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Biological systems are often subject to external noise from signal stimuli and en-
vironmental perturbations, as well as noises in the intracellular signal transduction
pathway. Can different stochastic fluctuations interact to give rise to new emerging
behaviors? How can a system reduce noise effects while still being capable of detect-
ing changes in the input signal? Here, we study analytically and computationally the
role of nonlinear feedback systems in controlling external noise with the presence of
large internal noise. In addition to noise attenuation, we analyze derivatives of Fano
factor to study systems’ capability of differentiating signal inputs. We find effects
of internal noise and external noise may be separated in one slow positive feedback
loop system; in particular, the slow loop can decrease external noise and increase
robustness of signaling with respect to fluctuations in rate constants, while maintain-
ing the signal output specific to the input. For two feedback loops, we demonstrate
that the influence of external noise mainly depends on how the fast loop responds
to fluctuations in the input and the slow loop plays a limited role in determining the
signal precision. Furthermore, in a dual loop system of one positive feedback and one
negative feedback, a slower positive feedback always leads to better noise attenua-
tion; in contrast, a slower negative feedback may not be more beneficial. Our results
reveal interesting stochastic effects for systems containing both extrinsic and intrinsic
noises, suggesting novel noise filtering strategies in inherently stochastic systems.
C© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4762825]
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I. INTRODUCTION

In biological systems, cells often adapt their fates and adjust to environmental perturbations
by sensing the external stimuli, processing the information and generating responses appropriately.
With many genes and proteins presenting in low numbers, signal processing is inevitably inherently
stochastic.2, 6, 7, 21 Due to internal noise, genetically identical cells may assume different fates within a
homogeneous environment. Stochastic effects play an important role in various biological processes.
Noise may be used as probabilistic differentiation strategies and to facilitate evolutionary adaption.2, 7

For instance, for many cyanobacteria, photosynthesis and nitrogen fixation are crucial but mutually
exclusive; to maintain both functions, a subpopulation of cells are assigned to nitrogen fixation while
the rest is kept photosynthetic.2

In spite of internal noise, which fate for a cell to choose is biased by specific environmental
cues, such as the strength and duration of stimuli, through which cells exhibit environment-specific
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diversity.2, 15 For example, during cell differentiation, morphogens determine cell types in a concen-
tration dependent manner. In a deterministic system without noise, a cell turns on one gene expression
when the concentration of a morphogen sensed by the cell is above a threshold;18, 19, 29 however,
in a stochastic system, having the same gene expression in that cell becomes probabilistic where
the probability may depend on the mean concentration of the morphogen.15, 20 While maintaining
specific, steady, and inheritable cellular diversity is critical for metazoan development, optimized
microbial resource utilization and survival in a frequently stressful environment,2, 7 external noise
from the environment, such as the fluctuations in the signal input and the variations of reaction rates,
can easily perturb a normal decision-making process of a cell. What strategies do cells use to control
external noise for reliable and desirable gene expression?

Linear signaling cascades, in which information flows proportionally to the level of a single
signaling species at each step, are studied extensively in recent years.1, 10, 11, 24, 26 It has been found
that, in linear signaling cascades, better buffering the input noise results in a decrease in the system’s
capability of detecting changes in the mean level of the signal input,12 i.e., losing response specificity.

With an assumption on small stationary fluctuations around a unique stable point of each species,
a simple and nonlinear model is studied through the van Kampen’s �-expansion in which the first-
and second-order terms capture the deterministic macroscopic behavior and the result from the
fluctuation-dissipation theorem, respectively.22 The total noise in the output signal has been found
to be the sum of the intrinsic noise in signal processing and the extrinsic noise from the signal
input, suggesting that negative feedbacks can suppress noise while positive feedbacks can amplify
noise.22

For nonlinear systems with small or negligible intrinsic stochastic effects, feedback loops
play critical roles in propagation of noise originally presented in the signal input.4, 12 In many
biological systems, such as sensing temperature, nutrient levels or ligand concentrations, changes in
the signal input cannot be reflected instantaneously in the downstream reaction components. As a
result, rapid stochastic fluctuations in the signal input may be averaged or filtered out through slow
components and the feedback loops regulate noise propagation by modulating the timing of signal
responses.4, 12 Interestingly, the capability of a feedback system to attenuate the input noise is found
to be inversely dependent on the difference between the deactivation time and the activation time, a
critical quantity characterized by the deterministic system regardless of positive or negative feedback
loops.30

What happens to such nonlinear feedback systems in the presence of significant intrinsic stochas-
tic effects? Multiple states, such as inactive and active states in transcriptionally regulated promoters
and bi-stable gene expressions in cellular differentiation20, 29, 31 are often observed in biological
systems. Here we incorporate the inherent noise of the system and fluctuations from the input signal
using chemical master equations. We study several nonlinear feedback loops both analytically and
computationally to examine how each type of feedback loop responds to noises originating from the
external signal input. We use the coefficient of variance (CV), defined as the standard deviation of
the output divided by its mean, to quantify the noise attenuation capability. In particular, we focus
on delineating contributions from intrinsic and extrinsic fluctuations to signal output and exploring
the limitation of different feedback loops to control external noise.

Signal specificity is another focus in this study. When a system has a strong capability of
removing fluctuations in the input signal, it may become weak in detecting changes in the signal
input, such as changes in the mean level.12 How does a system keep the output specific to its input
signal while still being able to reduce fluctuations from the input? In other words, the output signal
must reveal small changes in the mean of the input signal even when the variance of the input
becomes large. Here we consider the Fano factor, defined as the variance of the output divided by
its mean, and use its derivative to the mean of the signal input to quantify signal specificity. For
example, a larger value of the derivative implies a better sensitivity of the output to the input signal.
The advantage of using the Fano factor over CV is that when the mean of the response output is
close to zero, the Fano factor may remain finite while CV may blow up. This is very important when
considering spatial signals that can span a wide range of strengths. By examining the derivatives
of the Fano factor, we investigate a feedback loop’s capability of differentiating signal inputs and
maintaining signal robustness under different strengths of signal inputs.
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FIG. 1. The schematic diagram of one positive feedback loop.

II. ONE POSITIVE FEEDBACK LOOP

To understand noise propagation along complex signaling networks, we first consider a single
positive feedback loop consisting of two reacting components (Fig. 1), in which B is activated
by the signal input S, B activates C and C can promote the activation of B in turn. The positive
feedback module exists in many biological signaling circuits.3, 5, 13, 20, 29 For example, B and C can
be considered as two promoter sites, S is a transcription factor of B, and C can produce regulatory
proteins to enhance the transcription of B.

Let c and b denote the fractions of active C and B in cells exposed to the same signal input S.
The dynamics of B and C takes the following deterministic continuum equations:

db

dt
= (b1s(1 + c)(1 − b) − b2b) τ, (1a)

dc

dt
= c1b(1 − c) − c2c, (1b)

where s is the level of S, τ is the temporal scale of the reactions of B, and the loop is slow when
τ � 1.

In a discrete stochastic description, we assume that B and C can be either 0 or 1 and S can be
either s + �s or s − �s. B is active when B = 1, and inactive when B = 0. Similarly, C is active
when C = 1 and inactive when C = 0. Define the state of the system as the vector (S̄, B̄, C̄), where
S̄, B̄ and C̄ denote the state of S, B and C, respectively. Possible transitions among different states
corresponding to reactions in Fig. 1 are illustrated by the directed graph in Fig. 2. Each directed
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FIG. 2. The diagram on transitions among different states.
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edge vs → ve stands for one reaction step that changes the state of the system from vs to ve.9 The
weight of each edge gives the probability of the occurrence of each reaction during a unit time
interval. Define P = (P1, P2, . . . , P8)′ such that for i = 1, 2, . . . , 8, Pi is the probability of the state at
(s − �s, 0, 0), (s − �s, 1, 0), (s − �s, 1, 1), (s − �s, 0, 1), (s + �s, 0, 0), (s + �s, 1, 0),
(s + �s, 1, 1), and (s + �s, 0, 1) at time t, respectively. Then the corresponding master equations
are

d P

dt
= AP (2)

and initial probability conditions,

where

A =
(

A1,1 − ωI ωI

ωI A2,2 − ωI

)
, (3)

A1,1 =

⎛
⎜⎜⎜⎜⎝

−(s − �s)b1τ b2τ 0 c2

(s − �s)b1τ −(b2τ + c1) c2 0

0 c1 −(b2τ + c2) 2(s − �s)b1τ

0 0 b2τ −(2(s − �s)b1τ + c2)

⎞
⎟⎟⎟⎟⎠, (4)

A2,2 =

⎛
⎜⎜⎜⎜⎝

−(s + �s)b1τ b2τ 0 c2

(s + �s)b1τ −(b2τ + c1) c2 0

0 c1 −(b2τ + c2) 2(s + �s)b1τ

0 0 b2τ −(2(s + �s)b1τ + c2)

⎞
⎟⎟⎟⎟⎠, (5)

and I is the 4 × 4 identity matrix.

A. Input noise control

Similar to the previous studies,12, 22, 30 we use the coefficient of variance (CV) of active C,
defined as

CV ≡
√

Var (C)

Mean (C)
, (6)

to study the output noise when S fluctuates around a constant level s.
The fluctuations in S are additive to the inherent stochasticity in B and C. We consider the

fluctuations in C at the stationary state when the distribution of C does not change over time, i.e.,

AP = 0. With the restriction
8∑

i=1
Pi = 1, P can be solved directly in Eq. (2). Then the square of the

CV of C at the stationary state is obtained as below

CV 2 = [1 1 0 0 1 1 0 0]P

[0 0 1 1 0 0 1 1]P

= c2(sb1 + b2)

sb1c1
+ b2c2

sb1 (c2 + (b1 + sb1 + b2)τ )

+ b2τ

ω
· (c1 + c2)

2c1
· (�s)2

s2
+ O(τ 2). (7)

The leading terms in the last equation give an approximation of CV 2 if τ � 1, which means the
feedback loop from B to C is assumed to be slow. If there is no fluctuation in S, i.e., S ≡ s, the CV
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FIG. 3. The correlation between CVE and SAT at the variation of parameters. In panel (a) and (b), the signal input S fluctuates
around 0.9 and 0.1, respectively. Along the blue-solid line, τ varies from 0.01 to 1; along the black-dot line, b2 varies from
0.1/min to 10/min; along the cyan-circle line, c1 varies from 0.1/min to 10/min; and along the red-cross line, c2 varies
from 0.1/min to 10/min. The values of other parameters except the varied ones are chosen from τ = 0.01, c1 = 1/min,
c2 = 0.3/min, b1 = 1/min and b2 = 2/min along each line. For comparison, we normalize SAT and CVE by their maximal
values within the variation of each parameter, in order to confine them in [0,1].

of C is

CVI ≡
√

c2(sb1 + b2)

sb1c1
+ b2c2

sb1 [c2 + (b1 + sb1 + b2)τ ]
. (8)

Therefore, CVI measures the fluctuations caused solely by the inherent stochasticity in B and C. We
next define

CVE ≡ (CV )2 − (CVI )2 = b2τ

ω
· (c1 + c2)

2c1
· (�s)2

s2
, (9)

which in turn estimates the fluctuations in the output caused by the external noise from S. We notice
that the contribution from the external noise in S is additive to the total fluctuations in the signal
output C when the B component changes slowly. Note that CVE is independent of b1 in Eq (9). This
is because as S varies, the probabilities of C = 1 and C = 0 change in an order of O(b1) and hence
the variance of C varies in O(b2

1). As the mean of C is O(b1), b1 is then canceled in CVE .
The fluctuations from S are buffered by the slow reaction component B. In Eq (9), CVE is

proportional to

b2τ

ω
· (�s)2

s2
, (10)

where τ /ω measures the temporal scale of reactions relative to the fluctuation frequency of the signal
input S. Noting that the approximation of CV 2 does not require any condition on �s, we conclude
that slow downstream reactions can buffer the fast fluctuations from the upstream signal.

The dependence of CVE on τ /ω is consistent with the previous study,30 in which the noise
attenuation capability is dependent on a temporal quantity called signed activation time (SAT):

SAT = 1

ω
(the deactivation time scale − the activation time scale) , (11)

where the activation time scale is the time for the level of C to reach its new steady state after S
switches from s − �s to s + �s, and the deactivation time scale is defined as the time for the
level of C to reach its new steady state after S switches from s + �s to s − �s. In Fig. 3, we
observe that CVE is a decreasing function of SAT as the signal input fluctuates around the low level
(s = 0.1) or the high level (s = 0.9).
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B. Signal specificity to the mean level of the input signal and rate constants

To study the specificity of the output signal to noisy signal inputs, we consider the Fano factor
of C defined as

F ≡ Var (C)

Mean (C)
. (12)

The Fano factor, similar to CV, measures the relative fluctuations of the output. When the mean of
S is close to zero, the mean of C is close to zero. As a result, the CV of C increases dramatically,
while the Fano factor is confined in [0,1]. This is important when the input signal takes a wide
range of values such as the spatially varied signals morphogens.18–20, 29 In addition, the derivative
of the Fano factor of C to the mean of the input S measures how sensitive the Fano factor is with
respect to changes in the mean of the signal input. This quantity may be used to study the capability
of differentiating noisy input signals by detecting the potential small difference between the mean
values of two signals. Again, this is important for spatially varied signals as two cells next to each
other in space may receive input signals of small differences, but, exhibit two totally different fates.

Given that the Fano factor of a Poisson-distributed variable is one, the Fano factor of a random
variable reveals its deviation from the Poisson distribution. The Fano factor of a gene (e.g., C in
our system) is the probability of the gene being inactive (i.e., C = 0). When a gene is active, the
production of its protein is approximated by a Poisson process. Therefore, the Fano factor may
measure how often the transcription and protein production process is interrupted.21, 23 Here, the
Fano factor of C can be used to quantify the deviation of its protein production from a Poisson
process.

At the low values of the signal input, the Fano factor of C is robust with respect to
perturbations of rate constants. Direct calculation of the Fano factor of C at the stationary state
shows

F = b2

b1s + b2
+ c2

c1 + c2
· b1s

b1s + b2

− c2
1b1sb2(b2 + 2b1s)τ

c2(c1 + c2)2(b1s + b2)2
+ b2

1b2c1�s2τ

2ω(c1 + c2)(b2 + b1s)2
+ O(τ 2). (13)

As indicated in Eq. (13), the Fano factor of C is close to one when s � 1. However, at the high
level of S, it depends on the kinetic rates. Therefore, at the low level of S, the Fano factor of C is not
as sensitive to changes in rate constants as at the high level of S.

Slowing the positive feedback loop can increase the robustness of the output to changes in
rate constants and buffer fluctuations in the input while keeping the signal output specific to
the mean level of the signal input. The sensitivity of the Fano factor of C to changes in b1 and c1

may be estimated through their derivatives:

∂F
∂c1

= − c2b1s

(c1 + c2)2(b2 + b1s)
− 2c1b2b1s(b2 + 2b1s)τ

(c1 + c2)3(b1s + b2)2

+ b2
1b2c2�s2τ

2ω(c1 + c2)2(b2 + b1s)2
+ O(τ 2), (14)

∂F
∂b1

= − c1b2s

(c1 + c2)(b2 + b1s)2
− c2

1b2
2s(b2 + 3b1s)τ

c2(c1 + c2)2(b1s + b2)3

+ b1b2
2c1�s2τ

ω(c1 + c2)2(b2 + b1s)3
+ O(τ 2). (15)

Since τ � 1, at s � 1 we have

| ∂F
∂b1

| � 1 and |∂F
∂c1

| � 1. (16)

Moreover, when �s � s or ω is large enough, reducing τ decreases |∂F/∂c1| and |∂F/∂b1|.
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FIG. 4. The changes of CVE and |∂F/∂s| as τ decreases from one to zero. The arrows indicate where CVE and |∂F/∂s|
head as τ approaches zero. Here ω = 1, c1 = 1/min, c2 = 0.3/min, b1 = 1/min, and b2 = 2/min.

When τ is close to zero, F is dominated by the first two terms in Eq. (13), limiting the influence
of τ on the sensitivity ofF to s. Therefore, while decreasing τ can reduce CVE to zero, the sensitivity
of F to s cannot be reduced after reaching a certain level. This behavior is also seen in Fig. 4, where τ

approaches zero, CVE approaches zero while the |∂F/∂s| does not. By slowing B, cells can manage
to diminish large fluctuations from the input and detect small changes in the mean of the input
simultaneously. This is a very important strategy in many biological systems, like cell differentiation
in which specific genes have to be appropriately expressed in the right spatial locations according to
spatially and temporally varying, but, noisy signal inputs.20, 29

C. Spatially varied signals lead to the non-Poisson behavior of the output signal

During the embryonic development, morphogens, a class of diffusive molecules, form spatial
gradients and specify fates of cells.18–20, 29 Previous studies on stochastic effects of such systems
have made an assumption on Poisson distributions of signaling species for simplicity of analysis and
computations.8, 17, 27 Here, we study a one-dimensional spatial model without the Poisson assumption
and instead use the spatial stochastic Gillespie simulation algorithm9, 14 to solve the full model
numerically.

In this model, the one-dimensional tissue consists of ν cells, in which morphogen S is produced
in the first cell on the left, diffuses and decays throughout the tissue. In each cell S acts as the signal
input to activate downstream components B and C with the regulation shown in Fig. 1. Let Ni be the
number of S molecules in the ith cell. It is known that at the stationary state

P(Ni = k) = e−Mi
Mk

i

k!
, (17)

where Mi is the mean number of S molecules in the ith cell, and M1 > M2 > M3 · · · > Mν . The exact
expressions of Mi’s can be found in Ref. 15. So the distribution of Ni is Poisson with mean Mi and
variance Mi. To analyze the response of each cell to S, in Eq. (2) we let

s = Mi

�
and �s =

√
Mi

�
, (18)

where � = NA · V , NA is the Avogadro’s number and V is the volume of the cell. By using �, we
scale the number of S molecules relative to the concentration of S. 1μM in a cube of volume 1μm3

will be equal to 600 molecules. Since the diameter of a cell is usually between 1 μm to 10 μm,
� � 1. Furthermore, �s = √

s/� and �s � s.
The typical spatial profile for S and its mean are shown in Fig. 5 for an array of 20 cells. We

numerically simulate B and C with such input S and compare the statistics of C at different τ ’s,
b1’s, and c1’s, to examine the ability of the slow positive feedback loop to control input fluctuations,
changes in rate constants, and signal specificity. The mean, variance and Fano factor of C under each
parameter setting are shown in Figs. 6 and 7.
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FIG. 5. The spatial profile of S in the one-dimensional tissue at the stationary state. The solid line shows the mean
concentration of S from 500 realizations of the stochastic system and the bars display the concentration of S in each cell
from one realization. The tissue consists of an array of 20 cells with each cell of dimension 5 μm × 5 μm × 5 μm. Being
produced in the first cell with rate 6 μM/min, S diffuses at 9 μm2/sec and decays at 1/min throughout the system. Assuming
symmetry, we perform the simulation in a slice of the system with base 0.14 μm × 0.14 μm.

As expected, as b1 or c1 increases, the changes in the mean, variance, and Fano factor of C at τ

= 0.01 are all smaller than they are at τ = 0.1 throughout the system, implying that the slow reaction
component B reduces the sensitivity of the response to the changes of parameters. Moreover, for the
variations of b1 and c1, the changes in all three quantities decrease as the mean level of S decreases.
In particular, as b1 increases, the mean of C increases more dramatically at the high signal value
(S ≈ 1) than at the low signal value (S ≈ 0). So, when S ≈ 1 the mean of C becomes close to one
and the variance is close to zero, making the distribution of C different from Poisson.
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FIG. 6. The mean, variance, and Fano factor of C in response to the spatial signal input S at different b1’s. In the panel (a),
(b), and (c), τ = 0.01, while in the panel (A), (B), and (C), τ = 0.1. b1 = 1/min along the red-dashed line, while b1 = 10/min
along the blue-solid line. The values of the remaining parameters are c1 = 1/min, c2 = 0.3/min and b2 = 2/min.



115616-9 Zheng, Chen, and Nie J. Math. Phys. 53, 115616 (2012)

5 10 15 20
0

0.2

0.4

M
ea

n
C

Cell array

(A)

τ=0.1

0 10 20
0

0.2

0.4

M
ea

n
C

Cell array

(a)

τ=0.01

5 10 15 20
0

0.1

0.2

V
ar

C

Cell array

τ=0.01

(b)

5 10 15 20
0

0.1

0.2

V
ar

C

Cell array

τ=0.1

(B)

0 10 20

0.8

1

F
C

Cell array

τ=0.01

(c)

0 10 20

0.6

0.8

1

F
C

Cell array

τ=0.1

(C)

FIG. 7. The mean, variance, and Fano factor of C in response to the spatial signal input S at different c1’s. In the panel (a),
(b), and (c), τ = 0.01, while in the panel (A), (B), and (C), τ = 0.1. c1 = 1/min along the red-dashed line, while c1 = 10/min
along the blue-solid line. The values of the remaining parameters are b1 = 1/min, b2 = 2/min, and c2 = 0.3/min .

III. DUAL-TIME FEEDBACK LOOPS

In this section, we consider the role of an additional negative feedback to the one positive
feedback loop system studied in Sec. II (Fig. 8).

An extra component A, also activated by S and the output C, has a negative regulation on C. The
two feedbacks from A and B affect C in an incoherent way with different time scales τ a and τ b. The
deterministic model in a similar form of Eq. (1a) and (1b) is following:

da

dt
= (a1s(1 + kac)(1 − a) − a)τa, (19a)

db

dt
= (b1s(1 + kbc)(1 − b) − b)τb, (19b)

dc

dt
= c1b(1 − a)(1 − c) − c. (19c)

BC

S

A

FIG. 8. The schematic diagram of the positive-negative feedback loop.
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Here we consider two cases: the system of a fast negative feedback loop and a slow positive feedback
loop, i.e., τ a = 1 and τ b � 1 and the system of a fast positive feedback loop and a slow negative
feedback loop, i.e., τ a � 1 and τ b = 1. Examples of such a regulation mechanism include the mitotic
trigger in Xenopus, Ca2+ oscillation, and circadian oscillation in Drosophila and Mammalia.28 Such
systems consist of reaction modules whose characteristic time scales may span over femtoseconds
to hours or even days.25

A. The important role of the fast component in processing the fluctuations from S

Similar to the one loop system, we study the effect of the input noise by considering CVE

≡ (CV )2 − (CVI )2, where CV and CVI are the coefficients of variance of C with and without the
fluctuations in S, respectively.

For a fast negative feedback loop and a slow positive feedback loop, using a similar approach
as the one loop system, we obtain

CVE (P, N)

= −
(

1 + 1

b1s

)
a2

1�s2

Dn

(
3 (2 + a1s(1 + ka))2 (4 + a1s(1 + ka))

+ 8c2
1(1 + ka)2 + 2c1(1 + ka) (19 + 9ka + 8a1s(1 + ka))

) + O(�s4) + O(τb)

= (1 + 1

b1s
)CVE (N) + O(�s4) + O(τb), (20)

where CVE (P, N) denotes the CVE of the full system, CVE (N) denotes the CVE of the system with
only the fast negative feedback component (B ≡ 1), and Dn = c1(2 + a1(1 + ka)s)2(4c1(3 + a1(1
+ ka)s + 3(3 + a1s)(4 + a1(1 + ka)s)). Therefore, how the fluctuations in S affect the system is
dominated by the fast negative feedback component. Also note that due to the negative regulation
of A on C, CVE (P, N) and CVE (N) are negative, which is consistent with Ref. 22.

For a slow negative feedback loop and a fast positive feedback loop, letting CVE (P) be the CVE

of the system with only the fast positive feedback component (A ≡ 0), we have

CVE (P)

= �s2

s2 Dp

(
b2

1s2(1 + kb)2(3 + c1)(8 + c1) + b3
1s3(1 + kb)3(3 + c1)

+ (2 + c1) (24 + 7c1 − kbc1)

+ 2b1s (1 + kb)
(
30 + 26c1 + 4kbc1 + 5c2

1 + kbc2
1

))
+ O(�s4) + O(τa) (21)

and

CVE (P, N)

= (1 + a1s)CVE (P)

+ a1ka�s2(4 + 2c1 + b1s + b1kbs)

s(9(4 + c1) + b1s(21 + 9kb + 2c1(3 + kb) + b1s(3 + c1)(1 + kb)))

+ O(�s4) + O(τa), (22)

where Dp = c1(2 + b1s(1 + kb))2(9(4 + c1) + b1s(21 + 9kb + 2c1(3 + kb) + b1s(3 + c1)(1
+ kb))).

It is straightforward to show that

(1 + a1s)CVE (P) < CVE (P, N) < (1 + a1s(1 + 2ka))CVE (P), (23)
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FIG. 9. The changes of CVE and |∂F/∂s| as the negative or fast feedback loop is adjusted from fast to slow. The arrows
indicate where CVE (P, N) and |∂F/∂s| head as τ a or τ b approaches zero, and the black solid circles are their limits. Here
c1 = 2/min, c2 = 1/min, b1 = 2/min, b2 = 1/min, a1 = 3/min, and a2 = 1/min. In panel (a)-(b), ka = 1 and kb = 1; in
panel (c)-(d), ka = 1 and kb = 5.

when kb � 3 or s � 1/(8b1). Therefore, when the signal input is high enough, the noise effect from
S on the full system is dominated by its impact on the fast feedback component.

B. The limited and different influence of slowing one positive or negative feedback loop
on the propagation of the input noise

To study the signal specificity to noisy signal inputs, we next examine the derivative of the Fano
factor of C to the mean level of the signal input. In Fig. 9, we plot CVE (P, N) and the derivative of
the Fano factor of C to s when the temporal scale of either one of the two feedback loops is adjusted
from fast to slow. It is interesting to observe that slowing the positive feedback (i.e., τ b → 0)
leads to different qualitative behaviors of the signal output from slowing the negative feedback (i.e.,
τ a → 0).

When slowing the positive feedback and keeping the negative feedback fast (i.e., τ b → 0
and τ a = 1), CVE (P, N) and |∂F/∂s| decrease to approach non-zero limits at both low and high
values of signal inputs. Under a wide range of parameters and signal inputs, positive feedback loops
usually amplify noises, also seen in Eq. (21). Slower temporal dynamics of such a loop leads to
smaller CVE (P, N). As its time scale becomes comparable to or slower than the negative feedback,
CVE (P, N) reaches its lower limit. |∂F/∂s| also exhibits a similar behavior. Together, it shows that
although the external noise control capability (i.e., CVE ) is limited, the sensitivity of the Fano factor
to s is maintained in such a feedback system for signal specificity.

The result is different for slowing the negative feedback and keeping the positive feedback fast
(i.e., τ a → 0 and τ b = 1). CVE (P, N) and |∂F/∂s| increase to reach their limits with the high value
of the signal input and decrease to reach their limits at the low value of the signal input. For this case,
CVE (N) is negative in Eq. (20), indicating that the negative feedback can repress noise by reacting
fast to changes in the signal input. Our calculation on CVE (P, N) suggests that in some parameter
regimes, slowing the negative feedback loop may prevent the fast reaction and reduce the noise
repression capability, while in others, it may help filter out fluctuations. When the level of S is high,
A has a high mean level and the “negative” role of A in signaling is large; slowing the reactions of
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A reduces noise repression, increasing CVE (P, N) to its limit. At the low values of the signal input
with a low mean level of A, the “negative” role of A in signaling is small, and slowing the feedback
loop mainly filters the fluctuations in C, reducing CVE (P, N) to its limit.

Because noise propagation is dominated by the faster reacting component, noise control by
slowing one feedback is limited. Slowing the positive feedback loop (i.e., reducing τ b) leads to
better noise attenuation and reduction of CVE (P, N). Interestingly, slowing the negative feedback
loop (i.e., reducing τ a) can increase or decrease the system’s noise attenuation capability, depending
on the relative strength of the negative feedback in signal transduction.

IV. CONCLUSIONS AND DISCUSSION

In this paper, we have investigated how inherently stochastic feedback systems respond to noisy
signal inputs. We have incorporated both intrinsic and extrinsic noises through a discrete description
of chemical reactions in the feedback systems. The models based on chemical master equations
have been studied both analytically and computationally. In addition to examining systems’ noise
attenuation capability through the coefficient of variance of the signal output, we have studied how
the signal output maintains its fidelity to the mean level of the signal input using the Fano factor.
Using this approach, we also have explored spatially varied input signals in morphogen systems and
compared the consequent dynamics with the case of Poisson assumption.

Unlike previous studies with assumptions on small stochastic perturbations,12, 22, 32 our model
allows large stochastic effects for probabilistic transitions of signaling species among functionally
different states. Our analysis shows that the level of the fluctuations of the signal output is the sum of
the external noise from the signal input and the internal noise of signal transduction in one positive
feedback loop, a result consistent with a previous study.22 Without surprise, slowing one positive
feedback in time leads to good noise control and signal specificity. For spatially varied inputs, the
dynamics of the output exhibits non-Poisson behaviors at high values of inputs while the system
shows Poisson at low values of inputs.

For a dual-time negative-positive feedback loop system responding to noisy inputs, the impact
of the input noise on the signal output mainly depends on how the faster loop of the two feedbacks
reacts to the fluctuations, implying a limited effect of slowing only one feedback loop. In addition, we
have found that a slower positive loop has better control on propagation of input noises at both high
and low input signal values, but, a slower negative loop may not always be beneficial on attenuating
noises in the input. The result suggests that a dual-time feedback system of a slow positive feedback
loop and a fast negative feedback loop is particularly valuable in controlling input noise compared
to other possible combinations.

Our analytical and computational approach provides a systematic way of studying stochastic
dynamics of nonlinear signaling networks of multiple temporal scales, with possible applications to
many biological systems.4, 16, 20, 28, 29 It would be interesting to expand such an approach to include the
effect of feedbacks on internal noise and to explore the impact of slow temporal scales for such case.
Several previous studies have suggested advantages of dual-time positive-positive feedback loops
in the capability of buffering external noises from the signal input and promoting fast responses
to stimuli without considering inherent stochastic effects.4, 16 It would be worthwhile comparing
different combinations of feedback loops with intrinsic noise about multiple performance objectives,
which may include controlling noises from inputs, fast responses to inputs, signal specificity, and
robustness to other internal and external factors.
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