
Front Speed in the Burgers Equation
with a Random Flux

J. Wehr and J. Xin ∗

Abstract

We study the large time asymptotic shock front speed in an inviscid Burgers
equation with a spatially random flux function. This equation is a prototype for
a class of scalar conservation laws with spatial random coefficents such as the well-
known Buckley-Leverett equation for two-phase flows, and the contaminant transport
equation in groundwater flows. The initial condition is a shock located at the origin
(the indicator function of the negative real line). We first regularize the equation by
a special random viscous term so that the resulting equation can be solved explicitly
by a Cole-Hopf formula. Using the invariance principle of the underlying random
processes, and the Laplace method, we prove that for large times the solutions behave
like fronts moving at averaged constant speeds in the sense of distribution. However,
the front locations are random, and we show explicitly the probability of observing
the head or tail of the fronts. Finally, we pass to the inviscid limit, and establish the
same results for the inviscid shock fronts.
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1 Introduction

We are interested in studying the initial value problem of the following Burgers equation

with spatially random flux:

vt + (
1

2
a(x, ω)v2)x = 0, x ∈ R1, (1.1)

with initial data v(x, 0) = IR−(x), the indicator function of the negative real line. Here

a(x, ω) is a positive stationary random process. The complete list of assumptions a satisfies

will be stated as A1-A5 in the next section.

When a is a constant, say one, it is well known that shock solutions are asymptoti-

cally stable and attract front-like initial data, see the classical work [11]. In applications

to geoscience and other areas, however, shocks typically travel in spatially inhomogenous

environment because of the natural formation of porous structures. Due to lack of exper-

imental or field data, the spatially inhomogeneous environment is modeled as a random

process. Conservation of mass then leads to a scalar conservation law with a random flux:

vt + (f(v, x, ω))x = 0, (1.2)

or its viscous analogue where the right hand side is instead a second-order elliptic term.

Some of the equations of this form are: 1) the Buckley-Leverett equation for two-phase

flows, see [10] and references therein; 2) the contaminant transport equation, see [25] and

[4]; and 3) the Richards equation for infiltration problems, see [16] and [17], among others.

The specific form of the nonlinear and random function f depends on the problem at hand.

One of the fundamental issues discussed in these works is the shock dynamics in random

media. This is usually a very difficult problem since it involves both nonlinearity and

randomness. Equation (1.1) appears to be one of the few tractable cases where one can

study rigorously the shock propagation in a random medium, here characterized by a.

Burgers equation has been extensively studied recently in the literature as a model for

turbulence and also for random shock asymptotics, see [1], [2], [20],[21], [22]; and [7], [23].

In [23], the present authors proved that under white noise initial perturbation, the viscous

shock fronts move at the unperturbed speeds with their locations randomly distributed,

and obey a central limit theorem in the large time limit. What happens to shocks in

random media ? Do they propagate ? If so, at what speed ? What about their locations

? We will answer these questions in the context of equation (1.1). Our approach is to

regularize (1.1) by adding the viscous term ν(
√
a(x)(

√
a(x)v)x)x to its right-hand side.
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The resulting equation can be transformed into the standard viscous Burgers equation

for another function, u, through a random change of spatial variables. The initial data

for u can be thought of as a random perturbation of the inviscid Burgers shock. The

transformation of variables mentioned above is thus transferring the randomness from the

coefficients of the equation to the initial data. The Cole-Hopf formula is then used to write

down the solution in an explicit form. The formula is in the form of a ratio, involving

five terms, which can be analyzed using probabilistic estimates, with the help of Laplace

method, similarly to what was done in [23]. The new diffculty is that we now do not

have the scaling property of the Brownian motion which in [23] was coming directly from

the form of the initial perturbation (the white noise). Instead, we resort to an invariance

principle in order to apply the Laplace method. The required invariance principle (i.e. a

functional central limit theorem) holds for a class of ϕ-mixing processes a(x, ω); it is stated

in detail in section 2. Finally, we pass to the ν → 0 limit of solutions to obtain results

on the inviscid random shocks. It is known that such shocks are unique and satisfy the

entropy conditions, [12]. We find that the inviscid shocks move at constant asymptotic

speeds, and that the shock locations are random with their heads or tails seen with explicit

probabilities as we probe the solution along the ray x = ct+ z
√
t, where c is the constant

shock speed and z is a real parameter.

The rest of the paper is organized as follows. In section 2, we state the main assumptions

and the main theorem of the paper. Then we introduce the change of spatial variables and

the Cole-Hopf representation of solutions. In section 3, we give the proof of the main

theorem using invariance principle and Laplace method. Some of the technical results in

the proof are relegated to section 4, the appendix. In particular, an invariance principle

for hitting times, which may be of independent interest, is proven there (Theorem 4.1).

2 Main Theorem and the Cole-Hopf Solutions

The principal object studied in this paper is the inviscid Burgers equation with a random

flux:

vt + (
1

2
a(x, ω)v2)x = 0. (2.1)

We are interested in the long-time behavior of the solution to (2.1) with initial data of the

front type:

v(x, 0) = IR−(x). (2.2)
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Here IR− denotes the indicator function of the negative real line and a(x, ω) is a stochastic

process, satisfying the assumptions A1-A5 stated below. The assumptions A3 and A4 are

stated in the way we use them and at this stage may appear somewhat technical. Below

(see Remark 2.1) we describe a natural class of processes for which these assumptions are

satisfied.

A1. Stationarity: the finite-dimensional distributions of the process a(x, ω) are invariant

under translations of the variable x.

A2. Positivity: a(x, ω) > 0 with probability one.

A3. Measurability and integrability of the inverse: paths of a are measurable functions of

x and

E[
1

a(x)
] <∞.

It follows that also

E[
1√
a(x)

]
def
= µ <∞.

A4. Invariance principle: Let

ξ(x) =
∫ x

0

1√
a(y)

dy.

Note that ξ(x) < 0 for x < 0. For each x0 > 0, we have

(
ξ(tx)− µtx

σ
√
t

)|x|≤x0

D→ (Wx)|x|≤x0 , (2.3)

as t→∞, where W = (Wx)x∈R is the Wiener process and

σ2 = 2
∫ +∞

0
E[(

1√
a(0)

− µ)(
1√
a(x)

− µ)] dx <∞.

D denotes converges of processes in law; see [3]. We stress that the finiteness of the last

integral is part of the assumption. σ2 is sometimes called the velocity autocorrelation

function (of the process 1√
a
).

A5. Regularity: we assume that the paths of the process a are Hölder continuous with

some (positive) exponent. This will be used in the proof of the main theorem, to justify

taking the zero viscosity limit. A well known probabilistic condition which implies Hölder

continuity of sample paths is the Kolmogorov moment condition ([18], Theorem 25.2).

Remark 2.1 A large class of processes for which (2.3) holds is the class of stationary

processes a(x, ω), satisfying the appropriate φ-mixing condition. Here φ is a nonnegative
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function of a positive real variable, such that

lim
t→+∞

φ(t) = 0 (2.4)

and the φ-mixing condition says that, for any t > 0 and for any s, whenever an event E1

is in the σ-field generated by the random variables a(x) with −∞ ≤ x ≤ s and an event E2

is in the σ-field generated by a(x) with s+ t ≤ x ≤ +∞, we have

|P [E1 ∩ E2]− P [E1]P [E2]| ≤ φ(t)P [E1]. (2.5)

Roughly speaking, because of (2.4), (2.5) expresses a decay of correlations of the variables

a(x). More information on φ-mixing processes can be found in [3], where it is, in particular,

proven (pp. 178-179 of [3]) that the invariance principle (assumption A4) holds if∫ +∞

0

√
φ(t) dt <∞. (2.6)

It is well-known that the Burgers fronts are asymptotically stable for spatially decaying

initial perturbation, [11]. The following main result of the paper shows that the front

structure is also present in the random flux case. Throughout the paper the symbol
d→

denotes convergence in distribution.

Theorem 2.1 Let 2c = E[a−
1
2 ]−2 denote the square root-harmonic mean of the variables

a(x). Then as t→∞:

1. v(αt, t)
d→ 0, for α > c; (2.7)

2.
√
a(αt)v(αt, t)

d→
√

2c, for α < c; (2.8)

3.
√
a(ct+ z

√
t)v(ct+ z

√
t, t)

d→ X, (2.9)

where X is a random variable equal to
√

2c with probability N (µ
2

σ
z) and equal to 0 with

probability 1−N (µ
2

σ
z), where N (s) = 1√

2π

∫ s
−∞ e

− s
′2
2 ds′ is the error function.

Remark 2.2 The first two parts of the theorem say, roughly speaking, that to leading

order the shock speed in the presence of randomness equals c. We expect to prove that an

analogous result holds (with some c) for a more general class of nonlinear conservation

laws with noisy initial data (but no randomness in the coefficients of the equation) using

scaling arguments and continuous dependence of solutions on the initial data. We propose

to use this method to handle the viscous as well as the inviscid case. While more general,

this method does not provide more detailed information about the front location contained

in part 3 of the theorem (see also [23]).
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Remark 2.3 In the inviscid case, we also plan to generalize the strategy applied in this

paper to other nonlinearities as follows. We represent the solution as a limit of approximate

solutions, given by explicit expressions. The asymptotic behavior of these approximate

solutions is then studied using bounds analogous to those developed here.

Remark 2.4 For problems with more general (nonquadratic) nonlinearities, one can scale

x and t by a small parameter ε and formulate a homogenization problem for the integrated

conservation laws, namely the Hamilton-Jacobi equations. For the periodic case, such prob-

lems are well-studied ([13], [6]), and one can even formally derive part 1) and part 2) of

Theorem 2.1 from the averaged Hamiltonian obtained in [13] and [6]. However, extending

these results to the random setting is a challenging task, and it remains an interesting prob-

lem to study rigorously the connection between random homogenization of Hamilton-Jacobi

equations and our results here.

Remark 2.5 Burgers equation can be thought of as a hydrodynamic limit of the asymmetric

simple exclusion process. In this context, we would like to mention that shock location has

been studied for such a process, see [8] and references therein. These results are analogous

to ours (see also [23]).

In the proof of Theorem 2.1, we will make use of a regularized version of the equation

(2.1):

vt + (
1

2
a(x)v2)x = ν(

√
a(x)(

√
a(x)v)x)x, (2.10)

where ν > 0. It is convenient to rewrite this equation in terms of the function

u =
√
a(x)v, (2.11)

Equation for u becomes:

ut√
a(x)

+ (
1

2
u2)x = ν(

√
a(x)ux)x, (2.12)

To simplify the last equation, we change the space variable:

ξ =
∫ x

0

1√
a(x′)

dx′, (2.13)
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Since this change of variables depends on the realization of the process a, we obtain this

way a stochastic process ξ(x, ω), which has already been used to state assumption A4.

Equation for u in the variables (ξ, t) becomes the standard viscous Burgers equation:

ut + (
1

2
u2)ξ = νuξξ, (2.14)

with the new initial condition:

u(ξ, 0) =
√
a(x(ξ))IR−(ξ). (2.15)

It is known that the speed of an (unperturbed) shock of the Burgers equation is equal to its

height divided by two. This offers an intuitive, if nonrigorous, explanation of the results of

the theorem: the asymptotic speed of the front described arising from our random initial

condition equals one half of its average height, calculated in the ξ variable i.e.

1

2
lim
L→∞

1

L

∫ 0

−L

√
a(x(ξ)) dξ,

which, after changing the variable of integration to x, gives

1

2
lim
L→∞

−x(−L)

L
,

which is 1
2
E[a−

1
2 ]−1. To get from this the front speed in the x variable, we divide this value

by E[a−
1
2 ] in view of (2.13) and arrive at the speed c in the main theorem. A similar,

but more detailed argument, taking into account fluctuations of the total mass in a finite

interval of the initial data, leads to a heuristic justification of the Gaussian statistics of the

front location.

To prepare the proof of Theorem 2.1, we need to introduce the Cole-Hopf representation

of the solution, rewrite it in a convenient form, and prove some auxiliary results about

asymptotic behavior in distribution of its constituent terms.

The paths of the process ξ(x, ω) are (with probability one) continuous, strictly increas-

ing functions of x. Therefore, they have continuous inverses, defining another process,

x(ξ, ω). Our assumption A4 says that the process ξ(x, ω) satisfies an invariance principle.

In appendix, we prove a theorem (Theorem 4.1), which will be used crucially in the proof

of Theorem 2.1, and which says that the same is also true about the process x(ξ). More

precisely, Theorem 4.1 (which is stated using a different notation) implies that

(
x(tξ)− tξ

µ

µ−
3
2σ
√
t

)|ξ|≤ξ0
D→ (Wξ)|ξ|≤ξ0 . (2.16)
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(see assumption A4 for the definition of σ). In the sequel, we will use the following notation

for the process x(ξ) with the mean subtracted:

x̂(ξ) = x(ξ)− ξ

µ
. (2.17)

The Cole-Hopf formula ([24]) for u reads:

u(ξ, t) =

∫+∞
−∞

ξ−η
t

exp[−G(η,ξ,t)
2ν

] dη∫+∞
−∞ exp[−G(η,ξ,t)

2ν
] dη

, (2.18)

where

G(η, ξ, t) =
∫ η

0
u(η′, 0) dη′ +

(ξ − η)2

2t

= x(η)IR−(η) +
(ξ − η)2

2t

= (
η

E[a−
1
2 ]

+ x̂(η))IR−(η) +
(ξ − η)2

2t
. (2.19)

(the second equality follows by changing the variable to x(η′), where x denotes the inverse

of ξ and using the fact that the derivative of ξ is 1√
a
; see (2.13). Let ul = 1

E[a−
1
2 ]

. Even

though, clearly, ul = 1
µ

=
√

2c, it is convenient in this context to use the suggestive notation

ul (the “left state of u”; see (2.8)). The numerator of (2.18) is equal to:∫ 0

−∞

ξ − η
t

exp[
−ulη − x̂(η)− (2t)−1(ξ − η)2

2ν
] dη

+
∫ ∞

0

ξ − η
t

exp[−(2t)−1 (ξ − η)2

2ν
] dη, (2.20)

which, with the substitution y = ξ − η, becomes∫ ∞
ξ

y

t
exp[
−(ξ − y)ul − (2t)−1y2 − x̂(ξ − y)

2ν
] dy +

∫ ξ√
t

−∞
ηe−

η2

4ν dη

=
1

t

∫ ∞
ξ

y exp[
−(ξ − ul

2
t)ul − (2t)−1(y − ult)2 − x̂(ξ − y)

2ν
] dy +

∫ ξ√
t

−∞
ηe−

η2

4ν dη.

Changing variable to x′ = y − ult, the numerator becomes

1

t

∫ ∞
ξ−ult

(x′ + ult) exp[
−(ξ − ul

2
t)ul − (2t)−1x′2 − x̂(ξ − x′ − ult)

2ν
] dx′ +

∫ ξ√
t

−∞
ηe−

η2

4ν dη

= ul exp[−(ξ − ul
2
t)
ul
2ν

]
∫ ∞
ξ−ult

exp[−(2t)−1x
′2

2ν
− x̂(ξ − x′ − ult)

2ν
] dx′

+ t−1 exp[−(ξ − ul
2
t)
ul
2ν

]
∫ ∞
ξ−ult

x′ exp[−(2t)−1x
′2

2ν
− x̂(ξ − x′ − ult)

2ν
] dx′

+
∫ ξ√

t

−∞
ηe−

η2

4ν dη.
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Finally, we introduce a new variable η = x′√
t

and rearrange the order of the terms to get

∫ ξ√
t

−∞
ηe−

η2

4ν dη +
√
tule

− ul
2ν

(ξ−ul
2
t)
∫ ∞
ξ−ult√

t

e−
η2

4ν
− x̂(ξ−

√
tη−ult)

2ν dη

+ e−
ul
2ν

(ξ−ul
2
t)
∫ ∞
ξ−ult√

t

ηe−
η2

4ν
− x̂(ξ−

√
tη−ult)

2ν dη. (2.21)

The consecutive terms in the last expression will be denoted by At, Bt and Ct respectively.

Proceeding in a similar way, we can write the denominator in the form Bt
ul

+Dt, where Bt

is as above and

Dt =
√
t
∫ ξ√

t

−∞
e−

η2

4ν dη. (2.22)

3 Proof of Theorem 2.1

In the next two propositions we prove that a part of the expression for u goes to zero.

These propositions will be used in the proof of Theorem 2.1, where it will be important

that the convergence takes place uniformly in ν, in the appropriate sense defined below in

(3.1). With this in mind, we adopt the following convention about constants: constants

independent of ν, but depending on the random parameter ω (i.e. on the realization of the

random flux) will be denoted by C(ω), or simply by C. Constants independent of both ν

and ω will be denoted by c. The actual value of C or c may vary from one line to another.

Proposition 3.1 limt→∞ supξ
At

Bt
ul

+Dt

d
= 0. Moreover, convergence is uniform in ν in the

sense that for every ε > 0, as t→∞:

P [sup
ν≤ν0

| At
Bt
ul

+Dt

| > ε]→ 0, (3.1)

for any ν0 > 0. (Note that convergence in distribution to 0 is equivalent to convergence in

probability to 0).

Proof: for positive ξ we have
At
Dt

≤ c
√
νt−

1
2 , (3.2)

with an absolute constant c. For negative ξ, we restrict the integration in the definition of

Bt to the interval 0 ≤ η ≤ 1 and note that, since x̂(u)√
|u|

converges in distribution to a normal
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random variable (by Theorem 4.1), with probability one there exists an (ω-dependent)

constant C such that for all u

x̂(u) ≤ C|u|
2
3 . (3.3)

Therefore the integral ∫ ∞
ξ−ult√

t

e−
η2

4ν
− x̂(ξ−

√
tη−ult)

2ν dη (3.4)

can be bounded below by

e−
1
4ν

∫ 1

0
exp(− x̂(ξ −

√
tη − ult)

2ν
) dη ≥ e−

1
4ν e

C
ν
|ξ−
√
t−ult|

2
3 , (3.5)

for all t and ξ. This implies that for almost all ω and t ≥ 1 (uniformly in ξ ≤ 0), we have

Bt ≥
√
tule

− ul
2ν

(ξ−ul
2
t)e−

1
4ν e−

C
ν

(ξ−
√
t−ult)

2
3 ≥ ule

− ul
2ν

(ξ−ul
2
t)−C

ν
|ξ−t−ult|

2
3 e−

1
4ν .

The last expression clearly goes to ∞ uniformly in ξ ≤ 0 as t→ +∞. Since At is bounded

from above by an absolute constant, it follows that

sup
ξ≤0

At
Bt

→ 0, (3.6)

for almost all ω. Combining (3.2) and (3.6) ends the proof.

Proposition 3.2 limt→∞ supξ
Ct

Bt
ul

+Dt
= 0. Moreover, the convergence is uniform in ν ∈

(0, ν0) in the sense described in the statement of Proposition 3.1.

Proof:

Ct
Bt

=
1√
tul

e
−x̂(ξ−ult)

2ν
∫∞
ξ−ult√

t

ηe
[x̂(ξ−ult)−x̂(ξ−ult−

√
tη)]

2ν
− η

2

4ν dη

e
−x̂(ξ−ult)

2ν
∫∞
ξ−ult√

t

e
[x̂(ξ−ult)−x̂(ξ−ult−

√
tη)]

2ν
− η

2

4ν dη.
(3.7)

Changing the variable to y = t−
1
6η, we obtain

Ct
Bt

=
1√
tul

t
1
3
∫∞
ξ−ult

t
2
3

ye
t
1
3

2ν
[
x̂(ξ−ult)−x̂(ξ−ult−t

2
3 y)

t
1
3

− y
2

2
]

t
1
6
∫∞
ξ−ult

t
2
3

e
t
1
3

2ν
[
x̂(ξ−ult)−x̂(ξ−ult−t

2
3 y)

t
1
3

− y
2

2
]

. (3.8)

We shall first consider the values of ξ satisfying

ξ − 2

3
ult ≤ 0. (3.9)
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Stationarity of a implies easily that

x̂(ξ − ult)− x̂(ξ − ult− t
2
3y)

t
1
3

D
=
x̂(t

2
3y)

t
1
3

, (3.10)

with equality in law of processes in the variable y ∈ R. Theorem 4.1 implies now that the

processes
x̂(ξ − ult)− x̂(ξ − ult− t

2
3y)

σt
1
3

, (3.11)

where σ is defined in A4, converge in law to the Wiener process. It follows from the Skoro-

hod representation theorem (Theorem 4.2) that there exists a probability space (Ω,F , P )

and processes τ̃ (t),W on that space, such that for each t

τ̃ (t) D=
x̂(ξ − ult)− x̂(ξ − ult− t

2
3y)

σt
1
3

, (3.12)

W is a Wiener process and with P -probability one

τ̃ (t)(y)→ Wy (3.13)

uniformly in y belonging to any compact interval. Using Lemma 4.1, we see that as long as
ξ−ult
t

2
3
→ −∞, the ratio of the two integrals of (3.8) converges in distribution to y0, where y0

denotes the unique value of y where the function Wy − y2

2
attains its maximum. Existence

and uniqueness of such a point were proven in [23], where they were used for asymptotic

analysis of the expression ∫+∞
−∞ ye

t
1
3

2ν
[W (y)− y

2

2
] dy∫+∞

−∞ e
t
1
3

2ν
[W (y)− y

2

2
] dy

. (3.14)

(3.8) implies now that, for almost all ω, Ct
Bt

converges to zero uniformly in ξ satisfying (3.9).

To handle the values of ξ for which

ξ − 2

3
ult > 0. (3.15)

Note that ξ − ul
2
t → +∞, uniformly in ξ satisfying (3.15). We will now use an argument

similar to the one used in the proof of Proposition 3.1, to show that for almost all ω
Ct
Bt

converges to zero uniformly in ξ satisfying (3.15) as well. Namely, with probability

one there exists an (ω-dependent) constant C such that (3.3) holds. This, together with

subadditivity of the function u 7→ |u| 23 , implies that

x̂(ξ −
√
tη − ult) ≥ −C(|ξ|

2
3 + t

1
3 |η|

2
3 + u

2
3
l t

2
3 ).
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Therefore the ξ-dependent part of the integrand can be absorbed into the prefactor:

|Ct| ≤ e−
ul
2ν

( 5
6
ξ−ul

2
t)
∫ ∞
ξ−ult√

t

ηe−
η2

4ν
+ C

2ν
(t

1
3 |η|

2
3 +u

2
3
l
t

2
3 ) dη. (3.16)

We now divide the integral in the last formula into two parts, corresponding to |η| ≤ 1 and

|η| ≥ 1. The first integral is clearly bounded above by

ce−
ul
2ν

( 5
6
ξ−ul

2
t)ect

2
3

The last expression goes exponentially fast to zero, uniformly in ξ satisfying (3.15), since

for those ξ
5

6
ξ − ul

2
t ≥ 1

18
ult. (3.17)

When |η| ≥ 1, we have |η| 23 ≤ |η| and, consequently, the right-hand side of (3.16) is bounded

above by

e−
ul
2ν

( 5
6
ξ−ul

2
t)e

C
2ν
u

2
3
l
t

2
3

∫ ∞
ξ−ult√

t

|η|e−
η2

4ν
+ C

2ν
t

1
3 |η| dη.

The integral in the above formula can be estimated by first absorbing the factor |η| into

the exponential factor (by making C bigger) and then using the identity∫
R
e−

η2

4ν
+ C

2ν
sη dη =

√
4πνeCs

with s = t
1
3 . We obtain this way

|Ct| ≤ e−
ul
2ν

( 5
6
ξ−ul

2
t)
√

4πνe
C
2ν
u

2
3
l
t

2
3 ect

1
3

the last expression clearly goes to zero uniformly in ξ satisfying (3.15) (see (3.17)). Since

for these ξ, Dt can be uniformly bounded from below by c
√
t, where c > 0 is an absolute

constant, the proof is finished.

Proof of Theorem 2.1: the strategy of the proof is to study the solution of the regularized

equation (2.10) via its Cole-Hopf representation and then take the limit when ν → 0.

It follows from the two preceding propositions, that we just need to study the limiting

distribution of Bt
Bt
ul

+Dt
.

Assume α > c. In the ξ coordinate, this means that in the representation (2.21) of

Bt the factor e−
ul
2ν

(ξ−ul
2
t) goes exponentially fast to zero, uniformly in ν. We now use the

12



bound (3.3) (true with probability one for some constant C) and proceeding exactly as in

the proof of Proposition 3.2, we have, with probability one,∫
R
e−

η2

4ν
− x̂(ξ−

√
tη−ult)

2ν dη ≤ CeCt
2
3 . (3.18)

This clearly implies that Bt → 0 almost surely as t → ∞. On the other hand, Dt → +∞
(at the order of

√
t), so

Bt

Bt
ul

+Dt

→ 0 (3.19)

almost surely and therefore the analog of part 1 of the theorem is proven for the solution

uν , ν > 0, solving the regularized equation (2.10). Note that all the above convergence

statements, including (3.19) hold uniformly in ν. It follows that

sup
ν≤ν0

|uν(ξ(αt), t)|
d→ 0. (3.20)

Thanks to assumption A5, we apply the results of [15] (Theorem 13 and Theorem 14) and

[19] to conclude that for any given t, except for a set of x consisting of countably many

discontinuities of the first kind (shocks),

lim
ν→0

uν(x, t) = u0(x, t). (3.21)

Moreover, u0(x, t) is the unique weak solution satisfying entropy conditions. Notice that

the continuous differentiability of a(x) in x in [15] is used in constructing characteristic

curves. In our case, since we can make change of variables to get inviscid Burgers equation

in the ξ variables, continuity of a(x) is enough. By [19], we also have unique entropy

solutions.

It follows from (3.20) and (3.21) that

u0(ξ(αt), t)
d→ 0.

To prove the same thing for v, note that by (2.11),

v(αt, t) =
1√
a(αt)

u0(ξ(αt), t). (3.22)

Since the random variables 1√
a(αt)

are tight (by stationarity of a), the product in (3.22)

goes to zero in distribution. This ends the proof of part 1 of the theorem.

13



Similarly, if α < c, Bt grows exponentially fast with probability one (since the exponential

prefactor in (2.21) does), while Dt grows at most like
√
t (if at all). Hence in this case

Bt

Bt
ul

+Dt

→ ul (3.23)

and part 2 is proven for a positive ν. Just as in the proof of part 1, it suffices to note

now that the convergence is uniform in ν and part 2 of the theorem follows. Note that,

unlike in part 1, uν does not converge to zero and therefore, we do not obtain convergence

of v(αt, t). In fact, (2.11) shows that v(αt, t) fluctuates as t→∞. Let now

x = ct+ z
√
t. (3.24)

We want to find the distribution of
Bt

Bt
ul

+Dt

in the limit when t→∞. We know that Dt behaves as
√
t times a constant, proportional

to
√
ν. Roughly speaking, Bt is either exponentially large or exponentially small and

depending on which one of these two things happens, the above ratio is close to ul or

to 0. This will be seen from the calculation below. Let y ∈ (0, ul) (note that clearly

0 < Bt
u−1
l
Bt+Dt

< ul). We have:

P [
Bt

u−1
l Bt +Dt

≤ y] = P [
Bt

Dt

≤ uly

ul − y
] = P [

logBt√
t
− logDt√

t
≤

log uly
ul−y√
t

]

= P [ν
logBt√

t
− ν logDt√

t
≤ ν

log uly
ul−y√
t

]. (3.25)

Now, ν
log

uly

ul−y√
t
→ 0 and, since Dt is of the order

√
νt, we also have ν logDt√

t

d→ 0 as well.

Both convergence statements hold uniformly in ν in the sense explained in (3.1). The limit

of the probability in (3.25) is therefore equal to

lim
t→∞

P [
ν logBt√

t
≤ 0]

Similarly to [23] we now write

Bt = p(t)B̃t, (3.26)

where p(t) = e−
ul
2ν

(ξ−ul
2
t)− x̂(ξ−ult)

2ν and

B̃t = ul
√
t
∫ ∞
ξ−ult√

t

e−
η2

4ν
+ 1

2ν
[x̂(ξ−ult)−x̂(ξ−ult−

√
tη)] dη. (3.27)

14



Changing the variable of integration, as in the proof of Proposition 3.2, to y = t−
1
6η, we

obtain

B̃t = t
1
6

∫ ∞
ξ−ult

t
2
3

e
t
1
3

2ν
[
x̂(ξ−ult)−x̂(ξ−ult−t

2
3 y)

t
1
3

− y
2

2
]
dy. (3.28)

Now,
x̂(ξ − ult)− x̂(ξ − ult− t

2
3y)

µ−
3
2σt

1
3

converges in distribution to the Wiener process in the variable y, on any finite interval of

y. Using the Skorohod representation theorem (Theorem 4.2), we can find a probability

space (Ω,F , P ) and processes τ̃ (t)(y, ω),W (y, ω) such that W is a Wiener process,

τ̃ (t)(y, ω)
D
=
x̂(ξ − ult)− x̂(ξ − ult− t

2
3y)

σt
1
3

and for almost every ω

τ̃ (t)(y, ω)→ W (y, ω)

uniformly in y belonging to any compact interval. Lemma 4.1 now implies that as t→∞,

the distribution of

t−
1
3 log B̃t

converges to that of a constant times

sup
y

(
y2

2
−Wy).

(That the assumptions of the lemma are satisfied, follows easily from the assumption A4.)

It follows that

νt−
1
2 log B̃t

d→ 0

uniformly in ν, and we just need to study the behavior of νt−
1
2 log p(t). Now,

νt−
1
2 log p(t) = −1

2
[
ul(ξ − ul

2
t)√

t
+
x̂(ξ − ult)√

t
], (3.29)

where ξ = ξ(ct + z
√
t). Since c = 1

2µ2 and ul = 1
µ
, substituting (3.24), we get from the

central limit theorem for ξ in assumption A4 that:

ul(ξ(ct+ z
√
t)− ul

2
t)√

t

d→ z +
σ

µ2
√

2
W1,
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where here and in the sequel, W1 is used to denote a Gaussian random variable with mean

zero and unit variance. Also, using the central limit theorem for x̂ ((2.16) with b = 1
2µ

), we

obtain:
x̂(ξ − ult)√

t

d→ σ

µ2
√

2
W1.

In order to study the limiting distribution of the sum in (3.29), we need to know the joint

distribution of the variables
ul(ξ(ct+z

√
t)−ul

2
t)√

t
and x̂(ξ−ult)√

t
in the limit when t→∞. We claim

that the two-dimensional random variables

(
ul(ξ(ct+ z

√
t)− ul

2
t)√

t
,
x̂(ξ − ult)√

t
)

converge in distribution to a two-dimensional Gaussian with independent coordinates of

mean z and 0 respectively. To prove this claim, we express the joint distribution function

of the coordinates through a finite-dimensional distribution of the process ξ = ξ(ct+ z
√
t):

P [(
ul(ξ(ct+ z

√
t)− ul

2
t)√

t
≤ y1 ;

x̂(ξ − ult)√
t

≤ y2] = P [
ξ(ct+ z

√
t)− µct− µz

√
t

σ
√
t

≤ y1

ul
− µz + (

ul
2
− µc)

√
t;x(ξ(ct+ z

√
t)− ult) ≤

ξ − ult
µ

+ y2

√
t] (3.30)

Using the fact that µc = ul
2

and rewriting the event

{x(ξ(ct+ z
√
t)− ult) ≤

ξ(ct+ z
√
t)− ult

µ
+ y2

√
t} (3.31)

as

{ξ(ξ(ct+ z
√
t)− ult

µ
+ y2

√
t) ≥ ξ(ct+ z

√
t)− ult} = (3.32)

{
ξ( ξ(ct+z

√
t)−ult

µ
+ y
√
t)− ξ + ult− µy2

√
t

σ
√
t

≥ −µy2

σ
}, (3.33)

we obtain, using the invariance principle of Assumption A4, the following expression for

the joint distribution function (3.30) in the limit t→∞:

P [Wµc ≤
y1

ul
− µz ;W−µc ≥

−µy2

σ
]. (3.34)

The last expression clearly factors, since the processes (Wx)x≥0 and (Wx)x≤0 are indepen-

dent, and this proves the claimed independence. Note that we also recovered the formula

for the variance of each coordinate. In fact, the calculation above can be generalized to
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provide an alternative proof that the finite-dimensional distributions of the rescaled pro-

cess x̂ converge to those of the Wiener process (this fact is a part of Theorem 4.1). Going

back to the main line of the proof and adding the variances of the two limiting normal

distributions, we see that the sum

ul(ξ(ct+ z
√
t)− ul

2
t)√

t
+
x̂(ξ − ult)√

t

converges in distribution to a Gaussian random variable with mean z and variance σ2

µ4 .

Hence,

P [νt−
1
2 log p(t) ≤ 0]→ P [−1

2
(z +

σ

µ2
W1) ≤ 0] = P [W1 ≥ −

µ2

σ
z] = N (

µ2

σ
z),

where N (s) = 1√
2π

∫ s
−∞ e

− s
′2
2 ds′ is the error function. This ends the proof for ν > 0.

Because in this case u(ct+z
√
t, t) does not converge to a constant, a more careful argument

is necessary to carry out the ν → 0 limit. Since the above estimates were uniform in ν, we

have actually shown that for every y ∈ (0, ul),

P [ inf
ν≤ν0

uν(ct+ z
√
t, t) ≤ y]→ N (

µ2

σ
z).

In exactly the same way, we can show that

P [ inf
ν≤ν0

uν(ct+ z
√
t, t) > y]→ 1−N (

µ2

σ
z).

Taking the limit ν → 0 we obtain from these two relations

lim inf
t→∞

P [u0(ct+ z
√
t, t) ≤ y] ≥ N (

µ2

σ
z), a.e. in z. (3.35)

and

lim inf
t→∞

P [u0(ct+ z
√
t, t) > y] ≥ 1−N (

µ2

σ
z), a.e. in z. (3.36)

Hence

1 ≤ lim inf
t→∞

P [u0(ct+ z
√
t, t) ≤ y] + lim inf

t→∞
P [u0(ct+ z

√
t, t) > y] ≤

lim inf
t→∞

(P [u0(ct+ z
√
t, t) ≤ y] + P [u0(ct+ z

√
t, t) > y]) = 1, a.e. in z,

so that (3.35) and (3.36) are satisfied as equalities. If there exists a sequence tn →∞ such

that

lim
n→∞

P [u0(ctn + z
√
tn, tn) ≤ y] ≥ N (

µ2

σ
z) + ε, a.e. in z,
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then, since also

lim inf
n→∞

P [u0(ctn + z
√
tn, tn) > y] ≥ 1−N (

µ2

σ
z), a.e. in z

adding the last two equations, we get a contradiction. Therefore

lim
t→∞

P [u0(ct+ z
√
t, t) ≤ y] = N (

µ2

σ
z), a.e. in z,

and

lim
t→∞

P [u0(ct+ z
√
t, t) > y] = 1−N (

µ2

σ
z), a.e. in z.

Since the right hand side is continuous in z, these two equalities are valid for all z, and so

together with (2.11) prove the last part of the theorem.

4 Appendix

We prove the results invoked in the proof of the Theorem 2.1 here.

Lemma 4.1 Let ϕλ(u) ∈ C(R1), ϕλ(u) → ϕ(u), uniformly on compact sets of u as

λ→∞; and C1u
2 ≤ |ϕλ(u)| ≤ C2u

2 for some positive constants Ci, i = 1, 2, uniformly in

λ → ∞. The limiting function ϕ(u) ∈ C(R1), ϕ(u) < ϕ(u0), ∀u 6= u0. Here c0 and C are

positive constants. Then for the probability measures µλ with densities
exp{λϕλ(u)}du∫
R1 exp{λϕλ(u)}du

,

we have as λ→ +∞:

1. µλ
d→ δ(u0), the unit mass at u0; (4.1)

2. the expected value Eµλ
(u)→ u0; (4.2)

3. λ−1ln
∫
R1

exp{λϕλ(u)}du→ ϕ(u0). (4.3)

Proof: Let ψ(u) ∈ C∞(R1), |ψ(u)| ≤ C(1 + u2)m, for some m > 0. By the assumption on

ϕλ(u), ∀ δ > 0, ∃ Λ1 = Λ1(δ) such that if λ ≥ Λ1, any maximal point uλ of ϕλ(u) lies in

[u0 − δ, u0 + δ], and so:∫
ψ(u)dµλ − ψ(u0) =

∫
(ψ(u)− ψ(u0))dµλ

=
∫
|u−u0|≤4δ

(ψ(u)− ψ(u0))dµλ +
∫
|u−u0|≥4δ

(ψ(u)− ψ(u0))dµλ

= I + II, (4.4)
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The first term is bounded as:

|I| ≤ sup
|u−u0|≤4δ

|ψ(u)− ψ(u0)| ≡ ω(δ, u0). (4.5)

Let us denote ω0 = ω0(δ, u0) = lim supλ→∞ sup|u−u0|≤4δ |ϕλ(u)− ϕλ(u0)|. Now the second

term can be written as:

II =
∫
|u−u0|≤4δ

(ψ(u)− ψ(uλ))dµλ +
∫
|u−u0|≥4δ

(ψ(uλ)− ψ(u0))dµλ

≤ 2ω(δ;u0) +
∫
|u−u0|≥4δ

(ψ(uλ)− ψ(u0))
exp{λ(ϕλ(u)− ϕλ(uλ))}du∫
R1 exp{λ(ϕλ(u)− ϕλ(uλ))}du

. (4.6)

By our assumption on ϕλ, we see that for any given δ > 0, there exist constants Ki =

Ki(δ) > 0, i = 1, 2, Λ1 = Λ1(δ), such that if λ ≥ Λ1 and u 6∈ [u0 − 3δ, u0 + 3δ],

−K2(δ)|u− uλ|
2 ≤ ϕλ(u)− ϕλ(uλ) ≤ −K1(δ)|u− uλ|

2. (4.7)

On the other hand, for any δ1 > 0, there is Λ2(δ) such that if λ ≥ Λ2, we have:∫
exp{λ(ϕλ(u)− ϕλ(uλ))}du

≥
∫
u∈[u0−δ1,u0+δ1]

exp{−4λω0(δ1, u0)}du

= 2δ1 exp{−4λω0(δ1, u0)}. (4.8)

Hence:

|II| ≤ 2ω(δ, u0)

+ 2−1δ−1
1 exp{4λω0(δ1, u0)}

∫
|u−u0|≥4δ

(1 + |u− u0|2)m exp{−λK(δ)|u− uλ|
2}du

≤ 2ω(δ;u0) + δ−1
1 exp{4λω0(δ1, u0)}C(δ,m)

∫
|u−uλ|≥3δ

exp{−λ
2
K(δ)|u− uλ|

2}du

≤ 2ω(δ, u0) + δ−1
1 exp{4λω0(δ1, u0)}C(δ,m)

∫
|u−uλ|≥3δ

exp{−3λ

2
K(δ)δ|u− uλ|}du

≤ 2ω(δ, u0) + δ−1
1 exp{4λw0(δ1, u0)}C(δ,m)

4

3δK(δ)λ
exp{−9λ

2
K(δ)δ2}. (4.9)

Choosing δ1 small enough so that 8ω0(δ1, u0) < 9δ2K(δ), and letting λ→∞, we have:

lim sup
λ→∞

|II| ≤ 2w(δ, u0),
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while

lim sup
λ→∞

|I| ≤ ω(δ;u0).

Finally, sending δ → 0, we conclude that∫
ψ(u)dµλ → ψ(u0).

This is, in particular, true for all bounded ψ, which implies part 1 of the lemma, and also

for ψ(u) = u: ∫
udµλ → u0. (4.10)

which proves part 2. For part 3, we only need to show that:

λ−1ln
∫

exp{λ(ϕλ(u)− ϕ(u0))}du→ 0. (4.11)

The above integral can be decomposed into the sum of two integrals over |u−u0| ≤ 4δ and

its complement, which we denote by Iλ,1 and Iλ,2 respectively. Notice that for |u−u0| ≤ 4δ,

there exists a positive constant K ′(δ), K ′(δ)→ 0 as δ → 0, such that:

|ϕλ(u)− ϕ(u0)| = |ϕλ(u)− ϕλ(u0) + ϕλ(u0)− ϕ(u0)| ≤ K ′(δ).

We now have the upper bound for Iλ,1:

Iλ,1 =
∫
|u−u0|≤4δ

e
λ(ϕλ(u)−ϕ(u0)) ≤ 4δeλK

′(δ). (4.12)

Similarly, we have the lower bound 4δe−λK
′(δ). Now let us bound Iλ,2 from above using

(4.7) as:

Iλ,2 =
∫
|u−u0|>4δ

exp{λ(ϕλ(u)− ϕ(u0))}du

=
∫
|u−u0|>4δ

exp{λ(ϕλ(u)− ϕλ(uλ))} exp{λ(ϕλ(uλ)− ϕ(u0))} du

≤ exp{λ(ϕλ(uλ)− ϕ(u0))}
∫
|u−u0|>4δ

exp{−λK1(δ)|u− uλ|
2}du

≤ exp{λ(ϕλ(uλ)− ϕ(u0))}
∫
R1

exp{−λK1(δ)u2}du

≤ exp{λ(ϕλ(uλ)− ϕ(u0))} C√
λK1(δ)

. (4.13)

Similarly, we have the lower bound for Iλ,2 with K2 replacing K1. Combining (4.12), (4.13),

and the analogous lower bounds, and using the arbitrary smallness of δ, we arrive at (4.11).

The proof is complete.
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Theorem 4.1 Let

T (b) = inf{x ≥ 0 : ξ(x) = b}

Under above assumptions we have for each b0 > 0

(
T (tb)− tb

µ

µ−
3
2σ
√
t

)0≤b≤b0
D→ (Wb)0≤b≤b0

Remark 4.1 The theorem is thus roughly saying that the invariance principle (2.3) for the

rescalings of the process ξ implies an invariance principle for the rescalings of the hitting

times process. Central limit theorems for hitting times are known in similar contexts (see

e.g. [5], p.116). While the present theorem may also exist in literature, a precise reference

is not known to the authors.

Proof:

The first observation is that the hitting times T (tb) satisfy a law of large numbers:

T (tb)

t

p→ b

µ
.

We will show it in a stronger form: for any b0 and for any η > 0

P [∃b : 0 ≤ b ≤ b0;
1

t
|T (tb)− tb

µ
| > η]→ 0, (4.14)

as t→∞. We have, by positivity of a:

P [∃b : 0 ≤ b ≤ b0;
T (tb)− tb

µ

t
> η] = P [∃b : 0 ≤ b ≤ b0 : ξ(t(

b

µ
+ η)) ≤ tb]

= P [ inf
0≤b≤b0

ξ(t( b
µ

+ η))− µt( b
µ

+ η)
√
t

≤ −ηµ
√
t]

The last quantity clearly goes to zero when t goes to infinity, since by (2.3) the processes
ξ(t( b

µ
+η))−µt( b

µ
+η)

√
t

converge in law to the process (σW b
µ

+η)|b|≤b0 , while the numbers −ηµ
√
t

go to −∞. A similar argument shows that

P [∃b : 0 ≤ b ≤ b0;
1

t
T (tb)− tb

µ
< −η]→ 0,

and (4.14) is proven. Next, we show that for a fixed b

T (tb)− tb
µ

µ−
3
2σ
√
t

d→ Wb. (4.15)
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Let

ζ(x) = ξ(x)− µx,

so that, in particular, E[ζ(x)] = 0. We have:

T (tb)− tb
µ√

t
= − 1

µ

tb− µT (tb)√
t

= − 1

µ

ζ(T (tb))√
t

, (4.16)

since, by definition, ξ(T (tb)) = tb. The argument of ζ in the expression on the right-hand

side of (4.16) is a random time T (tb), which is not far from tb
µ

. It is therefore natural to

expect that ζ(T (tb)) does not differ much from ζ( tb
µ

). In fact, as we will now show,

ζ(T (tb))− ζ( tb
µ

)
√
t

d→ 0. (4.17)

Indeed, for any ε, η > 0, we have

P [|ζ(T (tb))− ζ(
tb

µ
)| > ε

√
t] ≤ P [ sup

0≤b≤b0
|T (tb)− tb

µ
| ≥ ηt]

+ P [ sup
|c− tb

µ
|≤ηt
|ζ(c)− ζ(

tb

µ
)| > ε

√
t]. (4.18)

The first term goes to zero when t→∞, in view of (4.14). Rewriting the second term as

P [ sup
|c− tb

µ
|≤ηt

|ζ(c)− ζ( tb
µ

)|
σ
√
t

>
ε

σ
]

and using the invariance principle for ξ as in (2.3), we see that the second term in (4.18)

converges to

P [ sup
|y− b

µ
|≤η
|W (y)−W (

b

µ
)| > ε

σ
].

Taking now η to zero, we obtain (4.15). Since, by (2.3) again,

ζ( tb
µ

)

σ
√
t

d→ W b
µ
,

(4.17) follows. This proves that one-dimensional distributions converge to those of the

Wiener process. A similar calculation shows convergence of arbitrary finite-dimensional

distributions to those of the Wiener process. We only sketch the argument, since, apart
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from the notation, it does not contain any new elements. Given b1, . . . , bn ∈ [0, b0], we have

by (4.17):
ζ(T (tbi))− ζ( tbi

µ
)

√
t

d→ 0

for i = 1, . . . , n. This implies that the limit of the distribution of the random vector
1

µ−
3
2 σ
√
t
(T (tbi)− tbi

µ
) is the same as that of 1

µ−
3
2 σ
√
t
ζ( tbi

µ
), provided that the latter exists. It

follows from the invariance principle for the process ξ that the limit in fact exists and is

the finite-dimensional distribution of the Wiener process, as claimed.

To complete the proof it remains to show that the family of processes (τ (t)(b))0≤b≤b0 =

( 1√
t
(T (tb)− tb

µ
))0≤b≤b0 is relatively compact in the topology of convergence in law. We are

using here Theorem 8.1 of [3], which is used in the sequel as our principal reference for

questions related to convergence in law. According to a standard criterion of tightness

(Theorem 8.2 of [3]), it is enough to show that the following two conditions hold:

1. For each positive η there exists an a such that

P [|τ (t)(0)| > a] ≤ η.

2. For each positive ε and η, there exists a δ0 with δ ∈ (0, δ0) and a t0 such that |τ (t)(b)−
τ (t)(c)| ≥ ε

P [ sup
b≤c≤b+δ

|τ (t)(b)− τ (t)(c)| ≥ ε] ≤ η

for all t ≥ t0.

Condition 1 is obviously satisfied, since τ (t)(0) = 0 for each t. To prove that condition 2

also holds, let us fix a θ > 0. If there exist b, c ∈ [0, δ0] such that |τ (t)(b)− τ (t)(c)| ≥ ε, then

with b′ = T (tb)
t

and c′ = T (tc)
t

, we have

|ζ(tb′)− ζ(tc′)| = µ
√
t|τ (t)(b)− τ (t)(c)| ≥ εµ

√
t.

Also:

|b′−c′| = 1

t
|T (tb)−T (tc)| ≤ 1

t
(|T (tb)− tb

µ
|+|tb

µ
− tb
µ
|+|tc

µ
−T (tc)|) ≤ 1

t
(θt+

tδ

µ
+θt) = 2θ+

δ

µ
.

Therefore:

P [ sup
b≤c≤b+δ

|τ (t)(b)− τ (t)(c)| ≥ ε] ≤

P [ sup
0≤b≤b0

|T (tb)− tb

µ
| ≤ θt; sup

|b′−c′|≤2θ+ δ
µ

|ζ(tb′)− ζ(tc′)| ≥ εµ
√
t] + P [ sup

0≤b≤b0
|T (tb)− tb

µ
| ≥ θt].
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The first term on the right-hand side is obviously bounded by

P [ sup
|b′−c′|≤2θ+ δ

µ

|ζ(tb′)− ζ(tc′)| ≥ εµ
√
t]. (4.19)

and this probability converges to

P [ sup
|b′−c′|≤2θ+ δ

µ

|Wb −Wc| ≥ µε],

by virtue of the invariance principle for ξ in (2.3). Choosing δ small enough and taking

θ = δ (say), we can make this limit smaller than η
4
, since almost all paths of the Wiener

process, are uniformly continuous on the compact interval [0, b0]. For t large enough, (4.19)

is thus bounded by η
2
. As we have seen in (4.15), for any fixed θ the second term goes to zero,

so choosing t0 large enough we can make the second term in (4.19) smaller than η
2

as well.

Theorem 8.2 of [3] together with the convergence of the finite-dimensional distributions,

proven above, implies the desired statement of the theorem. The proof is complete.

In the proof of Theorem 4.1, we use a theorem by Skorohod, which we state here in a

special case, suitable for our application. A general version can be found, together with a

proof in [18] (Theorem 86.1).

Theorem 4.2 Suppose that (τ (t)(b))0≤b≤b0 is a family of stochastic processes, converging

in law to a process τ as t→∞:

τ (t) D→ τ.

Then there exists a probability space (Ω,F , P ) and processes τ̃ (t), τ̃ such that:

τ̃ (t) D= τ (t);

τ̃
D
= τ

and with P -probability one

τ̃ (t)(b)→ τ̃(b)

uniformly in 0 ≤ b ≤ b0.
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