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K is a field of characteristic p ≥ 0,
p 6= 2
of finite type over its prime field K0
with absolute Galois group GK .
n ∈ N is always assumed to be prime
to p.
The representation induced by the ac-
tion of GK on the n-torsion points E[n]
of an elliptic curve E over K is denoted
by ρE,n
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1 Isomorphic Torsion Structures

Conjecture 1.1 Darmon:
There is a number n0 = n0(K) such
that for all E, E′ over K and all n ≥
n0 we have

ρE,n
∼= ρE′,n

iff

E is K-isogenous to E′.
Kani:
Maybe there are finitely many excep-
tions, and: for K = Q the bound
n0 = 23 suffices.
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Much weaker is

Conjecture 1.2 For all elliptic curves
E0 over K there is a number n0 =
n0(K, E0) such that for all E defined
over K we get:
For n ≥ n0 it is equivalent

1. ρE,n
∼= ρE0,n

2. E is isogenous to E0.

For global fields (or more generally, fields
with divisor theory satisfying finiteness
conditions) this conjecture would follow
from the height conjecture for elliptic
curves.
Since the height conjecture is true over
function fields the hard case is that K
is a number field.
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Assume that K = Q.

• The height conjecture is equivalent
with the ABC-conjecture and with
the degree conjecture for modular
parameterizations: There exist c, d ∈
R>0 such that for minimal

ϕ : X0(NE) → E

log(deg(ϕ)) ≤ c log(NE) + d

• equivalences between Galois represen-
tations on torsion points of elliptic
curves correspond to congruences of
cusp forms.

• The Asymptotic Fermat Conjecture
is equivalent with Conjecture 1.2 for
even n .
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2 Hurwitz Spaces

2.1 A “special” Hurwitz surface

Look at covers

ϕ : P1
K → P1

K

of (for simplicity) odd degree n which
are primitive (i.e. has no proper inter-
mediate subcovers) and which have the
following ramification behavior:

(∗) ϕ is ramified in 5 points P1, . . . , P5
with ramification order at most 2,
and the ramification cycle correspond-
ing to P5 in the Galois closure of the
cover is a transposition.

This condition clearly implies that P5
has exactly one ramified extension Q5
in the cover and that P5, Q5 ∈ P1(K).
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Let ri denote the number of unramified
extensions of Pi, for 1 ≤ i ≤ 4. Since

−2 = −2n+1+
∑

1≤i≤4

(n− ri)

2
= 1−

∑

1≤i≤4

ri

2
.

we get
∑

ri = 6.
Since n is odd, ri is odd and so there
are

• P1, P2, P3 with ri = 1

• P4 with r4 = 3

It follows that P4, P5, P1 +P2 +P3 and
the discriminant divisor

disc(ϕ) = P1 + . . . + P5

are K-rational.
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The Galois closure ϕ of a cover ϕ :
P1 → P1 satisfying (∗) has Galois group
Sn and has a fixed ramification cycle
type C. So we get a moduli functor.
Call two covers

ϕ1, ϕ2 : P1 → P1

to be weakly equivalent if there exist
αi ∈ Aut(P1) such that

ϕ1α1 = α2ϕ2.

The resulting quotient moduli functor
is coarsely represented by the quotient
space H∗

n= Hin(Sn, C)/Aut(P1). (Fried,
Völklein et al).
It is a (non-complete) irreducible sur-
face.
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Remark 2.1 (a) Since H∗
n is only a

coarse moduli space for the quotient func-
tor, it is more difficult to characterize
the K-rational points of H∗

n.
(b) The basic existence result (Riemann)
yields that there always exist such cov-
ers (over algebraically closed ground fields
of characteristic 0) for arbitrary points
P1, . . . , P5.
But it seems more difficult to determine
explicitly how many such covers exist
and to decide rationality questions over
arbitrary ground fields . (Indeed, the
underlying ramification cycle structure
is highly non-rigid!)
Moreover, the constructions shed little
light on the actual structure of the Hur-
witz spaces.
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2.2 Covers of Elliptic Curves by Curves
of Genus 2

Why is H∗
n interesting? It is character-

ized by

• covers of P1 of odd degree by itself

• with 5 ramification points

• one ramification cycle is a transposi-
tion.

Trivial observation
P1, · · · , P4 determine an elliptic curve
E/K unique up to a quadratic twist.
For x of P1

K with (x)∞ = P4 take

E : y2 = f3(x) with (f3)0 = P1+P2+P3.

13



Let C = E ×P1 P1 be the normaliza-

tion of the fibre product of E and P1

over P1 (with respect to the morphisms
π : E → P1 and ϕ).
C is an irreducible curve of genus 2 sat-
isfying a hyperelliptic equation of the
form

Y 2 = f3(X) · g3(X)

with g3 a polynomial of degree 3 corre-
sponding to the 3 unramified extensions
of P4 in the cover ϕ.
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C comes together with morphisms

f : C → E

and
π′ : C → P1.

C
π′
↙

P1 ↓ f

ϕ ↓ E
π
↙

P1
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Properties of f

1. The morphism f : C → E is mini-
mal.

2. For the Weierstraß divisor WC =
W1 + . . . + W6 we have

f∗WC = 3 · 0E +P ′1 +P ′2 +P ′3. (1)

3.
f ◦ ωC = [−1]E ◦ f, (2)

where ωC denotes the hyperelliptic
involution of C.

Definition 2.2 A cover f : C → E
with properties 1, 2 and 3 is called
normalized.
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By the Riemann-Hurwitz genus formula
we see that the different of f has to be
a divisor of degree 2.

In our situation it is easily identified:
The point P5 has two distinct exten-
sions P and P ′ = [−1]EP to E, and
there is exactly one point Q resp. Q′ =
ωQ over P resp. P ′ which is ramified of
order 2. Hence the discriminant divisor
of f is equal to π∗(P5).

Conversely, assume that

f0 : C → E

is a minimal cover of an elliptic curve E
by a curve of genus 2 of odd degree n
defined over K.
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Lemma 2.3 There is a unique trans-
lation τ : E → E such that

f = τ ◦ f0

is normalized.
f factors over the hyperelliptic cover
π′ : C → C/〈ω〉 = P1. and induces
a primitive cover ϕ : C/〈ω〉 = P1 →
E/〈−idE〉 = P1 of degree n such that
ϕ ◦ π′ = π ◦ f .
Let P5 ∈ P1(K) be such that Disc(f) =
π∗(P5), P1 + P2 + P3 + P4 = π∗(E[2]).
Then

ϕ : P1 → P1

defines a point in H∗
n iff Disc(f) is re-

duced, i.e. if and only P5 /∈ {P1, . . . , P4}
( generic case).
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Consider the moduli problemHn which
classifies isomorphism classes of pairs (C, f )
where C is a curve of genus 2 and f is
a normalized covering map from C to
an elliptic curve E of degree n.
Let H′n denote the subproblem which
classifies the covers for which Disc(f) is
reduced.
We shall find surfaces Hn and H ′

n which
represent these problems coarsely.
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3 Moduli Functors

3.1 The “Basic Construction”

Observation:A normalized cover

f : C → E

induces a map

f∗ : JC → E

whose kernel is an elliptic curve E′ ⊂
JC intersecting f∗(E) exactly in E′[n].
Hence it gives rise to a triple

(E, E′, αn : E[n] → E′[n])

over K. JC is (as p.p. variety)

(E × E′)/graph(αn)

and αn is anti-isometric with respect to
the Weil pairing.
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Conversely: To a triple

(E, E′, αn)

satisfying the conditions from above the
abelian variety

(E × E′)/graph(αn)

has a principal polarization C (ie. a
curve of genus 2) and a cover map

f : C → E

of degree n which is normalized iff C is
irreducible. It follows that the moduli
problem {(E, E′, αn)} has Hn and H′n
as subproblems.
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3.2 Twisted Modular Curves

Now fix E or, in the language of Hur-
witz spaces, the points P1, . . . , P4. So
P5 is varying. As result we get a curve,
and, again in the language of covers of
E, the “parameter” is the discriminant
divisor.

More precisely:
For any extension field L of K, let EL =
E⊗L denote the elliptic curve E lifted
to L. We now consider the set

CovE/K,n(L) :=

{f : C → EL : f normalized,defined over L,

deg(f ) = n}/AutEL
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The assignment L 7→ CovE/K,n(L) can
be extended in a natural way to a func-
tor HE/K,n : Sch/K → Sets.

Theorem 3.1 (Kani)
If n ≥ 3, then the functor HE/K,N is
finely represented by a smooth, affine
and geometrically connected curve HE/K,n/K
with the property that HE/K,N ⊗Ks

is an open subset of the modular curve
X(N)/Ks

.

The proof of this theorem uses the basic
construction.
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Remark 3.2 The fact that the curve
H := HE/K,n finely represents the func-
tor HE/K,n means that there exists a
universal normalized genus 2 cover

fH : CH → E ×H

of degree n with the property that ev-
ery normalized genus 2 cover f : C →
E × S of degree n (where S is any K-
scheme) is obtained uniquely from fH
by base-change. In particular, the set
CovE/K,n(K) of covers can be identified

with the set of fibres fx := (fH)x :
Cx → Ex = E of fH , where x ∈
H(K).
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3.3 Varying the Base Curve

We want to represent the moduli func-
tors Hn and H′n.
We can do this already for “fibers” (fixed
choice of P1, . . . , P4).
So we have to glue together.
But we can expect only coarse moduli
schemes.
So a discussion of K-rational points is
not enough, we shall have to study the
associated moduli functors and/or stacks
in more detail.
The appropriate frame is given by the
concept of
moduli problems for elliptic curves

introduced by Katz-Mazur.
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It uses the moduli stack Ell/R of all

elliptic curves over a ring R where the
objects are relative elliptic curves over
R-schemes S.
Moduli problems P give rise to con-
travariant functors

P̃ : Sch/R → Sets

which classify isomorphism classes of P-
structures.
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Example 3.3 We take R = Z[1/2n]
and P the functor Zn,−1 which asso-
ciates to E/S the set of elliptic curves
defined over S with isomorphic n-torsion
structure with isotropic graph.
We know already that this functor is
finely representable for fixed E and
get a moduli space ZE,n,−1 defined over
R. Take j transcendental over R and
for Ej a curve with invariant j. De-
fine ZEj,n,−1 =: Zn,−1.

Theorem 3.4 (F-Kani) The moduli
problemsHn andH′n are coarsely rep-
resentable by open subschemes Hn and
H ′

n of Zn,−1 which is normal and affine
and of relative dimension 1 over
Spec(Z[1/2n][j]) = M(Γ[1]).

27



3.4 Diagonal Surfaces

For simplicity take R = Z[ 1
2n, ζn].

Take the modular affine curve

X(n)′
/Z[ 1

2n,ζn]

with the action of

Gn = SL2(Z/nZ)/{±1}.
Gn ×Gn acts on the product

Yn = X(n)′
/Z[ 1

2n,ζn]
×Z[ 1

2n,ζn]
X(n)′

/Z[ 1
2n,ζn]

.
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Definition 3.5 Define

σ−1 :=

(−1 0

0 1

)
.

Denote by ∆−1 the graph of the con-
jugation by σ−1.
The quotient

Zn,−1 = Yn/∆−1

is the modular diagonal quotient sur-
face of type (n,−1).

Proposition 3.6 The modular diag-
onal quotient surface Zn,−1 is the coarse
moduli space of the moduli problem
Zn,−1 and hence the coarse moduli
spaces Hn and H ′

n are open subsets
of Zn,−1.
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3.5 Back to the Hurwitz World

We analyze the space H∗
n by the same

techniques (stacks) as above
replacing Ell/R by
the stack of curves of genus 0 over R,M0
where R is a ring in which n! is invert-
ible.
Let X/S ∈ ob((M0)/R) be a relative
genus 0 curve, and consider the set

Cov∗X/S,n :=

{ϕ : Y → X : ϕ finite cover of degree n

whose fibres ϕt satisfy (∗)}/ 'X .

Then the rule H∗n(X/S) = Cov∗
X/S,n

defines a moduli problem on (M0)/R,

i.e. a functor H∗n : (M0)/R → Sets.
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Theorem 3.7 The moduli functorH∗n
has a coarse moduli space.

The rule

(C
f→ E) 7→ (C/〈ωC〉 → E/〈[−1]〉)

defines a functor

q = qn : H′n → H∗n,

and the induced map

M(q) : H ′
n = M(H′n) → H∗

n = M(H∗n)

on the coarse moduli schemes is sur-
jective and radical. Thus, if R =
K is a field of characteristic 0, then
M(q) is an isomorphism and hence

H ′
n ' H∗

n

is an irreducible, normal affine sur-
face.
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4 Compactification

As the constructions of the previous sec-
tion show, the moduli spaces H ′

n and
H∗

n are not compact. It is thus of in-
terest to construct natural compactifi-
cations of these spaces and to investi-
gate whether or not the boundary com-
ponents have a modular interpretation
in terms of covers of curves.

Since H ′
n was constructed as an open

subset of the affine surface Zn,−1, the

natural compactification Zn,−1 of Zn,−1
also serves as a compactification of H ′

n.
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A modular interpretation can be obtained
by studying the degeneration of the canon-
ical compactification of the universal cover
C → EH over H = HE/K,n for each

fixed elliptic curve E/K. On the other
hand, the theory of Wewers et al
gives a recipe for an (abstract) compact-
ification of Hin(Sn,C) in terms of cov-
ers, and this also gives a compactifica-
tion of H∗

n = Hin(Sn,C)/Aut(P1).
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Thus, in both interpretations the bound-
ary curves of the Hurwitz spaces cor-
respond to interesting degenerations of
covers.
This leads to a nice picture about the in-
terplay of geometry with group theory.
We get a complete dictionary between
degenerations with respect to the mod-
ular interpretation by covers of curves
of genus 2 to elliptic curves (here level-
n-structures and geometry give a com-
plete classification), and on the other
side with respect of degenerations of ram-
ification points and ramification cycles
(with a complete classification given by
group theory (joint work with H. Völklein).We
shall give only a few
hints.
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4.1 The boundary curves of H ′
n

The boundary curves naturally split into
three types induced by the inclusions

H ′
n ⊂ Hn ⊂ Zn,−1 ⊂ Zn,−1.

Type 1: ∂1 := Hn \H ′
n

By the modular description of Hn men-
tioned in subsection 2.2, the points of
∂1 classify genus 2 covers f : C → E
whose discriminant is not reduced, i.e.
Disc(f) = 2P. We get ϕ : P1 → P1 in
which P5 = Pi, for i = 1, . . . , 4. Hence
we can understand this degeneration as
a coalescence process. Various possible
ramification types can occur (predicted
by group theory) and so ∂1 decomposes
further into several components consist-
ing of curves with growing genus.
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Type 2: ∂2 := Zn,−1 \Hn

It is immediate from the “basic con-
struction” that the points in ∂2 corre-
spond to singular (stable) genus 2 curves
whose Jacobian is smooth, i.e. to curves
C that are the union of two elliptic curves
meeting in a single point. Again this
means that P5 moves to one of the points
P1, . . . , P4.
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Type 3: ∂3 := Zn,−1 \ Zn,−1

∂3 = C∞,1 ∪ C∞,2

is the union of two irreducible curves
C∞,i ' X1(n). The two cuspidal curves
C∞,i correspond to two different (sub)types
of degenerations of covers f : C → E.
In the first type the curve C degenerates
to a singular curve of genus 2 (whose
normalization is an elliptic curve), and
in the second subtype the curve E de-
generates to singular curve of arithmetic
genus 1 (whose normalization is there-
fore P1).
In terms of Hurwitz spaces this means
that points in P1, . . . , P4 coalesce.
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4.2 The Rigidity Number

We shall give a finer application using
geometry to get information about group
theory and compute the “number of non-
rigidity” of H∗

n.

Theorem 4.1 (Kani) Let n > 1 be
an odd integer, and suppose that K is
an algebraically closed field. If either
char(K) = 0 or char(K) > n then the
number of covers of degree n ramified
in P is

1

12
(n− 1)#SL2(Z/nZ).
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Remark 4.2 This number is a mea-
sure of non-rigidity of the ramification
type which defines H∗

n. Although this
number can be directly defined via group
theory, it seems very difficult, if not im-
possible, to compute this number in this
way. The basic trick of the proof here
is to compute instead a related number
in the case of “degenerate covers”.
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5 Rational Points

5.1 The Conjectures Restated

We come back to the conjectures stated
in the first section.
We are looking for triples

(E, E′, αn : E[n] → E′[n])

defined over K.
We restrict ourselves for simplicity to
the case that the determinant of αn is
= −1.
Conjecture 1.2 predicts that certain curves
on Zn,−1, namely twisted modular curves,
have, for n large enough, only obvious
points.
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Conjecture 1.1 predicts that, for n large
enough, points in Zn,−1(K) correspond
to pairs of elliptic curves (E, E′) which
are isogenous.
This is supported by the following result
of Hermann, Kani and Schanz.

Proposition 5.1 For n ≤ 10 the sur-
face Zn,−1 is rational or a K − 3-
surface or an elliptic surface.
For n ≥ 11 it is a surface of general
type.
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Recall Lang’s conjecture which predicts
that for such surfaces the K-rational
points are concentrated on curves of genus
≤ 1.
Hence it is interesting to find “obvious”
curves on Zn,−1 and then to prove that
there are no other curves of low genus
on this surface.
Unfortunately, we do not see theoretical
methods to come nearer to the second
part of this task.
Since the surfaces to be studied are given
in a most explicit way one could think
of doing computational experiments, i e
for n = 23, the smallest interesting ex-
ample.
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5.2 Points related to Isogenies

The conjectures stated in Subsection5.1
motivate to assume in the following that

η : E → E′

is a cyclic K−isogeny of minimal degree
denoted by l0.
To avoid trivial cases we always as-
sume that l0 > 1 and η is separable.
Denote by αn the restriction of η to
E[n].
Of course, there may be other GK-isomorphisms
between E[n] and E′[n]. We call triples
(E, E′, z · αn) “generic” because of
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Lemma 5.2 Assume that the central-
izer of GK in Aut(En) is Z · idE[n]
and that n is prime to l0. Then every
GK-isomorphism between E[n] and E′[n]
is of the form z ·αn with z ∈ Z prime
to lo. In particular, this is the case if
E has no complex multiplication and
n is large enough (depending on E
and K).

An easy observation is

Proposition 5.3 For all n prime to
l0 and all z ∈ Z prime to n the abelian
variety Jn := (E × E′)/graph(z · αn)
is isomorphic to E × E′.
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In order to get points on Hn via the
“basic construction” we need two addi-
tional properties:

Firstly the graph of z · αn has to be
isotropic with respect to the Weil pair-
ing and secondly one has to verify that
the resulting curve C is irreducible.

Proposition 5.4 Assume that l0 is
square free and that n is aprime. As-
sume in addition that E has no com-
plex multiplication. Then there is an
element z ∈ Z such that z ·αn induces
a covering

C → E

of degree n iff n = 2 or n is split
into two non principal prime ideals
in Q(

√−l0).
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5.2.1 Universal construction

Take l0 squarefree such that Q(
√−l0)

has class number > 1.
Let F0 := K0(j, j0) be the function field
of X0(l0)/K0.
Let Ej be an elliptic curve with invari-
ant j defined over F0.
Then there is a curve C of genus 2 de-
fined over F0 and infinitely many num-
bers n such that C is covering Ej of
degree n. If l0 is odd we get curves bi-
rationally equivalent to X0(l0) on the
Hurwitz spaces H ′

n resp. H∗
n.

For instance, take l0 = 5 Then X0(l0)
has genus 0 and so for infinitely many n
we get a rational curve in H ′

n and H∗
n.
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5.3 Degree of covers

We have seen in Subsection 5.2.1 that
under appropriate conditions there are
fields of finite type K and pairs (E, E′)
of isogenous elliptic curves which are
K−rationally covered by curves C of
genus 2 with Jacobian variety E × E′.
In fact, there are infinitely many such
covers fn (if there is one) with the same
cover curve C.
It is an interesting task to determine the
degrees of these covers. It leads to ques-
tions about representation of numbers
by quadratic forms.
We do not go into details in general but
restrict ourselves to a special case.
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Let η̂ be dual to the isogeny η : E → E′
of degree l0.
Let π : C → E and π′ : C → E′ be
covers of degree n with JC = E × E′
and

π∗ ◦ π′∗ = 0E and π′∗ ◦ π∗ = 0E′.

.

Lemma 5.5 (Diem-F)
For a, b ∈ Z

aπ + bη̂π′ : C −→ E

has

deg(aπ + bη̂π′) = na2 + nl0b
2.

If a = 1 and b ≡ 0 mod n the cover
is minimal.
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5.4 Ramification points

We continue to assume that E and E′
are isogenous curves with a K−rational
isogeny η of minimal odd degree l0 and
that the j−invariant of E is not con-
tained in the prime field K0 of K and
that f : C → E is f is induced by the
universal construction described in Sub-
section 5.2.1.It follows that there are two
ramification points of f on C and two
branch points of f on E corresponding
to a point P5(f ) ∈ P1(K) with unique
ramified extension Q5(f ) ∈ P1(K).
We have seen that there are infinitely
many covers fn : C → E of different
degrees n.
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Question:
How do P5 resp. Q5 move when we
change f (with fixed C).

Proposition 5.6 Q5(f ) corresponds
to an ideal in K0[X ] of degree bounded
by a number depending only on E.

The proof is not trivial; it uses results
from from arithmetical geometry of fi-
bred surfaces.

This result could indicate finiteness prop-
erties of ramification resp. branch points
of covers.
We remark that finiteness of {P5(fn)}
yields finiteness of {Q5(fn)} since K−rationality
of P5 implies K-rationality of the cor-
responding ramification point on C.
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A closer look (F-Diem) reveals that the
worlds in characteristic 0 and character-
istic > 0 behave differently.

Proposition 5.7 Let K be a field of
characteristic 0.
Let c1 and c2 be minimal covers from
C to E with c1 6= ±c2. Then the ram-
ification loci of c1 and c2 are disjoint.
So, if {fn; n ∈ I} is an infinite set
of minimal covers from C to E then
the set of ramification loci and the set
of branch loci of these covers are in-
finite.
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Proposition 5.8 Assume that char(K)=
p > 0. Then all ramification points
for all minimal covers from C to E
lie in a finite set of order ≤ pdimZHomK(JC ,E),
and there is a cover

C → E

of degree 2 such that there are in-
finitely many covers

fn : C → E

defined over K with P5(f ) = P5(fn).

Remark 5.9 All the covers fn in Propo-
sition 5.8 have even degree.
Can one find covers of odd degree with
equal branch points?
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5.5 Towers of unramified extensions

Question: Can we compose covers from
C to E to get towers of regular unram-
ified Galois covers over finite extensions
of K?
For this it is necessary (and also suf-
ficient (use our machinery of Hurwitz
spaces over schemes) that we find in-
finitely many minimal covers with the
same branch points .
Because of Proposition 5.7 we have to
restrict ourselves to fields of positive char-
acteristic p > 0.
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For finite fields K we can use arith-
metic properties of modular forms (done
by Kiming) to give an affirmative an-
swer.

If K is not a finite field we can use
Proposition 5.8.
We get

Proposition 5.10 (Diem-F) Let K
be a field of odd positive characteris-
tic. Let E be an elliptic curve over
K.
Then there is a curve C of genus 2
covering E which has an infinite un-
ramified regular Galois pro-cover de-
fined over a finite extension of K.
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