

\left\{                   

x\ast 
1 = xn - 1

1 +\Delta tv1(x
n - 1
2 , xn - 1

3 , xn - 1
4 , . . . , xn - 1

d - 1 , x
n - 1
d ),

x\ast 
2 = xn - 1

2 +\Delta tv2(x
\ast 
1, x

n - 1
3 , xn - 1

4 , . . . , xn - 1
d - 1 , x

n - 1
d ),

x\ast 
3 = xn - 1

3 +\Delta tv3(x
\ast 
1, x

\ast 
2, x

n - 1
4 , . . . , xn - 1

d - 1 , x
n - 1
d ),

. . . ,

x\ast 
d = xn - 1

d +\Delta tvd(x
\ast 
1, x

\ast 
2, x

\ast 
3, x

\ast 
4, . . . , x

\ast 
d - 1),

Xn = X\ast +\Sigma (Wn  - Wn - 1),

where X\ast = (x\ast 
1, x

\ast 
2, . . . , x

\ast 
d)

T , Wn  - Wn - 1 is a d-dimensional independent ran-

dom vector with each component of the form
\surd 
\Delta t\xi i, \xi i \sim \scrN (0, 1), and Xn =

(xn
1 , x

n
2 , . . . , x

n
d )

T is the numerical approximation to the exact solution X(tn) to the
SDE (63) at time tn = n\Delta t.

The techniques of the convergence analysis for the two-dimensional problem can
be applied to high-dimensional problems without much difficulty. For the high-
dimensional problem (63), the smoothness and strict positivity of the transition kernel
in the discrete process can be guaranteed if one assumes that the covariance matrix
\Sigma is nonsingular and the scheme (64) is explicit. According to our assumption for the
velocity field, the scheme (64) is volume preserving. Thus, the solution to the first-
order modified equation is divergence-free and the invariant measure on the torus
(defined by \BbbR d/\BbbZ d, when the period is 1) remains uniform. Finally, the convergence
of the cell problem can be studied by using the BCH formula (17) with d + 1 PDE
operators. Recall that in (18) we have three PDE operators when we study the
two-dimensional problem. Therefore, our numerical methods are robust in comput-
ing effective diffusivity for high-dimensional problems, which will be demonstrated
through the three-dimensional chaotic flow problems in section 5.

5. Numerical examples. The aim of this section is two fold. First, we shall
design challenging numerical examples to verify the convergence analysis proposed
in this paper, especially Theorem 4.8. Second, we shall investigate the diffusion
enhancement for several chaotic velocity fields. Without loss of generality, we compute

the quantity \BbbE [x1(T )2]
2T , which is used to approximate DE

11 in the effective diffusivity
matrix (5).
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5.1. Verification of the convergence rate. We first consider a passive tracer
model, where the velocity field is given by a chaotic cellular flow with oscillating
vortices. Specifically, the flow is generated by a Hamiltonian defined as

H(x1, x2) =
1

2\pi 
exp(sin(2\pi x1)) - 

1

4\pi 
exp(cos(4\pi x2 + 1)).(65)

The motion of a particle moving in this chaotic cellular flow is described by the SDE

(66)

\Biggl\{ 
dx1 = sin(4\pi x2 + 1) exp(cos(4\pi x2 + 1))dt+ \sigma dW1,

dx2 = cos(2\pi x1) exp(sin(2\pi x1))dt+ \sigma dW2,

where \sigma =
\surd 
2\times 0.01, Wi are independent Brownian motions, and the initial data

(x0
1, x

0
2) follow uniform distributions in [ - 0.5, 0.5]2. In our numerical experiments, we

use Monte Carlo samples to discretize the Brownian motions W1 and W2. The sample
number is denoted by Nmc. We choose \Delta tref = 0.001 and Nmc = 640,000 to solve the
SDE (66) and compute the reference solution, i.e., the ``exact"" effective diffusivity,
where the final computational time is T = 12000 so that the calculated effective
diffusivity converges to a constant. It takes about 20 hours to compute the reference
solution on a 64-core server (Gridpoint System at HKU). The reference solution for
the effective diffusivity is DE

11 = 0.12629.
In Figure 1, we plot the convergence results of the effective diffusivity using our

method (i.e., \BbbE [x1(T )2]
2T ) with respect to different time steps \Delta t at T = 6000 and T =

12000. The computational time of our method depends on Nmc, \Delta t, and T . In this
example, it takes less than two hours to get the one associated with Nmc = 640,000,
\Delta t = 0.01, and T = 12000. In addition, we show a fitted straight line with slope 1.04,
i.e., the convergence rate is about (\Delta t)1.04. Meanwhile, by comparing two sets of data
in Figure 1, corresponding to the numerical effective diffusivity obtained at different
computational times, we can see that the error does not grow with respect to time,
which justifies the statement in Theorem 4.8.

Fig. 1. Error of DE
11 in different computational times and flows with different time steps.

To further study the accuracy and robustness of our numerical method in solving
high-dimensional problems, we consider a three-dimensional (3D) Kolmogorov-type
flow. Let (x1, x2, x3)

T \in R3 denote the position of a particle in the 3D Cartesian
coordinate system. The motion of a particle moving in the 3D Kolmogorov-type flow
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1184 ZHONGJIAN WANG, JACK XIN, AND ZHIWEN ZHANG

is described by the following SDE,

(67)

\left\{     
dx1 = cos(4\pi x3 + 1) exp(sin(4\pi x3 + 1))dt+ \sigma dW1,

dx2 = cos(6\pi x1 + 2) exp(sin(6\pi x1 + 2))dt+ \sigma dW2,

dx3 = cos(2\pi x2 + 3) exp(sin(2\pi x2 + 3))dt+ \sigma dW3,

where Wi are independent Brownian motions. This is inspired by the so-called Kol-
mogorov flow [12] (see (69)). The Kolmogorov flow is obtained from the ABC flow
with A = B = C = 1 and with cosines taken out. Behaviors of the classic Kolmogorov
flow will be discussed later.

In our numerical experiments, we choose \Delta tref = 0.001 and Nmc = 6,400,000
to solve the SDE (67) and compute the reference solution, i.e., the exact effective
diffusivity. After some numerical tests, we find that the passive tracer model will
enter a mixing stage if the computational time is set to be T = 2400. It takes about
56 hours to compute the reference solution on the server and the reference solution for
the effective diffusivity is DE

11 = 0.13106. In Figure 1, we plot the convergence results
of the effective diffusivity using our method with respect to different time steps \Delta t.
In addition, we show a fitted straight line with slope 1.27, i.e., the convergence rate
is about (\Delta t)1.27. This numerical result also agrees with our error analysis.

5.2. Investigation of the convection-enhanced diffusion phenomenon.
We first consider the classical ABC flow with our symplectic stochastic integra-
tors. The ABC flow is a 3D incompressible velocity field which is an exact solu-
tion to Euler's equation. It is notable as a simple example of fluid flow that can
have chaotic trajectories. The particle is transported by the velocity field v =
(A sin(x3) + C cos(x2), B sin(x1) + A cos(x3), C sin(x2) + B cos(x1)) and perturbed
by an additive noise. The associated passive tracer model is written

(68)

\left\{     
dx1 = (A sin(x3) + C cos(x2))dt+ \sigma dW1,

dx2 = (B sin(x1) +A cos(x3))dt+ \sigma dW2,

dx3 = (C sin(x2) +B cos(x1))dt+ \sigma dW3,

where Wi are independent Brownian motions. In Figure 2, we show the relation
between DE

11 and D0. Recall that the parameter D0 = \sigma 2/2. By setting A = B =
C = 1, we recover the same phenomenon as Figure 2 in [5] for D0 \in [10 - 3, 10 - 1] and
can extend to D0 \in [10 - 5, 10 - 4]; see Figure 2. As a comparison to our stochastic
structure-preserving scheme, we directly apply the Euler--Maruyama scheme (also
called the Euler scheme) to solve the SDE (68). We can see that the Euler scheme
failed to recover it when D0 is small. The evidence for the failure of the Euler scheme
when D0 is small can be also found in [35]. Figure 2 shows that the DE

11 of the
ABC flow obtained by our symplectic method corresponds to an upper bound of
(8), i.e., the maximal enhancement, DE

11 \sim \scrO (1/D0). This maximal enhancement
phenomenon may be attributed to the ballistic orbits of the ABC flow, which was
discussed in [25, 36].

From Figure 3 we can see that diffusion time, i.e., the time when \BbbE [x1(t)
2]

2t ap-
proaches a constant, increases as \scrO (1/D0) when D0 \rightarrow 0 in the symplectic scheme.
Interested readers are referred to [11] to find that the upper bound of the diffusion
time can be a bit smaller than \scrO (1/D0) given the strong mixing property of the flows.
Due to the gap between chaotic and strongly mixing flows, to the best of our knowl-
edge, the diffusion time (as D0 tends to 0) for chaotic flows has yet to be rigorously
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Fig. 2. Convection-enhanced diffusion with maximal enhancement in ABC flow: \square for the
symplectic scheme, \times for the Euler scheme,  -  - for reference line y = 1

D0
.

Fig. 3. Calculated DE
11 in the ABC flow versus time via two different schemes.

proved. Figure 3 shows that the diffusion time of ABC flow may reach the upper
bound in the a priori estimate for general flows. However, the Euler scheme gives
a different result in Figure 3. It attains a diffusion time which is much faster than
O(1/D0). This may be due to the numerical dissipation of the Euler scheme. The
statement that the Euler scheme generates wrong results can also be found in Figure
2.

We point out that the error estimate in Theorem 4.8 is just an upper bound.
Figure 4 shows that when D0 is 10 - 3, the convergence rate is about \scrO (\Delta t1.42). It is
very expensive to study the passive tracer model for the ABC flow since the diffusing
time is extremely long. In our numerical test for Figure 4, we choose Nmc = 120,000,
\Delta t = 0.001, and T = 12,000. In this setting, the error of the Monte Carlo simulation
cannot be avoided, so there is a small oscillation around the fitted slope.

Finally, we investigate the convection-enhanced diffusion phenomenon for another
chaotic flow, i.e., the Kolmogorov flow. The associated passive tracer model is written

(69)

\left\{     
dx1 = sin(x3)dt+ \sigma dW1,

dx2 = sin(x1)dt+ \sigma dW2,

dx3 = sin(x2)dt+ \sigma dW3,
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Fig. 4. Error of DE
11 in the ABC flow, the dashed line with \square is for the symplectic scheme,

and the slope of the fit is \approx 1.42.

where Wi are independent Brownian motions. In Figure 5, we show the relation
between DE

11 and D0, where D0 = \sigma 2/2. For each D0, we use Nmc = 120,000 particles
to solve the SDE (69) via the symplectic method and the Euler method with \Delta t =
0.1. The final computation time is T = 12,000 so that the particles are fully mixed
for D0 \geq 10 - 6. Under such setting, we find that the dependency of DE

11 on D0

is quite different from the chaotic and stochastic flows that we have studied in [35]
and from the foregoing ABC flow (maximal enhancement). The fitted slope within
D0 \in [10 - 6, 10 - 5] is  - 0.13, which indicates that DE

11 \sim \scrO (1/D0.13
0 ). The slope

is significantly greater than  - 1 and this can be called submaximal enhancement.
The existence of submaximal enhancement may be explained by the fact that the
Kolmogorov flow is more chaotic than the ABC flow [12]. The chaotic trajectories
in Kolmogorov flow enhance diffusion much less than channel-like structures such as
the ballistic orbits of ABC flows [25, 36]. More studies on the diffusion enhancement
phenomenon of the ABC flow and the Kolmogorov flow, especially the time-dependent
cases will be reported in our future work. We also compare the performance of the
symplectic scheme and Euler scheme in computing the effective diffusivity for the
Kolmogorov flow. Specifically, we implement the symplectic scheme and Euler scheme
with time step \Delta t = 0.1 and \Delta t = 0.01, respectively. In Figure 5, we find that (1) the
symplectic scheme with \Delta t = 0.1 and \Delta t = 0.01 will give similar results in computing
the effective diffusivity; (2) the symplectic scheme and the Euler scheme with \Delta t =
0.01 will give almost the same convergent results in computing the effective diffusivity,
which provides evidence that our statement on the Kolmogorov flow (i.e., the sub-
maximal enhancement phenomenon) is correct; (3) the Euler scheme with \Delta t = 0.1
gives wrong results but the symplectic scheme with \Delta t = 0.1 gives acceptable results,
which provides evidence that the symplectic scheme is very robust in computing the
effective diffusivity. In this example, the symplectic scheme approximately achieves a
10\times speedup over the Euler scheme.

Figures 6(a) and 6(b) show different behaviors of the numerical effective diffusivity
\BbbE [x1(t)

2]
2t obtained using the symplectic scheme and the Euler scheme with respect to

computational time. Specifically, Figure 6(a) shows T = 12000 is quite enough for
D0 \geq 10 - 6. And in Figure 6(b), it seems that in the Euler scheme, the diffusion time
is much smaller. Similarly to our investigation in ABC flows, this may be due to the
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Fig. 5. Convection-enhanced diffusion with submaximal enhancement in Kolmogorov flow.
``sym"" means the results for the symplectic scheme and ``em"" means the results for the Euler scheme.
 -  - means the fitted line for small D0 with slope \approx  - 0.13.

Fig. 6. Calculated DE
11 in the Kolmogorov flow via two different schemes.

excess numerical dissipation generated by the Euler scheme. In Figure 7, we also study
the convergence rate of the symplectic scheme in computing the effective diffusivity
for the Kolmogorov flow (69). We find that the convergence rate is \scrO (\Delta t1.3) in this
example. xxxxxx

6. Conclusions. In this paper, we analyzed the robustness of a numerical scheme
to compute the effective diffusivity of passive tracer models, especially for the 3D ABC
flow and the Kolmogorov flow. The scheme is based on the Lagrangian formulation
of the passive tracer model, i.e., solving SDEs. We split the SDE problem into a
deterministic subproblem and a stochastic one, where the former is discretized using
a symplectic-preserving scheme while the later is solved using the Euler scheme. We
provide a completely new error analysis for our numerical scheme that is based on
a probabilistic approach, which gives a sharp and uniform in time error estimate for
the numerical solution of the effective diffusivity. Finally, we present numerical re-
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Fig. 7. Error of DE
11 in the Kolmogorov flow. The slope of the fitted line is \approx 1.30.

sults to demonstrate the accuracy of the proposed method for several typical chaotic
flow problems of physical interests, including the ABC flow and the Kolmogorov flow.
We observed the maximal enhancement phenomenon in the ABC flows and the sub-
maximal enhancement phenomenon in the Kolmogorov flow, respectively. There are
two directions we plan to explore in our future work. First, we shall extend the
probabilistic approach to provide sharp convergence analysis in computing effective
diffusivity for time-dependent chaotic flows, such as time-dependent ABC flows. In
addition, we shall investigate the convection-enhanced diffusion phenomenon for gen-
eral spatial-temporal stochastic flows [20, 23] and develop convergence analysis for
the corresponding numerical methods.
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