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Abstract. We study a Maxwell–Bloch system describing the dynamics of single-longitudinal
Raman lasers in the two transverse space dimensions. Raman lasing is generated by a coherent
external pump laser, as a three-wave interaction involving two optical and one material wave.
On the other hand, a two-level laser involves incoherent external pumping through, for example,
an electrical discharge or flashlamp. Raman lasers have the advantage of being tunable and
display a novel explicit nonlinear detuning between the pump and laser emission frequencies.
Consequently these lasers exhibit much richer nonlinear dynamics. We establish the global
existence of classicalH 2 solutions, and show that for periodic domains the dynamics is governed
by a globalC∞ smooth attractor of finite dimensions. We explain the structures of nonlinear
interactions and couplings that lead to the time asymptotic smoothing. We also construct mild
solutions with the dispersive Strichartz inequality for rough but spatially decaying data (in
H 1×(L2∩Lp)2, p ∈ (4,∞)) on the whole plane, which physically corresponds to the absorbing
boundary condition.

AMS classification scheme numbers: 78Q60, 35Q53, 35Q60

1. Introduction

The Maxwell–Bloch Raman (MBR) laser system in two transverse dimensions reads:

Et − ia1E = −σE + σP + iδ1EN, (1.1)

Pt + (1+ i�)P = (r −N)E + iδ2|E|2P, (1.2)

Nt + bN = 1
2(E

?P + EP?), (1.3)

where1 is the two-dimensional Laplacian inx = (x1, x2) ∈ R2 or T 2 (T n will denote the
unit n-dimensional torus),x being the transverse dimensions; the real parametera measures
the transverse diffraction. The complex variablesE andP are the electric and polarization
fields, andN is proportional to the difference between the atomic and initial inversion; the
positive parametersσ andb are respectively the dissipation (decay) rates of the electric and
population inversion both scaled to the decay rate of the polarization. The real detuning
� = �0+ δ3r(x), where�0 is the difference between the atomic and the cavity frequencies
divided by the polarization decay rate, andr = r(x) is the external pumping function.
One feature of the Raman laser is that the detuning� depends on the external pumping
function. The real parameterδi ’s depend inversely on the magnitude of the detuningδ of
the external pump laser.? denotes complex conjugate. For recent physical literature on the
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system (1.1)–(1.3), we refer to Jakobsenet al [14], Geddeset al [8], among others. See
also earlier works on instabilities and chaos in the reduced spatially homogeneous ordinary
differential equation (ODE) system witha = 0, [12, 13].

The MBR system reduces to the Maxwell–Bloch (MB) two-level system when the
nonlinear interaction terms with coefficientsδi , i = 1, 2, are absent. The familiar complex
Lorenz system appears if we further ignore all the spatial dependence. Raman lasers are
widely tunable sources, in contrast to two-level lasers, as the lasing emission frequency
varies with the external coherent laser pump frequency. In addition, the nonlinear detuning
exhibited by these lasers, called the AC Stark effect, can be quite pronounced and influences
the bifurcation behaviour of the model equations above. The fact that the detuning depends
explicitly on the external pump parameterr(x) causes the fastest growing unstable mode to
lie on a curve rather than a vertical straight line as in the two-level case.

The pumping functionr = r(x) normally has fast spatial decay inx, and its contribution
is restricted to a bounded region, outside of which all the field variables can be regarded as
zero. Hence, we assume thatr is a smooth compactly supported function. This motivates
our absorbing boundary condition which we will take to beH 1(R2)×(Lp(R2))2, p ∈ (4,∞)
for convenience. The detuning� is then a smooth spatial function, approaching constant
�0 at infinities. The other is the commonly used periodic boundary conditionL2(T 3). It is
convenient to consider bothr and� as constants for periodic boundary conditions, which
we will assume hereafter. We will consider only these two boundary conditions in this
paper.

The first work on global solutions and attractor of MB systems was performed by
Constantinet al [7], for the one-dimensional longitudinal (z) two-level MB system. That
is the system in which we replace ia1E with Ez, and setδ1 = δ2 = 0 in (1.1), (1.2). They
showed that the MB system admits unique global weakL2 solution for anyL2 periodic
initial data; moreover, there exists a finite-dimensionalC∞ universal attractor. The MB
system in this case becomes hyperbolic with two characteristic speeds. Birnir and Xin [2]
showed that the two-dimensional transverse MB system (δ1 = δ2 = 0 in (1.1), (1.2)) admits
unique global classical solutions inH 2(T 2) for periodic initial data; moreover, the solutions
converge to a finite-dimensionalC∞(T 2) attractor ast →∞. Xin and Moloney [28] studied
the three-dimensional two-level MB (addingEz term in (1.1) and settingδ1 = δ2 = 0 in
(1.1), (1.2)). The system has a combined effects of propagation inz and diffraction inx,
corresponding to an interplay of hyperbolic and dispersive aspects of the problem. As in the
case of the well known three-dimensional Navier–Stokes equations [6, 17, 25], one is unable
to show global existence of classical solutions to the three-dimensional MB with Sobolev
imbedding. Instead, mild solutions and their continuous dependence on the initial data in
the L2 sense are established using the dispersive Strichartz inequalities (see [3, 16, 28],
and a precise statement of these inequalities will be presented in section 3). In contrast,
the global attractor, understood in the sense of global time invariantω-limit set, is only
partially smoother than the initial data, and notC∞. This is reminiscent of the partial
regularity results of three-dimensional Navier–Stokes equations, [4].

From the studies of two-level MB, we see that the two-dimensional transverse case is
the best in that there exist classical and mild solutions, and attracting sets inH 2. Neither
the longitudinal nor the three-dimensional two-level MB seems to have attracting sets in
H 1. The difference caused by the additional longitudinal termEz in (1.1) is that the ODEs
(1.2) and (1.3) can no longer help in lowering the order of spatial derivatives in the course
of bounding‖∇E‖2. We will show that in the transverse MB, taking advantage of the ODE
coupling and reducing the order of spatial derivatives through temporal integration is the
key to constructing global classical smooth solutions.
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Naturally, the Raman system in two transverse dimensions should be the first to
examine. We see that the Raman systems are much more nonlinear than its two-level
analogues. Hence, it is more difficult to construct mild solutions for Raman systems. Our
idea for establishing mild solutions is to estimate the difference of any two solutions in
the L2 norm by combining thea priori estimates of the spatial gradient of the electric
field E, and the dispersive Strichartz inequalities, two approaches used independently
before in [2, 28]. This allows us to construct unique weak solutions for initial data in
(E0, P0, N0) ∈ H 1 × (L2 ∩ Lp)2, p ∈ (4,∞). This space is stronger than what is needed
to construct mild solutions for the two-level MB, for which theL2 × (L2 ∩ Lp)2 space is
enough. For proving classical solutions, we carry out energy estimates with the help of
Gagliardo–Nirenberg inequalities, and the repeated substitution using the equations of the
system. It turns out that this is more involved and delicate than a similar effort for the
two-level MB system in two transverse dimensions, [2]. After mild and classical solutions
are constructed, we go on to investigate usual global attractors for classical solutions. We
also discuss a weak notion of attractors, more suitable for mild solutions and solutions on
the plane. Here much further work is needed.

Let us state our main results. To be consistent with notations in the early works, we
make the change of variablesE = X, P = Y , N = Z + r to rewrite (1.1)–(1.3) as:

Xt − ia1X = −σX + σY + iδ1X(Z + r), (1.4)

Yt = −(1+�)Y − ZX + iδ2|X|2Y, (1.5)

Zt = −bZ + Re(XY ?)− br. (1.6)

The initial condition for (1.4)–(1.6) is:(X, Y, Z)|t=0 = (X0, Y0, Z0). We have:

Theorem 1.1.Let (X0, Y0, Z0)(x1, x2) ∈ (H 2(T 2))3. Then there exists a unique global
classical solution

(X(t, ·), Y (t, ·), Z(t, ·)), · = (x1, x2)

of the MBR system (1.4)–(1.6) such that:
(1) S = S(t) : (X0, Y0, Z0)(x) → (X, Y, Z)(t, x) ∈ (H 2(T 2))3 is continuous and

bounded;
(2) equations (1.4)–(1.6) are satisfied in(L2(T 2))3;
(3) there is a globalC∞ attractor A of finite Hausdorff dimension such that for any

bounded setB ∈ (H 3(T 2))3,

lim
t→+∞dist(H 2(T 2))3(S(t)B,A) = 0.

For global mild solutions, we have:

Theorem 1.2.Let (X0, Y0, Z0)(x1, x2) ∈ (H 1 × (L2 ∩ Lp)2)(R2), for somep ∈ (4,+∞).
Then there exists a unique global solution:

S(t, ·) = (X(t, ·), Y (t, ·), Z(t, ·)), · = (x1, x2)

of the MBR system (1.4)–(1.6) such that:
(1) S : (X0, Y0, Z0)(x)→ (X, Y, Z)(t, x) ∈ (H 1 × (L2 ∩ Lp)2)(R2) is continuous and

bounded;
(2) S satisfies the integral equations:

X(t, ·) = U(t)X0(·)+ σ
∫ t

0
U(t − s)Y (s, ·) ds + iδ1

∫ t

0
U(t − s)X(Z + r)(s, ·) ds (1.7)

Y (t, ·) = Y0(·)− (1+ i�)
∫ t

0
Y (s, ·) ds +

∫ t

0
−Z(s, ·)X(s, ·) ds + iδ2|X|2Y (s, ·) ds, (1.8)
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Z(t, ·) = Z0(·)− b
∫ t

0
Z(s, ·) ds + Re

∫ t

0
XY?(s, ·) ds − r(·)bt, (1.9)

whereU(t) = exp{iat1− σ t}, (1.7)–(1.9) hold in(L2(R2))3;
(3) the MBR dynamics admits a globalC∞ attractor A in (H 1 × (L2 ∩ Lp)2)(R2) in

the sense thatA is the largest bounded time invariant set, and is theω-limit set of any open
bounded neighbourhood ofA;

(4) if Sj (0, ·) j→∞−→ S(0, ·) in (L2(R2))3, and

‖(Yj (0, ·), Zj (0, ·))‖Lp + ‖Xj‖H 1 6 C,

asj →∞, for some finite constantC <∞, then for any later time:

Sj (t, ·) j→∞−→ S(t, ·),
in (L2)3(R2) and

‖(Y (t, ·), Z(t, ·))‖Lp + ‖X‖H 1 6 C.

We will present similar results for mild solutions under the periodic boundary conditions,
and classicalH 2 solutions onR2 in the coming sections. For the periodic boundary
condition, the modified Strichartz inequality is only conjectured, see Bourgain, [3]. Under
this conjecture, an extension can be made to construct mild global solutions. TheH 2

classical solutions onR2 are analogously proved as those onT 2, however, the global
attractor also has to be understood in the above weak sense for now.

This paper is organized as follows. In section 2, we derivea priori estimates and prove
the global existence of classicalH 2 solutions for both planar and periodic domains. In
section 3, we show the global mild solutions on the plane, and extend this result to mild
solutions onT 2 under the conjectural Strichartz inequality. In section 4, we discussC∞

smoothness of global attractorA, and comment on the structures of nonlinearities in the
system to this end. In section 5, we give an upper bound on the dimensions ofA computed
in H 2(T 2). Skew symmetries of the linearized flow are essential.

2. A priori estimates and global classical solutions

In this section, we first derivea priori estimates for the solution(X, Y, Z) to the system:

Xt − ia1X = −σX + σY + iδ1X(Z + r(x)), (2.1)

Yt + (1+ i�(x))Y = −ZX + iδ2|X|2Y, (2.2)

Zt + bZ = Re(XY ?)− br(x); (2.3)

then use them to construct global classical solutions in Sobolev spaceH 2. Our estimates
work for both periodic and the planar domains, and so we do not specify the domains for
the remaining discussions of this section.

We start with estimates on(Y, Z) because there is a nice cancellation property due to
ZX term in (2.2) and Re(XY ?) term in (2.3). Indeed, multiplying (2.2) byY ?, (2.3) byZ,
adding and taking real part, we have:

1
2(|Y (t, ·)|2+ |Z(t, ·)|2)t = −|Y (t, ·)|2− b|Z(t, ·)|2− brZ, (2.4)

which yields upon using Cauchy–Schwartz inequality and integrating int that:

|Y (t, ·)|2+ |Z(t, ·)|2 6 (|Y0(·)|2+ |Z0(·)|2− br2/2β)e−2βt + br2/2β, (2.5)
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whereβ = min(1, b2), for any t > 0, and anyx. Integrating (2.5) over space gives for
t > 0:

‖Y‖2
2+ ‖Z‖2

2 6 (‖Y0‖2
2+ ‖Z0‖2

2− b‖r‖2
2/2β)e

−2βt + b‖r‖2
2/2β. (2.6)

Raising (2.6) to the powerp ∈ (2,∞), integrating over space, and using Jensen’s inequality,
we have for allt > 0 with ap dependent constantcp that:

‖(Y, Z)‖pp 6 cp(‖(Y0, Z0)‖ppe−pβt + (b‖r‖2
2/2β)

p/2). (2.7)

Let us then turn toX and calculate using equation (2.1):

d

dt
‖X‖2

2 = 2Re
∫
XX?t = 2Re

∫
X{ia1X − σX + σY + iδ1X(Z + r)}?

= 2Re

{
− ia‖∇X‖2

2− σ‖X‖2
2+ σ

∫
XY? − iδ1

∫
(Z + r)|X|2

}
= −2σ‖X‖2

2+ 2σRe
∫
XY?

6 − σ‖X‖2
2+ σ‖Y‖2

2, (2.8)

which results in:

‖X‖2
2(t) 6 e−σ t‖X0‖2

2+ σ
∫ t

0
e−σ(t−s)‖Y‖2

2 ds. (2.9)

Combining (2.6)–(2.9), we obtain:

‖X‖2
2(t) 6 e−σ t‖X0‖2

2+ σ
∫ t

0
{(‖Y0‖2

2+ ‖Z0‖2
2− b‖r‖2

2/2β)e
−2βt + b‖r‖2

2/2β}e−σ(t−s) ds

6 e−σ t‖X0‖2
2+

b‖r‖2
2

2β
+ σ‖(Y0, Z0)‖2

2e(t) ≡ C̃(t), (2.10)

where e(t) = (e−βt − e−σ t )/(β − σ), if β 6= σ , and e(t) = te−σ t , if β = σ .
HereafterC̃ will be a generic smooth functionof t such that it approaches a limit

independent of initial data (only depending on the parameters in the MBR system)
exponentially fast ast → +∞. Also c will denote ageneric constantdepending only
on the MBR coefficients and not the norms of initial data.

Now we estimate the gradient ofX component in terms of thep norms of the(Y, Z)
components. We calculate:

1

2

d

dt

∫
|∇X|2 = Re

∫
∇Xt∇X∗ = Re

{∫
∇(ia1X − σX + σY + iδ1X(Z + r))∇X?

}
= − σ‖∇X‖2

2+ σRe
∫
∇Y · ∇X? + δ1Re

∫
iX∇(Z + r) · ∇X?

= − σ‖∇X‖2
2+ σRe

∫
∇Y · ∇X? + δ1Re

∫
(−i)X(Z + r)1X?. (2.11)

Due to the appearance of1X, ∇(X, Y ), we cannot directly estimate spatial derivatives and
hope to find uniform bounds in time. The idea now is to use integration by parts to trade a
time derivativeXt for the1X, and later use ODE coupling to reduce the time derivative.

Hence the last integral is continued as:

Re
∫
(−i)X(Z + r)1X? = Re

∫
iX?(Z + r)1X

= Re
∫

iX?(Z + r)(ia)−1(Xt + σX − σY − iδ1X(Z + r))
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= a−1Re
∫
X?(Z + r)(Xt + σX − σY − iδ1X(Z + r))

= (2a)−1Re
∫
(Z + r)(|X|2)t + σ

a

∫
|X|2(Z + r)− σ

a
Re

∫
X?(Z + r)Y.

(2.12)

Similarly, the second integral of (2.11) is handled as:

Re
∫
∇Y · ∇X? = −Re

∫
Y ?1X = −Re

∫
(ia)−1Y ∗(Xt + σX − σY − iδ1X(Z + r))

= a−1Re
∫

iY ∗Xt + σ
a

Re
∫

iY ∗X + δ1

a
Re

∫
Y ∗X(Z + r). (2.13)

It follows from (2.11)–(2.13) that

d

dt
‖∇X‖2

2+ 2σ‖∇X‖2
2 =

2σ

a
Re

∫
i(XtY

∗ + σY ∗X)+ δ1

a
Re

∫
(Z + r)(|X|2)t

+2δ1σ

a

∫
|X|2(Z + r). (2.14)

Integrating (2.14) int with integration factor e2σ t gives:

e2σ t‖∇X‖2(t) = ‖∇X0‖2
2+

2σ

a
Re

∫ t

0
ie2σs

∫
XsY

∗ + σY ?X

+δ1

a

∫ t

0
e2σs

∫
(Z + r)(|X|2)s + 2δ1σ

a

∫ t

0
e2σs

∫
|X|2(Z + r)

6 ‖∇X0‖2
2+

2σ

a
Re

∫ t

0
ie2σs

∫
XsY

∗ + σ
2

a

∫ t

0
e2σs(‖Y‖2

2+ ‖X‖2
2)

+2σδ1

a

∫ t

0

∫
e2σs

(
ε2|X|4

2
+ |Z + r|

2

2ε2

)
+ δ1

a

∫ t

0
e2σs

∫
(Z + r)(|X|2)s

6 ‖∇X0‖2
2+ c

∫ t

0
e2σs(ε2‖X‖4

4+ ε−2‖(X, Y, Z + r)‖2
2)

+2σ

a
Re

∫ t

0
ie2σs

∫
XsY

∗ + δ1

a

∫ t

0
e2σs

∫
(Z + r)(|X|2)s, (2.15)

where c and ε are positive constants depending only on(σ, δ1, a, ‖r‖∞), and ε is to be
chosen. Finally, as we just mentioned, integration by parts in timet and using (2.2) give:∫ t

0
e2σs

∫
XsY

∗ = e2σs
∫
XY ∗|s=ts=0− 2σ

∫ t

0
e2σs

∫
XY ∗

−
∫ t

0
e2σs

∫
X · ((−1+ i�)Y ∗ − ZX∗ − iδ2|X|2Y ∗).

So:∣∣∣∣ ∫ t

0
e2σs

∫
XsY

∗
∣∣∣∣ 6 e2σ t‖X‖2‖Y‖2+ ‖X0‖2‖Y0‖2+ 2σ

∫ t

0
e2σs‖X‖2‖Y‖2

+(1+ ‖�‖2
∞)

1/2
∫ t

0
e2σs‖X‖2‖Y‖2+ 1

2

∫ t

0
e2σs

∫
(ε2|X|4+ ε−2Z2)

+δ2

∫ t

0
e2σs

∫ (
3

4
ε4/3|X|4+ 1

4
ε−4|Y |4

)
. (2.16)
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Similarly:∫ t

0
e2σs

∫
(Z + r)(|X|2)s = (e2σs

∫
(Z + r)|X|2)|s=ts=0− 2σ

∫ t

0
e2σs

∫
(Z + r)|X|2

−
∫ t

0
e2σs

∫
|X|2(−bZ + Re(XY ∗)− br)

6 e2σ t‖Z + r‖2‖X‖2
4+ ‖Z0+ r‖2‖X0‖2

4+ 2σ
∫ t

0
e2σs‖Z + r‖2‖X‖2

4

+b
∫ t

0
e2σs‖Z‖2‖X‖2

4+ b‖r‖∞
∫ t

0
e2σs‖X‖2

2

+
∫ t

0
e2σs

∫ (
3

4
ε4/3|X|4+ 1

4
ε−4|Y |4

)
. (2.17)

Combining (2.15)–(2.17), we obtain:

e2σ t‖∇X‖2
2(t) 6 ‖∇X0‖2

2+ c
∫ t

0
e2σs(ε−2‖(X, Y, Z)‖2

2+ ε−2‖r‖2
2+ ε4/3‖X‖4

4

+ε−4‖Y‖4
4) ds + 1

2
e2σ t

(
‖(X, Y )‖2

2+
1

ε1(t)
‖Z + r‖2

2+ ε1(t)‖X‖4
4

)
+‖X0‖2‖Y0‖2+ ‖Z0+ r‖2‖X0‖2

4, (2.18)

where ε1(t) is a smooth function which we now choose to beε(C̃(t) + ‖r‖2)
−1. By

Gagliardo–Nirenberg inequality (c0 a dimensional constant):

ε1(t)‖X‖4
4 6 c0ε1(t)‖X‖2

2‖∇X‖2
2 6 c0ε‖∇X‖2

2. (2.19)

We will selectε so small thatc0ε <
1
2. Plug (2.19) into (2.18), and use the earlierp norm

bounds (2.7) to obtain:
1
2e2σ t‖∇X‖2

2 6 C(‖(Y0, Z0)‖2, ‖X0‖H 1)+ Cε−4(‖(X0, Y0, Z0)‖2)e
2σ t (1+ C̃(t))

+cε 4
3

∫ t

0
e2σs‖X‖4

4 ds 6 ε−4e2σ t C̃(t)+ ε 4
3 c

∫ t

0
e2σs‖X‖2

2‖∇X‖2
2,

6 ε−4e2σ t C̃(t)+ ε 4
3 c

∫ t

0
e2σsC̃(s)‖∇X‖2

2. (2.20)

Now by a generalized Gronwall inequality, see for example, lemma 4.2 of Mielke and
Schneider [20], forε = ε0 small enough, independent of initial data,

‖∇X‖2 6 C̃ε−2
0 . (2.21)

Now we derive furthera priori estimates of solutions to construct global classical
solutions inC([0,∞); (H 2)3). Our estimates will also imply an absorbing ball in(H 2)3.
To summarize, by (2.5), (2.6), and (2.21), we have the following bounds:

‖∇X‖2
2(t) 6 c + C(‖∇X0‖2

2, ‖(Y0, Z0)‖L2∩L4)e−ct ,
‖(Y, Z)‖∞(t) 6 c + C(‖(Y0, Z0)‖∞)e−ct ,

(2.22)

wherec is a generic positive constant depending only on the MBR coefficients, andC is a
generic positive constant depending on both the MBR coefficients and the initial data.

We look for gradient bounds of(Y, Z) by taking gradient of bothY andZ equations.
We find:

(∇Y )t + (1+ i�)(∇Y )+ (iY∇�) = −X∇Z − Z∇X + iδ2(∇|X|2)Y + iδ2|X|2∇Y, (2.23)

(∇Z)t + b(∇Z) = Re{∇X∗ · Y +X∗ · ∇Y } − b∇r. (2.24)
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Energy estimate (that is multiplying the complex conjugate of an unknown to its equation,
integrating over the domain, and taking real part), Gagliardo–Nirenberg inequality, and
Young’s inequality give:

1

2

d

dt
‖∇(Y, Z)‖2

2+ ‖∇Y‖2
2+ b‖∇Z‖2

2 = −
∫
b∇r · ∇Z − Re

∫
i∇Y ∗∇�Y

+Re

{
−
∫
Z∇X · ∇Y ∗ + iδ2

∫
(∇|X|2)Y∇Y ∗ +

∫
Y∇X∗ · ∇Z

}
6 ‖Z‖∞‖∇X‖2‖∇Y ∗‖2+ ‖Y‖∞‖∇X‖2‖∇Z‖2+ δ2‖Y‖∞‖X‖4‖∇X‖4‖∇Y‖2

+b‖∇r‖2‖∇Z‖2+ ‖∇�‖∞‖∇Y‖2‖Y‖2

6 ε

2
‖∇Y‖2

2+
1

2ε
(‖Z‖∞‖∇X‖2)

2+ ε
2
‖∇Z‖2

2

+ 1

2ε
(‖Y‖∞‖∇X‖2)

2+ cδ2‖Y‖∞‖X‖4‖∇X‖
1
2
2 ‖1X‖

1
2
2 ‖∇Y‖2

+εb
2
‖∇Z‖2

2+
b

2ε
‖∇r‖2

2+
ε

2
‖∇Y‖2

2+
1

2ε
(‖∇�‖∞‖Y‖2)

2. (2.25)

We see that the gradient estimate of(Y, Z) also relies on1X, while in the two-level laser
case (δ2 = 0), this complication is not present. The idea is to couple (2.25) with the equation
on1X which is:

(1X)t − ia1(1X) = −σ1X + σ1Y + iδ1((Z + r)1X + 2∇X · ∇(Z + r)+X1(Z + r)).
(2.26)

The energy estimate shows:

1
2(‖1X‖2

2)t = −σ‖1X‖2
2+ σRe

∫
1Y ·1X∗ + 2δ1Re

∫
i∇X · ∇(Z + r)1X∗

+δ1Re
∫

iX1(Z + r)1X∗.

As before, we shall tradeXt for 1X, then integrate in time to reduce the derivatives
with the help of ODE coupling. Although a long but straightforward calculation, we end
up with:

1

2
e−2σ t (e2σ t‖1X‖2

2)t =
σ

a
Re

∫
i1YX∗t +

δ1

a

∫
(Z + r)(|∇X|2)t − δ1

2a

∫
1(Z + r)(|X|2)t

+2δ1

a
Re

∫
1X(Z + r)(−σX∗ + σY ∗)+ 2δ2

1

a
Re

∫
(−i)1X ·X∗(Z + r)2

−σ
2

a
Re

∫
i∇Y · ∇X∗ + σδ1

a
Re

∫
(∇Y · ∇X∗)(Z + r)

−σδ1

a
Re

∫
(Z + r)1|X|2− σδ1

a
Re

∫
∇(Z + r) · (∇X)Y ∗

−2δ1

a
Re

∫
∇X · ∇(Z + r)(σX∗ − σY ∗ + iδ1X

∗(Z + r)). (2.27)

We observe that the first three terms on the right-hand side of (2.27), labelled as I, II, and
III hereafter, contain time derivatives. The remaining terms involve only spatial derivatives,
and can be estimated using Sobolev inequalities as:

1
2e−2σ t (e2σ t‖1X‖2

2)t 6 I + II + III + ε(‖1X‖2
2+ ‖∇Y‖2

2+ ‖∇Z‖2
2)+ ε−3C̃(t), (2.28)
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where ε is a convenient small number just like before. Multiplying e2σ t and integrating
(2.28) in t gives:

1

2
(e2σ t‖1X‖2

2− ‖1X0‖2
2) 6

∫ t

0
e2σsI ds +

∫ t

0
e2σsI I ds +

∫ t

0
e2σsI II ds

+ε
∫ t

0
e2σs‖(1X,∇Y,∇Z)‖2

2 ds + ε−3
∫ t

0
e2σsC̃(s) ds. (2.29)

We estimate the first three terms by plugging theY andZ equations to replace the time
derivatives of(Y, Z), and so lower the order of derivatives.∫ t

0

∫
e2σs1YX∗s = −

∫ ∫ t

0
1Yse

2σsX∗ −
∫ ∫ t

0
(2σ)e2σs1YX∗ +

∫
1Ye2σ tX∗

−
∫
1Y0X

∗
0 = −

∫ t

0

∫
Yse

2σs1X∗ + 2σ
∫ t

0

∫
e2σs∇Y · ∇X∗

−e2σ t
∫
∇Y · ∇X∗ −

∫
X∗01Y0

= −
∫ t

0

∫
((−1− i�)Y − ZX + iδ2|X|2Y )e2σs1X∗

+2σ
∫ t

0

∫
e2σs∇Y · ∇X∗ − e2σ t

∫
∇Y · ∇X∗ −

∫
X∗01Y0,

hence:

|I | 6 c
∫ t

0
e2σs(‖∇Y‖2+ ‖Y‖2)‖∇X∗‖2+ c

∫ t

0
‖Z‖∞‖X‖2‖1X‖2e2σs

+c
∫ t

0
e2σs‖Y‖∞‖1X‖2‖X‖2

4+ c
∫ t

0
e2σs‖∇Y‖2‖∇X‖2

+‖X0‖2‖1Y0‖2+ e2σ t‖∇Y‖2‖∇X‖2. (2.30)

With similar inequalities onII andIII , we arrive at:

‖1X‖2
2 6 e−2σ t {‖1X0‖2

2+ ‖X0‖2‖1Y0‖2+ C̃(t)‖∇X0‖2
2+ ‖X0‖2

4‖1(Z0+ r)‖2}
+cε

∫ t

0
‖(1X,∇Y,∇Z)‖2

2C̃(s)e
2σ(s−t) ds + cε−1

∫ t

0
C̃(s)e2σ(s−t)

+ε‖(1X,∇Y )‖2
2+ ε−1C̃(t)+ ε−3c

∫ t

0
C̃(s)e2σ(s−t) ds, (2.31)

which gives:

e−2 min(1,b)t (e2 min(1,b)t‖∇(Y, Z)‖2
2)t 6 cε‖∇(Y, Z)‖2

2+ C̃(t)ε−1+ ε−1C̃(t)‖1X‖2

6 cε‖∇(Y, Z)‖2
2+ C̃(t)ε−1+ cε‖1X‖2

2+ ε−3C̃(t),

and integrating int implies:

‖∇(Y, Z)‖2
2− e−2 min(1,b)t‖∇(Y0, Z0)‖2

2 6 cε
∫ t

0
e2 min(1,b)(s−t)‖(∇Y,∇Z,1X)‖2

2 ds

+ε−3
∫ t

0
e2 min(1,b)(s−t)C̃(s) ds. (2.32)

Let γ = min(2, 2b, 2σ) and add (2.31) and (2.32) to obtain:

(1− ε)eγ t‖(1X,∇Y,∇Z)‖2
2 6 C(‖(X0, Y0, Z0)‖H 2)+ ε−3C̃(t)eγ t

+cε
∫ t

0
C̃(s)eγ s‖(1X,∇Y,∇Z)‖2

2 ds. (2.33)
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For ε small enough, we obtain the bound with Gronwall inequality as before:

‖(1X,∇Y,∇Z)‖2
2 6 C̃(t), (2.34)

or:

lim sup
t→∞

‖(1X,∇Y,∇Z)‖2
2 6 c. (2.35)

So the dynamics has an absorbing ball inH 1.
We continue to bound‖(1Y,1Z)‖2. Taking1 of theY andZ equations, we obtain:

(1Y)t + (1+ i�)(1Y)+ 2i∇� · ∇Y + iY1� = −(X1Z + Z1X + 2∇Z · ∇X)
+iδ2(Y1|X|2+ 2∇|X|2 · ∇Y + |X|21Y), (2.36)

(1Z)t + b(1Z) = Re{Y1X∗ + 2∇X∗ · ∇Y +X∗1Y } −1(br). (2.37)

Energy equalities are:

1
2(‖1Y‖2

2)t + ‖1Y‖2
2+ 1

2(‖1Z‖2
2)t + b‖1Z‖2

2 = −Re
∫
1Y ∗(Z1X + 2∇Z · ∇X)

−2Re
∫

i∇� · ∇Y1Y ∗ − Re
∫

i1�Y1Y ∗ −
∫
1(br)1Z

+δ2Re
∫

i1Y ∗(Y1|X|2+ 2∇|X|2 · ∇Y )

+Re
∫
(Y1X∗ + 2∇X∗ · ∇Y )1Z. (2.38)

By (2.35), Sobolev inequalities, we deduce the bound:

lim sup
t→∞

‖(1Y,1Z)‖2
2 6 c <∞. (2.39)

Summarizing (2.35) and (2.39), we conclude that the MBR dynamics has an absorbing ball
in (H 2)3.

Proof of theorem 1.1, (1) and (2). It is straightforward to show using the contraction
mapping principle that the original MB system has a local in time solution(X, Y, Z) ∈
C([0, t∗), (Hk)3) for initial data (X0, Y0, Z0) ∈ (Hk)3, for any k > 2. Nonlinearities are
easily controlled using Sobolev inequalities in such spaces. For a large enoughk, we have
enough regularity to justify our derivations of thea priori estimates. ApproximatingH 2

solutions by a sequence of suchHk solutions (k large enough), we then have global bounds
on H 2 norms of localH 2 solutions. Since solutions are imbedded intoL∞, it is easy to
show the Lipschitz continuity of solutions on the initial data inL2 by Gronwall inequality.
It is then clear that the localH 2 solutions can be extended to global ones uniquely, and
they flow into an absorbing ball in(H 2)3. The proof of parts (1) and (2) is complete.�

We remark that if the initial data belong to higher Sobolev spaces, we can use the same
procedure to show that the corresponding solutions have absorbing balls in these more
regular spaces. This turns out to be more direct since we already have(X, Y, Z) ∈ (L∞)3.
The derivatives ofX component will be first bounded, then those of(Y, Z). It is no longer
necessary to couple the next-orderX derivative with the estimates of(Y, Z) derivative as
we have just done. So at this stage of estimates, the Raman system is like the two-level
system, and the additional nonlinear terms do not matter much. We omit the details but
state that if initial data are inHk, k > 3, then for all later time,

‖(X, Y, Z)‖Hk 6 C̃(t). (2.40)
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3. Global mild solutions

3.1. Dimension equal to one

Since lasers come out of noise, it is of both mathematical and physical interest to investigate
the well posedness of MBR when less regular data are prescribed, especially when the data
do not lie inL∞. Our strategy is to approximate less regular data with smooth data, such
as H 2 data, and show that in the limit we are able to define weak solutions uniquely.
To this end, we estimate the difference of any two solutions for different initial data, as
in [7]. We will also establish the continuous dependence of solutions on the initial data.
There is an interesting distinction between one and two dimensions as we will see. In one
dimension, the continuous dependence is Lipschitz, while in two dimensions we can only
show continuity. This is due toH 1 being marginal or not being continuously imbedded into
L∞. For any two initial data(X(0)i , Y

(0)
i , Z

(0)
i ), ‖X(0)i ‖H 1 6 C, (Y (0)i , Z

(0)
i ) ∈ (Lp)2, for all

p ∈ [2, p0], where the numberp0 ∈ (4,∞) will be clear soon, estimates (2.7), (2.10), and
(2.21) hold for both solutions. The generic constants of the rest of this section will depend
on norms of initial data. We will first consider weak solutions on the plane, then extend
them to periodic cases.

Now we introduce the new variables:

ξ = X1−X2, η = Y1− Y2, ζ = Z1− Z2,

X̃ = 1
2(X1+X2), Ỹ = 1

2(Y1+ Y2), Z̃ = 1
2(Z1+ Z2).

(3.1)

Then(ξ, η, ζ ) satisfies the equations:

ξt − ia1ξ = −σξ + ση − iδ1rξ + iδ1(X̃ζ + Z̃ξ), (3.2)

ηt = −(1+ i�)η − X̃ζ − Z̃ξ + iδ2

[
η

(
|X̃|2+ |ξ |

2

4

)
+ Ỹ (X̃ξ ∗ + X̃∗ξ)

]
, (3.3)

ζt = −bζ + Re(X̃η∗ + ξ Ỹ ∗). (3.4)

Multiplying η∗ to (3.3) and taking real part, we obtain:

1
2(|η|2)t = −|η|2− Re(η∗X̃ζ + η∗Z̃ξ)+ Re{iδ2(X̃ξ

∗ + X̃∗ξ)Ỹ η∗}. (3.5)

Similarly, we find by multiplyingζ by (3.4) that:

1
2(ζ

2)t = −bζ 2+ Re(ζ X̃η∗)+ Re(ζ ξ Ỹ ∗). (3.6)

Adding (3.5) and (3.6) shows:

1
2(|η|2+ ζ 2)t = −bζ 2− |η|2+ Re(ζ ξ Ỹ ∗)− Re(η∗Z̃ξ)+ Re{iδ2(X̃ξ

∗ + X̃∗ξ)Ỹ η∗}
6 − b

2
ζ 2− 1

2
|η|2+ c(|ξ Ỹ |2+ |Z̃ξ |2+ |X̃ξ Ỹ |2) = −b

2
ζ 2− 1

2
|η|2+ cH |ξ |2,

(3.7)

where:

H ≡ |Ỹ |2+ |Z̃|2+ |X̃Ỹ |2. (3.8)

In the one-dimensional case, integrating (3.7) overR1 gives:

d

dt
‖(η, ζ )‖2

2 6 −b‖ζ‖2
2− ‖η‖2

2+ c
∫
H |ξ |2, (3.9)
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and integrating int to obtain:

‖(η, ζ )‖2
2 6 e−βt‖(η0, ζ0)‖2

2+ c
∫ t

0
ds e−β(t−s)

∫
H |ξ |2(x, s)

6 e−βt‖(η0, ζ0)‖2
2+ c

(∫ t

0
ds
∫
H 2

)1
2
(∫ t

0

∫
|ξ |4

)1
2

6 e−βt‖(η0, ζ0)‖2
2+ c

(∫ t

0
ds‖(Ỹ , Z̃)‖4

4(1+ ‖X̃‖2
∞)
)1

2
(∫ t

0
ds
∫
|ξ |4

)1
2

6 e−βt‖(η0, ζ0)‖2
2+ C(t)

(∫ t

0
ds
∫
|ξ |8

)1
4

. (3.10)

Recall (3.2) to write:

ξ(x, t) = σ
∫ t

0
e(i1−σ)(t−s)η(x, s)ds − iδ1

∫ t

0
e(i1−σ)(t−s)(r(x)ξ) ds

+iδ1

∫ t

0
e(i1−σ)(t−s)(ξ Z̃ + X̃ζ ) ds + e(i1−σ)t ξ0. (3.11)

Let us recall the Strichartz inequalities for the free Schrödinger operator on the entire
spaceRm (see Kato [16]):

‖eiat1 ϕ(x)‖Lp+1,r 6 C‖ϕ‖L2, ∀t > 0, (3.12)

and ∥∥∥∥ ∫ t

0
eia(t−s)1v(s, x)ds

∥∥∥∥
Lp+1,r

6 C
∫ t

0
‖v(s)‖L2 ds, ∀t > 0, (3.13)

whereC is a universal constant; andr = 4(p+1)
m(p−1) , r ∈ (2,+∞). The spaceLp,q means

takingLp norm in space andLq norm in time,Lp,q = Lq([0, T ];Lp).
By Strichartz inequality forR1 ( L2 → Lp+1,r ′ , r ′ = 4(p+1)

p−1 , r ′ ∈ (2,∞)) with p = 3,

r ′ = 8, we find after taking‖ · ‖8
4 of both sides of (3.11) and integratingt that:∫ t

0
‖ξ‖8

4 ds 6 c
∫ t

0

∥∥∥∥ ∫ τ

0
e(i1−σ)(τ−s)η ds

∥∥∥∥8

4

dτ + c
∫ t

0

∥∥∥∥ ∫ τ

0
e(i1−σ)(τ−s)(r(x)ξ)

∥∥∥∥8

4

dτ

+c
∫ t

0

∥∥∥∥ ∫ τ

0
e(i1−σ)(τ−s)(ξ Z̃ + X̃ζ )

∥∥∥∥8

4

dτ + c
∫ t

0
‖e(i1−σ)t ξ0‖8

4

6 c
(∫ t

0
‖η‖2 ds

)8

+ c
(∫ t

0
‖ξ‖2 ds

)8

+ c
(∫ t

0
‖ξZ̃ + X̃ζ‖2 ds

)8

+ c‖ξ0‖8
2.

(3.14)

Taking ‖ · ‖2 of (3.11), we have:

‖ξ‖2 6 σ
∫ t

0
‖η‖2 ds + δ1c

∫ t

0
‖ξ‖2 ds + c

∫ t

0
‖ξZ̃ + X̃ζ‖2 ds + c‖ξ0‖2, (3.15)

wherec depends only on MBR coefficients, and upon integrating int :∫ t

0
‖ξ‖2 ds 6 σ t

∫ t

0
‖η‖2 ds + ct

∫ t

0
‖ξ‖2 ds + ct

∫ t

0
‖ξZ̃ + X̃ζ‖2 ds + ct‖ξ0‖2. (3.16)

So for t ∈ [0, t∗], with t∗ = t∗(c) small enough, we obtain:∫ t

0
‖ξ‖2 ds 6 ct

∫ t

0
‖η‖2 ds + ct

∫ t

0
‖ξZ̃ + X̃ζ‖2 ds + ct‖ξ0‖2. (3.17)
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Plug (3.17) into (3.14) fort ∈ [0, t∗] to yield:∫ t

0
‖ξ‖8

4 ds 6 c
(∫ t

0
‖η‖2 ds

)8

+ c
(∫ t

0
‖ξZ̃ + X̃ζ‖2 ds

)8

+ c‖ξ0‖8
2

6 c
(∫ t

0
‖η‖2 ds

)8

+ c
(∫ t

0
‖ξ‖4‖Z̃‖4+ ‖X̃‖∞

∫ t

0
‖ζ‖2 ds

)8

+ c‖ξ0‖8
2

6 C(‖X̃0‖H 1)

(∫ t

0
‖(η, ζ )‖2 ds

)8

+ C(‖(Ỹ0, Z̃0)‖4)

(∫ t

0
‖ξ‖8

4

)
t7+ c‖ξ0‖8

2.

If t∗ is small enough, but now also depending on‖(Ỹ0, Z̃0)‖4, we obtain:∫ t

0
‖ξ‖8

4 ds 6 C(‖X̃0‖H 1)

(∫ t

0
‖(η, ξ)‖2 ds

)8

+ c‖ξ0‖8
2(∫ t

0
‖ξ‖8

4 ds

)1
4

6 C(‖X̃0‖H 1)

(∫ t

0
‖(η, ξ)‖2 ds

)2

+ c‖ξ0‖2
2.

(3.18)

Combining (3.10)–(3.18), we obtain (fort ∈ [0, t∗]):

‖(η, ζ )‖2
2(t) 6 C‖(ξ0, η0, ζ0)‖2

2+ C
∫ t

0
‖(η, ζ )‖2

2 ds. (3.19)

Rewriting (3.2) as:

ξ(x, t) = U(t)ξ0+ σ
∫ t

0
U(t, s)η ds + iδ1

∫ t

0
U(t, s)(X̃ζ ) ds, (3.20)

whereU(t, s) is the evolution operator corresponding to the linear equation:

ξ̂t = (ia1+ iδ1Z̃ − iδ1r(x)− σ)ξ̂ . (3.21)

Direct calculation shows:

d

dt
‖ξ̂‖2

2 = −2σ
∫
|ξ̂ |2,

therefore‖U‖2 6 1. Taking‖ · ‖2 of (3.20) shows that:

‖ξ‖2 6 ‖ξ0‖2+ σ
∫ t

0
‖η‖2 ds + δ1

∫ t

0
‖X̃ζ‖2 ds 6 ‖ξ0‖2

+σ
∫ t

0
‖η‖2 ds + δ1‖X̃‖∞

∫ t

0
‖ζ‖2 ds. (3.22)

Combining (3.19)–(3.22), we obtain fort ∈ [0, t∗]:

‖(ξ, η, ζ )‖2
2 6 ‖(ξ0, η0, ζ0‖2

2+ C
∫ t

0
‖(η, ζ )‖2

2 ds,

‖(ξ, η, ζ )‖2 6 ‖(ξ0, η0, ζ0)‖2eCt . (3.23)

Iterating (3.23) over intervals of lengtht∗ shows that (3.23) is valid for any finite timeT
with a constantC = C(T ) > 0.



514 J Xin and J Moloney

3.2. Dimension equal to two

Now consider the two-dimensional case, where we cannot pull out‖X̃‖∞ as above. We
integrate (3.9) overR2 × [0, t ] again, and use Cauchy–Schwartz inequality as in (3.10) to
obtain:

‖(η, ζ )‖2
2 6 e−βt‖(η0, ζ0)‖2

2+ c
(∫ t

0

∫
H 2

)1
2
(∫ t

0

∫
|ξ |4

) 1
2

,

then by Ḧolder inequality in terms of a small positive numberδ > 0:

6 e−βt‖(η0, ζ0)‖2
2+ c

(∫ t

0
‖(Ỹ , Z̃)‖4

4+ ‖X̃‖4
16+4δ
δ

‖Ỹ‖4
4+δ

)1
2
(∫ t

0

∫
|ξ |4

) 1
2

,

or:

‖(η, ζ )‖2
2 6 ‖(η0, ζ0)‖2

2+ ct
1
2

(∫ t

0

∫
|ξ |4

)1
2

. (3.24)

Applying Strichartz inequality in (3.11) to obtain (L2→ Lp+1,r ′ , r ′ = 2(p+1)
p−1 ; with a choice

of p = 3, r ′ = 4):∫ t

0
‖ξ‖4

4 ds 6 c
∫ t

0

∥∥∥∥ ∫ τ

0
e(i1−σ)(τ−s)η ds

∥∥∥∥4

4

+ c
∫ t

0

∥∥∥∥ ∫ τ

0
e(i1−σ)(τ−s)(rξ)

∥∥∥∥4

4

dτ

+c
∫ t

0

∥∥∥∥ ∫ τ

0
e(i1−σ)(τ−s)(ξ Z̃ + X̃ζ )

∥∥∥∥4

4

dτ + c
∫ t

0
‖e(i1−σ)t ξ0‖4

4

6 c
(∫ t

0
‖η‖2 ds

)4

+ c
(∫ t

0
‖ξ‖2 ds

)4

+ c
(∫ t

0
‖(ξZ̃ + X̃ζ )‖2

)4

+ C‖ξ0‖4
2.

Using (3.17) fort ∈ [0, t∗] and that‖(Ỹ , Z̃)‖4 6 C̃ to continue as:(∫ t

0
‖ξ‖4

4 ds

)1
2

6 c
(∫ t

0
‖η‖2 ds

)2

+ c
(∫ t

0
‖(ξZ̃ + X̃ζ )‖2 ds

)2

+ c‖ξ0‖2
2

6 c
∫ t

0
‖η‖2

2 ds + c
(∫ t

0
‖ξ‖4‖Z̃‖4+ ‖X̃‖2p‖ζ‖2q

)2

+ c‖ξ0‖2
2

6 c
∫ t

0
‖η‖2

2 ds + ct 3
2

(∫ t

0
‖ξ‖4

4

)1
2

+ c
(∫ t

0
‖X̃‖2p‖ζ‖2q

)2

+ c‖ξ0‖2
2;

and if t∗ small enough, we obtain:(∫ t

0
‖ξ‖4

4 ds

) 1
2

6 c
∫ t

0
‖η‖2

2 ds + c
(∫ t

0
‖X̃‖2p‖ζ‖2q

)2

+ c‖ξ0‖2
2, (3.25)

for anyp, q > 1, 1
p
+ 1

q
= 1. Now for ap � 1, we bound:(∫ t

0
‖X̃‖2p‖ζ‖2q

)2

6
(∫ t

0
‖X̃‖2

2p

)(∫ t

0
‖ζ‖2

2q

)
6
(∫ t

0

[
a

1
p
− 1

2

(p
2

)1
2 ‖X̃‖1− 2

p

H 1 ‖X̃‖
2
p

2

]2)(∫ t

0
‖ζ‖2

2q

)
6 tpC

(∫ t

0
‖ζ‖2

2q

)
,

(3.26)

where in the second inequality we have used the Gagliardo–Nirenberg inequality with the
best constant, see [22, p 533] among others. Herea is an absolute constant.
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Let us write 2q = 2λ+m(1− λ), whereλ ∈ (0, 1), m > 2q > 2. Then:

‖ζ‖2
2q =

(∫
|ζ |2q

) 1
q

=
(∫
|ζ |2λ|ζ |m(1−λ)

) 1
q

6
(∫
|ζ |2

)λ
q
(∫
|ζ |m

)1−λ
q

. (3.27)

We chooseq = 1+ ε
2, λ = q(1− ε) = (1+ ε

2)(1− ε) = 1− ε
2 − ε2

2 , with ε � 1. Then:

m = 2q − 2λ

1− λ =
2q − 2q(1− ε)

1− λ = 2qε

1− q(1− ε) =
2qε

1+ qε − q =
2(1+ ε

2)ε

1+ ε + ε2

2 − 1− ε
2

= 2(1+ ε
2)

1
2 + ε

2

= 4(1+ ε
2)

1+ ε < 4. (3.28)

It follows from (3.27) that:

‖ζ‖2
2q 6

(∫
|ζ |2

)1−ε
(‖ζ‖mm)

1−λ
q = ‖ζ‖2(1−ε)

2 (‖ζ‖mm)
ε+ε2

2+ε 6 C̃‖ζ‖2(1−ε)
2 . (3.29)

Now (3.26)–(3.29) yield:(∫ t

0
‖X̃‖2p‖ζ‖2q

)2

6 tpC
∫ t

0
‖ζ‖2(1−ε)

2 = Ct
(

1+ 2

ε

)∫ t

0
‖ζ‖2(1−ε)

2 ,

and by (3.25):(∫ t

0
‖ξ‖4

4 ds

)1
2

6 c‖ξ‖2
0+ c

∫ t

0
‖η‖2

2 ds + Ctε−1
∫ t

0
‖ζ‖2(1−ε)

2 . (3.30)

Finally, let us plug in (3.24) to obtain:

‖(η, ζ )‖2
2 6 C‖(ξ0, η0, ζ0)‖2

2+ C
∫ t

0
‖(η, ζ )‖2

2+ Ctε−1
∫ t

0
‖(η, ζ )‖2(1−ε)

2 , (3.31)

whereC is a constant independent ofε. Let us define:

G = ‖(ξ0, η0, ζ0)‖2
2+

∫ t

0
‖(η, ζ )‖2

2,

then by Ḧolder inequality:∫ t

0
‖(η, ζ )‖2(1−ε)

2 6 t ε
(∫ t

0
‖(η, ζ )‖2

2

)1−ε
6 t εG1−ε . (3.32)

It follows from (3.31) that:

Gt 6 CG+ Cε−1t1+εG1−ε,

which can be directly integrated for a small time intervalt ∈ [0, t∗], t∗ ∈ (0, 1):

G 6 (Gε
0eεCt + Ct2eεCt )

1
ε = (‖(ξ0, η0, ζ0)‖2ε

2 + Ct2)
1
ε eCt ,

‖(ξ0, η0, ζ0)‖2
2+

∫ t

0
‖(η, ξ)‖2

2 ds 6 (‖(ξ0, η0, ζ0)‖2ε
2 + Ct2)

1
ε eCt ,

(3.33)

for t ∈ [0, t∗] ⊂ [0, 1), where t∗ is independent ofε, and depends only on data and
coefficients of the original MBR system.

For the continuous dependence of(X, Y, Z) on the initial data(X0, Y0, Z0) in the L2

sense, we show that if‖(ξ (α)0 , η
(α)
0 , ζ

(α)
0 )‖2→ 0, asα→∞, then‖(ξ (α), η(α), ζ (α))‖2→

0, asα→∞, for any finitet > 0.
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Suffices to prove this fort ∈ [0, t∗]. It follows from (3.33) that:

‖(ξ (α)0 , η
(α)
0 , ζ

(α)
0 )‖2

2+
∫ t

0
‖(η(α), ξ (α))‖2

2 ds 6 (‖(ξ (α)0 , η
(α)
0 , ζ

(α)
0 )‖2ε

2 + Ct2)
1
ε eCt , (3.34)

and sendingα→∞ shows:

lim sup
α→∞

∫ t

0
‖(η(α), ζ (α))‖2

2 ds 6 (Ct2) 1
ε eCt . (3.35)

Next, in view ofε independence of the left-hand side of (3.35) we pass to theε → 0 limit
of the right-hand side of (3.35) fort ∈ [0, t∗], t∗ < 1 to yield:

lim sup
α→∞

∫ t

0
‖(η(α), ζ (α))‖2

2 ds = 0, (3.36)

for t ∈ [0, t∗]. By (3.31) and Ḧolder inequality, it follows that:

lim sup
α→∞

‖(η(α), ζ (α))‖2
2 = 0, (3.37)

uniformly for t ∈ [0, t∗]. By (3.20) and (3.21), and Ḧolder inequality, we have:

lim sup
α→∞

‖ξ (α)‖2 = 0, (3.38)

for t ∈ [0, t∗]. We proved that(X, Y, Z) depends on(X0, Y0, Z0) continuously inL2 over
any finite time interval. However, compared with the one-dimensional result (3.23), we see
that we lose (at least a proof of) Lipschitz continuity in two dimensions.

Proof of theorem 1.2, (1), (2) and (4). Let us take a sequence of initial data
(X

(0)
j , Y

(0)
j , Z

(0)
j ) ∈ (H 2)3, so that

‖∇X(0)j ‖H 1 + ‖(Y (0)j , Z
(0)
j )‖(L2∩Lp)2 6 C <∞,

and

(X
(0)
j , Y

(0)
j , Z

(0)
j )→ (X0, Y0, Z0),

in (L2)3 asj →∞. Herep is some finite number larger than 4. By thea priori bounds,
theH 1 norm ofXj and(L2 ∩Lp)2 norm of (Yj , Zj ) are uniformly bounded in time. Also,
by continuity of solutions on the initial data inL2 for any finite time, we deduce that
the initial convergent sequence implies the sequence(Xj , Yj , Zj ) is Cauchy in(L2)3. The
limit (X, Y, Z) then satisfies the integral equations inL2 sense, and obey the bounds of
part (4). Moreover, the evolution operatorS(t) is continuous and bounded from [0,∞) to
H 1× (L2 ∩ Lp)2, which is a consequence of weak continuity and continuity of the norms.
The proof of parts (1), (2), (4) of theorem 1.2 is complete. �

Finally, let us comment on how to construct the weak solution on periodic domains.
The major difference is that one has to use the modified Strichartz inequalities, which are
weaker than those on the whole plane. We refer to Bourgain [3] for details, and only list
those inequalities for our analysis. Iff (x) ∈ L2(T 1), then:

‖eit∂xx f ‖L4(T 2) 6 2‖f ‖2, (3.39)

whereL4(T 2) is the spacetimeL4 norm. If f ∈ L2(T 2), then it is conjectured that:

‖eit1f ‖Lp,p(T 3) 6 cp‖f ‖2, (3.40)
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if p ∈ (2, 4). It is known that (3.40) is false ifp = 4. It is not hard to use Minkowsky
inequality to deduce from (3.39) or (3.40) that:∥∥∥∥ ∫ t

0
ei(t−s)1v(s, x)ds

∥∥∥∥
Lp(T d×[0,t ])

6 (4π + t)2
8π2

cp

∫ t

0
‖v‖2 ds, (3.41)

whered = 1 is true, andd = 2 is still a conjecture. See [28] for a derivation.
Let us start from (3.9) again. In case ofT 1, we bound:∫ t

0

∫
H |ξ |2 6

(∫ t

0

∫
H 2

)1
2
(∫ t

0

∫
|ξ |4

)1
2

,

then apply (3.41) withd = 1 on the last integral ofξ . The rest is the same. The initial
data(Y0, Z0) ∈ (L4)2 remains the same as well. In case ofT 2, we use Ḧolder inequality to
obtain:∫ t

0

∫
H |ξ |2 6

(∫ t

0

∫
Hq

) 1
q
(∫ t

0

∫
|ξ |2p

)1
p

6
(∫ t

0
‖(Ỹ , Z̃)‖2q

2q + ‖X̃‖2q
2qp1
‖Ỹ‖2q

2qq1

)1
q
(∫ t

0

∫
|ξ |2p

)1
p

, (3.42)

wherep−1
1 + q−1

1 = 1, p1 � 1, q1 is close to 1;p−1 + q−1 = 1, 2p = p∗, p∗ ∈ (2, 4) is
the exponent for which the conjectural Strichartz inequality is valid. So ifp = p∗

2 ∈ (1, 2),
q ∈ (2,∞), then(Y0, Z0) ∈ (L2q+ε)2 is sufficient, for any small numberε > 0. Applying
(3.41) to the lastξ integral of (3.42) and going through the same steps as before, we end
up with the same conclusion that the solutions depend on the initial data in theL2 sense at
any finite later time. We omit the details and the analogous formulation of theorem 1.2 in
the periodic case.

4. Smooth global attractors

Results of previous sections establish the well posedness of MBR system, either the classical
H 2 solutions or weak solutions. It also follows that the evolution map denoted byS(t):
(1) depends continuously on the initial data in theL2 sense at any finite time; (2) forms a
one-parameter group:S(0) = Id, S(t + s) = S(t)S(s), t, s ∈ R1. Moreover, there exists an
absorbing ball:

Bρ0 = {(X, Y, Z) : ‖(X, Y, Z)‖H 1×(L2∩Lp)2 6 ρ0}, (4.1)

for S(t), wherep is a positive number larger than 4, andρ0 depends only on the coefficients
of MBR system. Based on these properties, we define, as in [7], a setA to be:

∩t>0S(t)Bρ0. (4.2)

By property (1) ofS(t), we see thatS(t)Bρ0 is closed under(L2)3. The setA is nonempty,
because(X, Y, Z) = (0, 0,−r) is a steady-state solution belonging toA. We show that:

Lemma 4.1.A is invariant underS(t): S(t)A = A, ∀ t ∈ R1. Moreover,A is the largest
closed bounded time invariant set that is bounded inH 1 × (L2 ∩ Lp)2; A contains theω
limit set of any closed (in theL2 sense) bounded set (inH 1× (L2 ∩ Lp)2).

Proof. Step 1. We show thatu ∈ A if and only if there are sequences{un} ∈ Bρ0,
{tn} → +∞, asn → ∞ such thatS(tn)un → u. Obviously, if u ∈ A, then we can find
such sequences so thatu = S(tn)un. Conversely, we can writeS(tn)un = S(t)S(tn − t)un,
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for any t > 0. If n is large enough so thattn > t , then S(tn − t)un ∈ Bρ0, and so
S(tn)un ∈ S(t)Bρ0. SinceS(tn)un→ u, andS(t)Bρ0 is closed inL2, we have:u ∈ S(t)Bρ0,
∀ t > 0. Thusu ∈ A.

Step 2. We show thatS(t)A ⊂ A for any t ∈ R. Any element ofS(t)A is of the form
S(t)u, u ∈ A, whereu is equal to theL2 limit of S(tn)un for some sequencesun ∈ Bρ0,
tn→+∞. By properties (1) and (2),

S(t)u = lim
n→∞ S(t)S(tn)un = lim

n→∞ S
(
tn

2

)
S

(
tn

2
+ t
)
un.

If n is large enough,tn2 + t > 0, thereforeS( tn2 + t)un ≡ vn ∈ Bρ0, implying

S(t)u = lim
n→∞ S

(
tn

2

)
vn.

It follows that S(t)u ∈ A, and soS(t)A ⊂ A, for any t ∈ R.
Step 3. NowA = S(t)S(−t)A ⊂ S(t)A for any t ∈ R, by step 2. It follows that

S(t)A = A, for any t ∈ R. The additional statements in the lemma are straightforward in
view of step 1. The proof is complete. �

We show next:

Proposition 4.1. The setA consists ofC∞ functions.

Proof. Step 1. We show that ifV = (X, Y, Z) ∈ A, then(Y, Z) ∈ (L∞)2. This step uses
the estimate (2.5) and so the cancellation property ofY andZ equations.

By (4.2), there isV0 ∈ Bρ0 such thatV = S(t)V0 for any t > 0. From our early
estimate:

|(Y, Z)|2 6 M2+ e−2βt (|Y0|2+ |Z0|2),
for M, β depending only on MB coefficients. Let6 = {(x1, x2) ∈ R2 : |(Y, Z)|2 > 2M}.
Then on6:

3M2 6 e−2βt (|Y0|2+ |Z0|2). (4.3)

Integrating (4.3) over6 ∩ B(0, R), whereB(0, R) is the ball of radiusR, we have (in the
case of periodic domains, no intersection is necessary):

3M2|6 ∩ B(0, R)| 6 e−2βt‖(Y0, Z0)‖2
2,

implying ast →∞: |6 ∩B(0, R))| = 0, or |6| = 0, by arbitrariness ofR. It follows that
(Y, Z) ∈ (L∞)2. In particular,(Y, Z) ∈ (Lp)2, for anyp ∈ [2,+∞).

Step 2. Show that ifV ∈ A, thenX ∈ H 2. Let us still writeV = S(t)V0, for some
V0 ∈ Bρ0. Then:

V (s) = S(s)V0 = S(s − t)V ,
lies inA.

First we are going to use the(Y, Z) ODEs and also the results of step 1 to show that
(Yt , Zt ) ∈ L2 on the attractor. TheY equation now reads:

Y (s, ·) = V0− (1+ i�)
∫ s

0
Y (τ, ·) dτ −

∫ s

0
Z(τ, ·)X(τ, ·) dτ + iδ2

∫ s

0
|X|2(τ, ·)Y (τ, ·) dτ.

(4.4)
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Taking thes derivative ofY in L2, using(Y, Z) ∈ L∞ onA, we obtain:

‖Ys‖2 6 (1+ ‖�‖2
∞)

1
2‖Y‖2+ ‖Z‖∞‖X‖2+ δ2‖X‖2

2‖Y‖∞ 6 M1 <∞, (4.5)

whereM1 is a positive constant likeM. Similarly, theZ equation gives‖Zs‖2 6 M2 <∞,
and that:

‖Zs‖4 6 b‖Z‖4+ ‖Y‖∞‖X‖4+ ‖br‖4 6 M3 <∞.
Next we go to theX equation to show thatXt is bounded inL2 as well based on bounds

of (Yt , Zt ). TheX equation can be written as:

Xt = (ia1− σ + iδ1(Z + r))X + σY. (4.6)

It follows that:

X(x1, x2) = U(t, 0)X0+
∫ t

0
σU(t, s)Y (s)ds, (4.7)

whereU(t, s) is the evolution operator for the linear problem:

X̃t = (ia1− σ + iδ1(Z + r))X̃,
X̃|t=0 = X̃0.

(4.8)

It is easy to check that‖U(t, s)‖2 6 e−σ(t−s). In (4.7), smoothing in time comes from the
second term while the first term decays and has no effect on regularity of the attractor. We
note that

∫ t
0 U(t, s)Y (s)ds is the solution to the inhomogeneous linear problem:

X̄t = (ia1− σ + iδ1(Z + r))X̄ + Y,
X̄|t=0 = 0.

(4.9)

We show thatX̄t ∈ L2 if Yt ∈ L2, andZt ∈ L4. For ease of showing smoothness, let us
introduce the finite difference operator:

Dτ = u(t + τ, ·)− u(t, ·)
τ

, (4.10)

for τ > 0, t > 0. ThenDτX̄ satisfies:

(Dτ X̄)t = (ia1− σ + iδ1(Z + r))(Dτ X̄)+ iδ1DτZX̄ +DτY,

Dτ X̄|t=0 = X̄(τ, ·)
τ

,
(4.11)

where:

X̄(τ, ·)
τ
= 1

τ

∫ τ

0
U(τ, s)Y (s)ds → Y (0),

in theL2 sense asτ → 0. It follows that

DτX̄ = U(t, ·) X̄(τ, ·)
τ
+
∫ t

0
U(t, s)(iδ1DτZ · X̄ +DτY )(s) ds. (4.12)

Using the fact that(Y, Z) already hasL2 time derivative, and alsoZ hasL4 time derivative,
we pass toτ → 0 limit in (4.12) to find that limτ→0DτX̄ exists inL2. Moreover, taking
‖ · ‖2 of (4.12) and sendingτ → 0 gives:

‖X̄t‖2 6 ‖Y0‖2+
∫ t

0
e−σ(t−s)(δ1‖DsZ‖4 · ‖X‖4+ ‖DsY‖2) ds,

6 ‖Y0‖2

∫ t

0
e−σ(t−s)(δ1M3M +M2) ds ≡ M5 <∞, (4.13)
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whereM5 depends only onA. So:

d

dt

∫ t

0
U(t, s)Y (s)ds ∈ L2,

or

(ia1− σ + iδ1(Z − r))
∫ t

0
U(t, s)Y (s)ds ∈ L2,

implying ∥∥∥∥1(∫ t

0
U(t, s)Y (s)ds

)∥∥∥∥
2

6 M6,

or

‖1(X − U(t, 0)X0)‖2 6 M6.

Now the smoothness ofX in t transfers to a weak spatial derivative in space. We upgrade it
to strong derivative using decay ofU(t, 0). For any smooth compactly supported function
ϕ, we have for weak derivative1X:∫
1X · ϕ =

∫
X1ϕ =

∫
(X − U(t, 0)X0)1ϕ +

∫
ϕU(t, 0)X0,

=
∫
ϕ1(X − U(t, 0)X0)+

∫
ϕU(t, 0)X0. (4.14)

So: ∣∣∣∣ ∫ 1X · ϕ
∣∣∣∣ 6 (‖1(X − U(t, 0)X0)‖2+ ‖U(t, 0)X0‖2)‖ϕ‖2. (4.15)

Letting t →∞ shows:‖X‖H 2 6 M7 <∞.
Step 3. Now we go back to the(Y, Z) equations to gain one more spatial derivative.

Let Dhu be the forward finite difference quotient approximation of∇u, with h = (h1, h2).
Then applyDh to bothY andZ equations to obtain:

(DhY )t + (1+ i�)DhY + iYDh� = −DhZ ·X − Z ·DhX + iδ2XYDhX
∗

+iδ2X
∗YDhX + iδ2|X|2DhY,

(DhZ)t + b(DhZ) = Re{DhX
∗ · Y +X∗DhY } −Dh(br).

(4.16)

Energy estimates give:

1

2

d

dt
‖DhY‖2

2+
1

2

d

dt
‖DhZ‖2

2+ ‖DhY‖2
2+ b‖DhZ‖2

2

= Re

{
−
∫
DhZ ·XDhY

∗ −
∫
DhX · ZDhY

∗
}
− Re

∫
i(Dh�)YDhY

∗

+Re

{
iδ2

∫
YXDhX

∗ ·DhY
∗ + iδ2

∫
X∗YDhX ·DhY

∗
}

−
∫
Dh(br)DhZ + Re

{∫
DhX

∗ · YDhZ +X∗DhY ·DhZ

}
.

The first and last terms on the right-hand side cancel, and we continue the equality:

= Re

{
−
∫
DhX · ZDhY

∗
}
− Re

∫
i(Dh�)YDhY

∗ + Re

{
iδ2

∫
YXDhX

∗ ·DhY
∗

+iδ2

∫
X∗YDhX ·DhY

∗
}
−
∫
Dh(br)DhZ + Re

{∫
DhX

∗ · YDhZ

}
.
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It follows that
1

2

d

dt
‖(DhY,DhZ)‖2

2+ ‖DhY‖2
2+ b‖DhZ‖2

2 6 δ‖DhY
∗‖2

2+ δ−1‖ZDhX‖2
2

+δ2δ‖DhY‖2
2+ δ−1δ2‖YXDhX‖2

2+ δ2δ‖DhY‖2
2+ δ2δ

−1‖YXDhX‖2
2

+δ‖DhY
∗‖2

2+ δ‖DhZ‖2
2+ δ−1‖(Dh�)Y‖2

2+ δ−1‖Dh(br)‖2
2

6 2(1+ δ2)δ‖(DhY,DhZ)‖2
2+ δ−1‖Z‖2

∞‖DhX‖2
2

+2δ2δ
−1‖Y‖∞‖X‖∞‖DhX‖2

2+ δ−1‖Y‖2
∞‖Dh�‖2

2+ δ−1‖Dh(br)‖2
2

6 2(1+ δ2)δ‖(DhY,DhZ)‖2
2+ δ−1M8. (4.17)

With δ small enough, integrating int gives:

‖(DhY,DhZ)‖2
2 6 e−βt‖(DhY0,DhZ0)‖2

2+
2δ−1

β
M8. (4.18)

Sendingh→ 0, t →∞ shows that:

‖∇(Y, Z)‖2
2 6

2δ−1

β
M8, (4.19)

or (Y, Z) ∈ H 1.
We can then go back to theX equation and show thatX ∈ H 3, which in turn implies

that (Y, Z) ∈ (H 2)2. Iterating this procedure yields(X, Y, Z) ∈ Hn+1 × (Hn)2, for any
n > 1; or (X, Y, Z) ∈ (C∞)3. We omit the details. The proof is complete. �

Remark 4.1. The cancellation property of theY and Z equations, thatY (but not ∇Y )
appearing as a forcing in theX equation, and that the nonlinear interaction terms iδ1(Z+r)X,
iδ2|X|2Y having pure imaginary coefficients, are all essential structures we explored to
deduce time asymptotic smoothing. These interaction terms do not cause growth or
sharpening or focusing of solutions. Instead, they tend to create coherence and smoothing
in the solutions. In fact, it is known [14, 18] that forr above a threshold value, the system
admits planar solutions of the formAei(k·x−ct), all of which are smooth solutions in the
attractors.

ForA to be a usual global attactor, see definitions 1.2 and 1.3 of [25, pp 21, 22], we need
to show thatA attracts any bounded set of initial data that lie in a space containing smooth
functions. For initial data in(H 3(T 2))3, we have shown that there is an absorbing ball of
dynamics. DefineA as in (4.2), but withBρ0 = {(X, Y, Z) : ‖(X, Y, Z)‖(H 2(T 2))3 6 ρ0}.
Since(H 3(T 2))3 is compact in(H 2(T 2))3 uniformly in t , by the definition ofA and the
compactness of solutions in time, we have:

lim
t→∞dist(H 2(T 2))3(S(t)B,A) = 0, (4.20)

for any bounded set, denoted byB, of (H 3(T 2))3. In other words,A is the global attractor
in (H 2(T 2))3. This is part (3) of theorem 1.1.

For mild solutions inH 1(T 2)× (Lp(T 2))2, as well as mild and strong solutions in the
whole plane, we do not know(L2)3 compactness of dynamics in time either due to lack
of derivative control of(Y, Z) components, or unbounded domain. The former may be
overcome by decomposingS(t) = S1(t) + S2(t), whereS1 is uniformly compact in time,
S2 decays in time. However, for the MB system, this decompostion is not as clear as in
damped driven wave equations, [25]. Simply extracting the linear part and defining it to be
S2 does not seem to work. Even the two ODEs prevent us from applying such an argument.
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Nevertheless, similar decompositions remain to be explored. The latter unboundedness
of domain may be circumvented by proving the well posedness and the existence of an
attacting ball of dynamics in a spatially weighted Sobolev space. See [5, 19] for such
studies on parabolic systems. However, we will not pursue either of the above undertakings
here. Instead, we will interpret the attractivity ofA of the above cases in a weaker sense.
Following the alternative definition of attractor, introduced by Sell, see the footnote on page
21 of Temam [25],A is an attractor ifA is theω-limit set of one of its open neighbourhoods
U0. The basin of attraction ofA is the union of the open setsU0 such thatA ⊂ U0, and
ω(U0) = A. By lemma 1,A is clearly such an attractor, and the basin of attraction is
any bounded set inH 1 × (Lp ∩ L2)2, hence the attractor is global. We remark that this
weaker definition of attractor is a useful notion for us to initiate the understanding of the
subtle smoothing property of MB dynamics. It is an interesting problem for the future to
investigate the attractivity ofA for weak solutions in theL2 sense.

5. Finite dimensions of the global attractor onT 2

We carry out the dimensional bounds ofA in the spaceC([0,∞); (H 2(T 2)3). Let us
consider the flow around any vector function of the attractorA, sayU ∈ (C∞(T 2))3 and
study the contraction of finite-dimensional volume elements formed by the linearized flows.
Due to the weak nature of MBR damping, it is necessary to use the intrinsic skew symmetries
of the linearized operator, and measure volume elements in suitable new coordinates. The
direct approach of estimating the quadratic form of the linearized system, as often used for
damped nonlinear wave equations, does not seem to work here. This difference has already
been observed in Constantinet al [7]. We will adapt the method of [7], while incorporating
additional skew symmetries. For technical convenience, we consider bothr and� to be
real constants.

First let us shift the variables, and define:

(u1, u2, u3) = (X, Y, Z − σ).
Then the new system reads:

u1,t = ia1u1− σu1+ σu2+ iδ1u1(u3+ σ − r), (5.1)

u2,t = −(1+ i�)u2− σu1− u3u1+ iδ2|u1|2u2, (5.2)

u3,t = −bu3+ Re(u1u
∗
2)− b(r + σ). (5.3)

Linearized system in terms ofV = (v1, v2, v3), alongU = (u1, u2, u3) ∈ A is:

v1,t = ia1v1− σv1+ σv2+ iδ1v1(u3+ σ − r)+ iδ1u1v3, (5.4)

v2,t = −(1+ i�)v2− σv1− v3u1− u3v1+ iδ2|u1|2v2+ 2iδ2u2Re(u∗1v1), (5.5)

v3,t = −bv3+ Re(u1v
∗
2 + v1u

∗
2). (5.6)

Notice that after the shift byσ , the two termsσv2 and−σv1 become skew symmetric if we
write down the 5× 5 matrix for the real vector(Re(v1), Im (v1),Re(v2), Im (v2), v3). To
overcome the weak damping, we change variableW = (w1, w2, w3) = 1v. Then taking
Laplacian of (5.4)–(5.6) we see thatW is a solution of the following system:

w1,t = ia1w1− σw1+ σw2+ iδ1(u3+ σ − r)w1+ 2iδ1∇v1 · ∇u3+ iδ1v11u3

+iδ1v31u1+ 2iδ1∇u1 · ∇v3+ iδ1u1w3, (5.7)

w2,t = −(1+ i�)w2− σw1− w3u1− 2∇v3 · ∇u1− v31u1− w1u3− 2∇v1 · ∇u3

−v11u3+ iδ2v21|u1|2+ 2iδ2∇|u1|2 · ∇v2+ iδ2w2|u1|2
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+2iδ21u2Re(u∗1v1)+ 2iδ2∇u2 · Re∇(u∗1v1)

+2iδ2u2Re(v11u
∗
1 + 2∇u∗1 · ∇v1+ u∗1w1) (5.8)

w3,t = −bw3+ Re{δ1w1(iu
∗
1)} + Re{u1w

∗
2 + w1(u

∗
2 − iδ1u

∗
1)

+v∗21u1+ 2∇u1 · ∇v∗2 + 2∇v1 · ∇u∗2 + v11u
∗
2}. (5.9)

In (5.7)–(5.9), the pairs of terms−w3u1 and Re{u1w
∗
2}, iδ1u1w3 and Re{δ1w1(iu∗1)} turn

out to be skew symmetric. Note that the term Re{δ1w1(iu∗1)} is added and subtracted in
(5.9) to create the latter skew symmetry. The remaining skew symmetric terms are diagonal,
and those already mentioned,σw2 and−σw1. The damping terms,−σw1, −(1+ i�)w2,
and−bw3, are obviously diagonal. Besides all these, the other terms involve only(u, v),
and∇(u, v), with U and its derivatives of order less than or equal to two as coefficients,
except for the threew1 terms. They are the three terms:−w1u3, 2iδ2u2Re(u∗1w1), and
Re(w1(u

∗
2 − iδ1u

∗
1)). The skew symmetries will be explicitly demonstrated in matrix form

later.
Since the diagonal damping terms are zeroth order just like these three, we have to

rewrite these three terms using thev1 equation (5.4), and transfer time derivative fromV
to U . Upon substitution, we see that:

−w1u3 = i

a
u3(v1,t + σv1− σv2− iδ1v1(u3+ σ − r)− iδ1u1v3) = i

a
(u3v1)t

+1

a
[−iv1u3,t + iσu3v1− σ iv2u3+ δ1v1u3(u3+ σ − r)+ δ1u1u3v3]. (5.10)

Also

2iδ2u2Re{u∗1w1} = 2iδ2u2Re

{
u∗1

1

ia
(v1,t + σv1− σv2− iδ1v1(u3+ σ − r)− iδ1u1v3)

}
= 2iδ2u2

(
u∗1v1,t

ia
− u1v

∗
1,t

ia

)
+2iδ2u2Re

{
u∗1

1

ia
(σv1− σv2− iδ1v1(u3+ σ − r)− iδ1u1v3)

}
= 2δ2

a
[(u2u

∗
1v1)t − (u2u

∗
1)tv1− (u1u2v

∗
1)t + (u1u2)tv

∗
1]

+2iδ2u2Re

{
u∗1

1

ia
(σv1− σv2− iδ1v1(u3+ σ − r)− iδ1u1v3)

}
(5.11)

and

Re(w1(u
∗
2 − iδ1u

∗
1))

= Re

{
1

ia
(v1,t + σv1− σv2− iδ1v1(u3+ σ − r)− iδ1u1v3)(u

∗
2 − iδ1u

∗
1)

}
= Re

{
1

ia
(v1(u

∗
2 − iδ1u

∗
1))t −

v1

ia
(u∗2 − iδ1u

∗
1)t

}
+Re

{
1

ia
(σv1− σv2− iδ1v1(u3+ σ − r)− iδ1u1v3)(u

∗
2 − iδ1u

∗
1)

}
. (5.12)

Using (5.10)–(5.12), we recast theW system as:

w1,t = −σw1+ (ia1w1+ iδ1(u3+ σ − r)w1+ σw2+ iδ1u1w3)+ I, (5.13)
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where

I = I (V,∇V ) = 2iδ1∇u3 · ∇v1+ 2iδ1∇u1 · ∇v3+ iδ1v11u3+ iδ1v31u1; (5.14)(
w2− i

a
u3v1− 2δ2

a
u2u
∗
1v1+ 2δ2

a
u1u2v

∗
1

)
t

= − (1+ i�)w2+ (−σw1− w3u1+ iδ2|u1|2w2)+ II, (5.15)

where

II = II (V,∇V ) = −2∇v3 · ∇u1− 2∇v1 · ∇u3+ 2iδ2∇|u1|2 · ∇v2

+2iδ2∇u2 · Re(u∗1∇v1)+ 2iδ2∇u2 · Re(∇u∗1 · v1)+ 4iδ2u2Re{∇u∗1 · ∇v1}
−v31u1− v11u3+ iδ2v21|u1|2+ 2iδ2Re(u∗1v1)+ 2iδ2u2Re(v11u

∗
1)

+2iδ21u2Re(u∗1v1)+ 1

a
[−iu3,t v1+ iσu3v1− iσv2u3+ δ1u3(u3+ σ − r)v1

+δ1u1u3v3] − 2δ2

a
[(u2u

∗
1)tv1− (u1u2)tv

∗
1]

+2iδ2u2Re

{
u∗1
ia
(σv1− σv2− iδ1v1(u3+ σ − r)− iδ1u1v3)

}
; (5.16)

and (
w3+ i

a
v1(u

∗
1 − iδ1u

∗
1)

)
t

= −bw3+ Re(u1w
∗
2 + iδ1w1u

∗
1)+ III, (5.17)

where

III = III (V,∇V )
= Re{v∗21u1+ 2∇u1 · ∇v∗2 + 2∇v1 · ∇u∗2 + v11u

∗
2 +

i

a
v1(u

∗
2 − iδ1u

∗
1)t

− i

a
(σv1− σv2− iδ1v1(u3+ σ − r)− iδ1u1v3)(u

∗
2 − iδ1u

∗
1)}. (5.18)

Now let us introduce the change of variables:

η =
(
η1

η2

η3

)
= D(U)V ≡

 1v1− γ 0v1

1v2− γ 0v2− i
a
u3v1− δ2

a
u2u
∗
1v1+ δ2

a
u1u2v

∗
1

1v3− γ 0v3+ i
a
v1(u

∗
2 − iδ1u

∗
1)

 , (5.19)

where γ 0 is a large positive constant to be chosen so thatD−1(u) exists. Multiplying
(5.4)–(5.6) by−γ 0, adding the resulting system to (5.16)–(5.18), and replacing(V ,∇V ) by
(D−1(U)η,∇(D−1(U)η)), we derive the system forη:

η1,t = −ση1+ (iδ1(u3+ σ − r)η1+ ia1η1+ ση2+ iδ1u1η3)+ IV, (5.20)

η2,t = −(1+ i�)η2+ (−ση1− η3u1+ iδ2|u1|2η2)+ V, (5.21)

η3,t = −bη3+ Re(u1η
∗
2 + iδ1η1u

∗
1)+ V I, (5.22)

whereIV , V , andV I are all differentiable functions of(η,∇η) with coefficients beingU
and its derivatives of the order no more than two. We can further write (5.20)–(5.22) into
the following compact form:

ηt = Aη + J (u)η + C1(1U,∇U,U)D−1(U)η + C2(1U,∇U,U)[D−1(U)η]∗

+
2∑
i=1

Ei(∇U,U)(D−1(U)η)xi +
2∑
i=1

Fi(∇U,U)[D−1(U)η]∗xi , (5.23)
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whereCi(1U,∇U,U), i = 1, 2, are 3×3 complex matrices, linear in1U , smooth in∇U ,
andU ; Ei(∇U,U), Fi(∇U,U), i = 1, 2, are 3×3 complex matrices, linear in∇U , smooth
in U ;

Aη = diag(−σ,−1,−b)η,
is the damping part, and

J (U)η =
( ia1η1+ iδ1(u3+ σ − r)η1+ ση2+ iδ1u1η3

−ση1− η3u1+ iδ2|u1|2η2

Re(u1η
∗
2 + iδ1η1u

∗
1)

)
. (5.24)

It is easy to check thatJ (U) is the 5× 5 skew symmetric matrix:
0 −a1− δ1(u3+ σ − r) σ 0 −δ1Im {u1}

a1+ δ1(u3+ σ − r) 0 0 σ δ1Re{u1}
−σ 0 0 −δ2|u1|2 −Re{u1}
0 −σ δ2|u1|2 0 −Im {u1}

δ1Im {u1} −δ1Re{u1} Re{u1} Im {u1} 0

 ,
when acting on the real vector

(Re(η1), Im (η1),Re(η2), Im (η2), η3),

which we still denote byη. We first show that:

Proposition 5.1. The operatorsC1D
−1(U)·, and C2D

−1(U)· are Hilbert–Schmidt when
acting on the realη ∈ (L2)5; while the operatorsEi(D−1(U)·)xi , andFi(D−1(U)·)∗xi , are
in the trace idealsgp, ∀p > 2.

Proof. For γ 0 large enough depending only on‖U‖H 2, it is not hard to show via Lax–
Milgram theorem thatD−1(U) exists and is a bounded map from(L2)5 into (H 2)5. We
can write:

C1D
−1(U) = C1(1− 1)−1(1− 1)D−1(U).

Since (1 − 1)−1 is a Hilbert–Schmidt operator onL2(T 2), C1 and (1 − 1)D−1(U) are
bounded, we infer thatC1D

−1(U) is Hilbert–Schmidt. Similarly,C2(D
−1(U))∗ is also

Hilbert–Schmidt. Now we write:

Ei∂xi (D
−1(U)·) = Ei∂xi (1− 1)−1(1− 1)D−1(U).

The singular values of∂xi (1−1)−1 are |ki |
(1+|k|2) , k = (k1, k2) ∈ Z2, which form a convergent

sequence inlp, for anyp > 2. Hence∂xi (1− 1)−1 ∈ gp, p > 2, and soEi∂xi (D
−1(U)·) ∈

gp, p > 2, by theorem 1.6 of Simon [24]. Similarly,Fi∂xi (D
−1(U))∗ ∈ gp. The proof is

complete. �

Now let us put theη system into the following form:

d

dt
η = Aη + J (U)η +K1(U)η +K2(U)η, (5.25)

where K1 is Hilbert–Schmidt,K2 is in trace classgp, p > 2. Let 01 = ‖K1‖HS ,
0p = ‖K2‖gp , p > 2. There is a constant03 > 0 depending onγ 0 andA, such that:

0−1
3 ‖v‖H 2 6 ‖D−1(U)v‖2 6 03‖v‖H 2. (5.26)

For the upper bound of the Hausdorff and fractal dimensions ofA (still denoting the shifted
attractor), we study the volume elements

‖V1(t) ∧ · · · ∧ Vn(t)‖3nH 2
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formed byn linearly independent solutions of the linearized problem. By (5.26), there exists
an n dependent constantan (for all U ∈ A) such that:

a−1
n ‖V1(t) ∧ · · · ∧ Vn(t)‖3nH 2 6 ‖η1(t) ∧ · · · ∧ ηn(t)‖3nL2 6 an‖V1(t) ∧ · · · ∧ Vn(t)‖3nH 2.

(5.27)

Thus, it is enough to show the decay of‖η1(t)∧· · ·∧ηn(t)‖3nL2. We have the well known
identity:

d

dt
log‖η1(t) ∧ · · · ∧ ηn(t)‖3nL2 = Tr ((A+ J +K1+K2)Qn) , (5.28)

whereQn is the orthogonal projector from(L2)5 onto the span ofη1(t), . . . ,ηn(t). We
have by skew symmetry:

Tr(AQn) = −(2σ + 2+ b)n, Tr(JQn) = 0, (5.29)

and by Cauchy–Schwartz inequality:

|Tr(K1Qn)| 6 n 1
2‖K1‖HS 6 01n

1
2 . (5.30)

Let {η̃j }, j = 1, . . . , n, be an orthogonal basis of the linear span ofη1, . . . ,ηn. Then:

|Tr(K2Qn)| 6
n∑
j=1

|(K2η̃j (t), η̃j (t))| 6
n∑
j=1

‖K2η̃j‖L2 6 n
1
q

(
n∑
j=1

‖K2η̃j‖p
)1
p

Theorem 1.18 of [24]

6 n
1
q

( ∞∑
j=1

µj(K2)
p

)1
p

= n 1
q ‖K2‖gp 6 n

1
q 0p, (5.31)

whereq ∈ (1, 2), andµj denotes thej th singular value. Combining (5.28)–(5.31), we have:

d

dt
log‖η1(t) ∧ · · · ∧ ηn(t)‖3nL2 6 n 1

2 [−(2σ + 2+ b)n 1
2 + 01+ n

1
q
− 1

20p]. (5.32)

It follows that

‖V1(t) ∧ · · · ∧ Vn(t)‖3nH 2 6 an0n3‖V1(0) ∧ · · · ∧ Vn(0)‖3nH 2

× exp(−tn 1
2 [(2σ + 2+ b)n 1

2 − 01− n
1
2− 1

p 0p]), (5.33)

for any finitep > 2. We deduce that all volume elements will contract exponentially if:

n > max

(
02

1

(2σ + 2+ b)2 ,
0pp

(2σ + 2+ b)p
)
. (5.34)

By standard results, we have the upper bounds on Hausdorff and fractal dimensions ofA:

dimH (A) 6 max

(
02

1

(2σ + 2+ b)2 ,
0pp

(2σ + 2+ b)p
)
, (5.35)

dimF (A) 6 c0 dimH (A), (5.36)

for anyp ∈ (2,∞), wherec0 is an absolute constant.

Proof of theorem 1.1, (3) and theorem 1.2, (3).Summarizing the results of sections 4 and
5, we complete the proofs of theorems 1.1 and 1.2. For classical solutions on the whole
plane, theorem 1.1 also holds, but part (3) should be rephrased as part (3) of theorem 1.2.
Theorem 1.2, holds for weak solutions in the periodic domain under the conjectural Strichartz
inequality for two dimensions.
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