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Abstract

Stochasticity is inherent in biochemical systems. Noise can come from internal sources

such as the random motion and reactions of molecules, and external sources such as

environmental fluctuations. The main purpose of this thesis is to study how fluctuations

propagate in biological systems.

First, we focus on how a signaling molecule called a ligand searches for and binds

to its target (receptor). There exist membrane proteins that can bind to the ligand

molecule and localize it near receptors, affecting the association between it and the

receptor. Our analysis shows that although the membrane protein can concentrate

the ligand molecule near the receptor surface, the membrane protein has to pass the

localized ligand molecule to the receptor fast enough, in order to enhance signaling.

Otherwise, the membrane protein inhibits signaling. Moreover, we also study the effect

of localization on signal specificity. In particular, we discuss how the membrane pro-

teins bind to ligand molecules and distribute them to different downstream signaling

pathways.

Upon ligand binding to receptors, bound receptors can initiate the downstream

network, which may finally lead to gene expression. We then study how the noise from

the initiation step of transcription propagates in the elongation step. Elongation can

be interrupted by the pauses of the transcription complex on the DNA sequence. We

give a condition under which the pause of the transcription complex can cause bursts

of mRNA production.

Finally, we use stochastic simulations to study dorsal-ventral patterning inDrosophila

numerically. Our results indicate that a feedback loop can stabilize the determination

of the amnioserosa boundary. We then propose a detailed single cell system for the

downstream network in nuclei. Our analysis of time scales of reactions and molecular

transport shows the phosphorylation of Mad and transport of mRNA across the nuclear

membrane are the major limiting steps in the signal transduction pathway. Simulations

results show noises are amplified at these limiting steps.
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Chapter 1

Introduction

Randomness is inherent in biological reaction systems: “At each instant, the exact se-

quence of reactions that fires is a matter of chance [7].” Certain biochemical systems can

start with the same input but produce different outputs with a probability density. In

gene regulatory networks, stochasticity can come from the transcription and translation

levels. The fluctuations can lead to phenotypically distinct groups within genetically

identical cells [8]. For example, in the λ phage evolution process, the fluctuations in the

degradation of the λ repressor can cause the switch between the two stable points in

the bistable steady-state concentration of the λ repressor [9]. This switch may lead to

the lysis/lysogeny switch of the λ phage.

Noise arises from two kinds of sources in a biochemical system: external noise and

internal noise. External noise comes from environmental fluctuations, which results in

the random variation of the control parameters, such as the rate of a reaction. On

the other hand, internal noise originates from the small number of reactant molecules.

A small number of molecules imply a small number of reaction occurrences, since the

probability of a particular reaction occurrence in a time interval is proportional to the

product of the number of reactant molecules [10]. As a result, the microscopic event

that governs which reaction happens and in what order is stochastic.

In this thesis, different kinds of stochastic models and simulations are used to explore

how noise propagates along diffusion-reaction networks and affects gene expression in

cells. Chapter 1 provides the essential background. In Chapter 2, deterministic and

1
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stochastic models are formulated and analyzed to study how a signaling molecule dif-

fuses and searches for its signal targets. The role of different localization mechanisms

of signaling molecules has been discussed. The signaling molecule binding to its sig-

nal targets can promote or inhibit transcription. Chapter 3 focuses on fluctuations in

transcription processes. In particular, how noise propagates along the initiation and

elongation steps of transcription has been analyzed by stochastic differential equations

and master equations. In Chapter 4, the reliability of Dorsal surface patterning in early

Drosophila is examined by stochastic simulations, with the objective to understand

how the system responds to noise.

1.1 Biochemical systems

1.1.1 Diffusion

In a spatially inhomogeneous system, molecules can spread from a region of a higher

concentration to one of a lower concentration by random motion. The process, in which

the molecules intermingle as a result of random motion, is called diffusion. Mathematical

theories of diffusion are based on the hypothesis that the spread rate of the diffusant

through unit area of a section is proportional to the concentration gradient measured

normal to the section [11]. Let u(x, t) be the concentration of the diffusant at location

x at time t and F be the transfer rate. Then

F = −D∇u(x, t) (1.1)

where D is the proportionality constant and ∇ is the differential operator acting on the

space coordinates. D is called the diffusion coefficient and depends on the temperature,

the solution viscosity, and the molecular weight. Following Eq. (1.1), the governing

equation for the temporal evolution of u is:

∂u(x, t)

∂t
= ∇[D∇u(x, t)].

Brownian motion is often used to describe the motion of a molecule. In particular,

assume there is only one kind of molecule in an infinitely large biochemical system

and the diffusion coefficient is constant. Then the probability density function of the
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location of a tagged molecule at time t is the following normal distribution

x(t) ∼ 1√
4Dπ(t− t0)

e
− (x−x0)2

4D(t−t0) ,

where x0 is the location of the molecule at time t0.

1.1.2 Chemoreception

Chemoreception is a process by which a living organism senses an external stimulus and

it is one specific kind of bimolecular reaction. In chemoreception, a ligand molecule has

to bind to another molecule whose motion is restricted in some region of the system.

Chemoreception has three sequential stages: detection, amplification and signaling [12].

In the detection stage, a ligand molecule binds to a receptor protein on the surface

of the organism, causing a change in the receptor protein. The reaction is as follows:

R+ P
k+−−⇀↽−−
k−

RP, (1.2)

where P is the binding ligand and R is the receptor protein. In the amplification stage,

the organism transforms the change in the receptor into biochemical signals through

the reaction networks inside the organism. Then in the signaling stage, a biological

response is triggered by the amplified signal [12].

Chemoreception is commonly observed in the biological world. One example can be

seen in the dorsal surface pattern formation process discussed later. Dpp/Scw binds

to the receptor on the embryo surface, which phosphorylates Mad and initiates the

downstream network to determine cell fates. Another common example is chemotaxis,

where a cell determines the concentration gradient of the binding ligand by sensing

the difference in receptor occupation across its body. Then it may move towards the

direction of higher concentrations.

1.1.3 Morphogens

A morphogen is a substance that governs the pattern of tissue development in a concentration-

dependent manner. The morphogen secreted from a local source spreads across the

developing tissue and forms a concentration gradient that determines cell fates differen-

tially. To regulate cellular responses, morphogens can be transcription factors to control

gene expression, or can be ligand molecules that bind to receptors on cell surfaces.
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1.2 Mathematical models

1.2.1 Stochastic background

Let X(t) = (X1(t),X2(t), . . . ,XM (t)) be a time-dependent random variable vector for

a stochastic process. X(t) is a Markov process, if for all t1 > τ1 > τ2 · · · > τk,

p(x(t1), t1|x(τ1), τ1, x(τ2), τ2 . . . , x(τk2), τk) = p(x(t1), t1|x(τ1), τ1)

where x(t) is an M-component vector and p(x(t1), t1|x(τ1), τ1, x(τ2), τ2, . . . , x(τk), τk)

is the conditional probability density function that X(t1) = x(t1) given X(τ1) =

x(τ1),X(τ2) = x(τ2), . . . ,X(τk) = x(τk) [13].

The Chapman-Kolmogorov equation

If X(t) is a Markov process and has a probability density function p(x(t), t), then

p(x(t), t) obeys the Chapman-Kolmogorov equation:

p(x(t1), t1|x(t3), t3) =

∫
dx(t2)p(x(t1), t1|x(t2), t2)p(x(t2), t2|x(t3), t3),

where x(t1), x(t2) and x(t3) are X(t) at time t1, t2 and t3, respectively. If p(x(t), t)

satisfies the following conditions:

for all ε > 0

1. lim
∆t→0

p(x, t+ ∆t|y, t)/∆t = W (x | y, t) uniformly in x,y and t for | x− y |> ε;

2. lim
∆t→0

1

∆t

∫

|x−y|<ε
(xi − yi)p(x, t+ ∆t|y, t)dx = Ai(y, t)+O(ε) uniformly in y, ε and

t;

3. lim
∆t→0

1

∆t

∫

|x−y|<ε
(xi − yi)(xj − yj)p(x, t + ∆t|y, t)dx = Bij(y, t) + O(ε) uniformly

in y, ε and t,

where x = (x1, x2, . . . , xM ) and y = (y1, y2, . . . , yM ), then the differential-integral

Chapman-Kolmogorov equation can be derived as

∂tp(x, t|y, t
′

) = −
∑

i

∂

∂xi
[Ai(x, t)p(x, t|y, t

′

)]
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+
∑

i,j

1

2

∂2

∂xi∂xj
[Bij(x, t)p(x, t|y, t

′

)]

+

∫
dz[W (x|z, t)p(z, t|y, t′ ) −W (z|x, t)p(x, t|y, t′)]

for x and y in the region of X. The details of the derivation can be found in [14].

The Fokker-Planck equation

If W (x|z, t) = 0, the differential-integral Chapman-Kolmogorov equation becomes the

Fokker-Planck equation:

∂tp(x, t|y, t
′

) = −
∑

i

∂

∂xi
[Ai(x, t)p(x, t|y, t

′

)]+
∑

i,j

1

2

∂2

∂xi∂xj
[Bij(x, t)p(x, t|y, t

′

)]. (1.3)

Since W (x|z, t) = lim
∆t→0

p(x, t + ∆t|z, t)/∆t = 0, the probability that the final position

x is finitely different from z goes to zero faster than ∆t. Hence the path of X(t) is

necessarily continuous under this condition [14].

The Langevin equation

Given that X̃(0) has a probability density p(x, 0), the solution X̃(t) of the following

stochastic differential equation has a probability density function satisfying the Fokker-

Planck equation (1.3) [13]:

dX̃(t) = µ(X̃(t), t)dt + σ(X̃(t), t)dW̃ (t),

where W̃ (t) is a standard M-dimensional Brownian motion, and µ(x, t) and σ(x, t)

satisfy these two conditions: µi(x, t) = Ai(x, t), Bij(x, t) =
∑

k σik(x, t)σ
T
kj(x, t).

The Langevin equation and the Fokker-Planck equation can be used to describe the

motions of individual molecules in a biological system [13]. Moreover, although the

number of molecules is not continuous, it is shown in [15] and [16] that the Langevin

equation can still be applicable to approximate the evolution of the number of molecules

in a biological network when the number of molecules is large enough.
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The Master equation

If Ai(z, t) = Bij(z, t) = 0, then the differential-integral Chapman-Kolmogorov equation

will become the Master equation

∂tp(x, t | y, t
′

) =

∫
dz[W (x | z, t)p(z, t | y, t′) −W (z | x, t)p(x, t | y, t′)].

For example, if X(t) is integer valued, then Ai(z, t) = Bij(z, t) = 0, and we have the

master equation

∂tp(n, t | n
′

, t
′

) = Σm[W (n | m, t)p(m, t | n′

, t
′

) −W (m | n, t)p(n, t | n′

, t
′

)]. (1.4)

In a biological system, we can let X(t) be a state vector representing the number of

molecules of species. Then X(t) is integer valued and the above master equation can

be used to study the temporal evolution of the system.

1.2.2 Stochastic models of a reaction network

Suppose there are M species in a biological system that undergo r reactions and denote

the jth reaction as follows

υreac
1j M1 + υreac

2j M2 + . . . ,+υreac
Mj MM −→ υprod

1j M1 + υprod
2j M2 + . . . ,+υprod

Mj MM , (1.5)

where Mi is the ith species and υreac
ij (υprod

ij ) represents the number of molecules of the

ith species consumed (produced) in the j reaction. In the stochastic model, αV
j (x, t) is

defined in [17] and [18] so that the chance of the jth reaction occurrence in (t, t + ∆t)

is taken to be

V αV
j (x, t)∆t = µjV [

M∏

i=1

(V υreac
ij )−1 Xi(t)!

υreac
ij !(Xi(t) − υreac

ij )!
]∆t,

where X(t) = (X1(t),X2(t), . . . ,XM (t)) is the vector representing the numbers of the

molecules of each species, V is the volume of the system, and µj∆t is the probability

that a particular combination of reactant molecules with integral coefficients υreac
ij will

take the jth reaction in time interval ∆t in a system of volume 1.

Let p(x, t) be the probability function that X(t) = x at time t. Then the governing

equation for p(x, t) can be written as follows:

dp(x, t)

dt
=

∑

y∈Sp(x)

V αV
jy,x

(y, t) −
∑

y∈Ss(x)

V αV
jx,y

(x, t), (1.6)
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where Sp(x) is the set of the system states from which the system can reach state x after

one reaction step, Ss(x) is the set of the system states which the system can reach from

state x after one reaction step, and jy,x specifies the reaction that happens to change

the system state from y to x.

1.2.3 Deterministic models of a reaction network

The deterministic model, described in [19], expresses the instantaneous change of the

concentration of each species in terms of the concentrations of all species. Let ci be

the concentration of the ith species. Then the deterministic equation for the reaction

network (1.5) can be written as

dci
dt

= −
j=r∑

j=1

υreac
ij Rj(c) +

j=r∑

j=1

υprod
ij Rj(c), c(0) = c0 (1.7)

where c = (c1, c2, . . . , cM ) and Rj is a function of c that describes the rate of reaction

j. According to the mass action rate law, the rate function for reaction j is

Rj(c) = kj

i=M∏

i=1

(ci)
υreac

ij ,

where kj is the reaction constant determined by the temperature, the pressure and the

volume of the system.

1.2.4 The relation between deterministic and stochastic models

In the deterministic model, each reaction happens with certainty at the concentration-

dependent rate and the concentration of each species can be uniquely determined by

Eq. (1.7). As a result, the system is deterministic and there are no fluctuations. On the

other hand, the stochastic model takes the randomness of reactions into account and

includes the resulting fluctuation in the number of the molecules of each species.

To make the deterministic model and the stochastic model consistent, there is a

relationship between µj and kj [18]:

kj =
µj∏M

i=1 υ
reac
ij !

. (1.8)
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Based on Eq. (1.8), in [17] Kurtz proves that,

if lim
V →∞

V −1X(0) = c0, then for any finite t and ǫ > 0,

lim
V →∞

P{sups≤t | V −1X(s) − c(s, c0) |> ǫ} = 0,

where c(s, c0) is the solution to Eq. (1.7) and X(t) represents the number of the

molecules with the probability function satisfying Eq. (1.6).

The condition lim
V →∞

V −1X(0) = c0 implies that if the number of the molecules is

big enough to make X/V meaningful as V becomes large, then the solution to the

deterministic model will be close to the solution to the stochastic model.

If the system only consists of first-order reactions, then Eq. (1.7) and Eq. (1.6)

will be linear; otherwise, they will contain nonlinear terms and be difficult to handle.

Moreover, in an open system, the number of molecules of species can range from zero

to infinity. Then there will be infinite states of the system, which leads to an infinite

number of equations for p(x, t). Then the stochastic model can be very complicated to

analyze.

1.3 The Gillespie algorithm for diffusion-reaction systems

1.3.1 Reaction systems

If the evolution of a reaction system is a Markov process, the Gillespie simulation method

derived in [20] is commonly used. In [10], Erban et al. explain the Gillespie method

clearly using the following system:

1. A+A
k1−→ Φ,

2. A+B
k2−→ Φ,

3. Φ
k3−→ A,

4. Φ
k4−→ B

where Φ denotes the species they are not interested in, and k1, k2, k3 and k4 are the

reaction rate constants. Let a(t) and b(t) be the numbers of molecules of species A and



9

B at time t. As shown in [21], the probability for each reaction occurrence between

[t, t+ dt) are

a(t)(a(t) − 1)k1dt/(2V ), a(t)b(t)k2dt/V, k3dt, k4dt,

where V is the volume of the system and a(t)(a(t)−1)k1/(2V ), a(t)b(t)k2/V , k3 and k4

are called the propensity functions of reactions. In the Gillespie simulation method, the

waiting time for each reaction to happen is assumed to be exponentially distributed.

The propensity function is the control parameter of the exponential distribution. In

particular, given a molecules of species A and b molecules of species B at time t, let

αi(a, b) be the propensity function of reaction i. Then in [20] it is shown that the

probability that the first occurrence of the ith reaction after time t is in [t+τ, t+τ +dτ)

is

p(τ, i | a, b, t)dτ = αi(a, b)e−αi(a,b)τdτ. (1.9)

Assume that only one reaction can happen every time. Then the next reaction time τ

after time t has the following probability density function:

p(τ | a, b, t) =

4∑

i=1

αie−(
Pi=4

i=1 αi)τ . (1.10)

The probability that the jth reaction is the first reaction happening in [t+ τ, t+ τ +dτ)

is
αj

∑4
i=1 α

i

Using p(τ, i | a, b, t) and p(τ | a, b, t) in Eq. (1.9) and (1.10), the reaction processes can

be simulated by the Gillespie method :

1. At time t = 0, set initial numbers of molecules of species A and B as a(0) and

b(0) respectively.

2. Calculate αi and α =
∑i=4

i=1 α
i.

3. Generate two random numbers r1 and r2 uniformly distributed in [0, 1].

4. Compute the next reaction time τ with the following formula

τ =
1

α
ln[

1

r1
].
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5. Find j such that

1

α

j−1∑

i=1

αi
6 r2 <

1

α

i=j∑

i=1

αi.

Let the jth reaction happen and update the numbers of molecules A and B after

the reaction.

6. Add τ to t and repeat the above calculations from step 2.

The reaction probability during a time interval only depends on the product of the

numbers of the molecules of each reactant species. So each molecule of a reactant

species has the same chance to react. However, the reactant molecules that are close

have a large chance to react, while the reactant molecules that are far away from each

other would have a small chance to react. Therefore, if the species in the system are

not uniformly distributed, the Gillespie method is not directly applicable and must be

modified.

1.3.2 Diffusion-reaction systems

If the biochemical system in Section 1.3.1 is not well-mixed, to incorporate the spatial

factor in simulation, the whole domain of the system can be discretized into small com-

partments and each compartment can be treated as being well-mixed approximately.

The same species in different compartments can be treated as different species to differ-

entiate the molecules in different locations. Only molecules in the same compartment

can react with each other. For example, assume the whole domain of the system is [0, L]

with reflecting boundaries. Then the domain can be discretized into M intervals with

equal length :

{[0, h), [h, 2h), · · · , [(M − 1)h,L]},

where h = L/M . The molecules of species A in the ith interval is denoted as Ai and Bi

is similarly defined. The whole diffusion and reaction processes can be converted into

pure reaction processes consisting of the following reactions:

A1
da−⇀↽−
da

A2
da−⇀↽−
da

A3 · · ·
da−⇀↽−
da

AM ,

B1
db−⇀↽−
db

B2
db−⇀↽−
db

B3 · · ·
db−⇀↽−
db

BM ,
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Ai +Ai
k1−→ Φ,Ai +Bi

k2−→ Φ,Φ
k3−→ Ai,

Φ
k4−→ Bi, i = 1, 2, · · · ,M,

where da = Da

h2 , db = Db

h2 , and Da and Db are diffusion constants of species A and B.

The propensity functions for reactions in the ith (1 < i < M) compartment are

ai ∗ da, ai ∗ da, bi ∗ da, bi ∗ da, ai ∗ (ai − 1) ∗ k1/(2Vi), ai ∗ bi ∗ k1/Vi, k3,

where Vi is the volume of the ith compartment. For the first and Mth compartments,

one ai∗da and one bi∗da is removed due to the reflective boundaries. Then the Gillespie

method can be applied.

Appropriate discretization is very essential for the application of the Gillespie method

to spatially inhomogeneous systems. Discretization has to be fine enough to ensure each

compartment can be treated as being well-mixed approximately. However, it has been

shown the master equations for a system with two reactant molecules will approach a

model of two independently diffusing molecules as the compartment size approaches zero

[22]. Moreover, if the compartment size is too small, the simulation will spend most of

time on tracking the diffusion of molecules among compartments. As a result, compu-

tation will be time-consuming. Therefore, choosing the right criterion for discretization

is important. In [23], we have suggested the minimal compartment size so that the

solution to the deterministic model of the species concentrations in the compartment

approaches a spatially uniform solution exponentially at the steady state.

1.4 The early development of Drosophila embryo

All our analysis and computations have been to applied to dorsal surface patterning in

the early development of Drosophila embryo. Here we introduce the basic background

and previous results in these areas. Drosophila melanogaster is one of the most inter-

esting subjects in biological studies, as its small size, short life time and large number

of offspring make it ideal for research. In addition, the completed Drosophila genome

project has provided a huge amount of genetic information. Drosophila melanogaster

has been a powerful model for genetic, developmental biology and biochemistry studies.

Studies have shown that the gradients of species concentrations are established during
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the early development of Drosophila [2, 4, 24, 25]. Here we introduce the spatial pattern

establishment briefly.

1.4.1 Oogenesis

During early oogenesis, a developing oocyte is placed in an egg chamber covered by a

thin fluid-filled shell called the perivitelline (PV) space. The PV space is surrounded by

the follicular support cells. The structure of the egg chamber is shown in Fig. 1.1, where

the egg chamber is approximately a prolate ellipsoid. A coordinate system is defined as

the Anterior-Posterior (AP) axis in the lateral direction and the Dorsal-Ventral (DV)

axis in the vertical direction. The gradients of species concentrations are established

along these axis’s in the early development of Drosophila [2, 4, 24, 25].

In the oocyte, Gurken, a signaling molecule, is produced in the dorsal-anterior cor-

tex of the oocyte. Gurken can be transported to the oocyte surface, where it binds to

Torpedo, the Drosophila homologue of the Epidermal Growth Factor (EGF) receptor

on the surrounding follicle cells. The localized production of Gurken and extracellu-

lar transportation establish a graded distribution of Gurken, which leads to a graded

activation of Torpedo along the DV axis. As a result, a DV polarity is formed [24].

Figure 1.1: The structure of an egg chamber [1].
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1.4.2 DV pattern formation

After fertilization, the egg is laid and embryogenesis begins. The whole process is divided

into 17 stages. Nuclear division happens in the first five stages, which are divided into

14 division cycles based on the number of nuclei. From the fifth division cycle on, the

nuclei begin to spread. By the end of the eighth division cycle, the nuclei are distributed

evenly in the embryo [26]. In the tenth division cycle, the nuclei migrate to the embryo

surface. In the 13th division cycle, the nuclei perform the last cleavage division, and in

the 14th division cycle, the cell membrane begins to invaginate, partitioning the nuclei

into individual cells. After cellularization, gastrulation begins.

In addition to nuclear division, the concentration gradients of species form in the

first five stages. The AP and DV polarities will be inherited from follicle cells. The

key maternal gene for the DV axis maintenance is the Toll receptor. It is uniformly

distributed around the embryo surface. Toll is the receptor for Spätzle, which is acti-

vated and proteolytically processed at the ventral side of the PV space. Spätzle-bound

Toll receptors initiate a cascade that causes Cactus to degrade. Dorsal, a transcription

factor, is bound to Cactus and Cactus/Dorsal is distributed throughout the embryo.

The removal of Cactus frees Dorsal and allows Dorsal to enter the nuclei around the

embryo surface [27, 28]. Consequently, the Dorsal nuclear gradient shown in Fig. 1.2 is

formed. The concentration gradient of Dorsal is shallow in the ventral region and quite

steep in the lateral region. It becomes shallow again in the descending dorsal region

(DR). The graded downstream gene expressions established by the gradient of Dorsal

concentration divides the whole PV space into three domains along the DV axis. They

are the Mesoderm (M), Neurogenic Ectoderm (NE) and Dorsal Region (DR). The DR

is also denoted as Dorsal Ectoderm(DE).

Once in the nuclei, Dorsal initiates the transcription of target genes in a concentration-

dependent manner. Two of the earliest genes activated by the high and intermediate

Dorsal levels in the M and the NE are Twist and Snail. Dorsal binds to DNA as a

homodimer and enhances Twist transcription. Fig. 1.3 shows that Twist expression is

sharper than the Dorsal gradient. This may be explained by the cooperative interaction

between Dorsal dimers. Dorsal dimer, strongly enhanced by Twist, can initiate Snail

transcription. The cooperation between Dorsal and Twist gives a significantly sharper

expression of Snail in the lateral region. The high concentration of Snail specifies the
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Figure 1.2: The gradient of Dorsal concentration [2] and the division of the whole PV
space [3] .

M region in the ventral most side and the steep gradient of Snail concentration defines

the boundary between the M and the NE [2].

Figure 1.3: The normalized result of gene expressions from experiments [4].

The next target genes are sim, rho and sog. Dorsal, Twist, Snail and another tran-

scription factor “Suppressor of Hairless (SuH)” cooperate to produce a one cell wide

expression of sim at the boundary of the M [4]. Twist and Dorsal work together to

initiate sim transcription, while Snail acts as a repressor. The one cell wide expression

of sim at the boundary of M can be explained by the sharp decrease of Snail concen-

tration there. However, the absence of sim expression outside of the M can only be
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explained by the role of SuH. Hence, SuH is essential for the one cell wide expression

of sim. Rho is expressed in the ventral most 8-10 nuclei of the NE. Dorsal, Twist and

Daughterless/Scute heterodimers promote rho transcription, while Snail is a repressor

of rho expression [2]. Another important gene sog is regulated by Dorsal. It has four

binding sites for Dorsal in its enhancer region. It is expressed almost over the entire NE

region [2].

In the DR, where the concentration of Dorsal is low, the gene repressed by Dorsal

such as decapentaplegic (dpp) and tolloid (tld) are expressed [29]. Dpp has many low

affinity binding sites for Dorsal, while tld has only two binding sites for Dorsal [29].

1.4.3 Subdivision of the DR

After the early patterning along the DV axis, Bone Morphogenetic Proteins (BMP)

Decapentaplegic (Dpp) and Screw (Scw) begin to interact with other proteins in the

PV space, which leads to a high concentration of the heterodimer Dpp/Scw around

the dorsal midline (DM). The heterodimers bind to receptors and the bound receptors

phosphorylate the intracellular transcription factors Mad to pMad. As a result, the

level of pMad is higher around the DM than the level in other areas. The area with the

highest pMad signaling specifies the amnioserosa, while the remaining area in the DR

becomes dorsal epidermis [5].

Figure 1.4: Signal contraction.

The determination of the aminoserosa boundary involves signal contraction. Initially
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Dpp levels are moderate throughout the dorsal ectoderm, and pMad is broadly dis-

tributed. Later pMad begins to concentrate at the dorsal midline. Wang and Ferguson

have proposed a feedback loop that could account for the contraction and intensification

of signaling [30]. Umulis et al. use deterministic models to study the pattern formation

process in detail and demonstrate the feedback loop for the signal contraction around

the DM [5]. Umulis et al. identify the following reactant species that are involved in

the signal contraction process:

1. Dpp: it is expressed in the DR. Two Dpp molecules can form a homodimer, but

most of Dpp binds to Scw to form heterodimers Dpp/Scw.

2. Scw: it is distributed all throughout the PV space. Two Scw molecules can form

a homodimer, but most of Scw binds to Dpp to form heterodimers Dpp/Scw.

3. Twisted gastrulation (Tsg): it is expressed in the DR. It can bind to Sog to form

Sog/Tsg, which can transport Dpp/Scw to the DM.

4. Sog: it is expressed in the neighboring NE.

5. Tld: it is also expressed in the DR. It can cut Sog from Sog/Tsg/Dpp/Scw and

then free Dpp/Scw can bind to receptors.

6. Thickveins (Tkv): it is a TGF-β type I receptor and Dpp can bind to it.

7. Saxaphone (Sax): it is a TGF-β type I receptor and Scw can bind to it.

8. Punt: it is a TGF-β type II receptor. BMP-bound Punt can phosphorylate the

type I receptor. Genetic analysis shows that the signal must be integrated down-

stream of multiple receptors. In addition, it has been found that Dpp/Scw binds

to Tkv and then Dpp/Scw/Tkv recruits Sax [31]. For simplicity, it is assumed

that Tkv, Sax and Punt always bind together as a single unit (R). Moreover, it is

uniformly distributed all throughout the PV space. If a receptor R is bound by a

Dpp/Scw, we denote it by BR.

9. Surface-bound BMP binding protein (SBP): it is a potent protein which leads to

the future contraction of pMad signaling around the DM. SBP has a high binding

affinity for both BMP and R. BMP can bind to SBP easily and BMP/SBP bind
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to R easily. Then the release of SBP leaves BMP bound to R. The enhanced

signaling cascade can lead to more generation of SBP in the downstream network,

which becomes a feedback loop.

Figure 1.5: The reaction network for the DR pattern formation [5].

Fig. 1.5 shows the whole reaction network. Dpp and Scw form heterodimers and

homodimers within the DR, while Tsg and Sog form heterodimers around the bound-

ary between the NE and the DR. Then Dpp/Scw binds to Sog/Tsg between the NE

and the DR, which prevents Dpp/Scw from binding to receptors and forms a flux of

Dpp/Scw/Sog/Tsg towards the DM. Sog in Dpp/Scw/Sog/Tsg is cleaved off by Tld in

the DR, which frees Dpp/Scw to bind to receptors. Dpp/Scw can either bind to re-

ceptors R or SBP. If Dpp/Scw binds to R to become BR, BR can either phosphorylate

mad or release Dpp/Scw in the PV space. If Dpp/Scw binds to SBP, Dpp/Scw/SBP

can bind to R and Dpp/Scw/SBP/R can release SBP. The pMad expression can lead

to the generation of SBP in the downstream network.

1.4.4 Deterministic model

In [5], Umulis et al. construct a deterministic model based on the reaction network

shown in Fig. 1.5. They study the concentration of each species along the Dorsal-

Ventral line. Here we introduce their deterministic model briefly as a background for

our study in the following sections. For their model, they make several assumptions :

1. The total number of receptors R on the surface remains constant.
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2. All non-surface-associated species diffuse.

3. The initial amount of all species is zero except receptor R and Tld.

4. Intracellular reactions are at quasi-equilibrium.

In addition to their assumptions, we make some simplification of their models without

losing the main features of the signal here. Although two Dpp molecules can form a

homodimer in the PV space, experiments show that signals through the homodimers are

much less intense than the heterodimer. Therefore, we only focus on signaling through

heterodimers. Since the production of Dpp and Scw is steady at the beginning of the DR

pattern formation process, for simplicity we assume that the production of heterodimer

Dpp/Scw is steady all through the surface pattern formation process. Moreover, the

analysis from Umulis et al. shows that SBP may undergo degradation and endocytosis

and the signal contracts fastest when SBP only undergoes endocytosis [5]. Therefore,

we assume that SBP only undergoes endocytosis. Then as suggested in [5], Dpp/Scw is

not involved in extracellular degradation as well.

Then, denoting each species by the simple symbols,

Species Sog Tsg Tld Sog/Tsg Dpp/Scw Dpp/Scw/Sog/Tsg R SBP

Symbol S T Tol I B IB R C

the reactions involved in the pattern formation process are as follows:

1. ∅ s(x)−→ B

2. ∅ φS−→ S

3. S
δS−→ ∅

4. ∅ φT−→ T

5. T
δT−→ ∅

6. S + T
k2−−⇀↽−−
k−2

I

7. I +B
k3−−⇀↽−−
k−3

IB



19

8. IB
Told−→ B + T

9. B + C
k4−−⇀↽−−
k−4

BC

10. B +R
k5−−⇀↽−−
k−5

BR

11. BC +R
k6−−⇀↽−−
k−6

BCR

12. BR+ C
k7−−⇀↽−−
k−7

BCR

13. BR
fBR−→ C

14. BR
δe−→ ∅

15. BCR
δe−→ ∅

16. BC
δe−→ ∅.

All reaction rates can be found in [5], except that s(x) is the production rate of het-

erodimer Dpp/Scw. As suggested from [5] s(x) is 1nMmin−1 in the DR and zero

anywhere else. fBR = Λ•[BR]ν

Kν
h1+[BR]ν is the production rate of C by the feedback loop.

Therefore, the governing equations for the concentration of each species become

1. ∂[B]
∂t = DB

∂2[B]
∂x2 + s(x) − k3[I][B] + k−3[IB] + λ[Tol][IB] − k4[B][C] + k−4[BC]−

k5[B][R] + k−5[BR]

2. ∂[S]
∂t = DS

∂2S
∂x2 + φS − k2[S][T ] + k−2[I] − δS [S]

3. ∂[T ]
∂t = DT

∂2[T ]
∂x2 + φT − k2[S][T ] + k−2[I] + λ[Tol][IB] − δT [T ]

4. ∂[I]
∂t = DI

∂2[I]
∂x2 + k2[S][T ] − k−2[I] − k3[I][B] + k−3[IB]

5. ∂[IB]
∂t = DIB

∂2[IB]
∂x2 + k3[I][B] − k−3[IB] − λ[Tol][IB]

6. ∂[C]
∂t = Λ•[BR]ν

Kν
h1+[BR]ν − k4[B][C] + k−4[BC] − k7[BR][C] + k−7[BCR]− δE [C]

7. ∂[BC]
∂t = k4[B][C] − k−4[BC]− k6[BC][R] + k−6[BCR]− δE [BC]

8. ∂[BCR]
∂t = k7[BR][C]− k−7[BCR]− k6[BC][R] + k−6[BCR]− δE [BCR]
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9. ∂[BR]
∂t = k5[B][R] − k−5[BR] + k−7[BCR]− k7[BR][C] − δE [BR]

and [Rtot] = [R] + [BR] + [BCR]. Here [*] means the concentration of that species.
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Figure 1.6: The temporal evolution of the BR concentration.

By symmetry, we only consider a half of the PV space, which is from the DM to

the ventral midline. The temporal evolution of the concentration of BR along the DV

axis is shown in Fig. 1.6. The left figure in Fig. 1.6 shows the concentration of BR

calculated from the above equations. In the left figure, the DM is at x=275, and the

ventral midline is at x=0. The right figure is from [5] and it shows the concentration of

BR between the two NE’s.

The nonlinear property of the governing equations yields bistability, which explains

the sharp increase of the signal around the DM in Fig. 1.6. As shown in Fig. 1.7, if

the concentration of B is low, the BR concentration remains below the red dashed line;

once the concentration exceeds Point 1, the BR concentration reaches the upper branch.

Once on the upper branch, the BR concentration stays on the upper branch, until the

B concentration drops below Point 2. Therefore, the concentration of B at Point 1

identifies the threshold of the high signal in the pattern formation process. Moreover,

the threshold of the high signal gives the aminoserosa boundary. Fig. 1.6 demonstrates

that the position of the threshold is around x = 250µm.

1.4.5 Motivation

Here we examine the number of signaling molecules involved in the process of boundary

determination. We consider the numbers of BR and B molecules in a slice of the half PV

space. We choose the width of the slice to be 5µm. Since the PV space is a shell of height
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Figure 1.7: The steady response of BR to the level of B [5].

0.5µm, the slice can be approximated as a cuboid of dimension 5µm× 0.5µm× 275µm

as shown in Fig. 1.8 from Radek Erban. The whole slice is divided into 55 sub-

cuboids of length 5µm and each species in each sub-cuboid is assumed to be well-mixed.

The compartment adjacent to the ventral midline is labeled with 1 and the number

increases towards the dorsal midline. The diameters of the nuclei in nuclear cycles 10-

14 are 10µm, 9.2µm, 8.2µm and 6.5µm respectively [32]. The dimensions of the slice are

chosen to describe the change of the signal level within an individual nucleus. Using

the concentrations of species from the deterministic model, we calculate the number of

molecules in different compartments. Fig. 1.9 shows the numbers of the BR molecules

and the B molecules at 60 minutes, which is the end of the pattern formation process.

Figure 1.8: The discretized structure of a slice of the half PV space.

However, as shown in Fig. 1.9, the number of the B molecules is less than 10

in every compartment and the number of the BR molecules is less than 25 in most

compartments except several compartments around the DM. As a result, the small
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numbers of these species requires a model at the molecular level. Individual reaction

is inherently stochastic, which may cause fluctuations in the dynamics of the pattern

formation process [7, 19]. Noise can play a pivotal role in a biological process. It can

make biological systems choose different outcomes even with the same input [7, 8, 9].

However, embryonic development has a remarkable property of being extremely reli-

able and reproducible despite fluctuations in the environment surrounding the embryo,

noise in genome expression, and variations in the compositions of the proteome. Despite

these complications, for Drosophila, the survival rate of embryos hatching to larvae is

nearly 80-90% in a laboratory setting [33, 34]. How nuclei handle the stochastic and

spatially inhomogeneous signal and choose their fates reliably has not been fully under-

stood.
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Figure 1.9: The numbers of BR and B molecules in each compartment at 60 minutes.



Chapter 2

Ligand signaling in a complex

medium

2.1 Introduction

2.1.1 Biological background

Most signal transduction processes involve the proper binding of signaling molecules

to cell-surface receptors to form a signaling complex, which triggers downstream intra-

cellular reactions to achieve appropriate cellular responses such as cell differentiation,

proliferation, death and so on. Upon stimulation, protein kinases, phosphatases and

other players located near the bound receptors get activated and transfer the signal to

downstream species. For example, morphogens, which are secreted from a local source

and distributed in a spatially non-uniform pattern, can bind to the receptors on the ex-

tracellular membrane and determine the cell fate in a concentration-dependent manner.

Since morphogen patterning is a dynamic process, the position and the timing of the

bound receptors on the cell membrane determine whether the response of cells to the

stimulus is appropriate.

The number of signaling molecules is usually small. For example, in cell culture the

dynamic range for Bone Morphogenetic Protein (BMP) signaling is 10−10 − 10−9 M,

which equals 10-100 BMP molecules for each nucleus at the cell differentiation stage of

early Drosophila. This small number of BMP molecules may lead to large fluctuations

23
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in the downstream network. Then how does the biological system interpret such a weak

input accurately and place the boundary between cells of different types reliably? There

are many kinds of signal transducing auxiliary proteins that can bind to multiple mem-

bers of a signaling pathway, localize them to specific areas of the cell, and concentrate

the signal in a small region. For example, heparan sulfate in the brain extracellular

matrix can bind to humane lactoferrin (Lf) and slow Lf diffusion, which may attenuate

the spread of diffusible signals in brain extracellular space [35].

Moreover, the localization of signaling molecules can increase the encounter chance

between reactants and potentially facilitate the formation of the signaling complex.

For example, on the extracellular membrane, coreceptors serve to bind to signaling

molecules first and orient them in the right way to improve their affinities to receptors.

One example is the vertebrate TGFβ coreceptor TGFβR3, which binds to BMP and

acts as a coreceptor [36]. In the intracellular downstream reaction networks, scaffold

proteins can bring all signaling molecules together and form multimolecular complexes

that can respond rapidly to the incoming signal. For example, in the mitogen-activated

protein kinase (MAPK) cascade, where MAPK is activated by the phosphorylation at

amino acids by MAPKK and MAPKK is activated by the phosphorylation at amino

acids by MAPKKK, the assumption that the scaffold protein binds to all these three

species increases the sensitivity of the MAPK activation to the incoming signal [37].

Furthermore, the localization of signaling molecules can protect the signaling molecules

from degradation or deactivation, thereby maintaining the signal and attenuating the

fluctuations. For example, mathematical simulation shows that in the MAPK pathway

with a high level of phosphatases, scaffold protein can reduce the probability for ki-

nases to get deactivated by phosphatases and increase the time for kinases to activate

downstream target genes [38].

However, the localization can also inhibit signaling under certain conditions. On the

extracellular membrane, there exists some proteins that can localize signaling molecules

on the membrane and block the signaling molecules from receptors. As a result, once

the signaling molecule binds to the protein, the signaling molecule can only bind to

the receptors after it is detached from the protein. Therefore, the protein slows the

movement of the signaling molecule approaching to the receptors and may inhibit sig-

naling. The trade-off between promoting signaling by concentrating signaling molecules
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around the receptors and inhibiting signaling by slowing down the movement of the

signaling molecules towards the receptors has to be considered carefully. Moreover,

coreceptors can also inhibit signaling in a similar way. At an appropriate level, they

can help receptors recruit signaling molecules by localizing molecules around receptors

and promoting the association between receptors and signaling molecules. However,

when the level of the coreceptor is high, they will compete with receptors for signal-

ing molecules and form non-functional complexes, thereby blocking signaling molecules

from receptors. Therefore, the effect of coreceptor is biphasic. One example is Cv-2 in

the pupal wing of Drosophila, which binds to BMP and acts as a coreceptor. As the

concentration of Cv-2 increases, BMP signaling first increases and then decreases [36].

Furthermore, Levchenko et al. have shown the biphasic effect of scaffold proteins on

signaling and discovered that there exists the optimal concentration of scaffold protein

for the maximal amplitude of the signal [37].

By promoting certain reactions and inhibiting others, the localization of signaling

molecules can govern the selection of signaling pathways and regulate signal output.

For example, scaffold proteins determine the specificity of Rho GTPase-signaling [39].

Upon Rho activation, Rho can induce the polymerization of actin into stress fibers and

cause the enhanced expression from the c-fos serum-response element (SRE). At the

same time, Rho can control the activity of the c-Jun N-terminal kinase (JNK) and

regulate the expression of c − jun in an independent pathway. It has been found that

the scaffold protein hCNK1 links Rho and Rho guanine-nucleotide-exchange factors to

JNK and limits stress-fiber formation, leading to the preferential activation of JNK and

the regulation of c− jun expression.

From the macroscopic perspective, the localization of signaling molecules regulates

the temporal and spatial evolution of signaling. By limiting the movement of signaling

molecules and promoting the association between receptors and signaling molecules, lo-

calization can concentrate the signal within certain regions and accelerate the temporal

evolution of signaling. For example, a coreceptor called surface-bound protein (SBP)

helps concentrate the signal and accelerate the signaling process in Dorsal surface pat-

terning in Drosophila. Wang and Ferguson have suggested a feedback step, in which

SBP is produced in proportion to the level of BMP-bound receptors and helps receptors

recruit BMPs as a coreceptor in the high signaling region, in order to explain signal
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contraction in dorsal-ventral patterning in Drosophila [30]. Moreover, the stochas-

tic simulations in Chapter 4 show that the signal transduction process evolves faster

with SBP than without SBP. In addition, since the localization can protect signaling

molecules from degradation, and the localizing species carry the signaling molecules

during their transport process, the localization can also spread the signal and slow the

signal transduction process. In the wing disc epithelium of Drosophila, the localization

of the morphogen Wingless (Wg) may contribute to the long-range signal. Wg can

be localized within cells by associating with heparin sulfate proteoglypcans on small

labeled vesicles (called argosome in [40]). Argosomes are secreted by cells and can be

trafficked among cells by transcytosis consisting of iterative internalizations and exter-

nalizations. Once internalized, Wg can undergo degradation via the lysosome or get

recycled to a different place in the extracellular environment via the externalization of

argosomes. As a result, the temporal and spatial evolution of the Wg signal is mediated

by recycling and intracellular degradation. The long-range signal may result from fast

recycling or slow intracellular degradation. Similarly, the localization of Dpp by the

receptor Thickvein in an endocytic compartment can spread the Dpp signal [41, 42].

The effect of the localization of signaling molecules on signaling depends on many

factors. These factors can be divided into two groups according to the following two

aspects: 1) the rate for the signaling molecule to become localized; and 2) the rate for

the localized molecule to form a signaling complex.

The localization rate depends on the capture region of the localizing species and

the affinity of the signaling molecules for the localizing molecules. Since the localiz-

ing species can only affect the signal around them, the distributions of the localizing

molecules and the signaling molecules are very important. The distribution of the sig-

naling molecules results from an interplay of various reaction-diffusion processes, such

as the production process of the signaling species, the transport process of the signaling

species and the endocytosis process of the signaling species and so on.

The rate for the localized molecule to form a signaling complex can range from zero

to infinity. Consider the association between signaling molecules and receptors as an

example. If the localized signaling molecules can only bind to the receptors after they

are released by localizing molecules, the effect of localization on signaling depends on

how long the signaling molecules can be held by localizing molecules and how fast the



27

signaling molecules can reach the receptors . If the localized signaling molecule can be

passed to the receptors directly, the transfer rate is important to determine the effect

of localization. If the transfer rate is higher than the association rate between free sig-

naling molecules and the receptors, localization may promote signaling. Otherwise, the

localized signaling molecules are partially blocked from the receptors and the signaling

may be inhibited by localization.

2.1.2 Previous work

One widely-studied example of the localization of signaling molecules is a two-step

process involving dimensionality reduction in ligand diffusion. In the first step, the

ligand molecules perform three-dimensional diffusion until they reach the cell membrane.

Upon hitting the cell membrane, the ligand molecules get attached to the cell membrane.

Then in the second step, the ligand molecules perform two-dimensional diffusion over

the cell membrane until they bind to receptors or detach from the cell membrane. Such

non-specific binding to the cell membrane localizes the ligand molecules around the

receptors, which can promote or inhibit the association between receptors and ligand

molecules. To understand the effect of dimensionality reduction on signaling, the two-

step process has been compared with the one-step process, in which the ligand molecules

reach the receptors by three-dimensional diffusion.

Adam and Delbrück suggested that for signaling efficiency and timing, the ligand

molecules may use the two-step diffusion process to reach receptors instead of using the

one-step process [43]. They compared the first passage times for the ligand molecule

to reach a receptor through the one-step process and through the two-step diffusion

process. They assumed that a spherical receptor of radius a is located in the center of a

large sphere of radius b and a ligand molecule is initially uniformly distributed between

the large sphere and the receptor. Define τ (3) as the mean time for the ligand molecule to

reach the receptor by three-dimensional diffusion in the large sphere. Define τ (3,2) as the

mean time for the ligand molecule to reach the receptor through the two-step process,

in which the ligand first reaches the equatorial plane of the large sphere by three-

dimensional diffusion and then performs two-dimensional diffusion on the equatorial

plane to reach the receptor. Define D(3) and D(2) as the three- and two-dimensional
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diffusion coefficients, respectively. They found the ratio of τ3 and τ (3,2) as follows:

τ (3,2)

τ (3)
=

{
1

3

D(2)

D(3)

[
y1

(
b

a

)]2 b

a

(
1 − a

b

)2
}−1

(2.1)

where y1

(
b
a

)
represents the dependence of y1 on b

a . y = y1 is the root of

J0

(a
b
y
)
Y1(y) − Y0

(a
b
y
)
J1(y) = 0

where Jn(y) and Yn(y) are Bessel functions of order n. When D(2)

D(3) > 10−2, τ (3,2)

τ (3) < 1

requires b
a > 103. Then Adam and Delbrück claimed that b

a > 103 is in the range of

bacterial systems and hence dimensionality reduction in the two-step process can pro-

mote the association between ligand molecules and receptors. In biological systems, the

average cell radius is 10µm and average receptor radius is 5nm, which gives b
a ≈ 2×103

[44]. Therefore, their result implies that location of ligand molecules by dimensionality

reduction can promote signaling.

Berg and Purcell studied the effect of dimensionality reduction on signaling in a cell

with multiple receptors on the cell membrane by comparing the ligand currents to all

the receptors from ligand molecules using the one-step process and using the two-step

process [45]. They assumed that the cell is a sphere of radius a and N circular receptors

of radius s are uniformly distributed on the cell membrane. They also assumed that

the receptors are perfectly absorbing, i.e., any ligand molecule that touches a receptor

is captured immediately by the receptor and is transported into the cell. Define J

and J ′ as the average current of ligand molecules to all the receptors through the one-

step process and the two-step process, respectively. Define D and D′ as the diffusion

coefficients of the ligand molecules for the three-dimensional diffusion in the solution

and for the two-dimensional diffusion on the cell membrane, respectively. To derive J ′,

they considered the mean time, t̄c, for the membrane-attached ligand molecules to get

absorbed by receptors. They approximated t̄c as

t̄c ∼= a2

ND′ ln(
a2

Ns2
).

Moreover, they looked at the mean number of the ligand molecules attached to the cell

membrane, m̄. Assuming that the ligand concentration is in equilibrium and the ligand



29

concentration in the solution is c∞, they approximated m̄ as

m̄ ∼= 4πa2dc∞ exp

(
EA

kT

)

where d is the height of the layer of the membrane-attached ligand molecules, EA is the

energy of adsorption, and kT is the energy of thermal fluctuation. They then computed

J ′ as follows:

J ′ =
m̄

t̄c
. (2.2)

For J , they assumed that each receptor is independent of each other and can absorb

ligand molecules as a single disk. Then they got J as

J = 4NDsc∞. (2.3)

They derived the following condition in order that J ′ > J :

(
πd

s

)(
D′

D

)
exp

(
EA

kT

)
> ln

(
a2

Ns2

)

The receptors are assumed to be independent in the calculation of J , which implies

that the number of receptors has to be small. When the number of receptors is not

small, Berg and Purcell claimed that the two-step process may be not necessary for

efficient collections of ligand molecules by a cell. Moreover, they proposed that t̄c, which

measures the difficulty for the membrane-attached ligand molecule to reach receptors

on the cell membrane, is essential for the effect of dimensionality reduction on signaling.

Their discussion about t̄c is consistent with our discussion about the rate at which the

localized signaling molecules are passed to receptors. They assumed that c∞ is constant

in their calculation. However, the actual concentration of the ligand in the medium is

not uniform but graded, since the receptors on the cell surface are assumed to perfectly

absorb the ligand molecules.

In [46], Wiegel and Delisi also compared the currents to receptors on the cell mem-

brane from ligand molecules using the one-step process and the two-step process. All

of their settings are exactly the same as the settings of Berg and Purcell except the

following assumption: the ligand molecules bind to the receptors using both processes.

Define c∞(r) as the steady-state concentration of the ligand at a distance r from the
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center of the cell. They took J and J ′ very similar to the ones in Eq. (2.2) and (2.3)

except that they replace c∞ by c∞(a) and ND′ in Eq. (2.3)) is replaced by a2α where α

is the mean collision rate between a membrane-attached ligand molecule and receptors.

After that, they claimed that the following condition has to be satisfied to make J ′ > J :

3 × 10−7N <
D′K∗

D
< 10−3, (2.4)

where K∗ is the overall nonspecific affinity. They calculated the number of ligand

molecules per unit concentration in the layer of membrane-attached ligand molecules,

and then estimated K∗ is in the range of [10, 102]. They then obtained N < 3000 per

cell and D′

D < 10−4 using inequality Eq. (2.4) . Moreover, they found that the reduction

of dimensionality has little effect on enhancement of signal unless the number of free

receptors per cell is reduced to 100. However, following from [44], cells can exhibit a few

receptor types (about 10−40) with high numbers (about 105 per cell), or a lot of receptor

types (about 2000− 30000) with small numbers (about 102 per cell). Therefore, in case

there are about 105 receptors in the cell, the small number of free receptors indicates

over 99% receptor occupancy for most eukaryotes, which is usually not true. Hence,

they concluded that the reduction of dimensionality is of little effect on signaling.

In addition to the association between ligand molecules and receptors on the cell

membrane, it is suggested that dimensionality reduction is involved in target site lo-

calization of gene regulatory proteins on DNA [47, 48]. Proteins exhibit appreciable

affinities for functional specific sites and nonfunctional nonspecific sites on DNA se-

quences, making dimension reduction possible in the search process of target sites. Fur-

thermore, the reactions between proteins and DNA occur several-magnitude-faster than

the diffusion-limited rates. Therefore, to explain the rapid reactions, it is commonly as-

sumed that target site location occurs via two steps: one-dimensional motion along a

DNA segment and three-dimensional excursion in the solution. The optimum search

strategy has been suggested by using the minimal mean search time as the criterion

[48].

All the above previous work assumes receptors are perfectly absorbing or studies

how proteins search for the target site on DNA. They all focus on the time for signaling

molecules to first encounter their targets. None of them consider the case that the

signaling molecule in the proximity region of receptors diffuses away before binding to
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any receptors. When the signaling molecule is close enough to bind to the receptors,

the reaction rate between the signaling molecule and receptors is called the intrinsic

reaction rate. If the intrinsic reaction rate is small, then the signaling molecule starting

close enough to receptors can diffuse away before binding to any receptors.

Kholodenko et al. considered the role of localization of signaling molecules in

reaction-limited signal transduction pathways [49]. In the reaction-limited reactions,

the intrinsic reaction rate is much slower than the first-encounter rate, which is the

inverse of the time for the signaling molecule to reach its target. As a result, only

a small fraction of collisions leads to association reactions that can last long enough

to transfer signal into downstream networks. Therefore, Kholodenko et al. asserted

that the effect of localization on the first-encounter rate can be neglected, and they

considered the effect of localization on the number of signaling complexes formed by

signaling molecules and their target proteins at the steady state. They first considered

the system in which only the target proteins are anchored in a layer around the cell

membrane. Define A as the total number of the signaling molecules in the cytoplasm,

T as the number of membrane-associated target proteins, and AT as the total number

of the signaling complex. Define Vm and Vc as the volume of the layer and the cytosol

volume of the cell, respectively. Using the law of mass action, Kholodenko et al. wrote

the dissociation constant, Kd for the binding reaction to form a signaling complex as

follows:

Kd ≡

(
A
Vc

)
·
(

T
Vm

)

(
AT
Vm

) =

(
1

Vc

)
·
(
A · T
AT

)
. (2.5)

Then they claimed that Kd does not depend on Vm and localization of only the target

proteins does not affect the number of signaling complexes. After calculation of Eq.

(2.5)), they then considered another system in which the signaling molecules and their

target proteins are both anchored in the layer and only anchored signaling molecules

can bind to the target proteins. Define RAT as the total number of the signaling com-

plexes formed by the anchored signaling molecules and their target proteins. Assuming

the number of molecules that can anchor signaling molecules in the layer is in excess,

Kholodenko et al. obtained the dissociation constants for the formation of the signaling
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complex as follows

Kapp
d ≡

(
A
Vc

)
·
(

T
Vm

)

(
RAT
Vm

) = Kd ·
(
Vm

V c

)
· (1 + α) , (2.6)

where α is a dimensionless factor. α was claimed to be less than one. Therefore, they

insisted thatKapp
d < Kd and localization can increase the number of signaling complexes.

In the calculation of Eq. (2.5))and (2.6)), the concentration of the signaling species was

assumed to be spatially uniform. However, the concentration of the signaling species

within the layer is different from the one outside the layer. Similarly, the dissociation

constant Kd is different for binding reactions within/outside the layer. As a result,

the dependence of Kd on the layer may lead to the dependence of AT on the layer.

Moreover, it was assumed the dissociation constant for the binding between anchored

signaling molecules and targets proteins is the same asKd in the calculation of Eq. (2.6).

Since the localization of signaling molecules can change the orientation of the signaling

molecules and thereby change the association rate, the assumption is not appropriate.

Wofsy and Goldstein considered a system with a binding layer around the cell mem-

brane [50], in which receptors are located and ligand diffusion is slowed. Wofsy and

Goldstein quantified the effect of the binding layer by estimating the effective associa-

tion and dissociation rate coefficients for binding between the ligands and the receptors.

Their effective rate coefficients were used to approximate the system with the binding

layer by a model with surface binding but without a binding layer. Define Rtot as the

total number of receptors in the binding layer. Define k+ as the transport-limited for-

ward rate for the ligand to bind to the surface as the concentration of the receptors goes

to infinity to make the surface perfectly absorbing. Define ka as the intrinsic association

rate between ligands and receptors. Define γ as the ratio of the height of the binding

layer to the mean path for the ligand molecule to travel within the layer before binding

to any receptor. Then they derived a formula for the effective association rate between

ligands and receptors, ke
a, as follows:

ke
a =

T (γ)

1 + T (γ)kaRtot/k+
ka (2.7)

where T (γ) ≡ tanh(γ)
γ is a decreasing function of γ and approaches to one as γ goes

to zero. Therefore, Wofsy and Goldstein claimed that when γ ≡
√

kaRtotd
AΦDi

≪ 1, the
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binding layer can be neglected and the binding reaction can be modeled as the one

on the surface. Since T (γ) < 1 for γ > 0, T (γ) plays a role as a reduction factor on

ka and the binding layer slows the effective association rate. In the system of Wofsy

and Goldstein, the concentration of the ligand approaches to its maximal level far away

from the binding layer and decreases towards the binding layer. If the ligand is produced

around the binding layer, the effect of the binding layer on ke
a is different from the one

in the system of Wofsy and Goldstein, as we will discuss in this chapter.

In addition to the above work on the formation of the signaling complexes, there

exists work on the effect of localization on the spatial and temporal evolution of signal-

ing from the macroscopic perspective. Bollenbach et al. studied how the localization

of morphogens by transcytosis mediates morphogen transport and the formation of the

concentration gradient of the morphogen [42]. They have formulated effective nonlinear

transport equations for the total concentration of morphogens present in all forms, in-

cluding the free morphogens, the receptor-bound morphogens in the extracellular space

and in the intracellular space. They have derived how the effective transport and degra-

dation rates depend on the total concentration of the morphogen. They also showed

that morphogen gradients can be extremely robust to changes in the morphogen pro-

duction rate if morphogen transport is dominated by transcytosis. However, they did

not discuss how transcytosis affects the effective transport and degradation rates. As

a result, the effect of transcytosis on the concentration gradient formation is not clear.

Umulis (2009) discussed the temporal evolution of the concentration gradient of the lig-

and in a one-dimensional line with an input flux of ligands at one end of the line and a

uniform level of receptors everywhere [51]. He gave conditions under which the system

can achieve dynamical scale invariance, i.e., the concentration gradient of the ligand

can keep the same proportion regardless of the size of the system during its transient

approach to equilibrium. However, he did not consider the effect of localization. If

receptors are only localized in some part of the system with adapter receptors nearby,

can the conditions for the scale invariance of the system with uniformly distributed re-

ceptors still work? Apparently, there are some extra requirements for scale invariance.

For example, the distributions of receptors and adapter receptors have to be spatially

scale invariant.
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Using different approaches and different settings of the systems, all the above pre-

vious work indicates that localization plays a diverse role in the signal transduction

process. Their results can only apply to specific situations and some may even lead

to contradictory conclusions about the effect of localization. Furthermore, the effect of

localization on the temporal and spatial evolution of the signal is not clear.

2.1.3 Overview

In this chapter, our objective is to systematically explore localization mechanisms and

gain a better understanding of how localization regulates signaling, from the temporal

and spatial evolution of the signal at the macroscopic level to the motion of signaling

molecules and the formation of signaling complexes at the microscopic level. To this

end, we consider the system with ligands, receptors and membrane proteins, with the

potential to be extended to other localization systems. Here membrane proteins are

defined as any proteins that stay near the membrane and can bind to ligand molecules.

We incorporate the important factors for localization in our deterministic and stochas-

tic models of the system, including the distribution region of the membrane protein,

the diffusion coefficient of the ligand, the on/off rate of binding reactions between the

ligand and the membrane proteins, and the on/off rate of binding reaction between

free/localized ligand molecules and receptors. We aim to examine how these factors

interact with each other to determine the effect of localization on signaling.

To understand how localization adjusts the temporal and spatial scale of the evolu-

tion of the signal, we look the concentration of the ligand with spatially varying diffusion

coefficients and degradation rates in the deterministic model in Section 2.2. To under-

stand how localization affects the noise propagation along the signal pathway, we look

at the stochastic motion of a single ligand molecule in Section 2.3. In Section 2.3.1

and Section 2.3.2, we add membrane proteins in the system and analyze the effect of

localization on the distribution of the ligand molecule in a stochastic model. In Section

2.3.3, we first assume only the free ligand molecule can bind to receptors and receptors

can catch the free ligand molecule once it touches receptors. With this assumption, we

estimate the extent to which the localization by the membrane proteins can slow the

association between the receptor and the ligand. Then we consider the case that when
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the ligand molecule and receptors are close enough, they can react with a finite proba-

bility per unit time. We discuss under what conditions the localization can enhance or

inhibit the association between ligands and receptors. At the end of Section 2.3.3, we

analyze the effect of the membrane proteins on signal specificity.

2.2 Deterministic Model

In the section, we study how the localization of the ligand affects the temporal and spa-

tial evolution of the extracellular signal by constructing deterministic diffusion-reaction

models. Ligand diffusion is restricted by the membrane proteins around the cell mem-

brane in the extracellular space. Once internalized, ligand can be transported via tran-

scytosis, get recycled to the cell membrane or decay intracellularly. Therefore, the rate

at which the ligand spreads around the cell membrane is different from the rate far away

from the membrane. Moreover, due to recycling and different degradation mechanisms

within/outside the cell, the decay rate of the ligand around the cell membrane is differ-

ent from the decay rate far away from the cell membrane. Therefore, we can consider a

two-layered system to differentiate the domain near the cell membrane and the domain

far away.

Fig. 2.1 shows our general two-layered rectangular system, where the lower layer

corresponds to the domain near the cell membrane and the upper layer corresponds to

the domain far away. For the signaling in the lower layer, Bollenbach et al. have shown

that the evolution of the total morphogen concentration can be described approximately

by a diffusion-reaction equation with an effective diffusion coefficient and an effective

degradation rate [42]. The effective diffusion coefficient and degradation rate are com-

plicated functions of the system kinetics, the total morphogen concentration and the

total receptor concentration. However, the effective diffusion coefficient and the effective

degradation rate approach finite values in the limit of low morphogen level. As the sig-

naling molecules are usually present in small numbers in signaling systems, we assume

that the diffusion coefficient and the degradation rate for the ligand concentration are

constants. In the upper layer, the ligand diffuses with a different diffusion coefficient

and decays with a different degradation rate.

In Fig. 2.1, the input flux of the ligand on the y = 0 boundary corresponds to
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cell secretion, while the input flux on the x = 0 face corresponds to the flux from the

concentration gradient of the ligand. First assuming the ligand is uniformly distributed

in the x- and z-directions in Section 2.2.1, we consider a one-dimensional system with

the input flux in the y-direction and study the effect of localization on the time for the

system to evolve to the steady state. Then assuming the ligand is uniformly distributed

in the z-direction, we consider the two-dimensional system in the x − y plane with

the input flux in the x-direction to understand the effect of localization on the spatial

pattern of the signal at the steady state.

Figure 2.1: The schematic of a biological system with ligands binding to surface recep-
tors

2.2.1 One-dimensional model

In this section we study the concentration of the ligand in the y-direction. We consider

the one-dimensional system consisting of two layers with heights H1 and H2. In the

lower layer, the ligand diffuses with diffusion constant D1 and decays with rate k1, while

in the upper layer, the ligand diffuses with diffusion constant D2 and decays with rate

k2. At y = 0, there is an input flux of the ligand j. At y = H1 + H2, the boundary

is reflective. Here D1 and k1 are the effective diffusion coefficient and the effective

degradation rate for the signal level around the cell membrane. In this section, we

study the time for the ligand concentration to relax to the steady state given different

D1’s and k1’s. Let C(y, t) denote the concentration of the ligand at y at time t. We

have the governing equations of C(y, t) as follows:

∂C(y, t)

∂t
= D1

∂2C(y, t)

∂y2
− k1C(y, t) for y ∈ [0,H1) (2.8a)
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∂C(y, t)

∂t
= D2

∂2C(y, t)

∂y2
− k2C(y, t) for y ∈ (H1,H1 +H2] (2.8b)

−D1
∂C(y, t)

∂y
= j at y = 0 (2.8c)

−D2
∂C(y, t)

∂y
= 0 at y = H1 +H2 (2.8d)

lim
y→H−

1

D1
∂C(y, t)

∂y
= lim

y→H+
1

D2
∂C(y, t)

∂y
(2.8e)

lim
y→H−

1

C(y, t) = lim
y→H+

1

ΓC(y, t) (2.8f)

C(y, 0) = 0 (2.8g)

where Γ is the partition coefficient that reflects the equilibrium partitioning between

two different domains. We assume that there is no capacity or transport resistance at

the interface, and set the equal flux at the boundary between two layers in Eq. (2.8e).

To simplify the system, we define the following dimensionless variables and coordi-

nates as in [52]:

u ≡ C

C0
, η ≡ y

H1 +H2
, τ ≡ t× k1,

C0 is a reference concentration of the ligand. To explore how the different reaction

and diffusion time scales in the two layers affect each other and influence the temporal

evolution of the whole system in Eq. (2.8), we define the scaled parameters as follows:

θ ≡ k1

k2
, δ ≡ D1

D2
, ǫ ≡ H1

H1 +H2
,

J ≡ j(H1 +H2)

D1
, Λ ≡ D1

k1(H1 +H2)2
.

We express the equations in Eq. (2.8) in terms of the scaled variables and parameters

as follows:

∂u(η, τ)

∂τ
= Λ

∂2u(η, τ)

∂η2
− u(η, τ) when η ∈ [0, ǫ)

∂u(η, τ)

∂τ
=

Λ

δ

∂2u(η, τ)

∂η2
− 1

θ
u(η, τ) when η ∈ (ǫ, 1]

−∂u(η, τ)
∂η

= J at η = 0

∂u(η, τ)

∂η
= 0 at η = 1
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lim
η→ǫ−

∂u(η, τ)

∂η
= lim

η→ǫ+

1

δ

∂u(η, τ)

∂η

lim
η→ǫ−

u(η, τ) = lim
η→ǫ+

Γu(η, τ) (2.9)

u(η, 0) = 0.

For the transient evolution of u(η, τ), we compute the Laplace transform of u(η, τ)

with respect to τ and obtain the following results:

1. for η ∈ [0, ǫ)

L[u](η, s) (2.10)

=
J
√

Λ cosh((1− η
ǫ
)β

√
s+1)√

s+1

×
n

Γ
√

δ(s+1) cosh
“

α
q

s+ 1
θ

”

−
q

(s+ 1
θ
) sinh

“

α
q

s+ 1
θ

”

tanh((1− η
ǫ
)β

√
s+1)

o

s
n

Γ
√

δ(s+1) cosh(α
q

s+ 1
θ
) sinh(β

√
s+1)+

q

(s+ 1
θ
) sinh(α

q

s+ 1
θ
) cosh(β

√
s+1)

o

2. for η ∈ (ǫ, 1]

L[u](η, s) (2.11)

=
J
√

δ
√

Λcosh

 

(1−η)α
√

s+ 1
θ

1−ǫ

!

s
n

Γ
√

δ
√

s+1 cosh(α
q

s+ 1
θ
) sinh(β

√
s+1)+

q

(s+ 1
θ
) sinh(α

q

s+ 1
θ
) cosh(β

√
s+1)

o

Here α ≡
√

δ(1−ǫ)2

Λ and β ≡
√

ǫ2

Λ . u(η, τ) can be obtained using the inverse Laplace

transform. Due to different degradation mechanisms in the two layers, we can assume

that θ 6= 1. Then L[u](η, s) is a single-valued function of s with poles at s = 0 and at

s’s satisfying the following equation:

Γ
√
δ
√
s+ 1 cosh

(
α

√
s+

1

θ

)
sinh

(
β
√
s+ 1

)
(2.12)

+

√(
s+

1

θ

)
sinh

(
α

√
s+

1

θ

)
cosh

(
β
√
s+ 1

)
= 0

To estimate the rate at which u(η, τ) relaxes to the steady state, we look at the smallest

pole (in magnitude) of L[u](η, s). In our system, η ≪ 1 and we assume that α ≪ 1

and β ≪ 1. In fact, α ≪ 1 and β ≪ 1 are true in many biological systems. One

example is Dorsal-Ventral patterning in Drosophila embryo where BMP is the signaling
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species and collagen is the extracellular matrix protein [53]. In Drosophila embryo, the

height of the collagen layer is only 0.1µm [54], i.e., ǫ(H1 + H2) = 0.1µm. To decide

k1 and k2, we consider the following reactions which can lead to the degradation of

BMP eventually: the degradation of BMPs, the association reaction between BMPs

and receptors, and the association association between BMPs and collagens, which may

result in the intracellular degradation. In [53], the reaction rate between BMP and

collagen is only 3.9×10−6 nM−1 sec−1. The concentration of collagen is much less than

the maximal level of the collagen 3.5 × 106 nM , which we estimate. The reaction rate

between BMP and receptors is only 4× 10−4 nM−1 sec−1 and the maximal level of free

receptor is 320nM [5]. The maximal degradation rate of free BMP is 3 × 10−2 sec−1

[5]. Therefore, we get

k1 ≪
(
(3.5 × 106) × (3.9 × 10−6) + (4 × 10−4) × 320 + 3 × 10−2

)
sec−1 = 13.8 sec−1

k2 < 3 × 10−2 sec−1.

From [5], D2 = 73µm2 sec−1. Thorne et al. show that the extracellular matrix

protein heparan sulfate can slow Lf diffusion by 30% [35]. Therefore, we let D1 = 0.7D2.

Then we get

β =

√
ǫ2(H1 +H2)2k1

D1
≪

√
0.12 × 13.8

73 × 0.7
= 0.05 < 1. (2.13)

Using the fact that the total height of the PV space is less than 1µm, we get

α =

√
(1 − ǫ)2(H1 +H2)2k1

D2
≪

√
12 × 13.8

73
= 0.43 < 1. (2.14)

In Appendix 6.1.1, assuming α ≪ 1 and β ≪ 1, we estimate the smallest nonzero real

pole, smin, (in magnitude) of L[u](η, s) as follows:

For η ∈ [ǫ, 1),

smin ≈ −1 +
1 − 1

θ

1 + Γρ
+

Γρ3(1 − 1
θ )2

3Λ(1 + ρ)2(1 + Γρ3

δ )(1 + Γρ)
(2.15)

where ρ ≡ ǫ
1−ǫ .

When Γ goes to infinity in Eq. (2.15), smin approaches to −1 in Eq. (2.15) and u(η, τ)

approaches to zero for η > ǫ from Eq. (2.9). As a result, u(η, τ) can be considered as
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a solution of a single-layered system with η ∈ [0, ǫ]. Moreover, −1 becomes an essential

singularity of L[u](η, s) in Eq. (2.10) as Γ goes to infinity. As a result, smin = −1 cannot

be used to estimate the relaxation time of the system to the steady state. In fact, as Γ

goes to infinity, the exact temporal solution for η ∈ [0, ǫ) is given as

u(η, τ) =
J
√

Λ sinh
(
β(1 − η

ǫ )
)

cosh(β)
+

∞∑

n=0

Ane
−
h

1+Λ( 2nπ+π
2ǫ )

2
i

t
cos

(
(2nπ + π)η

ǫ

)

where An = −J
√

Λ[4βeβ+(−1)n(2nπ+π)2]
2 cosh(β)[(2nπ+π)2+4β2]

. Therefore, the relaxation time depends on 1 +

Λ
(

2nπ+π
2ǫ

)2
.

Similarly to Γ, when ρ (or ǫ) goes to zero, smin = −1
θ is an essential singularity

of Eq. (2.11) and u(η, τ) can be considered as a solution of the one-layered system in

y ∈ [ǫ, 1]. The temporal solution of u(η, τ) for η ∈ [ǫ, 1] can be obtained in the same way

as when Γ approaches to infinity. When θ = 1, i.e., k1 = k2, smin = −1 is an essential

singularity and cannot be used to estimate the relaxation time.

When L[u](η, s) does not have any essential singularity, i.e. θ 6= 1, Γ < ∞, and

η 6= 0, smin can be used to estimate the relaxation time. In our system, ǫ ≪ 1 and

this gives ρ ≪ 1. Since ρ ≪ 1, the relation between smin and θ depends on the second

term in the right side of Eq. (2.15), which is an increasing function of θ. Note that

θ = k1
k2

and smin is the pole of the Laplace transform of u with respect to τ = k1t.

Therefore, fixing k1 and increasing k2 decreases smin and the relaxation time, i.e, faster

degradation in the upper layer leads to faster relaxation to the steady state. On the

other hand, decreasing k1 and fixing k2 decreases s. As a result, |s| increases due to the

fact that s < 0, while |sk1| may not. Therefore, it is hard to tell how k1 influences the

relaxation time from Eq. (2.15). To understand the effect of k1 on the steady state, we

can normalize the time t by 1
k2

, follow the above procedure to obtain smin, and analyze

the effect of k1 on smin as we do for k2 here.

Similar to θ, the relation between s and ρ (or ǫ) depends on the second term in

the right side of Eq. (2.15). The effect of ρ (ǫ) on smin depends on θ. When θ > 1,

smin is approximately an decreasing function of ρ (or ǫ), i.e., the relaxation time is a

decreasing function of ǫ when k2 < k1. Increasing ǫ enlarges the lower layer, where the

ligand molecule decays faster than the upper layer. Therefore, the relaxation time may

decrease due to the amplification of the fast degradation by increasing ǫ. Similarly, when
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θ < 1,i.e., k1 < k2, smin is approximately an increasing function of ρ (or ǫ). Increasing

ǫ enlarges the domain of the slow degradation, which may increase the relaxation time.

In addition to degradation, changing ǫ also changes the domain for diffusion. However,

the effect of diffusion on the relationship between ǫ and smin is very small. This is due

to the small effect of δ on smin, as we discuss below.

In Eq. (2.15), we substitute Λ by δD2
k1(H1+H2)2

, fix D2 and change δ by changing

D1, in order to study the effect of δ on smin. We first assume that δ is independent

of Γ, θ and ρ. Then smin is a decreasing function of δ and the effect of δ on smin is

very small, since δ only appears in the third term on the right side of Eq. (2.15) and

ρ ≪ 1. However, δ and Γ may be related. For example, if we decrease D1, the ligand

molecule diffuses more slowly in the lower layer and It will take longer time for the

ligand molecules to enter the upper layer on average. So decreasing D1 can increase the

concentration of the ligand in the lower layer and hence increase Γ. Therefore, δ and

the partition coefficient Γ are related. The effect of the relation between δ and Γ on

smin will be discussed in the stochastic model in Section 2.3.

Since ρ≪ 1 in Eq. (2.15), the relationship between smin and Γ also depends on the

second term in the right side of Eq. (2.15). Therefore, the effect of Γ on smin depends

on θ in the same way as the effect of ρ on smin does.

In Fig. 2.2, we plot how the solution of Eq. (2.12) depends on the scaled variables

ǫ, δ, Γ, and θ, which gives the smallest pole in magnitude of L[u](η, s). The numerical

solution is the value where the left side of Eq. (2.15) changes its sign, and the ap-

proximate solution is from Eq. (2.15). As we expect, the approximate solution in Eq.

(2.15) gives a good estimation for the numerical solution, and the dependence of smin

on the scaled parameters in Fig. 2.2 is consistent with our previous analysis. Here all

parameters used in Fig. 2.2 are given in Table 2.1, whose values are estimated based on

Dorsal-Ventral patterning in Drosophila [5]. In each figure of Fig. 2.2, we change one

of the parameters and fix the remaining parameters as given in Table 2.1. Fixing D2

and k2, we change D1 and k1 by changing δ and θ respectively. When θ = 1, L[u](η, s)

has an essential singularity. Therefore, we avoid θ = 1 when calculating smin in Fig. 2.2

-(a).
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Figure 2.2: The pole closest to zero.

Parameters H1 +H2 D2 j k2 Γ ǫ ≡ δ ≡ θ ≡
H1

H1+H2

(
D1
D2

)
k1
k2

Values 0.5µm 73µm2

sec 1mol
sec 0.03 1

sec 1 0.2 0.7 100

Table 2.1: The parameters for the one-dimensional system.

2.2.2 Two-dimensional model

In this section we study the steady-state concentration of a locally produced ligand in

the x − y plane to study the spatial distribution of the signal. We consider the two-

dimensional system of dimension L × (H1 + H2) consisting of two layers of dimension

L×H1 and L×H2. In the lower layer, the ligand diffuses with diffusion constant D1 and

decays with rate k1, while in the upper layer, the ligand diffuses with diffusion constant

D2 and decays with rate k2. There is an input flux of the ligand at x = 0. All other

boundaries are reflective. Here we study how the concentration gradient of the ligand
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depends on all parameters.

Let C(x, y) be the steady-state concentrations of the ligand at (x, y). Then C(x, y)

obeys the following equations:

D1∆C(x, y) − k1C(x, y) = 0 for (x, y) ∈ [0, L] × [0,H1)

D2∆C(x, y) − k2C(x, y) = 0 for (x, y) ∈ [0, L] × (H1,H1 +H2]

−D1
∂C(x, y)

∂x
= j at x = 0, y ∈ [0,H1)

−D2
∂C(x, y)

∂x
= j at x = 0, y ∈ (H1,H1 +H2]

∂C(x, y)

∂x
= 0 at x = L

∂C(x, y)

∂y
= 0 at y = 0 and y = H1 +H2

lim
y→H−

1

D1
∂C(x, y)

∂y
= lim

y→H+
1

D2
∂C(x, y)

∂y

lim
y→H−

1

C(x, y) = lim
y→H+

1

ΓC(x, y),

Let C0 be a reference concentration of the ligand. Similar to the one-dimensional

model in Section 2.2.1, we define the dimensionless variables, coordinates and parame-

ters as follows:

u ≡ C

C0
, ξ ≡ x

L
, η ≡ y

H1 +H2
,

J ≡ jL

D1
, δ ≡ D1

D2
, θ ≡ k1

k2
, ǫ ≡ H1

H1 +H2
,

Λ ≡ D1

k1L2
, Υ ≡ D2

k2L2
, µ ≡ H1 +H2

L
.

Therefore, Υ = Λ ∗ θ
δ . The governing equations of u(ξ, η) become

Λ

(
∂2u

∂ξ2
+

1

µ2

∂2u

∂η2

)
− u = 0 for (ξ, η) ∈ [0, 1] × [0, ǫ)

Υ

(
∂2u

∂ξ2
+

1

µ2

∂2u

∂η2

)
− u = 0 for (ξ, η) ∈ [0, 1] × (ǫ, 1]

−∂u
∂ξ

= J at ξ = 0, η ∈ [0, ǫ)
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−∂u
∂ξ

= Jδ at ξ = 0, η ∈ (ǫ, 1]

∂u

∂ξ
= 0 at ξ = 1

∂u

∂η
= 0 at η = 0 and η = 1

lim
η→ǫ−

δ
∂u

∂η
= lim

η→ǫ+

∂u

∂η

lim
η→ǫ−

u = lim
η→ǫ+

Γu,

Letting αn =

√
µ2ǫ2(1+n2π2Λ)

Λ and βn =

√
µ2(1−ǫ)2(1+n2π2Υ)

Υ for n = 0, 1, 2, . . ., we solve

the above equations of u and represent u as follows:

For η ∈ [0, ǫ)

u =
J

2
(ξ − 1)2 +

∞∑

n=0

An(η) cos (nπξ) (2.16)

where

An(η) = JΛ − J

6
− J

√
Λ (Λ − δΓΥ) sinh(β0) cosh

(
α0

η
ǫ

)

δΓ
√

Υsinh(α0) cosh(β0) +
√

Λcosh(α0) sinh(β0)
, for n = 0,

An(η) = − 2J

n2π2(1 + n2π2Λ)

−
2Jǫβn sinh(βn) cosh

(
αn

η
ǫ

)(
Λ

1+n2π2Λ − δΓΥ
1+n2π2Υ

)

Γδ(1 − ǫ)αn sinh(αn) cosh(βn) + ǫβn cosh(αn) sinh(βn)
, for n > 0.

For η ∈ (ǫ, 1], we have

u =
Jδ

2
(ξ − 1)2 +

∞∑

n=0

Bn(η) cos(nπξ) (2.17)

where

Bn(η) = JδΥ − Jδ

6
+

Jδ
√

Υ (Λ − δΓΥ) sinh(α0) cosh
(
β0

1−η
1−ǫ

)

Γδ
√

Υ sinh(α0) cosh(β0) +
√

Λcosh(α0) sinh(β0)
, for n = 0,

Bn(η) = − 2Jδ

n2π2(1 + n2π2Υ)

+
2J(1 − ǫ)αn sinh(αn) cosh

(
βn

(1−η)
1−ǫ

)(
Λ

1+n2π2Λ
− δΓΥ

1+n2π2Υ

)

Γδ(1 − ǫ)αn sinh(αn) cosh(βn) + ǫβn cosh(αn) sinh(βn)
, for n > 0.
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Using Eq. (2.16) and Eq. (2.17) we first discuss how the system can achieve scale-

invariance, i.e., the concentration gradient of the ligand can keep the same proportion

regardless of the system size. From Eq. (2.16) and (2.17), the following expressions

have to be independent of L, H1 and H2 for the system to be scale-invariant:

J =
jL

D1
, η =

H1

H1 +H2
, µ =

L

H1 +H2
,

Λ =
D1

k1L2
, Υ =

D2

k2L2
,

Λ

µ2ǫ2
=

D1

k1H2
1

,
Υ2

µ2(1 − ǫ)2
=

D2

k2H2
2

.

Scale-invariance related to J = jL
D1

has been discussed by Umulis in [51]. The fact

that η = H1
H1+H2

is independent of H1 and H2 indicates that the caption region of

the receptors occupy a certain proportion of the system. The fact that µ = L
H1+H2

is

independent of L and H1 + H2 is natural, since µ represents the ratio of two sides of

the system.

Λ = D1
k1L2 is the ratio of two characteristics times: 1

k1
is the characteristic life time

of the ligand molecule in the lower layer; and L2

D1
is the characteristic diffusion time for

the ligand molecule in the lower layer. If D1
k1L2 is small, then the ligand molecules spread

to a small region of the system, since the ligand molecules decay so quickly that they

can not diffuse far away. For the two-dimensional system to be scale-invariant, D1
k1L2 has

to be independent of L. Similarly, the independence of D2
k2L2 and D1

k1H2
1

and D2

k2H2
2

can be

explained.

In Fig. 2.3, using Eq. (2.16), we observe how u changes at η = 0 as we change the

values of the parameters. Since the downstream signal transduction pathway is initiated

by a signaling complex forming near the receptors, we only consider the concentration

of ligand at η = 0. All parameters used in Fig. 2.3 are given in Table 2.2, whose values

are estimated based on Dorsal-Ventral patterning in Drosophila [5]. In each figure of

Fig. 2.3, we change one parameter and keep the remaining parameters as in Table 2.2.

In Fig. 2.3-(a), we fix k2 and increase θ by increasing k1. Fig. 2.3-(a) shows that as θ

(k1) increases, the maximal level of u decreases and the concentration gradient becomes

sharper (data not shown here). Please note that the degradation in the lower layer

is the ligand degradation mechanism around the cell membrane, which consists of the

extracellular degradation around cell membrane and the intracellular degradation of the

internalized ligand molecules. Therefore, increasing the extracellular degradation rate,
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the internalization rate or the intracellular degradation rate of the ligand can increase

k1 and decrease the life time of the ligand, which sharpens the concentration gradient

and decreases the level of u.

In Fig. 2.3-(b), we fix D2 and increase δ by increasing D1. Fig. 2.3-(b) shows that

changing δ does not change the level of u much, which is consistent with our result about

the relationship between δ and smin in Section 2.2.1. In fact, as δ (D1) decrease, the

characteristic times L2

D1
and

H2
1

D1
increase so it takes longer time for the ligand molecule

to leave the lower layer. As a result, the ligand molecules have more chance to decay

before diffusing away. Therefore, the concentration gradient of the ligand becomes

sharper, which is shown in Fig. 2.3-(b).

In Fig. 2.3-(c), as ǫ increases, u decreases and the concentration gradient of u

becomes sharper. As the lower layer becomes large, the region for the ligand to decay

fast becomes large. Moreover, the region for the slow diffusion of the ligand becomes

larger.

In Fig. 2.3-(d), we fix L and increase µ by increasing H1 +H2. We find the overall

level of the concentration decreases as µ increases. As µ increases, H1 and H2 increases

and the characteristic times of diffusion,
H2

1
D1

and
H2

2
D2

, increase. Therefore, the ligand

molecules in the lower layer leaves the lower layer more slowly and it takes longer

time the ligand molecules in the upper layer to diffuse into the lower layer. Then the

molecules in the lower layer have more chance to decay before diffusing away. Therefore,

the overall level of the ligand in the lower layer decreases. One more important thing is

that changing µ rarely changes u if µ is small enough. This implies that as the height of

the rectangular system becomes small enough relative to the length and the width, the

concentration becomes robust to the change of µ. This is because that the rectangular

system becomes thin enough so that it can be considered as a one-dimensional line.

In Fig. 2.3-(e), when we increases Γ, which concentrates the ligand molecules in the

lower layer, the gradient of u becomes sharper.

In this section, we show that if the ligand degrades faster in the lower layer than

it does in the upper layer, localization can decrease the relaxation time of the ligand

concentration to reach the steady state in the one-dimensional model and can sharpen

the concentration gradient in the two-dimensional model. However, since the number of

ligand molecules involved in the signaling process is small in general, the fluctuations of
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the number of ligand molecules may play a significant role in signaling process. Therefore

in the next section, we consider stochastic models of the signaling systems with ligands,

membrane proteins, and receptors.
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Figure 2.3: The steady-state concentration, u(ξ, η), at η = 0.

Parameters L D2 j k2 Γ µ ≡ ǫ ≡ δ ≡ θ ≡
H1+H2

L
H1

H1+H2

D1
D2

k1
k2

Values 5µm 73µm2

sec 1mol
sec 0.03 1

sec 1 0.2 0.7 0.1 100

Table 2.2: The parameters for the two-dimensional system.
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2.3 Stochastic Model of ligand movement and reception

We look at the effect of localization on signaling by analyzing the transport of an in-

dividual ligand molecule in two-dimensional two-layered systems. The two-dimensional

two-layered systems are chosen as the signaling systems in the x-y plane in Fig. 2.1, in

the lower layer of which lie the membrane proteins and the receptors. First, we consider

the system with a ligand molecule and the membrane proteins to understand the extent

of localization by the association between the ligand and the membrane protein. Then

in the next system, we add receptors to study the interaction among ligands, recep-

tors and membrane proteins. At the end, we analyze the effect of the localization on

signaling specificity.

2.3.1 The residence time of a ligand molecule

We consider a two-dimensional two-layered system with the ligand (B) and the mem-

brane protein. We denote as BC the immobile complex of the ligand molecule and the

membrane protein located in the lower layer. We compute the mean time for a ligand

molecule starting in each layer to enter into the other layer, in order to evaluate how

the motion of the ligand molecule is restricted by the membrane protein.

Fig. 2.4 shows the two-layered system with the ligand (B) and the membrane

protein. In the lower layer [0, L] × [0,H1], denoted as Region I, a ligand molecule of

species B diffuses with diffusion coefficient D1. Moreover, the ligand molecule becomes

an immobile molecule of species BC with rate k+ and a molecule of species BC becomes

a molecule of species B with rate k−. In using k+, we are assuming that the membrane

protein is uniformly distributed in the lower layer and is in excess. In the upper layer

[0, L] × [H1,H1 +H2], denoted as Region II, the ligand molecule of species B diffuses

with diffusion coefficient D2.

For simplicity, we assume the boundary between the two layers is ’perfectly absorb-

ing’: in the sense that, once the ligand molecule of species B reaches the line y = H1 from

Region I, it automatically moves into Region II. Similarly, once the ligand molecule

reaches the line y = H1 from Region II, it moves into Region I automatically. All the

other boundaries of the system are reflective.

We analyze two separate cases when the molecule of species B is located in Region I
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Figure 2.4: The schematic of the two-layered system with binding to immobile proteins

or Region II initially. First, assume the molecule of species B starts at position (x0, y0)

in Region I. Define p1b(x, y, t|x0, y0, 0) and p1bc(x, y, t|x0, y0, 0) as the probability den-

sity functions such that p1b(x, y, t|x0, y0, 0) dx dy and p1bc(x, y, t|x0, y0, 0) dx dy are the

probabilities that without leaving region I, the molecule stays in (x, x+dx]× (y, y+dy]

as a molecule of species B and species BC at time t respectively.

Then for y ∈ [0,H1], we have the governing equations as follows:

∂p1b(x, y, t|x0, y0, 0)

∂t
= D1∆xx+yyp1b(x, y, t|x0, y0, 0)

− k+p1b(x, y, t|x0, y0, 0) + k−p1bc(x, y, t|x0, y0, 0), (2.18a)

∂p1bc(x, y, t|x0, y0, 0)

∂t
= k+p1b(x, y, t|x0, y0, 0) − k−p1bc(x, y, t|x0, y0, 0), (2.18b)

p1b(x, y, t|x0, y0, 0) = δ(x− x0)δ(y − y0), (2.18c)

p1bc(x, y, t|x0, y0, 0) = 0, (2.18d)

∂p1b(x, y, t|x0, y0, 0)

∂y
= 0, at y = 0, (2.18e)

p1b(x, y, t|x0, y0, 0) = 0, at y = H1 (2.18f)

∂p1b(x, y, t|x0, y0, 0)

∂x
= 0, at x = 0 and x = L, (2.18g)

where ∆xx+yy is the Laplace operator acting on x and y. Let S1(t|x0, y0, 0) be the

probability that the ligand molecule never leaves Region I before t given it starts at

(x0, y0) in Region I. Define T1 as the random variable of the time when the molecule
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leaves Region I for the first time. Then

S1(t|x0, y0, 0) =

∫ H1

0

∫ L

0
{p1b(x, y, t|x0, y0, 0) + p1bc(x, y, t|x0, y0, 0)} dx dy

P (T1 > t|x0, y0, 0) = S1(t|x0, y0, 0)

Letting

p̄1b(y, t|x0, y0, 0) =

∫ L

0
p1b(x, y, t|x0, y0, 0)dx

and

¯p1bc(y, t|x0, y0, 0) =

∫ L

0
p1bc(x, y, t|x0, y0, 0)dx,

Eq. (2.18) leads to

∂p̄1b(y, t|x0, y0, 0)

∂t
= D1∆p̄1b(y, t|x0, y0, 0)

− k+p̄1b(y, t|x0, y0, 0) + k− ¯p1bc(y, t|x0, y0, 0), (2.19a)

∂ ¯p1bc(y, t|x0, y0, 0)

∂t
= k+p̄1b(y, t|x0, y0, 0) − k− ¯p1bc(y, t|x0, y0, 0), (2.19b)

p̄1b(y, t|x0, y0, 0) = δ(y − y0), (2.19c)

¯p1bc(y, t|x0, y0, 0) = 0, (2.19d)

∂p̄1b(y, t|x0, y0, 0)

∂y
= 0, at y = 0, (2.19e)

p̄1b(y, t|x0, y0, 0) = 0, at y = H1 (2.19f)

where ∆yy is the Laplace operator acting on y. So p1b(y, t|x0, y0, 0) and ¯p1bc(y, t|x0, y0, 0)

do not dependent on x0. As a result, S1 and P (T1 > t|x0, y0, 0) do not depend on

x0. We only have to consider the evolution of the y-coordinate of the position of

the ligand molecule. For simplicity, we denote p̄1b(y, t|x0, y0, 0) as p1b(y, t|y0, 0) and

¯p1bc(y, t|x0, y0, 0) as ¯p1bc(y, t|y0, 0). In addition, ∆yy is denoted as ∆.

In Appendix 6.1.2, we compute p1b(y, t|y0, 0) and p1bc(y, t|y0, 0), from which we

obtain S1 as follows:

S1(t|y0, 0)

=

∞∑

n=0

2(−1)n

(2n+ 1)πυn
cos

(2n + 1)πy0

2H1

×
[
eλn+t(υn − ω2

nD1 + k+ + k−) + eλn−t(υn + ω2
nD1 − k+ − k−)

]
, (2.20)
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where ωn = (2n+1)π
2H1

, υn =
√

(k+ + k− + ω2
nD1)2 − 4k−ω2

nD1 and λn± = −(k++k−+ω2
nD1)±υn

2 .

Moreover,

E [T1|y0, 0] =

∫ ∞

0
S1(t|y0, 0) dt

=
16H2

1 (k+ + k−)

D1k−

∞∑

n=0

(−1)n

(2nπ + π)3
cos

(2n+ 1)πy0

2H1
.

Assuming that the position of the ligand molecule is uniformly distributed in Region I

initially, the expected value of T1 is 1

E [T1] =
1

H1

∫ H1

0
E [T1|y0, 0] dy0

=
τ1(1 +KD)

3
,

where τ1 =
H2

1
D1

and KD = k+

k−

.

Next we consider the stochastic motion of the ligand molecule in region II. Similarly,

we only have to consider the evolution of the y-coordinate of the position of the ligand

molecule. Assume the molecule starts in y0 in Region II as a molecule of species B.

Define p2(y, t|y0, 0) as the probability density function such that p2(y, t|y0, 0) dy is the

probability that without leaving Region II, the molecule stays in (y, y+dy] as a molecule

of species B at time t. Then the governing equation of p2(y, t|y0, 0) is

∂p2(y, t|y0, 0)

∂t
= D2∆p2(y, t|y0, 0), (2.21a)

p2(y, 0|y0, 0) = δ(y − y0), (2.21b)

p2(y, t|y0, 0) = 0, at y = H1, (2.21c)

∂p2(y, t|y0, 0)

∂y
= 0, at y = H1 +H2, (2.21d)

We solve Eq. (2.21) in Appendix 6.1.2. Define S2(t|y0, 0) as the probability that the

molecule never leaves Region II before time t given it starts at y0 in Region II. Then

we have S2(t|y0, 0) as follows:

S2(t|y0, 0) ≡
∫ H1+H2

H1

p2(x, y, t|y0, 0) dy

1 In the calculation of E [T1], we use
∞

X

n=0

1

(2nπ + π)4
=

1

96
.
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=
∞∑

n=0

4e
−D2

“

2nπ+π
2H2

”2
t

(2n + 1)π
sin

(2n+ 1)π(y0 −H1)

2H2
. (2.22)

Define T2 be the random variable of the time when the molecule leaves Region II

for the first time. Then the expectation of T2 is 2

E [T2|y0, 0] =

∫ ∞

0
S2(t|y0, 0) dt

= τ2

{
y0 −H1

H2
− 1

2

(
y0 −H1

H2

)2
}

(2.23)

where τ2 =
H2

2
D2

. Assuming that the position of the ligand molecule is uniformly dis-

tributed in Region II initially, we have

E [T2] =
1

H2

∫ H1+H2

H1

E [T2|y0, 0] dy0

=
τ2
3

(2.24)

Therefore, we have

E [T1]

E [T2]
=
τ1(1 +KD)

τ2
(2.25)

where τ1 (τ2) is the characteristic time for a ligand molecule to diffuse freely throughout

a one-dimensional system of length H1 (H2) with diffusion coefficient D1 (D2). The

association between the ligand and the membrane protein increases the time for the

ligand molecule to stay in the lower layer by 1 +KD times. Therefore, the membrane

protein holds the ligand molecule in the lower layer.

Here, we assume the interface between the two layers is perfectly ’absorbing’ for sim-

plicity. However, when the molecule reaches the interface, it may not cross the interface

and stay in its starting layer. As a result, due to the assumption that the interface is

perfectly absorbing, S2(t|y0, 0) is underestimated in the case that the molecule starts

at y0 in Region II. Similarly, S1(t|y0, 0) is also underestimated in the case that the

molecule starts at y0 in Region I. We have to compare the underestimation amounts of

S1(t|y0, 0) and S2(t|y0, 0) and the frequencies of the ligand molecule hitting the inter-

face from two layers, in order to find whether the perfectly absorbing boundary at the

2 In the calculation of E [T2|y0, 0], we use that for x ∈ [0, 2],
∞

X

n=0

16

(2nπ + π)3
sin

(2nπ + π)x

2
= x−

x2

2
.
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interface causes underestimation or overestimation of the probability that the molecule

stays in each layer.

For example, we approximate the exit rates of the ligand molecule from the lower

and upper layers as 1
E[T1]

and 1
E[T2]

. Denote B1 and B2 as ligands in the lower layer and

in the upper layer, respectively. Then we can approximate the movement of the ligand

between two layers as the following first-order reactions:

B1
k1−⇀↽−
k2

B2,

where k1 = 1
E[T1] and k2 = 1

E[T2] . In the case that E[T1]
E[T2]

> 1, i.e., k1 < k2, the ligand

molecule from the upper layer hits the absorbing interface more frequently than that

from the lower layer. Assume the underestimation amounts of S1(t|y0, 0) and S2(t|y0, 0)

are the same. Then we can conclude that the perfectly absorbing condition leads to

underestimation of the chance for the ligand molecule to become a species B2 in the

upper layer. Similarly, in the case that E[T1]
E[T2]

< 1, the chance for the ligand molecule to

become a species B1 in the lower layer is underestimated.

2.3.2 The ligand density at the steady state

In Section 2.3.1, we consider the two-layered system with the perfectly absorbing bound-

ary condition at the interface between two layers. Due to the perfectly absorbing bound-

ary condition, once the ligand molecule hits the interface, the ligand molecule leaves its

starting region and enters the other region. However, when the ligand molecule reaches

the interface, it can cross the interface to enter the other region or return to its start-

ing region. So here we introduce an artificial layer around the interface to model the

possibility that the ligand molecule does not cross the interface at the interface. With

the help of the artificial layer, we can evaluate the effect of membrane proteins on the

distribution of the ligand molecule more accurately.

To model how the ligand molecule crosses the interface by diffusing from one of the

layers, we introduce an artificial layer of height 2h as shown in Fig. 2.5. We denote

[0, L] × [0,H1 + h] as Region I ′ and [0, L] × [H1 − h,H1 + H2] as Region II ′. If the

molecule starts in [0, L] × [0,H1], then the molecule is a molecule in Region I ′ where

the molecule can be diffusing species B with diffusion coefficient D1 or immobile species

BC until it hits y = H1 + h. Once the molecule in Region I ′ hits H1 + h, it becomes
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diffusing species B in Region II ′ with diffusion coefficient D2 until it hits y = H1 − h.

Once the molecule in Region II ′ hits y = H1 − h, it becomes a molecule in Region

I ′. Then the molecule repeatedly switches between Region I ′ and II ′. If the molecule

starts in [0, L]× (H1,H1 +H2], it is species B with diffusion coefficient D2 in Region II ′

until it hits y = H1 − h. Once it hits y = H1 − h, it becomes a molecule in Region I ′.

Then it repeats the process as it starts in Region I ′. Since the molecule has to diffuse

to H1 +h to enter Region II ′, our model requires the ligand cross the interface to leave

the lower layer. Therefore, our model includes the possibility that the molecule arriving

at y = H1 from the lower layer returns to the lower layer. Similarly, it also includes the

case that the molecule arriving at y = H1 from the upper layer returns to the upper

layer.

Similarly to Section 2.3.1, we only have to consider the evolution of the y-coordinate

of the molecule position if we are only interested in which layer the molecule lies.

Define p1b(y, t|y0, 0) (p1bc(y, t|y0, 0)) to be the probability density function such that

p1b(y, t|y0, 0) dy (p1bc(y, t|y0, 0) dy) is the probability that the molecule of species B

starting at y0 in Region I ′ lies in [y, y + dy) as a molecule of species B (BC) at time

t without leaving Region I ′ before. Similarly, define p2(y, t|y0, 0) as a probability den-

sity function such that p2(y, t|y0, 0) dy is the probability that the molecule of species

B starting at y0 in Region II ′ lies in [y, y + dy) at time t without leaving Region II ′

before. Then the governing equations for p1b(y, t|y0, 0), p1bc(y, t|y0, 0) and p2(y, t|y0, 0)

are the same as Eq. (2.19) and (2.21) except that the absorbing boundaries in (2.19f)

and (2.21c) are replaced by the ones at y = H1 + h and y = H1 − h, respectively.

Therefore, p1b(y, t|y0, 0), p1bc(y, t|y0, 0) and p2(y, t|y0, 0) are obtained the same way as

in Appendix 6.1.2.

Define S1(t|y0, 0) as the probability that the molecule starting in y0 in Region I ′

stays in Region I ′ at time t and never leaves Region I ′ before time t. Similarly to

Section 2.3.1, we obtain S1(t|y0, 0) as follows:

S1(t|y0, 0)

≡
∫ H1+h

0
{p1b(y, t|y0, 0) + p1bc(y, t|y0, 0)} dy

=
∞∑

n=0

2(−1)n

(2n+ 1)πυn
cos

(2n + 1)πy0

2H1

[
eλn+t(υn − ω2

nD1 + k+ + k−)
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Figure 2.5: The two-layered system with an artificial layer.

+ eλn−t(υn + ω2
nD1 − k+ − k−)

]
, (2.26)

where ωn = (2n+1)π
2(H1+h) , υn =

√
(k+ + k− + ω2

nD1)2 − 4k−ω2
nD1 and λn± = −(k++k−+ω2

nD1)±υn

2 .

Define S2(t|y0, 0) as the probability such that the molecule starting in y0 in Region

II ′ stays in Region II ′ at time t and never leaves Region II ′ before time t. Similarly

to Section 2.3.1, we obtain S2(t|y0, 0) as follows:

S2(t|y0, 0)

≡
∫ H1+H2

H1−h
p2(y, t|y0, 0) dy

=
∞∑

n=0

4e
−
“

2nπ+π
2H2+2h

”2
D2t

(2n + 1)π
sin

(2n + 1)π (y0 − (H1 − h))

2(H2 + h)
. (2.27)

We consider the probability that the ligand molecule starting in Region I (II) ends

in Region I ′ (II ′) at time t after switching between Region I ′ and Region II ′ several

times. For y ∈ [0,H1+h) and y0 ∈ [0,H1], define G1(y, t|y0, 0) as the probability density

function such that G1(y, t|y0, 0) dy is the probability that the molecule starting at y0

as a molecule of species B lies in [y, y + dy) of Region I ′ as a molecule of species B or

BC at time t. Similarly, define G1B(y, t|y0, 0) as the probability density function such

that G1B(y, t|y0, 0) dy is the probability that the molecule starting at y0 as a molecule

of species B lies in [y, y + dy) of Region I ′ as a molecule of species B at time t. For

y ∈ (H1 − h,H1 +H2], define G2(y, t|y0, 0) as a probability density function such that
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G2(y, t|y0, 0) dy is the probability that the molecule starting in [y0, y0+dy) as a molecule

of species B lies in [y, y + dy) of Region II ′ as a molecule of species B at time t.

Now we focus on the case when the ligand molecule starts in region I. But the

following results and procedure can be extended to the case when the molecule starts

in region II. If the ligand molecule starts in Region I, it will switch between Region I ′

and II ′ after it reaches y = H1 + h for the first time. Therefore, for y0 ∈ [0,H1] and

t > 0, we have

G1B(y, t|y0) (2.28)

= p1b(y, t|y0) (2.29)

+

∫ t

0

∫ t−τ

0

{
−∂S1(τ |y0)

∂τ

}{
−∂S2(τ

′|H1 + h)

∂τ ′

}
G1B(y, t− τ − τ ′|H1 − h) dτ ′ dτ.

{
−∂S1(τ |y0)

∂τ

}
dτ gives the probability that the molecule starting at y0 leaves Region

I ′ for the first time in [τ, τ + dτ). Upon entering Region II ′ at y = H1 + h, the

molecule diffuses with diffusion coefficient D2 and leaves Region II ′ for the first time in

[τ + τ ′, τ + τ ′ + dτ ′) with probability
{
−∂S2(τ ′|H1+h)

∂τ ′

}
dτ ′. Then the molecule starts at

y = H1 − h in Region I ′ and stays in [y, y + dy) as a molecule of species B after time

t− τ − τ ′ with probability G1B(y, t− τ − τ ′|H1 − h).

Similarly, for y0 ∈ [0,H1] and t > 0, we get

G1(y, t|y0)

= p1b(y, t|y0) + p1bc(y, t|y0)

+
∫ t
0

∫ t−τ
0

{
−∂S1(τ |y0)

∂τ

}{
−∂S2(τ ′|H1+h)

∂τ ′

}
G1(y, t− τ − τ ′|H1 − h) dτ ′ dτ.

G2(y, t|y0)

=
∫ t
0

{
−∂S1(η|y0)

∂η

}
[p2(y, t− η|y0)

+
∫ t−η
0

∫ t−η−τ
0

{
−∂S2(τ |y0)

∂τ

}{
−∂S1(τ ′|H1−h)

∂τ ′

}
G2(y, t− η − τ − τ ′|H1 + h) dτ ′ dτ

]
dη

Using the calculation in Section 6.1.3, we get

lim
h→0

lim
t→∞

G1B(y, t|y0) =
1

D1

H1(1+KD)
D1

+ H2
D2

, for y < H1,

lim
h→0

lim
t→∞

G1(y, t|y0) =

(1+KD)
D1

H1(1+KD)
D1

+ H2
D2

, for y < H1,
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lim
h→0

lim
t→∞

G2(y, t|y0) =
1

D2

H1(1+KD)
D1

+ H2
D2

, for H1 < y < H1 +H2.

Therefore, the ratio of the steady-state concentrations of molecules in Region I and

Region II is as follows:

Rd12 ≡
lim
h→0

lim
t→∞

G1(y, t|y0)

lim
h→0

lim
t→∞

G2(y, t|y0)

=

(1+KD)
D1

1
D2

. (2.31)

In (2.31), 1 + KD shows that the association between the ligand and the membrane

protein can hold the ligand in the lower layer and increases the concentration of the

ligand in the lower layer by 1 +KD, which is consistent with our conclusion about the

time for the ligand molecule to leave the lower layers in Section 2.3.1.

2.3.3 The context-dependent effect of localization on signaling

From the analysis of the transport of a ligand molecule in Section 2.3.2, we conclude

that the membrane protein can concentrate the ligand molecules around the receptor

surface. However, once the ligand molecules bind to the membrane protein, they are

not free any more. The ligand molecules may not be as accessible to receptors as there

is no membrane protein. As a result, the signal transmitted to the downstream reaction

network may be changed. In this section, we consider how the time for a ligand molecule

to bind to the receptors is influenced by interactions among the ligand, the membrane

protein and the receptor. We first study a system with perfectly absorbing receptor

surface, which absorbs the ligand molecule immediately once the ligand molecule hits

the surface. After that, we look at the system in which the receptor can react with the

ligand with only a finite rate in the lower layer.

Signaling through perfectly-absorbing receptors

In Section 2.3.2, we consider the two-layered system with membrane proteins in the

lower layer. In this section, we add receptors at y = 0 in the two-dimensional rectangle

[0, L] × [0,H1 +H2] and assume the receptor surface are perfectly absorbing, i.e., the
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ligand molecule gets absorbed once it hits the receptor surface. Then we compare the

first passage times for a ligand molecule to get absorbed in the systems with and without

the localization layer. In system (a) of Fig. 2.6, the ligand molecule of species B can

diffuse freely in [0, L] × [0,H1 +H2] with diffusion constant D2 and can get absorbed

immediately when it hits y = 0. In system (b) of Fig. 2.6, the molecule can diffuse

with diffusion coefficient D1 and attach to/detach from the membrane protein with

rate k+/k− in the lower layer. Once the molecule of species B hits y = 0, it gets

absorbed immediately. In the upper layer of system (b), the ligand molecule diffuses

with diffusion coefficient D2. As in Section 2.3.2, we set an artificial layer around the

interface in system (b) in order to reflect the fact the ligand molecule may stay in

the starting layer even though it hits the interface. As defined in Section 2.3.2, let

[0, L] × [0,H1 + h] be Region I ′ and [0, L] × [H1 − h,H1 + H2] be Region II ′. The

ligand molecule switches between two regions as in Section 2.3.2 except that the ligand

molecule may get absorbed by the perfectly absorbing receptor surface at y = 0 in

Region I ′.

0 X

y

L

(a)

0 X

y

B               BCI

II

L

(b)

Figure 2.6: Systems with perfectly absorbing receptors.

We first estimate the first passage time for the ligand molecule to bind to receptors

in system (b). Similarly to Section 2.3.1, we only have to consider the evolution of the y-

coordinate of the molecule position. Let p
(b)
1b (y, t|y0, 0) (p

(b)
1bc(y, t|y0, 0)) be the probability

density function such that p
(b)
1b (y, t|y0, 0) dy (p

(b)
1bc(y, t|y0, 0) dy) is the probability that the

molecule starting at y0 in Region I ′ as a molecule of species B lies in [y, y + dy) as a
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molecule of species B (BC) at time t without leaving Region I ′ before. Therefore, if

y0 ∈ [0,H1 + h], the governing equations for p
(b)
1b (y, t|y0, 0) and p

(b)
1bc(y, t|y0, 0) are the

same as Eq. (2.18) except that p
(b)
1b (y, t|y0, 0) = 0 at the boundaries y = 0 and y = H1+h

3 .

Using the similar procedure in Section 6.1.2, we can obtain p
(b)
1b (y, t|y0, 0) and p

(b)
1bc(y, t|y0, 0).

Define S
(b)
1 (t|y0, 0) as the survival probability such that the molecule starting at y0 in

Region I ′ is still in Region I ′ at time t without leaving Region I ′ before. We get

S
(b)
1 (t|y0, 0)

≡
∫ H1+h

0

{
p
(b)
1b (y, t|y0, 0) + p

(b)
1bc(y, t|y0, 0)

}
dy

=
∞∑

n=0

4 sin (2n+1)πy0

H1+h

(2n + 1)πυn

×
[
eλn+t(υn − ω2

nD1 + k+ + k−) + eλn−t(υn + ω2
nD1 − k+ − k−)

]

where ωn = (2n+1)π
H1+h , υn =

√
(k+ + k− + ω2

nD1)2 − 4k−D1ω2
n, and λn± = −(k++k−+ω2

nD1)2±υn

2 .

Define T
(b)
1h as the random variable of the time when the molecule starting at y0 in

Region I ′ leaves Region I ′ for the first time either by being absorbed at y = 0 or at

y = H1 + h. Then we have4

P
(
T

(b)
1h > t|x0, y0, 0

)
= S

(b)
1 (t|y0, 0),

E
[
T

(b)
1h |x0, y0, 0

]
=

∫ ∞

0
S

(b)
1 (t|y0, 0) dt

=
(1 +KD)(H1 + h)2

4D1

[
2y0

H1 + h
− 1

2

(
2y0

H1 + h

)2
]

Define T
(b)
2h as the random variable for the time when the molecule starting at y0 in

Region II ′ leaves Region II ′ for the first time. To calculate E
[
T

(b)
2h |x0, y0, 0

]
, we can

use the result in Section 2.3.1. The difference between Region II in Section 2.3.1 and

Region II ′ in system (b) is that the absorbing boundary is at y = H1 in Region II

3 The boundary conditions at y = 0 and y = H1 + h are the homogeneous Dirichlet boundary
condition.

4 In the calculation of E
h

T
(b)
1h |y0, 0

i

, we use that for x ∈ [0, 2],

∞
X

j=0

16 sin (2j+1)πx

2

(2jπ + π)3
= x −

x2

2
.
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while the absorbing boundary is at y = H1 − h in Region II ′. Therefore, based on Eq.

(2.23), we have

E
[
T

(b)
2h |y0, 0

]
=

(H2 + h)2

D2

{
y0 − (H1 − h)

H2 + h
− 1

2

(
y0 − (H1 − h)

H2 + h

)2
}
.

To connect the motion of the molecule between Region I ′ and II ′, we define PH1+h,0(y0)

as the probability that the molecule starting at y = y0 in Region I ′ hits y = H1 + h

before getting absorbed at y = 0. Using the calculation in Appendix 6.1.4, we have

PH1+h,0(y0) =
y0

H1 + h
. (2.32)

Let T
(b)
1,i (T

(b)
2,i ) be the random variable of the time that the molecule spends in Region

I ′ (II ′) during its ith visit. Let y1,i (y2,i) be the starting position when the molecule

enters Region I ′ (II ′) for the ith time. Assume that the molecule starts at y0. Then if

y0 > H1, y2,1 = y0 and y1,1 = H1 − h. Similarly, if y < H1, y1,1 = y0 and y2,1 = H1 + h.

Define T (b) as the random variable of the time when the molecule gets absorbed by the

receptors at y = 0. When y0 > H1, we have

E
[
T (b)|y0, 0

]

= lim
h→0

{
E
[
T

(b)
2,1 |y0, 0

]
+ E

[
T

(b)
1,1 |H1 − h, 0

]

+

∞∑

i=2

E
[
T

(b)
2,i |H1 + h, 0

]
+ E

[
T

(b)
1,i |H1 − h, 0

]}

= lim
h→0

{
E
[
T

(b)
2h |y0, 0

]
+ E

[
T

(b)
1h |H1 − h, 0

]

+
∞∑

i=1

PH1+h,0(H1 − h)i
(
E
[
T

(b)
2h |H1 + h, 0

]
+ E

[
T

(b)
1h |H1 − h, 0

])}

=
(1 +KD)τ1

2
+
H1H2

D2
+ τ2

[
y0 −H1

H2
− 1

2

(
y0 −H1

H2

)2
]
. (2.33)

When y0 < H1, we have

E
[
T (b)|y0, 0

]
= lim

h→0

{
E
[
T

(b)
1h |y0, 0

]
+ PH1+h,0(y0)E

[
T (b)|H1 + h, 0

]}

= (1 +KD)

(
H1y0

D1
− y2

0

2D1

)
+
H2y0

D2
. (2.34)
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Assuming that y0 is uniformly distributed in [0,H1 +H2], we have

E
[
T (b)

]
=

1

H1 +H2

∫ H1+H2

0
E
[
T (b)|x0, y0, 0

]
dy0

=
1

H1 +H2

{
(1 +KD)(3H2 + 2H1)τ1

6
+
H1H2(H1 + 2H2)

2D2
+
H2τ2

3

}
.

In system (a) of Fig. 2.6, there is no membrane-protein layer. Let p(a)(y, t|y0, 0)

be the probability density function such that p(a)(y, t|y0, 0) dy is the probability that

the molecule starting at y0 lies in [y, y + dy) at time t. Then given the molecule starts

from y0 initially, the governing equation for p(a)(y, t|y0, 0) is the same as Eq. (2.21) in

Section 2.3.1 except that Eq. (2.21c) is replaced by p(a)(y, t|y0, 0) = 0 at y = 0. Using

the same procedure to obtain E [T2|y0, 0] and E [T2] in Section 2.3.1, we get the mean

time for the ligand molecule to get absorbed in system (a) as follows:

E
[
T (a)|y0, 0

]
=

(H1 +H2)
2

D2

{
y0

H1 +H2
− 1

2

(
y0

H1 +H2

)2
}

(2.35)

E
[
T (a)

]
=

(H1 +H2)
2

3D2
. (2.36)

If we let D1 = D2 and k+ = 0, then system (b) in Fig. 2.6-(b) becomes the

same as system (a) in Fig. 2.6-(a). Hence, for any y0 ∈ [0,H1 + H2], E
[
T (a)|y0, 0

]
=

E
[
T (b)|y0, 0

]
, which is obvious from Eq. (2.33), (2.34) and (2.35). Therefore, our

approach to estimating E
[
T (b)

]
is consistent with the one for E

[
T (a)

]
.

Letting ρ = H1
H2

and δ = D1
D2

, we can have the ratio of the average life time of the

molecule in system (b) to the average life time in system (a) as follows:

E
[
T (b)

]

E
[
T (a)

] =
2 + 3ρ(ρ+ 2) + 1

δ (1 +KD)(3ρ2 + 2ρ3)

2(1 + ρ)3

Since ρ ≪ 1, E[T (b)]/E[T (a)] is close to one if (1 +KD)/δ is small. Therefore, the role

of the lower layer in signaling can be important only if it can hold the ligand molecule

effectively. If KD = 0 and δ < 1, i.e., there is no membrane protein and D1 < D2, then

E
[
T (b)

]

E
[
T (a)

] > 2ρ3 + 6ρ2 + 6ρ+ 2

2(1 + ρ)3
= 1.

Similarly, if δ = 1 and KD > 0, we have

E
[
T (b)

]

E
[
T (a)

] > 2ρ3 + 6ρ2 + 6ρ+ 2

2(1 + ρ)3
= 1.
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Since the ligand molecule can only bind to the receptor when it is free, the membrane

protein (KD > 0) and slow diffusion (when D1 < D2) holds the ligand molecule from

receptors and decreases the diffusion flux of the ligand towards the receptor surface,

slowing the association between ligands and receptors. However, as shown in Section

2.3.2, the membrane protein and slow diffusion can increase the concentration of the

ligand around the receptor surface. Therefore, if the localized ligand molecule can pass

the ligand molecule directly to the receptor, the diffusion flux of the ligand towards the

receptor can be increased and the association between the ligand and the receptor can

be accelerated. For example, in dorsal-ventral patterning in Drosophila, the collagen

protein can bind to Sog and to Dpp/Scw, and Sog and Dpp/Scw can bind to each

other both in solution and when attached to collagen. If we consider Dpp/Scw as the

ligand and Sog as the receptor, the collagen protein localizes Sog and Dpp/Scw around

the embryo surface, which can increase the encounter chance of Sog and Dpp/Scw and

enhance the formation of Sog/Dpp/Scw complex. Moreover, experiments have shown

collagen proteins can enhance the formation of Sog/Dpp/Scw complex [53]. In the

following section, we consider the case when the ligand-binding protein can transfer the

ligand molecule to receptors directly.

Signaling through partially-absorbing receptors.

In this section, we assume that the membrane protein can pass the ligand molecule

directly to the receptor. Moreover, when the ligand molecule is close enough to bind

to receptors, we assume that the ligand molecule can bind to a receptor with a finite

probability per unit time. As a result, the ligand molecule may diffuse away before it

binds to the receptor. We investigate under what conditions the membrane protein can

promote signaling. We find that the membrane protein has to pass the ligand molecule

to the receptor fast enough, in order for the membrane protein to enhance signaling.

Furthermore, we introduce another kind of species that the membrane protein can

pass the ligand molecule to, in order to study the effect of the membrane protein on

signal specificity.

Here we consider four systems which have different reactions among ligand molecules,

membrane proteins, and receptors. In system (a), we assume that there is no membrane

protein and that the ligand molecule binds to the receptor directly. In system (b), we
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assume that there are membrane proteins which can pass the ligand molecules to the

receptors. In system (b), the ligand molecules can bind to the receptors only through the

membrane proteins. In system (c), as in system (b), there are membrane proteins which

can pass the ligand molecules to the receptors. In addition, in system (c), the ligand

molecule can directly bind to the receptors. In system (d), all settings are the same as

those in system (c) except that there is an additional reaction in which the membrane

protein can pass the ligand molecule to another signaling pathway. We consider the

mean time for the ligand molecule to bind to receptors in these four systems.

Systems (a) and (b) are described in Fig. 2.7-(a) and Fig. 2.7-(b). We denote B as

the signaling ligand, BC as the complex of the membrane protein and the ligand, and

BR as the ligand-bound receptor. In system (a) of Fig. 2.7, the ligand B can diffuse

throughout the domain [0, L] × [0,H1 + H2] with diffusion coefficient D2 and bind to

the receptor on the receptor surface with rate ka. In the system (b) of Fig. 2.7, we

only allow the ligand molecule to bind to the receptors after binding to the membrane

proteins in order to find the net effect of binding proteins on signaling. Then, the motion

of the ligand in the system (b) is the same as that in Fig. 2.5 except that the ligand

molecule cannot bind directly to the receptors and that the complex of the ligand and

the membrane protein, BC, can become the ligand-bound receptor, BR, with rate kb.

0 X

y

B               BR

L

(a)

0 X

y

B               BC BC          BR
I

II

L

(b)

Figure 2.7: Systems with and without localization layers.

We first consider the average time for the ligand molecule to bind to the receptors

in system (a). Similarly to Section 2.3.1, we only have to consider the evolution of the
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y-coordinate of the molecule position. Define p(a)(y, t|y0, 0) as the probability density

function such that p(a)(y, t|y0, 0) dx dy is the probability that the ligand starting at y0

at time 0 stays at y at time t. The governing equations are

∂p(a)(y, t|y0, 0)

∂t
= D2∆p

(a)(y, t|y0, 0) (2.37a)

p(a)(y, t|y0, 0) = δ(y − y0), (2.37b)

D2
∂p(a)(y, t|y0, 0)

∂y
= kap

(a)(y, t|y0, 0), at y = 0, (2.37c)

∂p(a)(y, t|y0, 0)

∂y
= 0, at y = H1 +H2. (2.37d)

Define T
(a)
br as the random variable of the time when the ligand molecule binds to the

receptor in system (a). Then given that the molecule starts at y0, the conditional

expected value of T
(a)
br can be derived from the following equations:

∂2E
[
T

(a)
br |y0, 0

]

∂y2
0

= − 1

D2
(2.38a)

D2

∂E
[
T

(a)
br |y0, 0

]

∂y0
= kaE

[
T

(a)
br |y0, 0

]
, at y0 = 0, (2.38b)

∂E
[
T

(a)
br |y0, 0

]

∂y0
= 0, at y0 = H1 +H2. (2.38c)

Solving (2.38), we obtain

E
[
T

(a)
br |y0, 0

]
= − 1

2D2
y2
0 +

H1 +H2

D2
y0 +

H1 +H2

ka
.

Assuming that y0 is uniformly distributed in the domain, we have

E
[
T

(a)
br

]
=

(H1 +H2)
2

3D2
+
H1 +H2

ka
. (2.39)

We then derive the average time for a ligand molecule to bind to the receptors in sys-

tem (b). Similar to the systems in Section 2.3.2 and Section 2.3.3, let [0, L]× [0,H1 +h]

be Region I ′ and [0, L] × [H1 − h,H1 + H2] be Region II ′. Define p
(b)
1b (y, t|y0, 0),

p
(b)
1bc(y, t|y0, 0), and p

(b)
1br(y, t|y0, 0) as the probability density functions such that p

(b)
1b (y, t|y0, 0) dx dy,

p
(b)
1bc(y, t|y0, 0) dx dy, and p

(b)
1br(y, t|y0, 0) dx dy are the probabilities that the ligand start-

ing at y0 in Region I ′ as a molecule of species B stays at y at time t as a molecule of
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species B, BC or BR without leaving Region I ′ before time t. For y0 ∈ I ′, the governing

equations are

∂p
(b)
1b (y, t|y0, 0)

∂t
= D1∆p

(b)
1b (y, 0|y0, 0) − k+p

(b)
1b (y, 0|y0, 0) (2.40a)

+ k−p
(b)
1bc(y, 0|y0, 0), (2.40b)

∂p
(b)
1bc(y, t|y0, 0)

∂t
= k+p

(b)
1b (y, 0|y0, 0) − (k− + kb)p

(b)
1bc(y, 0|y0, 0), (2.40c)

∂p
(b)
1br(y, t|y0, 0)

∂t
= kbp

(b)
1bc(y, 0|y0, 0), (2.40d)

p
(b)
1b (y, 0|y0, 0) = δ(y − y0), p

(b)
1bc(y, 0|y0, 0) = 0, p

(b)
1br(y, 0|y0, 0) = 0, (2.40e)

∂p
(b)
1b (y, t|y0, 0)

∂y
= 0, at y = 0, p

(b)
1b (y, t|y0, 0) = 0, at y = H1 + h. (2.40f)

Assuming the initial position of the molecule is uniformly distributed, we obtain the

mean time for the molecule to bind to the receptor in (E4) of Appendix 6.1.5 as shown

below:

E
[
T

(b)
br

]
=

H1H2

D2

∞∑

i=0

Ai

{
1

2k+kb
− H1

H1 +H2

∞∑

i=0

Ai

(2iπ + π)2

}
(2.41)

+
k+ + k− + kb

k+kb
+

H3
2

3D2(H1 +H2)

where Ai = 1
k+kb+( 2iπ+π

2H1
)2D1(k−+kb)

.

We apply the system (a) and (b) to the biological system of dorsal-ventral patterning

in Drosophila, in which BMP is the signaling ligand, SBP acts as the membrane protein,

and the BMP receptor is the receptor [30, 5]. We compute E
[
T

(a)
br

]
in Eq. (2.39) and

E
[
T

(b)
br

]
in (2.41) using the parameters given in Table 2.3.

Parameters D2 D1 H2 H1 ka k−

Values 73 0.73 0.45 0.05 0.53 2
µm2

sec
µm2

sec µm µm µm
sec

1
sec

Table 2.3: The parameters for E(T
(a)
br ) and E(T

(b)
br ) in Fig.

2.7.
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In Fig. 2.8, we compare E
[
T

(a)
br

]
and E

[
T

(b)
br

]
with different values for k+ and kb.

Based on whether E
[
T

(a)
br

]
> E

[
T

(b)
br

]
or E

[
T

(a)
br

]
< E

[
T

(b)
br

]
, we determine whether

the ligand-binding proteins promote or inhibit signaling. In Fig. 2.8, E
[
T

(b)
br

]
decreases

as kb and k+ increase. In Fig. 2.8-(a), where kb is small, the binding reaction will always

inhibit signaling. This is because the membrane protein holds ligand molecules from

receptors. Furthermore, in Fig. 2.8-(b), where k+ is small, the binding reaction will

always inhibit signaling. This is because it takes longer for the ligand molecule to bind to

membrane proteins than binding to receptors directly. Therefore, when kb = 2.7 sec−1

in Fig. 2.8-(c), there is a threshold of k+ for E
[
T

(b)
br

]
to be less than E

[
T

(a)
br

]
. If k+

is smaller than this threshold, it takes less time for the ligand to bind to the receptor

directly than through binding to membrane proteins and in this case, the ligand-binding

protein acts as an inhibitor. If k+ is bigger than the threshold, i.e., the ligand-binding

protein recruits the ligand molecule fast enough, it takes less time for the ligand to

bind to the receptor through the membrane protein. In this case, the membrane protein

will promote signaling. Similarly, kb should be larger than the threshold to enhance

signaling in Fig. 2.8-(d).

In system (b), the ligand molecule first binds to the membrane protein and then

gets transfered to receptors. The association between ligands and receptors involves

two steps, as what is assumed in dimensionality reduction. In the system with di-

mensionality reduction, people assume that the ligand molecule first performs three-

dimensional diffusion until it hits the cell surface and then the ligand molecule performs

a two-dimensional diffusion to approach receptors on the cell surface. As suggested in

[45] and [46], the enhancing effect of dimensionality reduction on signaling is very little

when receptors are perfectly absorbing. Our estimation of the expected times in system

(a) and (b) can help us understand their conclusion. System (b) can be considered

as the system with dimensional reduction, and system (a) can be considered as the

three-dimensional direct diffusion to receptors. Letting k+ go to infinity, Eq. (2.41)

gives

lim
k+→∞

E
[
T

(b)
br

]
=

1

kb
+

H3
2

3D2(H1 +H2)
.

Then, kb becomes the effective rate for the ligand molecule to bind to the receptor on

the cell membrane. In order that the surface diffusion combined with three-dimensional
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diffusion is favorable over the free three-dimensional diffusion to receptors,

lim
k+→∞

E
[
T

(b)
br

]
< E

[
T

(a)
br

]
,

which leads to the following inequality:

1

kb
<

H3
1

3D2(H1 +H2)
+
H1H2

D2
+
H1 +H2

ka
. (2.42)

Then, as ka increases to infinity, the region for kb to satisfy inequality (2.42)) becomes

smaller. Therefore, the assumption that the receptors are perfectly absorbing gives a

restrict condition for the reduction of dimensionality to enhance signaling.
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Figure 2.8: The mean time for the ligand to bind to the receptor in system (a) and (b)

Next, we consider system (c) in which we add the direct association between ligands

and receptors to system (b) of Fig. 2.7. In the lower layer, the ligand B can bind to the

receptor with rate kac. Define T
(c)
br as the random variable of the time when the ligand

molecule binds to the receptors in system (c). Similarly as in system (b), we assume
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that the initial position of the ligand molecule is uniformly distributed in the system

and compute the expected value of T
(c)
br in system (c) as follows:

E
[
T

(c)
br

]
=

H1H2

D2

∞∑

i=0

Vi

{
1

2(kackb + kack− + k+kb)
− H1

H1 +H2

∞∑

i=0

4Vi

(2iπ + π)2

}
(2.43)

+
k+ + kb + k−

kackb + kack− + k+kb
+

H3
2

3D2(H1 +H2)
,

where

Vi =
1

kackb + kack− + k+kb +
(

2iπ+π
2H1

)2
D1(kb + k−)

.

If there is no binding layer, then system (c) should be the same as system (a).

Therefore, letting k+ go to zero and letting H1 go to zero in Eq. (2.39) and (2.43), we

should have

lim
H1→0

lim
k+→0

E
[
T

(c)
br

]
= lim

H1→0
E
[
T

(a)
br

]
. (2.44)

Using Eq. (2.44), we estimate the reaction rate of the ligand binding to the receptors

directly in system (c). Assuming lim
H1→0

H1

D1
= G 6= 0,from Eq. (2.44) we get

ka =
kacH2
H2

D2G + 1
. (2.45)

In the Robin boundary condition of Eq. (2.37) for system (a),

D2
∂p(a)(y, t|y0, 0)

∂y
= kap

(a)(y, t|y0, 0)

at y = 0. In Eq. (2.45), ka is proportional to the reaction rate between the receptor

and the ligand molecule, which implies that the faster the receptor surface absorbs the

ligand, the sharper the concentration gradient of the ligand in the system. H1 can be

considered as the capture radius of the receptor and D1 is the diffusion constant of

the ligand inside the capture region of receptors. Therefore, Eq. (2.45) shows that the

larger the capture radius of the receptor or the more slowly the ligand molecule moves

in the capture region, the faster the ligand molecule can be caught by the receptor

surface. The dependence of ka on the slow diffusion near receptors indicates the effect
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of localization on the association reaction between receptors and ligands, i.e., the more

slowly the ligand molecule diffuses in the capture region, the bigger chance the ligand

molecule has to get absorbed before diffusing away. Furthermore, if we consider the

reaction between the receptor and the ligand as a bimolecular reaction, Eq. (2.45) also

implies that the reaction rate between two molecules is an increasing function of their

relative diffusion constant when two molecules are far away from each other, but is a

decreasing function of their relative diffusion constant when they are close enough.
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Figure 2.9: The mean time for the ligand to bind to the receptor in system (a) and (c)

Using the parameters given in Table 2.3 in Eq. (2.45) and approximating G by
H1
D1

, we get kac = 1.28 sec−1. Using kac, we compare the expected time for the ligand

molecule to bind to the receptor in system (a) and system (c). As shown in Fig. 2.9-

(a), when kb = 0.27 sec−1 < kac, E
[
T

(c)
br

]
increases as k+ increases. When kb is less

than kac, the binding protein inhibits signaling by holding the ligand molecules from

the receptors. Therefore, increasing k+ promotes competition between the membrane
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proteins and the receptors for ligand molecules, where the membrane protein inhibits

the association between the ligand and the receptor. However, in Fig. 2.9-(c), when

kb = 2.7 sec−1 > kac, E
[
T

(c)
br

]
decreases as k+ increases. If kb is larger than kac, it takes

less time for the ligand molecule to bind through the membrane protein to the receptors

than to bind directly to the receptors by itself. Then, increasing k+ will enhance the

promoting effect of the ligand-binding protein on signaling.

In Fig. 2.9-(b), when k+ = 0.1 sec−1 ≪ kac, it is much easier for the ligand molecule

to bind to the receptor than to the ligand-binding protein. Therefore, increasing kb does

not change E
[
T

(c)
br

]
very much. In Fig. 2.9-(d), when k+ = 10 sec−1 > kac, there is

a threshold of kb where E
[
T

(a)
br

]
= E

[
T

(c)
br

]
. In order that the ligand-binding proteins

enhance signaling, kb has to be larger than the threshold.

In conclusion, to enhance signaling, kb has to be large enough so that the ligand-

binding proteins do not sequester the ligands from the receptors. At the same time, k+

has to be large enough so that the ligand-binding protein can catch the ligand molecules

and localize the ligand molecules around the receptors efficiently.

One example of increasing k+ is the increasing level of SBP in dorsal surface pattern-

ing in Drosophila, where SBP is produced in proportion to the level of the ligand-bound

receptors. Then increasing the concentration of SBP will increase the rate for the mem-

brane protein to catch the ligand molecule. However, SBP can get internalized into the

embryo, which remove signaling molecules from the system. As the concentration of

SBP increases, the amount of removed signaling molecules increases. As a result, the

signal can be inhibited when the level of SBP is high enough.

In addition to SBP, there are other proteins such as scaffold protein that can collect

signaling molecules and pass them to different signal pathways. Now, we consider the

case the role of membrane proteins in signal specificity. In addition to receptors in the

system, we assume that the ligand molecule can be passed by the membrane protein to

a molecule of another species to become BD. Once the ligand molecule becomes species

BD, it will be removed from the system. Then in system (d), we add the following

reaction occurring in the lower layer to system (c):

BC
kd−→ BD.

Other reactions and diffusions in system (d) are the same as those in system (c). To



72

estimate the extent to which the membrane protein removes the ligand molecules , we

look at the probability that the ligand molecule gets removed before binding to the re-

ceptors in system (d). Let pBD as the probability that the ligand molecule gets removed

before binding to any receptors. Since the reaction from BC to BD is irreversible, we

consider the probability that the ligand molecule becomes a molecule of species BD

eventually. Therefore, we estimate pBD at steady state as follows:

pBD =
k+kd

kac(k− + kb + kd) + k+(kb + kd)
.

Obviously, pBD is an increasing function of k+ and kd. As the concentration of the mem-

brane protein increases, the fraction of the ligand molecules removed by the membrane

proteins increases. Moreover, pBD is a decreasing function of kb, which is proportional

to the concentration of free receptors. Then, as the number of ligand-bound receptors

increases, kb decreases and pBD increases. Therefore, the increase of the membrane

protein and the consequent increase of the ligand-bound receptors make more ligand

molecules get removed before binding to the receptor.



Chapter 3

Noise propagation in

transcription and translation

processes

3.1 Introduction

The appropriate regulation of gene expression is essential for cells to proliferate, adapt

to environmental conditions, and function within organisms. However, reactions during

the process of gene expression often involve small numbers of molecules, leading to

large fluctuations [8, 55, 56, 57]. Stochasticity in gene expression has been identified

as a major factor underlying the observed phenotypic variability of genetically identical

cells [58]. Therefore, understanding how noise propagates in gene expression processes

is very important in systems biology.

Stochasticity in gene expression comes from the transcription and translation levels.

Transcription happens through three steps: initiation, elongation and termination. Dur-

ing initiation, transcription factors can regulate the recruitment of RNA polymerases

(RNAP) to promoters by binding to specific DNA sequences. As a result, the promoter

switches between active and inactive states, depending on whether a transcription factor

is on or off its functional site of the DNA sequence. After binding to promoters, RNAP

opens the double helix and uncovers the template strand for elongation. Elongation

73
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begins with the formation of the transcription elongation complex (TEC) which con-

sists of the RNAP, the DNA and the nascent mRNA. The TEC slides along the DNA

sequence and extends the transcript one nucleotide each time until the TEC destabilizes

from the DNA sequence. After destabilization, the mRNA is released from the DNA

sequence and the transcription process terminates.

Stochasticity in transcription can arise in several steps. For example, the switch of

the promoter status is stochastic, due to the small numbers of gene copies and transcrip-

tion factors. In bacteria, gene copies typically number in one or two, and the number

of transcription factors is in tens [59]. Moreover, during elongation, the motion of the

TEC can be interrupted by random pauses. In fact, the movement of the TEC along the

DNA sequence is a series of bursts of rapid and continuous elongation interrupted by

pauses [60]. The lifetime and location of the TEC pauses along the DNA sequence are

stochastic and biased by the template sequence [60, 61, 62]. It has been suggested both

the switch of the promoter status and TEC pausing can lead to the burst of mRNA pro-

duction, i.e. the amount of mRNA produced is much larger in some time intervals than

the production in other time intervals[63]. How the fluctuations in the promoter sta-

tus and TEC motions affect the production bursts is very important for understanding

stochasticity in gene expression.

Previous studies have been only focused on one of the initiation and elongation

steps. Most of the models of the initiation step consist of a telegraph input for the

switch of the promoter status and a simple first-order reaction for the production of

mRNA[64, 65, 66, 67]. None of them has investigated how the motion of the TEC in

the elongation step inherits the stochastic fluctuations from the random switch of the

promoter status. For the elongation step, Voliotis et al and Depken et al have focused

on the DNA sequence with only one TEC on it and studied the lifetime of the TEC

pause [60, 68]. For the DNA sequences with multiple TEC’s on them, Voliotis et al and

Dobrzynski and Bruggenman have used stochastic simulations to show how the pause

leads to the bursts of mRNA production [63, 68]. However, none of them have given

any analytical results for the level of mRNA produced in a given time interval.

In this chapter, our objective is to understand how the fluctuations in the promoter

status and the TEC motion affect the level of the mRNA produced in a given time

interval. To realize our goal, we have studied: 1) the number of mRNAs produced
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from the TEC with a random telegraph forming rate and a deterministic motion along

a chain in Section 3.2.1; 2) the number of mRNAs produced from the TEC with a

Poisson production and random pauses at specific sites of a sequence in Section 3.2.2.

3.2 Reaction chains driven by a random telegraph signal

3.2.1 Noise propagation in linear and deterministic elongation chains

Formulation of the deterministic chain

In this section, we study the statistics of mRNA produced from the TEC with a random

production and deterministic downstream steps in a chain as shown in Fig. 3.1. In Fig.

3.1, the TEC arrives at X1 with rate S(t) and jumps from Xi to Xi+1 with rate µ until

it reaches R.

Figure 3.1: The deterministic elongation chain.

A TEC arrives at the 1st site of the DNA sequence and proceeds along the DNA

sequence until the terminal site to produce a mRNA. Therefore, we can consider Xi as

the TEC at the ith site and R as mRNA. To study a biological system with a large

number of identical cells, we let xi(t) be the concentration of Xi at time t and r(t) be

the concentration of the mRNA produced before t. Assuming xi(t) = 0 for all i’s and

r(t) = 0 at time t = 0, the kinetics in Fig. 3.1 lead to the following system of stochastic

ordinary differential equations:

ẋ(t) = Ax(t) + S(t)e1,

ṙ(t) = µxn(t), (3.1)

x(0) = 0,

r(0) = 0,

where

x(t) = (x1(t), x2(t), · · · , xn(t))T ,
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A =




−µ
µ −µ

µ −µ
. . .

. . .

µ −µ




n×n

,

and ek is a n-length vector such that its kth component is 1 and all other components

are zero.

During transcription, the recruitment rate of RNAP depends on the promoter status,

which switches randomly between the active and inactive states. Therefore, we assume

S(t) is a random process switching between s0 and s1. In particular, S(t) is a 2-state

Markov chain, with exponentially distributed waiting times between jumps. The process

S(t) can be characterized by its infinitesimal generator

Q =

(
−λ0 λ1

λ0 −λ1

)

and probability transition matrix

P (t) =
1

λ0 + λ1

(
λ1 + λ0e

−(λ0+λ1)t λ1 − λ1e
−(λ0+λ1)t

λ0 − λ0e
−(λ0+λ1)t λ0 + λ1e

−(λ0+λ1)t

)
,

which satisfies the Kolmogorov differential equation P ′(t) = QP (t), and the initial

condition P (0) = I [65]. Let p(t) = (p0(t), p1(t))
T be the probability vector such that the

probabilities of S(t) = s0 and S(t) = s1 are p0(t) and p1(t) at time t, respectively. Then

p(t) = P (t)p(0). If p(0) = ( λ1
λ0+λ1

, λ0
λ0+λ1

), then p(t) = ( λ1
λ0+λ1

, λ0
λ0+λ1

). For simplicity,

we assume p(0) = ( λ1
λ0+λ1

, λ0
λ0+λ1

) for the following calculation.1 Then, we have

E (S(t)) =
s0λ1 + s1λ0

λ1 + λ0
,

E (S(t)S(τ)) =

(
s0λ1 + s1λ0

λ1 + λ0

)2

+
λ0λ1(s0 − s1)

2e−(λ0+λ1)|t−τ |

(λ1 + λ0)2
.

The first two moments of Xn

From Eq. (3.1), we have

x(t) =

∫ t

0
S(s)eA(t−s)e1ds,

1 Please note that our method can be extended to any value of p0.
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which leads to

xk(t) = x(t)· ek

=

∫ t

0
e−µ(t−s)µ

k−1(t− s)k−1

(k − 1)!
S(s)ds

r(t) =

∫ t

0
µxn(s)ds.

Therefore,

E(xk(t)) =

∫ t

0
e−µ(t−s)µ

k−1(t− s)k−1

(k − 1)!
E(S(s))ds,

=
s0λ1 + s1λ0

(λ1 + λ0)µ

(
1 − e−µt

k−1∑

i=0

(µt)i

i!

)
.

V ar(xk(t)) = E(x2
k(t)) − E2(xk(t))

=
2λ0λ1(s0 − s1)

2

µ2(λ1 + λ0)2
(3.2)

×
∫ µt

0

xk−1e
−
“

1+
λ0+λ1

µ

”

x

(k − 1)!

∫ x

0

yk−1e
−
“

1−λ0+λ1
µ

”

y

(k − 1)!
dydx.

Proposition 1 Defining Ck
n =

(
n

k

)
, we have

1. lim
t→∞

E(xk(t)) =
s0λ1 + s1λ0

(λ1 + λ0)µ
;

2. lim
t→∞

V ar(xk(t)) =
λ0λ1(s1 − s0)

2

µ2(λ0 + λ1)2

k−1∑

i=0

Ck−1
i+k−1µ

k−i

2i+k−1(λ0 + λ1 + µ)k−i
exponentially;

3.

lim
k→∞

lim
t→∞

V ar(xk(t)) = 0;

4. if λ0 + λ1 > µ,

µ2

(λ0 + λ1)2 − µ2
lim
t→∞

V ar(xk(t)) + lim
t→∞

V ar(xk+1(t))

decreases as k increases;
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5. if λ0 + λ1 < µ,

µ2

µ2 − (λ0 + λ1)2
lim
t→∞

V ar(xk(t)) − lim
t→∞

V ar(xk+1(t))

decreases as k increases.

Proof : The first assertion is easy to see. Here we focus on the remaining assertions.

Define

V (t) ≡
∫ µt

0

xk−1e
−
“

1+
λ0+λ1

µ

”

x

(k − 1)!

∫ x

0

yk−1e
−
“

1−λ0+λ1
µ

”

y

(k − 1)!
dydx.

To show the exponential convergence of V ar(xk(t)), it suffices to show that

dV (t)

dt
→ 0

exponentially as t→ ∞.

dV (t)

dt
=

µ(µt)k−1e−(µ+λ0+λ1)t

(k − 1)!

∫ µt

0

yk−1e

“

1−λ0+λ1
µ

”

y

(k − 1)!
dy

=
µ(µt)k−1

(k − 1)!(µ − λ0 − λ1)k

[
e−(µ+λ0+λ1)t − e−2µt

k−1∑

i=0

(µ− λ0 − λ1)
iti

i!

]

So V ar(xk(t)) converges exponentially. Letting t→ ∞ in Eq. (3.2), we have

lim
t→∞

V ar(xk(t)) =
2λ0λ1(s0 − s1)

2

µ2(λ1 + λ0)2

∫ ∞

0

xk−1e
−
“

1+
λ0+λ1

µ

”

x

(k − 1)!

∫ x

0

yk−1e
−
“

1−λ0+λ1
µ

”

y

(k − 1)!
dydx

=
2λ0λ1(s0 − s1)

2

µ2(λ1 + λ0)2

∫ ∞

0

yk−1e
−
“

1−λ0+λ1
µ

”

y

(k − 1)!

∫ ∞

y

xk−1e
−
“

1+
λ0+λ1

µ

”

x

(k − 1)!
dxdy

=
2λ0λ1(s0 − s1)

2

µ2(λ1 + λ0)2

k−1∑

i=0

µk−i

i!(µ+ λ0 + λ1)k−i

∫ ∞

0

e−2yyk+i−1

(k − 1)!
dy

=
2λ0λ1(s0 − s1)

2

µ2(λ1 + λ0)2

k−1∑

i=0

µk−i(k + i− 1)!

2k+i(µ+ λ0 + λ1)k−ii!(k − 1)!

=
λ0λ1(s1 − s0)

2

µ2(λ0 + λ1)2

k−1∑

i=0

Ck−1
i+k−1µ

k−i

2i+k−1(λ0 + λ1 + µ)k−i

To verify the last three assertions, we define

θ ≡ λ0 + λ1

µ
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and

Ak(θ) ≡
1

2k(1 + θ)k+1

k∑

i=0

(1 + θ)iCk
i+k

2i
.

Then

lim
t→∞

V ar(xk+1(t)) = Ak(θ) ×
λ0λ1(s0 − s1)

2

µ2(λ1 + λ0)2
.

Furthermore, for any θ,

Ak+1(θ) =
1

2k+1(1 + θ)k+2

k+1∑

i=0

(1 + θ)iCk+1
i+k+1

2i

=
1

2k+1(1 + θ)k+2
+

1

2k+1(1 + θ)k+2

k+1∑

i=1

(1 + θ)i
(
Ck+1

i+k + Ck
i+k

)

2i

=
1

2k+1(1 + θ)k+2

k∑

i=0

(1 + θ)iCk
i+k

2i
+

Ck
2k+1

22k+2(1 + θ)

+
1

2k+1(1 + θ)k+2

k+1∑

i=1

(1 + θ)iCk+1
i+k

2i

= Ak(θ) ×
1

2(1 + θ)
+

Ck
2k+1

22k+2(1 + θ)
+

1

2k+1(1 + θ)k+2

k∑

i=0

(1 + θ)i+1Ck+1
i+k+1

2i+1

= Ak(θ) ×
1

2(1 + θ)
+

Ck
2k+1

22k+2(1 + θ)
+Ak+1(θ) ×

(1 + θ)

2
−
Ck+1

2k+2

22k+3

= Ak(θ) ×
1

2(1 + θ)
+Ak+1(θ) ×

(1 + θ)

2
− Ck

2k+1θ

22k+2(1 + θ)
,

where Ck+1
2k+2 = Ck

2k+1 + Ck+1
2k+1 = 2Ck

2k+1 is used in the last step. Therefore,

1. if θ = 1,

Ak(1) =
Ck

2k+1

22k+1
;

2. if θ 6= 1,

Ak+1(θ) = Ak(θ) ×
1

1 − θ2
−Ak(1) ×

θ

(1 − θ2)
. (3.3)
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Then,

Ak(1) =
Ck+1

2k+1

22k+1
<
Ck+1

2k+2

22k+1

Stirling’s approximation shows that

Ck+1
2k+2 ∼ 22k+2

√
(k + 1)π

as k → ∞. So Ak(1) → 0 as k → ∞. Moreover, it is easy to see that

Ak(1)

Ak+1(1)
=

2(k + 2)

2k + 3
> 1.

So Ak(1) decreases as k increases.

Since Ak(θ) is a decreasing function of θ and Ak(θ) > 0, lim
k→∞

Ak(1) = 0 leads to

lim
k→∞

Ak(θ) = 0 for θ > 1. To prove lim
k→∞

Ak(θ) = 0 for θ < 1, we first assume that when

θ < 1 there exists a nonnegative number ε(θ) such that Ak(θ) > ε(θ) for all k’s. We

show the assumption leads to a contradictory. Using Eq. (3.3), we have

Ak+m(θ) = Ak+m−1(θ) ×
1

1 − θ2
−Ak+m−1(1) ×

θ

(1 − θ2)

= Ak+m−2(θ) ×
1

(1 − θ2)2
−Ak+m−2(1) ×

θ

(1 − θ2)2
−Ak+m−1(1) ×

θ

(1 − θ2)
. . .

= Ak(θ) ×
1

(1 − θ2)m
−

m−1∑

i=0

Ak+i(1) ×
θ

(1 − θ2)m−i

> ε(θ) × 1

(1 − θ2)m
−

m−1∑

i=0

Ak(1) ×
θ

(1 − θ2)m−i
,

since Ak(1) decreases as k increases. When k is large enough, Stirling’s approximation

leads to

Ak+m(θ) > ε(θ) × 1

(1 − θ2)m
− θ√

k

m−1∑

i=0

1

(1 − θ2)m−i

= ε(θ) × 1

(1 − θ2)m
− 1

θ(1 − θ2)m−1
√
k

+
1

θ
√
k
− θ√

k

=
1

(1 − θ2)m−1

(
ε(θ)

1 − θ2
− 1

θ
√
k

)
+

1

θ
√
k
− θ√

k

k can be chosen large enough so that ε(θ)
1−θ2 − 1

θ
√

k
> 0. Then letting m → ∞ leads to

Ak+m(θ) → ∞. However, Ak(θ) 6 1. Letting θ = 0 in Eq. (3.3) gives Ak+1(0) = Ak(0).
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Ak(0) = A1(0) = 1 for all k’s. Since Ak(θ) is a decreasing function of θ, Ak(θ) < 1 for

θ > 0. Then the third assertion is proved.

Moreover, if θ > 1, Eq. (3.3) leads to

Ak(1) ×
θ

(θ2 − 1)
= Ak+1(θ) +Ak(θ) ×

1

θ2 − 1
.

Since Ak(1) decreases as k increases, Ak+1(θ) + Ak(θ) × 1
θ2−1

decreases as k increases.

Therefore, the fourth assertion is verified. Similarly, if θ < 1, the fifth assertion can be

proved.

In the above proof, Ak(0) = 1 leads to the following equation

k∑

i=0

Ck
i+k

2i
= 2k.

Moreover, lim
k→∞

lim
t→∞

V ar(xk(t)) = 0 indicates that the fluctuations can be ignored when

the length of the reaction chain is long enough. This implies that noise may be atten-

uated along the deterministic chain. Furthermore, when λ0 + λ1 > µ, the fact that

increasing k decreases

µ2

(λ0 + λ1)2 − µ2
lim
t→∞

V ar(xk(t)) + lim
t→∞

V ar(xk+1(t))

also implies the attenuation of noise. To understand why the variance approaches zero as

k → ∞, we can consider a molecule whose arrival time at X1 is exponentially distributed

with rate s. The molecule jumps from Xi to Xi+1 at rate µ. Then the time for the

molecule to reach Xk increases linearly as k increases. The fluctuations in the arrival

time at Xk comes from the fluctuations in the arrival time at X1. Therefore, the ratio

of the fluctuations to the arrival time at Xk decreases as k increases.

The first two moments of R

Using r(t) =
∫ t
0 µxn(s)ds and following the procedure of calculating E(xk(t)) and

V ar(xk(t)), we obtain the first two moments of r(t) as follows:

E(r(t)) =
s0λ1 + s1λ0

(λ1 + λ0)

[
t− n

µ
+
e−µt

µ

n−1∑

i=0

(n− i)(µt)i

i!

]
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V ar(r(t)) =
λ0λ1(s0 − s1)

2

(λ1 + λ0)2





2t

(λ0 + λ1)
− 4n

µ(λ0 + λ1)
−

n−1∑

i=0

n−1∑

j=0

j∑

b=0

Ci
i+bµ

j−b−1

2i+b(µ− λ0 − λ1)j−b+1

+
2

(λ0 + λ1)2

[
µn

(µ− λ0 − λ1)n
− µ2n

(µ− λ0 − λ1)n(µ+ λ0 + λ1)n
− 1

]

+
2e−(λ0+λ1)t

(λ0 + λ1)2

(
µ

µ− λ0 − λ1

)n

+
2e−µt

(λ0 + λ1)

n−1∑

i=0

(µt)i

i!

[
2(n− i)

µ
− µ(n−i)

(λ0 + λ1)(µ− λ0 − λ1)(n−i)
+

1

λ0 + λ1

]

− 2e−(µ+λ0+λ1)tµn

(λ0 + λ1)2(µ− λ0 − λ1)n

n−1∑

i=0

(µt)i

i!

[
1 − µ(n−i)

(µ+ λ0 + λ1)(n−i)

]

+ e−2µt
n−1∑

i=0

n−1∑

j=0

j∑

b=0

i+b∑

a=0

Ci
i+bµ

j−b−1(2µt)a

2b+i(µ− λ0 − λ1)j−b+1a!





Letting

Er(t) =
s0λ1 + s1λ0

(λ1 + λ0)

(
t− n

µ

)

and

Vr(t) =
λ0λ1(s0 − s1)

2

(λ1 + λ0)2





2t

(λ0 + λ1)
− 4n

µ(λ0 + λ1)
−

n−1∑

i=0

n−1∑

j=0

j∑

b=0

Ci
i+bµ

j−b−1

2i+b(µ− λ0 − λ1)j−b+1

+
2

(λ0 + λ1)2

(
µn

(µ− λ0 − λ1)n
− µ2n

(µ− λ0 − λ1)n(µ+ λ0 + λ1)n
− 1

)}
,

we have

Proposition 2 1. lim
t→∞

|Er(t) − E(r(t))| = 0;

2. lim
t→∞

|Vr(t) − V ar(r(t))| = 0;

3. Er(t) 6= Vr(t) implies the production of mRNA cannot be a Poisson process.

3.2.2 Noise propagation in stochastic reaction chains

Formulation of the stochastic reaction chain with TEC pauses

Sequence-specific pausing of TEC is broadly involved in transcription elongation. For

example, RNAP pausing in a proximal upstream sequence of the transcription starting
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site called the promoter-proximal region has been detected as a general feature of tran-

scription in mammalian cells and numerous cells of other eukaryotes [61, 62]. Moreover,

in E. coli, A32 and C37 have been identified as the sequence-specific sites for TEC

pausing [61]. Once a TEC pauses, the elongation of the incoming upstream TECs will

be blocked until the pausing TEC gets reactivated and leaves its current site.

Figure 3.2: The reaction chain with pauses.

In this section, we study how the TEC pause blocks the incoming downstream signal

by analyzing the statistics of mRNA produced in a DNA sequence of length 2 as shown

in Fig. 3.2. In Fig. 3.2, X represents the TEC formed at site 1 and can pause to become

Px. Moreover, X can jump to site 2 to become a molecule of R. If an upstream TEC

arrives at site 1 and site 1 is free, the TEC can occupy site 1 and become X. Otherwise,

the TEC will leave. Here we assume that the wating times of the occurrences of all

reactions in Fig. 3.2 are exponentially distributed. In particular, the times for a TEC

at site 1 to switch between X and Px are exponentially distributed with rates k+ and

k−. The time for a TEC of species X to become R is exponentially distributed with

rate µ. The upstream TEC arrives at site 1 in a Poisson process with rate S(t). Here

we assume S(t) = s1 for any time. Without considering the switch of the promoter site,

we focus on the effect of TEC pausing on the production of mRNA here.

Let (0, i) represent the situation when there is no X and i molecules of species R in

the system. (1, i) is the situation when there is one molecule of X and i molecules of R

in the system. (1p, i) is the situation when there is one molecule of P and i molecules

of R in the system. Then the evolution of the system can be expressed as in Fig. 3.3.
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Figure 3.3: The transition of the system status.

The first passage time to produce an mRNA

We first consider the system starting at (1, 0). Let p(1,0)(t) and p(1p,0)(t) be the proba-

bility that the system is at (1, 0) and (1p, 0) at time t respectively. Then we have the

governing equations of p(1,0)(t) and p(1p,0)(t) as follows:

d

dt

(
p(1,0)

p(1p,0)

)
=

(
−(k+ + µ) k−

k+ −k−

)(
p(1,0)

p(1p,0)

)
,

(
p(1,0)

p(1p,0)

)
=

(
1

0

)
at t = 0.

By solving the above equations, we obtain

p(1,0) + p(1p,0) =

√
∆ + k− + k+ − µ

2
√

∆
e−β1t +

√
∆ − k− − k+ + µ

2
√

∆
e−β2t,

where ∆ = (k+ + µ+ k−)2 − 4k−µ, β1 = (k−+k++µ)−
√

∆
2 , and β2 = (k−+k++µ)+

√
∆

2 .

Let Tx be the random variable for the waiting time for a transition from X to R. Let

f (x)(t) be the probability density function such that the probability of Tx ∈ [t, t+ dt) is

f (x)(t)dt. Then we have

f (x)(t) =
d[1 − (p(1,0) + p(1p,0))]

dt
= A1β1e

−β1t +A2β2e
−β2t,

where A1 = 1
2 + k−+k+−µ

2
√

∆
and A2 = 1

2 − k−+k+−µ

2
√

∆
.
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Next we consider the system starting at (0, 0). Define Tr as the random variable of

the time for the system to switch from (0, 0) to (0, 1). Define f (r)(t) as the probability

density function such that the probability of Tr ∈ [t, t+ dt) is f (r)(t)dt. Then we have

f (r)(t) =

∫ t

0
s1e

−s1τf (x)(t− τ)dτ,

=
A1β1s1(e

−β1t − e−s1t)

s1 − β1
+
A2β2s1(e

−β2t − e−s1t)

s1 − β2
(3.4)

E(Tr) =
1

s1
+
A1

β1
+
A2

β2

V ar(Tr) =
1

s21
+

(
A1

β1
− A2

β2

)2

.

The time to produce the nth mNRA

Let Ti,r be the random variable of the time for the system to switch from (0, i − 1)

to (0, i). Then Ti,r are independent and have the same distribution as Tr. Therefore,

letting Q(ν) and Qn(ν) be the characteristic functions of Tr and
n∑

i=0

Ti,r, respectively,

we have

Q(ν) =
s1

s1 − iν

(
A1

β1

β1 − iν
+A2

β2

β2 − iν

)

Qn(ν) = Q(ν)n

=
n∑

k=0

(
n

k

)
Ak

1A
n−k
2

(
s1

s1 − iν

)n( β1

β1 − iν

)k ( β2

β2 − iν

)n−k

Let fn(t) be the probability density function of
n∑

i=0

Ti,r. Noting that the character-

istic function of s1e−s1t(s1t)n−1

(n−1)! is
(

s1
s1−iν

)n
, we have

fn(t) =

n−1∑

k=1

(
n

k

)
Ak

1A
n−k
2

(
g(n,s1) ∗ g(k,β1) ∗ g(n−k,β2)(t)

)
,

+ An
1g(n,s1) ∗ g(n,β1)(t) +An

2g(n,s1) ∗ g(n,β2)(t)

where ∗ represents the convolution operator, g(k,β)(t) = βe−βt (βt)k−1

(k−1)! is the Gamma

distribution for k > 1.
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The number of mRNAs produced in [0, t]

Let N(t) be the random variable for the number of R molecules produced in [0, t]. Using

Strong Law for Renewal Sequences in[69], we have

P (N(t) > n) =

∫ t

0
fn(τ)dτ,

lim
t→∞

N(t)

t
=

1

E(Tr)
, with probability 1.

Therefore, the number of mRNA produced in any finite time interval is bounded with

probability one. The mean production rate of mRNA defined as the number of mRNA

produced in a time interval divided by the length of the time interval is approximately

constant when the length of the time interval is large enough.

The bursty production of mRNA

Here we propose a condition to define whether such a biological system as in Fig. 3.2 can

generate the bursts of mRNA production. A burst of the production of mRNA occurs

when the system begin to generate mRNA molecules at fast rates after a relatively long

pause. Therefore, a burst can happen if the time between two successive productions

of mRNA is small with a large probability and large with a small probability. Eq.

(3.4) shows the production of a single mRNA involves two time scales, so we define the

following probabilities:

P1 = P (Tr >
1

s1
+

1

β1
)

P2 = P (Tr <
1

s1
+

1

β2
)

Then the following condition is defined for the production bursts:

P1

P2
≪ 1.

which can be satisfied by the following inequalities

β1

β2
≪ 1,

β1

s1
≪ 1,

A1

A2
≪ 1.

β1

β2
≪ 1 ⇔

1 −
√

∆
k++k−+µ

1 +
√

∆
k++k−+µ

≪ 1 ⇔ 4k−µ
(k+ + k− + µ)2

≪ 1
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Similarly, A1
A2

≪ 1 ⇔ 4k+µ
(k−+k+−µ)2

≪ 1 and k−+k+ < µ. Therefore, k− ≪ µ and k+ ≪ µ.

Furthermore,

β1

s1
=

(k+ + k− + µ) −
√

∆

2s1

≈
(k+ + k− + µ) − (k+ + k− + µ)

[
1 − 4k−µ

(k++k−+µ)2

]

2s1

=
2k−µ

s1(k+ + k− + µ)
.

Since k− ≪ µ and k+ ≪ µ, β1

s1
≪ 1 leads to k− ≪ s1.

In conclusion, k− ≪ s1, k− ≪ µ and k+ ≪ µ can lead to the production bursts of

mRNA. k+ ≪ µ implies that TEC pausing happens rarely at the DNA site. k− ≪ s1

and k− ≪ µ implies once the TEC pauses, it takes much longer time for the TEC to

release than the arrival of new TECs and the jump of the free TEC to the terminal

site. As a result, releasing from the pausing status is a limiting step of transcription.

Once one TEC pauses, it prevents the incoming upstream TEC’s elongating and blocks

transcription. After the TEC releases from the pause status, transcription happens at

a larger rate than 1
1

s1
+ 1

β2

with a large probability P2 and a burst of mRNA production

may occur.

In this chapter, we first examine how the fluctuations from a random switching

input propagate along a deterministic first-order reaction chain with the same reaction

rate at each step, in order to understand how fluctuations from the initiation step of

transcription propagate in elongation. We find that the fluctuations measured by the

standard deviation of the number of molecules approach a constant at the steady state

exponentially and the fluctuations in each reaction step are bounded by a constant.

Therefore, fluctuations from initiation are controlled in elongation. Moreover, if the

length of the deterministic chain increases the fluctuations approach zero, which implies

that long elongation sequences may be a noise attenuating step in transcription. Then

we consider a stochastic elongation chain of length two and TEC can pause at the

first step, with the objective to understand the effect of the TEC pausing on mRNA

production. Our analysis shows that the mean production rate of mRNA increases

linearly with probability one when the length of the observed time interval approaches

infinity. Moreover, we find that TEC pausing has to happen rarely and the pausing
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time has to be long enough in order for the system to demonstrate bursts of mRNA

production.



Chapter 4

Stochastic fluctuations in dorsal

surface patterning in Drosophila

In this chapter we study how fluctuations propagate at different reaction steps in dorsal

surface patterning inDrosophila. To realize this goal, we look at the stochastic temporal

evolution of the extracellular signal in the slice of the half PV space in Section 4.1.

Furthermore, we propose a downstream biological network in nuclei for the feedback

loop and examine the propagation of fluctuations in the downstream network in Section

4.2.

During the pattern formation process, a field of cells is exposed to a graded signal

and responds in a concentration-dependent manner. For reliable patterning, the cells

have to choose a proper response mechanism. Therefore, to characterize fluctuations in

patterning, we have to first identify the response and then study how the fluctuations

are processed in the response step. During dorsal surface patterning, bound receptors

can phosphorylate Mad to pMad, which specifies the amnioserosa at the highest level.

Therefore, in Section 4.1, we focus on how the fluctuations in bound receptors in the

PV space affect the determination of the amnioserosa boundary. Since the absolute

difference of the signal among cells is important to differentiate the cell fates, we first

use the standard deviation of the number of Dpp/Scw molecules and bound receptors

to compare the signal fluctuations in different locations. Then we define a response

mechanism for the determination of the amnioserosa region and study the distribution

89
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of the amnioserosa boundary. To understand noise propagation in the pathway, we

compare the fluctuations in Dpp/Scw and bound receptors. However, the number of

Dpp/Scw molecules and bound receptors lie in different ranges. Dpp/Scw numbers in

ten per nucleus while the bound receptors number in hundreds as shown later. We use

the coefficient of variation (CV) that is defined as the standard deviation divided by

the mean to scale their fluctuations.

In Section 4.2, we study how reactions and molecular transport of different time

scales affect the fluctuations in the production of SBP in the feedback loop. To this

end, we consider the amount of SBP in the downstream biological system with dif-

ferent settings. Moreover, to understand the effect of multi-scale reactions on noise

propagation, we compare the CV of different species in the downstream network.

As in Section 1.4.4, Dpp/Scw, bound receptors and SBP are denoted as B, BR and

C respectively for simplicity.

4.1 Dorsal surface patterning in Drosophila

To study fluctuations in the dorsal-surface pattern formation process, we discretize

the slice as shown in Fig. 1.8 and use the Gillespie simulation method to simulate the

stochastic dynamics of the biochemical system in Fig. 1.5. Using our simulation results,

we study the effect of the upstream biological network and the feedback loop on signal

fluctuations. Each system in each situation is simulated for 50 times, i.e. , we generate

50 realizations.

4.1.1 The effect of the upstream biological network on signal fluctua-

tions

In this section, we study how the pattern formed in the upstream network affects the

fluctuations in the dorsal surface pattern formation process. Before dorsal surface pat-

terning, the PV space is divided into the three sections: the M, the NE and the DR.

Dpp, Tld and Tsg are expressed in the DR, while Sog is expressed in the NE. Sog

and Tsg can form a heterodimer Sog/Tsg, which has a high affinity for Dpp/Scw (B).

The complex formed, Dpp/Scw/Sog/Tsg, can be cleaved by Tld, which releases B. As

a result, there exists a flux of Dpp/Scw/Sog/Tsg towards the DM, preventing B from
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diffusing far away from the DR. Here we study how the shuttling system constrains the

spread of B.

Fig. 4.1 shows the statistics of BR and B in each compartment at 60 minutes. In

Fig. 4.1, the yellow bar represents the compartments in the DR, the blue bar represents

the compartments in the NE and the red bar represents the compartments in the M.

Fig. 4.1-(A) and Fig. 4.1-(B) show the mean number of B and BR molecules in each

compartment. The sharp decrease of the BR level occurs around 50, where the am-

nioserosa boundary lies. However, the sharp decrease of the B level occurs around 30,

where the boundary between the DR and the NE lies. Therefore, the density gradient

of B inherits the spatial pattern formed in the upstream network.
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Figure 4.1: The statistics of BR and B in each compartment at 60 minutes.

We use the standard deviation to study the fluctuations in B and BR. Fig. 4.1-(C)

and Fig. 4.1-(D) show the standard deviations of the numbers of B and BR molecules in

each compartment at 60 minutes, respectively. In compartment 1-30, the small standard

deviations of both species indicate that the probability of having B and BR molecules

in compartment 1-30 is very small. In the other words, the probability that there are
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no B and BR molecules in the NE and M is big. Therefore, the shuttling system plays

a very deterministic role in confining signaling molecules in the DR.

Although the standard deviations of B and BR in compartments 31-55 are much

larger than those in compartments 1-30, the boundary of the amnioserosa is well defined

due to the large difference of the levels of BR between different compartments. The

details of fluctuations in compartments 31-55 will be discussed in the following sections.

4.1.2 The effect of the feedback loop on signal fluctuations

In this section, we study the effect of the feedback loop on signal fluctuations. In [5],

endocytosis of molecules is treated as degradation, i.e., molecules are removed from

the system once they get internalized. As the level of SBP (C) in the feedback loop

increases, more B molecules can bind to C and thus get removed from the system.

To keep the total level of signaling molecules consistent, the degradation rate of B

is decreased when the endocytosis rate is increased in[5]. Here we focus on how the

feedback loop and endocytosis interplay to affect signal fluctuations. In particular, we

look at the precision of the amnioserosa boundary and the temporal evolution of the

noise of B and BR in the compartment near the boundary.

The precision of the boundary location

To simulate the specification of the amnioserosa boundary, we define a threshold con-

centration of BR. If the concentration of BR is above this, the compartment is defined

as type I; otherwise, it is defined as type II. The threshold compartment is defined as the

compartment that is of type II and is closest to the DM. We obtain the distribution of

the threshold position in the system with/without the feedback loop and with/without

endocytosis at 60 minutes.

The simulation results are shown in Fig. 4.2, where ±f (±e) represents the system

with/without the feedback loop (endocytosis). Fig. 4.3 shows the mean number of BR

molecules in each compartment at 60 minutes. From Fig. 4.2 and 4.3, we reach the

following conclusions:

1. With the feedback loop, the amnioserosa contracts. Moreover, in the system with

feedback and endocytosis, the threshold position is concentrated in the same one
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Figure 4.2: The distribution of the threshold positions.

compartment given the two different threshold concentrations. On the contrary,

without the feedback loop, the threshold position is more broadly distributed and

more sensitive to the threshold concentration. This implies that the feedback loop

can help stabilize the aminoserosa boundary. This is because BR in compartments

of type I can lead to more C molecules than BR in the compartments of type

II. More C molecules in compartments of type I can bind to more B molecules,

preventing B from binding to receptors in compartments of type II. As a result, the

difference of the numbers of BR molecules between the two types of compartments

is amplified by the feedback loop. Then as shown in Fig. 4.3, the gradient of the

number of BR molecules is sharper and the boundary is better defined in the

system with feedback.

2. Without endocytosis, the threshold moves towards the DM, i.e., the amnioserosa is

smaller than the amnioserosa in the system with endocytosis. Moreover, without

endocytosis, the threshold position varies more. This can be explained by the

temporal evolution of the signal in each compartment. Without endocytosis, we

increase the degradation rate of B for the consistency of the signal level as in

[5], which decreases the number of B molecules in the early stage of patterning

and hence slows the growth of the numbers of BR and C molecules. The smaller

number of B molecules in each compartment leads to a narrower signal band

around the DM. Furthermore, the difference of the numbers of BR molecules

between the two types of compartments is not amplified as much as the difference

in the system with endocytosis. So the boundary is less well defined.
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Figure 4.3: The mean number of BR molecules in each compartment at 60 minutes.

The biphasic effect of the feedback loop on noise propagation

In this section, we study the temporal evolution of the signal in the threshold compart-

ments. The threshold compartment is defined as the compartment where the threshold

position concentrates. We choose 10nM as the threshold concentration. So from Fig.

4.2, the threshold compartment of the system with endocytosis and the feedback loop

is compartment 51. The threshold compartment of the system with endocytosis and

without the feedback loop is compartment 44. The threshold compartment of the sys-

tem without endocytosis and with the feedback loop is compartment 53. Fig. 4.4 shows

the mean and the CV of the numbers of B and BR molecules in these compartments.

From Fig. 4.4, we can reach the following conclusions:

1. The differences between the mean number of B molecules and the mean number of

BR molecules are larger in the systems with the feedback loop than the differences

in the system without the feedback loop. This is because C produced in the

feedback loop can bind to B and reduce the number of free B molecules.

2. The CV of B is always larger than the CV of BR, which implies the fluctuations

are attenuated along the signal pathway. The number of B is around ten per

nucleus,and the numbers of receptors and C molecules are over one thousand [5].

The large amount of receptors and C can ensure B molecules are caught effectively,

which may attenuate the fluctuations in B.

3. In the systems with the feedback loop, the CV of B first decreases and then

increases, while in the system without the feedback loop, the CV of B and the
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Figure 4.4: The statistics of B and BR in the threshold compartment

CV of BR always decrease. This can be explained by the dual effect of C on

signaling. At low levels, C molecules can hold B molecules around receptors and

enhance the association between B and receptors, augmenting signaling. However,

as the number of C molecules increases, C will compete with receptors for B, which

reduces the number of free B molecules and increases the noise. Furthermore, in

the system with endocytosis and the feedback loop, C can remove B molecules

through endocytosis. As a result, the numbers of B and BR molecules decrease

and the fluctuations in them increase.

4.2 The multi-scale downstream biological network in nu-

clei

In this section, we propose a single cell model to characterize the downstream biological

network. By conducting a detailed scale analysis of reaction frequencies and stochastic

simulations of the biological system, we aim to understand how reactions of different

time scales affect the propagation of fluctuations in the network. Our system is a very
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prototypical TGF-β signaling network system, and our conclusions may hold over to

other signaling networks. Here we use the same notations as in Section. 4.1, i.e.,

Dpp/Scw is denoted as B, receptors are denoted as R and SBP is denoted as C. In

addition, to differentiate molecules in different locations, we use *p, *c and *n to denote

the species in the PV space, the cytoplasm and the nucleus respectively. For example,

Bp represents B in the PV space and Bc represents B in the cytoplasm.

4.2.1 Single cell model

Biological network

The single cell model consists of three different domains: the PV space, the cytoplasm,

and the nucleus. B diffusion, production and degradation occur all over the PV space.

Near the embryo membrane, the reactions are the insertion of R at a constant rate, the

secretion of C from cytoplasmic translation, the binding reactions between B, R and C

as in [5], endocytosis and exocytosis of R, C, BR, BC and BCR, and the phosphorylation

of the cytoplasmic Mad by BR. We use the endocytosis and exocytosis mechanism from

[70], in which internalized BR can phosphorylate Mad, and B will disassociate from

R and C when BR, BCR and BC get recycled. Moreover, without any quantitative

information about intracellular degradation so far, for now we assume the intracellular

degradation of BR, BCR, BC, C and R occurs at the same rate as it does in the PV

space.

In the cytoplasm, we use the structure of the Smad pathway in humans. Through

transgenic experiments, Smad2 in humans is found to function in the same way as Mad

in Drosophila, and Smad4 works in the same way as Madea [71]. The Smad pathway in

humans can be summarized as in Fig. 4.5. In the absence of signaling, the Smad proteins

can shuttle between the nucleus and cytoplasm. During signaling, the occupied receptor

phosphorylates Smad2, which facilitates the complex formation of Smad2/Smad4 and

Smad2/Smad2. Smad2/Smad4 and Smad2/Smad2 can be transported into the nucleus,

while Smad2 can only be capable of export in the monomeric form [6, 72]. The unidirec-

tional translocation leads to the accumulation of Smad2/Smad4 and Smad2/Smad2 in

the nucleus, where they can bind to DNA, regulate transcription and control feedback

reactions. Therefore, the reactions in the cytoplasm are the phosphorylation of Mad,
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the association and dissociation reactions between pMad and Madea, the synthesis of

C from mRNA translation, the degradation of mRNA, and the intracellular degrada-

tion of BR, BCR, BC and C. For simplicity, we denote pMad/Madea as pMMe and

pMad/pMad as pMad2. Near the nuclear membrane, the reactions are the nuclear ex-

port and import of Mad, pMad, and Madea, the unidirectional import of pMad2 and

pMMe, and the nuclear export of mRNA.

Figure 4.5: The Smad pathway [6].

However, the exact structures of the Smad oligomers have not been fully determined.

It has been suggested that the transcription factors should not be Smad2/Smad2 or

Smad2/Smad4 but the hetero-trimers consisting of two Smad2’s and one Smad4 [73].

Moreover, our estimation in the following section shows the amount of Mad and Madea

is much larger than it is necessary for pMad2 and pMMe to activate the downstream

gene expressions. Here, we first reduce the amount of Mad and Madea and stick to

previous models in [6, 72]; and then we increase the amount of Mad and Madea to the

level suggested in [6] and use the trimer as the transcription factor. We compare the

temporal evolution of the signal in these two settings.

Then the reactions in the nucleus are the dephosphorylation of pMad, the associa-

tion and dissociation reactions between pMad and Madea, the binding and unbinding

reactions between the transcription factors and the promoter site, and the production
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of mRNA. In the nucleus, we assume there exists only one promoter site for the tran-

scription factors to bind to. During transcription, we divide the production of mRNA

into two steps: 1) RNAP binds to the DNA sequence to form an elongation complex

TEC; 2) TEC proceeds to become mRNA. Depending on the status of the promoter

site, the formation rate of TEC switches between the basal rate and the enhanced rate,

while TEC always proceeds at the same rate.

Figure 4.6: The signal transduction pathway in the single cell model.

The model is shown in Fig. 4.6.1 In addition, we make the following assumptions:

1. Only the species that can be produced undergo degradation. Therefore, B, R, C,

BR, BC, BCR and mRNA undergo degradation, and the total amount of Mad

and Madea in all forms is constant.

2. Proteins synthesized from mRNA translation can be transported actively and

rapidly to their end-destination. So we assume that proteins synthesized from

mRNA translation can be transported immediately to the embryo membrane for

secretion.

3. All species except DNA and proteins synthesized from mRNA translation diffuse.

1 This figure is from Christina Brakken-Thal and modified by Likun Zheng.
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4. All the species near the embryo membrane, such as R, C, BC and BCR, are treated

approximately as being distributed over all the PV space as in [5].

Initially, the concentration of each species is set to zero except the following ones:

1. The concentrations of the receptors in the PV space and the cytoplasm are chosen

to be 160 nM and 1600nM respectively, so as to be consistent with the endocytosis

and exocytosis rates [5, 70];

2. The concentrations of the cytoplasmic Mad and Madea are one fourth of the

concentrations from [6], i.e., the concentrations of the cytoplasmic Mad and Madea

are 15.15 nM and 12.7 nM respectively ;

3. The concentrations of the nuclear Mad and Madea are one fourth of the concen-

trations from [6], i.e., the concentrations of the nuclear Mad and Madea are 7.125

nM and 12.7 nM respectively.

Parameter values

We present the values of all parameters in the attached tables in Appendix 6.2. Pa-

rameters are estimated based on experiments and published papers. Here we discuss

how we apply known parameters to our system and estimate the parameters that lack

references.

Diffusion coefficients: For species that lack published data of diffusion coefficients,

we use the following equation from[74] to estimate their diffusion coefficients

D = 8.34 ∗ 10−8 ∗
(

T

ηM1/3

)
cm2s−1,

where T is the temperature, η is the viscosity of the medium and M is the molecular

weight. Moreover, for species embedded in the membrane, such as receptors and C,

recent studies show their diffusion coefficients are less than 0.02µm2sec−1 [75], which is

much less than those of the species in fluid. Therefore, for simplicity, we do not consider

the diffusion of membrane species here.

Insertion rate of receptors: We assume that the production of receptors in the

system is at the steady state and make the insertion rate of receptors the same as their

degradation rate in the PV space. The degradation rate of receptors in the PV space is
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chosen from [5].

Nucleo-cytoplasmic transport rates of Mad, pMad, pMad2, Madea, pMMe

and RNA: The nucleo-cytoplasmic transport rates of Mad, pMad, pMad2, Madea and

pMMe are estimated based on the data from [6]. In [6], whole compartment FRAP

of nuclear EGFP-Smad2 showed a monophasic and exponentially recovering curve of

Smad2 in photo bleached cells. As a result, Shimmer et al concluded that the nuclear

transport is governed by mass action kinetics and obtained the transport rates to make

their model best fit experiment data. In particular, they treated the nuclear transport

as the following first-order reaction:

Smadc
kin−−⇀↽−−
kout

Smadn,

where Smadc and Smadn represent Smad2 in the cytoplasm and nucleus respectively,

and kout and kin are the nuclear export and import rate constants. The deterministic

governing equation of the temporal evolution of the concentrations of Smadc and Smadn

can be expressed by using the mass action rate law. Then kout and kin were estimated

so that the solution to the equation can best fit the averaged data from experiments.

Similarly, the nuclear import and export rates of other species were obtained in [6].

Without considering diffusion and spatial inhomogeneity, it was assumed that nu-

clear transport can happen everywhere in [6]. However, we will only allow the nuclear

transport to occur near the nuclear membrane, as spatial inhomogeneity may play an

important role in signal transduction. During import, molecules bind to cargoes via

their nuclear localization signals and then molecular cargoes bind to cognate soluble

transport factors that facilitate the passage of the resulting transport factor-cargo com-

plexes through the nuclear pore complexes [76]. Assuming molecules can be localized

around the nuclear membrane once they reach there, we divide the import process into

two steps: 1) in the first step, the molecule diffuses freely to the nuclear membrane

and gets localized; and 2) in the second step, the molecule near the nuclear membrane

undergoes a first-order reaction to become a nuclear molecule. To obtain the first-order

reaction rate, we solve the following equation

1

kin
= E(T ) +

1

k′in
,

where kin is the import rate from [6], k′in is the first-order transport rate across the

nuclear membrane, and E(T ) is the expected time for a molecule to reach the nuclear
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membrane given its initial position is uniformly distributed in the cytoplasm. Similarly,

we obtain the other nucleo-cytoplasmic transport rates.

mRNA transport from the transcription site to the nuclear pore complexes is charac-

terized as nucleoplasmic diffusion with diffusion coefficient ranging over 0.005−0.03µm2s−1

[77, 78]. The time for a mRNA molecule to travel throughout a nucleus of radius 5−8µm

is 20 − 30 min [77]. However, the export of a mRNA molecule proceeds rapidly (about

0.5 s) once the mRNA molecule is attached to the nuclear envelope [77]. Therefore,

we let mRNA get exported immediately once mRNA reaches the nuclear membrane by

nucleoplasmic diffusion.

The rate of pMad2 and pMMe binding to the promoter site on DNA: We use

1×109M−1sec−1 and 1.11×10−3sec−1 from [79] as references for the on and off rates of

pMad2 and pMMe binding to the promoter site. In [79], experiments were carried out

under the pseudo-first-order condition, in which the free DNA concentration remains

constant. The number of DNA-target-bound proteins was counted over time and was

fitted by a monoexponential equation.

In our system, we assume there is only one promoter site for pMad2 and pMMe.

Since the binding reactions between the promoter site and transcription factors are

much faster than diffusion-limited associations, we increase the size of the promoter site

to account for the fast association reaction. In particular, we discretize the nucleus into

identical compartments of dimension 3µm × 3µm × 3µm and put the promoter site in

the central compartment. The transcription factor in the central compartment can bind

to the site at rate 1 × 109M−1s−1.

Basal and enhanced transcription rates: As far as we know, there is no quan-

titative information about transcription and translation steps in the feedback loop.

We use the known quantitative information of other species to estimate the transcrip-

tion rates. In bacteria and mammalian cells, the basal transcription rate ranges over

0.01 − 0.05sec−1 and the transcription rate can be increased by 8-30 times by tran-

scription factors binding to promoter sites [80, 81, 82]. Therefore, in our system, we

choose the basal transcription rate as 0.03 sec−1 and the enhanced transcription rate as

0.3 sec−1.

System dimensions: The average nucleus diameters during nuclear cycles 10-14 are

10 µm, 10.5 µm, 9.2 µm, 8.2 µm, and 6.5 µm [32]. For simplicity, we approximate the
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nucleus as a cuboid of dimension 9µm× 4µm× 9µm. The cytoplasmic space is approx-

imated as a cuboid of dimension 9µm × 0.5µm × 9µm between the embryo membrane

and the nuclear cuboid, and the PV space is approximated as a cuboid of dimension

9µm × 0.5µm × 9µm above the embryo membrane. The system is shown in Fig. 4.7,

which consists of three cuboids: the PV cuboid, the cytoplasmic cuboid, and the nuclear

cuboid. Here the x-axis is along the D-V axis. The PV cuboid is built based on [5]. We

discuss our settings of the cytoplasmic cuboid and the nuclear cuboid as below.

0 x

z

y

the nucleus 
cuboid

the 
cytoplasm 
cuboid

the PV 
cuboid

Figure 4.7: The cuboid approximation of the single cell system.

The volume of the cytoplasmic cuboid is smaller than the volume of the cytoplasmic

space and the amount of cytoplasmic Mad and Madea may be underestimated. However,

our analysis in Section 4.2.2 shows that phosphorylation occurs so slowly that only a

small amount of Mad can get phosphorylated. Therefore, underestimating the amount

of Mad has little effect on downstream signaling. Underestimating the volume of the

cytoplasmic space also changes the time for molecules to reach the nuclear membrane

E(T ). However, our analysis of nuclear import in Section 4.2.2 indicates that E(T ) ∼
4 sec and 1

kin
∼ 300 sec. So the transport across the nuclear membrane is the limiting

step of nuclear import. Therefore, the effect of E(t) on nuclear import is small.

The volume of the nuclear cuboid is the same as the volume of the nucleus in the 14th

cycle. Therefore, the amount of signaling molecules is well approximated. In addition,

similar to nuclear import, the limiting step of the export of pMad, Mad and Madea is

the transport across the nuclear membrane. Therefore, the effect of the dimension of
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the nuclear cuboid on the nuclear export of pMad, Mad and Madea is small.

Next, we discuss the effect of the nuclear cuboid on mRNA export. Since nucleoplas-

mic diffusion of mRNA is very slow and the nuclear envelope can export mRNA once

mRNA gets attached to it, the limiting step of mRNA export is nucleoplasmic diffusion.

As a result, the dimension of the nuclear cuboid, where mRNA can get exported, and

where mRNA is located after export is important for mRNA export. In our system,

we let the nuclear membrane at y = 0 and y = 4µm export mRNA immediately once

mRNA reaches there and the remaining part of the nuclear membrane is reflective. As

a result, the expected time for mRNA to get exported is 2
DmRNA

, where DmRNA is the

diffusion coefficient of mRNA. If mRNA is produced at the center of a sphere of diam-

eter 6.5µm and can get absorbed once it hits the surface of the sphere, then the mean

time for mRNA to get absorbed is 1.98
DmRNA

. Therefore, the mean export time of mRNA

is well approximated.

After export, the location of mRNA is determined based on Fig. 4.8, which is a

cross section of the cytoplasm. In Fig. 4.8, the rectangle representing the cytoplasmic

space contains a circle representing the nucleus in its center. Here the cytoplasmic

space is approximated as a cube of dimension 9µm × 9µm × 9µm and the nucleus is

approximated as a sphere with its diameter equal to 6.5µm. If we divide the cytoplasmic

space into 3 identical compartments as in Fig. 4.8, then the length of the side of each

compartment along the x-axis is 3µm. Given a mRNA molecule starting at the center

of the nucleus, the probability for it to locate in the middle compartment above the

dashed line after export is θ
2π , where θ is the angle corresponding to a cord of length

3µm in a circle of diameter 6.5µm. The probability to locate in any one of the other

two compartments above the dashed line after export is 1
4 − θ

4π . If the mRNA molecule

locates below the dashed line after nuclear export, it takes at least 32

0.03∗3 = 100 sec

for it to reach the embryo membrane, which is much larger than the mean life time of

mRNA (10 sec) in our system. Therefore, we assume that mRNA locating below the

dashed line always stays below the dashed line. Moreover, we assume that proteins

synthesized below the dashed line can be transported with equal probability to each

compartment above the dashed line. Therefore, the fraction of mRNA to produce

proteins in the middle compartment is θ
2π + 1

6 . The fraction of mRNA in any one of

the other two compartments is 5
12 − θ

4π . Therefore, after export, we locate a mRNA
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molecule in the middle compartment with probability θ
2π + 1

6 . The probability to locate

it in any one of the other two compartments is 5
12 − θ

4π . If we divide the cytoplasmic

space into any number of identical compartments, the determination of the location of

mRNA follows the similar way. Moreover, after export, the mRNA molecule is put close

to the embryo membrane. Since we assume synthesized proteins from translation are

transported immediately to the embryo membrane for secretion, the y-coordinate of the

position of the mRNA molecule will not affect signaling.

y

xo

Figure 4.8: The cross section of an embryo in the cytoplasm.

4.2.2 Time scales of reactions

In this section, we compare the time scales of different reaction steps to understand

the temporal scale of the signal evolution. We first estimate the maximal numbers of

molecules of different species based on literature and then use them to estimate reaction

frequencies. We find that the major rate limiting steps are the phosphorylation of Mad

and the nucleo-cytoplasmic transport of mRNA.

We estimate the maximal number of molecules of each species in its respective

cuboid. For example, the PV cuboid is of dimension 9µm × 0.5µm × 9µm, and the

concentration of free BMP is in the range of 0-5nM [5]. So the maximal number of B

molecules in the PV cuboid is

5nM × 6.02 × 1023molecules

mol
× 9µm× 9µm× 0.5µm = 122 (4.1)

For simplicity of modeling it is assumed receptors are distributed in the whole PV cuboid
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as in [5]. Therefore, the maximal number of receptors in the PV cuboid is

160nM × 6.02 × 1023molecules

mol
× 9µm× 9µm× 0.5µm = 3900, (4.2)

where the concentration of receptors 160nM is taken from [5]. Similarly, the maximal

numbers of molecules of other species can be estimated. Table. 4.1 shows the maximal

number of molecules of species in different cuboids. The total amount of receptors and

C molecules is much larger than the amount of B. So that C and receptors can catch B

molecules effectively and attenuate the fluctuations in B.

Variable Space Concentration Number of Molecules Reference

B PV 5nM 122 [5]

R PV 160nM 3900 [5]

C PV 340nM 8400 [5]

Mad Cytoplasm 60.6nM 1477 [6]

Madea Cytoplasm 50.8nM 1238 [6]

Mad Nucleus 28.5nM 5559 [6]

Madea Nucleus 50.8nM 9908 [6]

Table 4.1: Maximum estimated numbers of molecules
To estimate reactions frequencies, we calculate the maximal propensity function of

each reaction, which gives the largest probability of the occurrence of the reaction during

unit time. In particular, we calculate the propensity function by Eq. (4.3)

X1 ×X2 × rate× V × 6.02 × 1023, (4.3)

where X1 and X2 are the concentrations of the reactant species in a bimolecular reaction

(X2 = 1 for a unimolecular reaction), rate is the reaction rate constant, and V is the

volume of the respective cuboid. X1 and X2 are chosen as the maximal concentrations

of the reactant species in the cuboid. Table 4.2 summaries the propensity functions of

the reactions. There is a two orders of magnitude difference between the slowest and

fastest reactions in the PV space. Forming active signaling complexes by B binding to

R is very slow, but the formation of active signaling complexes through binding to C is

very likely, leading to almost all active signaling complexes forming through C. In the

intracellular space, the major rate limiting step appears to be the phosphorylation of

Mad to pMad.
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Reaction Species 1 Species 2 Rate Propensity

B + C → BC B C 1 1
nM∗min 405 1

sec

(5nM) (200nM)

BC → B +C BC 2 1
min 241 1

sec

(30nM)

BC +R→ BCR BC R 0.5 1
nM∗min 975 1

sec

(30nM) (160nM)

BCR→ BC +R BCR 10 1
min 332 1

sec

(80nM)

BR+ C → BCR BR C 1.3 ∗ 10−1 1
nM∗min 317 1

sec

(30nM) (200nM)

BCR→ BR+ C BCR 10 1
min 332 1

sec

(80nM)

B +R→ BR B R 2.4 ∗ 10−2 1
nM∗min 8 1

sec

(5nM) (160nM)

BR→ B +R BR 4 1
min 490 1

sec

(30nM)

BR+Mad→ pMad BR Mad 2.4 ∗ 10−2 1
nM∗min 17 1

sec

(30nM) (60.6nM)

2 ∗ pMad→ pMad2 pMad pMad 1.1 ∗ 10−1 1
nM∗min 164 1

sec

(60.6nM) (60.6nM)

pMad+Me→ pMMe pMad Me 1.1 ∗ 10−1 1
nM∗min 137 1

sec

(60.6nM) (50.8nM)

pMad2 → 2pMad pMad2 1 1
min 12 1

sec

(30.3nM)

pMMe→ pMad+Me pMMe 1 1
min 201

s

(50.8nM)

pMad→Mad pMad 3.96 ∗ 10−1 1
min 37 1

sec

(28.5nM)

Table 4.2: Propensity functions for reactions.
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The maximal propensity function for the nucleo-cytoplasmic transport is calculated

by Eq. (4.4)

X1 × rate× V × 6.02 × 1023 (4.4)

where X1 is the maximal concentration of the respective species, rate is the transport

rate constant from [6], and V is the volume of the cuboid where the transport starts.

In [6], all species are assumed to be evenly distributed in the system. Therefore, we can

use the total number of molecules in the cuboid in Eq. (4.4). Table 4.3 summarizes the

propensity functions for transport across the nuclear membrane, where *c and *n present

species in the cytoplasmic and nuclear cuboids. The transport rate is several orders of

magnitude smaller than the maximal rate of reactions between pMad and Madea, but

is in the same order as the phosphorylation rate. Due to the slow phosphorylation

step, the number of pMad increases slowly and hence all the cytoplasmic reactions may

happen slowly. As a result,large fluctuations may arise in the cytoplasm.

Species Concentration Rate Propensity Function

Madc 60.6nM 5.16 ∗ 10−3 1
sec 7.6 1

sec

Madn 28.5nM 0.29 1
sec 3627 1

sec

pMadc 60.6nM 5.16 ∗ 10−3 1
sec 7.6 1

sec

pMadn 28.5nM 0.29 1
sec 3627 1

sec

pMad2c 30.3nM 0.0294 1
sec 22 1

sec

pMMec 60.6nM 0.0294 1
sec 44 1

sec

Medeac 50.8nM 0.00516 1
sec 6.4 1

sec

Medeac 50.8nM 0.00305 1
sec 68 1

sec

Table 4.3: Propensity functions for transport across the nu-

clear membrane

We estimate the time scale for a molecule to diffuse throughout the cuboid where it

lies. In particular, the time scale is estimated by Eq (4.5)

L2

D
(4.5)

where D is the diffusion coefficient, and L is the maximum length of the cuboid. Table

4.4 summarizes the time scales for molecules of different species to diffuse throughout
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the respective cuboid. The diffusion of mRNA is several orders of magnitude slower

than all other diffusion processes. Therefore, the transport of mRNA can also be a

limiting step of the signal evolution.

Species Diffusion Constant L2/D

B 7.3 ∗ 10µm2

sec 1.1sec

Madc 1.6 ∗ 10µm2

sec 5.06sec

pMadc 1.6 ∗ 10µm2

sec 5.06sec

pMad2c 1.3 ∗ 10µm2

sec 6.23sec

Medeac 1.4 ∗ 10µm2

sec 5.79sec

pMMec 1.2 ∗ 10µm2

sec 6.75sec

mRNAc 3.0 ∗ 102 µm2

sec 2700sec

Madn 1.6 ∗ 10µm2

sec 5.06sec

pMadn 1.6 ∗ 10µm2

sec 5.06sec

pMad2n 1.3 ∗ 10µm2

sec 6.23sec

Medean 1.4 ∗ 10µm2

sec 4.57sec

pMMec 1.2 ∗ 10µm2

sec 5.33sec

mRNAn 3.0 ∗ 10−2 µm2

sec 2130sec

Table 4.4: The time scales of diffusion

Therefore, the downstream network is a multi-scale network, which allows us to

reduce the system for stochastic simulations. Since the diffusion time of Mad and Madea

is much less than the time of phosphorylation and nuclear transport , we can assume

that Mad and Madea are always well mixed in the nucleus and cytoplasm. By making

this assumption, we can reduce the simulation time by half to one third. Moreover,

the phosphorylation of Mad is much slower than other reactions, which implies a small

number of pMad molecules and large fluctuations in the cytoplasm. Furthermore, the

nucleo-cytoplasmic transport of mRNA is much slower than other reactions and diffusion

processes, which may play an important role in the propagation of fluctuations.
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4.2.3 Stochastic Simulation

In this section, we use the Gillespie simulation method to understand how reactions of

different time scales affect the propagation of fluctuations in the single cell system with

different settings. 50 realizations are generated for each case.

Simulation settings

To apply the Gillespie simulation method, we discretize the three cuboids into compart-

ments and assume each compartment is well mixed. In particular, we divide the PV

cuboid into Px× Py × Pz identical compartments. Px, Py and Pz are the number of

discretizations along the x-axis, the y-axis and the z-axis, respectively. The cytoplasmic

cuboid is discretized into Cx× Cy × Cz identical compartments. Cx, Cy and Cz are

the number of discretizations along the x-axis, the y-axis and the z-axis, respectively.

The nuclear cuboid is divided into Nx×Ny×Nz identical compartments. Nx, Ny and

Nz are the number of discretizations along the x-axis, the y-axis and the z-axis, respec-

tively. Letting Px = Cx = Nx = Pz = Cz = Nz, each compartment in each layer is

of dimension 9
Nxµm× l∗y × 9

Nx , where l∗y is the length of the side along y-axis. Here we

choose Cx = 3, Py = Cy = 1 and Ny = 3. So the compartments in the PV, cytoplasmic

and nuclear cuboids are of dimension 3µm × 0.5µm × 3µm, 3µm × 0.5µm × 3µm and

3µm× 1.3µm× 3µm respectively.

Since we are only interested in patterning in the D-V axis, we assume that the

system is uniform in the z-direction. We focus on a slice of the single cell in the x− y

plane. Fig. 4.9 shows the discretization of the system and the slice of the single cell we

study.

In order to study fluctuations caused by a small number of signaling molecules, we

assume B is only produced in one compartment in the PV cuboid at rate 1nM/min

and the boundaries of the PV cuboid are reflective.

The temporal evolution of the system

Using the parameters from tables in Appendix 6.2, we simulate the biochemical system

presented in Section 4.2.1. The mean number of molecules of each species in each

compartment is given in Fig. 4.10. Ctotal equals the total number of molecules of
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Figure 4.9: The discretization of the single cell system.
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Figure 4.10: The temporal evolution of the single cell system.
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BC, BCR and C. The status of the promoter site presents whether the promoter site is

free or occupied. If it is one, the site is free; and if it is zero, the site is occupied. So

averaging the status of the promoter site over all the realizations gives the probability

that the promoter site is free. From Fig. 4.10, we can reach the following conclusions:

1. The signal level in the single cell system is consistent with the signal level in the

half PV space in Section 4.1. In particular, the levels of B, BR and Ctotal are

consistent with results in Section 4.1 and [5]. For example, the mean number of

BR molecules is 2 in a PV compartment and 18 in a cytoplasmic compartment.

So the total average number of BR molecules that can phosphorylate Mad in a

cytoplasmic compartment is 20, which is equivalent to a density of 7.5nM . In

Section 4.1, the concentration threshold of BR for the amnioserosa boundary is

around 10nM. Therefore, our single cell can be considered as a cell around the

amnioserosa boundary. Similarly, Ctotal and B can be found to be consistent

with previous results.

2. In spite of the local production of B and transport of molecules across membranes,

all species except mRNA are well mixed in each cuboid. This can be explained

by comparing two time scales: 1) B diffusion is much faster than the downstream

reactions and 2) except mRNA, transport of other species across the nuclear mem-

brane is much slower than diffusion. Therefore, we focus on one compartment in

each cuboid in the following discussion. In particular, in the PV and cytoplasmic

cuboids, we focus on the middle compartments. In the nuclear cuboid, we focus

on the Central compartment, where the promoter site is located.

3. From 5 minutes on, the promoter site stays occupied and rarely becomes free any-

more. This can be explained by comparing the propensity functions of the binding

and unbinding reactions between transcription factors and the promoter site. The

binding rate (kon) is 60nM/min and the unbinding rate (koff ) is 0.067/min.

Therefore, once there is one transcription factor in the Central compartment, the

propensity function of the binding reaction is 25. If the promoter site is occupied,

the propensity function of the unbinding reaction is 0.067. So once the promoter

site is occupied, it can be occupied most of time.
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4. The mean number of B molecules in PV compartments first increases but decreases

later. As more C molecules are produced, more B molecules will bind to C and

endocytosis of BC decreases the amount of B. Since internalized B cannot get

recycled, C can inhibit signaling at its high level. In addition, since internalized

B cannot signal and cannot get recycled, we do not consider B in the cytoplasm.

So the mean number of Bp is zero in all cytoplasmic compartments.

Signal sensitivity to transcription parameters

Since the propensity function of the binding reaction between transcription factors and

the promoter site is much larger than that of the unbinding reaction, the promoter

site will stay occupied once it is occupied. Here we study how the signal evolves if

we increase the unbinding rate. Fig. 4.11 shows the temporal evolution of the status

of the promoter site, the mean number of RNAn and the mean number of Ctotalp in

the systems with different unbinding rates. As the unbinding rate increases, the times

for the promoter site and RNAn to approach their quasi steady states increase. The

increase of Ctotalp becomes slower, too. However, as koff increases from 0.067min−1

to 6.7min−1, the change of the temporal evolution of the signal is much smaller than

the change caused by increasing koff from 6.7min−1 to 67min−1. This implies that

the unbinding rate has to be increased enough to cause change in the downstream gene

expression. To understand this, recall that the propensity function of the promoter site

being occupied is 25 once there is a transcription factor in the central compartment. So

the mean fraction of the occupancy status of the promoter site is larger than 25
25+koff

.

The transcription rate is increased by 10 times when the promoter site is occupied by

transcription factors, so the mean transcription rate is at least

kbt
koff + 10 ∗ 25

koff + 25
,

where kbt is the basal transcription rate. As a result, koff has to be increased substan-

tially to cause reduction in
koff+10∗25

koff+25 . Therefore, the system is robust to the change

of unbinding rates. To study the fluctuations in the promoter site and the downstream

gene expressions, we choose 6.7min−1 as the unbinding rates in the following sections.
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Figure 4.11: The signal sensitivity to transcription unbinding rates.
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Noise propagation

Here we study how noise propagates along the signal transduction pathway by consid-

ering the CV of the number of molecules in one compartment. Fig. 4.14 shows different

functions of the CV, depending whether the CV is around one or zero. The CV’s of the

numbers of molecules of Bp, BRp, BRc, pMadc, pMadn,P2c and P2n are represented

by the exponential function of them. P2c (P2n) is the total number of molecules of

pMad2 and pMMe in one cytoplasmic (nuclear) compartment. The CV’s of the num-

bers of molecules of Ctotalp, RNAc, RNAn, and the promoter site (Site) are represented

by the logarithm function of them. Fig. 4.14 shows the noise of BRc is smaller than

that of BRp, which may be explained by the accumulation of BR in the cytoplasm by

endocytosis. However, the noise of pMad is much larger than that of BRc, which can

be caused by the slow phosphorylation step. In the nuclear compartment, the the noise

of RNAn is much smaller than that of the promoter site, which can be explained by

fast transcription. The noise of RNAc is larger than that of RNAn, due to the slow

export of RNAn. The noise of Ctotalp is much smaller than that in RNAc, which may

be explained by fast synthesis of C from cytoplasmic translation and rapid transport to

the embryo membrane. In conclusion, the fast synthesis of C, cytoplasmic accumulation

of BR by endocytosis and fast transcription may reduce noise while the slow phospho-

rylation of Mad and nuclear export of mRNA increase noise. However, the difference

between the noises of pMadc, P2c, pMadn and P2n cannot be seen. Therefore, the

effect of the nuclear accumulation of pMad, pMad2 and pMMe on the propagation of

noise is little.

The hetero-trimers

It has been suggested that the transcription factor should be the hetero-trimer (pMad2/Madea)

consisting of 2 pMad’s and one Madea [73]. To test this hypothesis, we add the following

reactions in the cytoplasm and nucleus:

pMad+ pMMe
k8−−⇀↽−−
k−8

pMad2/Madea
k8−−⇀↽−−
k−8

pMad2 +Madea.

Moreover, pMad2/Madea can only be transported from the cytoplasm to the nucleus

as pMad2 and pMMe. pMad2/Madea acts as the transcription factor that can en-

hance transcription, while pMad2 and pMMe are not transcription factors. Due to the
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Figure 4.13: The trimer pMad2/Madea can amplify the nuclear accumulation.
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slow phosphorylation of Mad, the formation of pMad2/Madea is much lower than that

of pMad2 and pMMe. Therefore, for the consistency of the signal level, we increase

the initial concentrations of Mad and Madea by four times. We simulate the system

with pMad2/Madea and compare it with the basal system in Section4.2.3. As the sys-

tem in Section 4.2.3, molecules of species except RNAn are well-mixed in each cuboid.

Therefore, we focus on the middle cytoplasmic compartment and the central nuclear

compartment. We compare the mean and CV of the numbers of pMad2 and pMMe

molecules in the two systems. The comparison results are shown in Fig. 4.13. In Fig.

4.13, figures with the title +t show the results of the system with pMad2/Madea as

transcription factors, and the remaining ones show the results from the system in Sec-

tion 4.2.3. Fig. 4.13 shows the CV’s of the nuclear pMad2 and pMMe are less than

those of the cytoplasmic pMad2 and pMMe in the system with the trimer formation,

which can not be observed in the system in Section 4.2.3. It may be because that

the unidirectional transport of pMAd2/Madea can enhance the nuclear accumulation

enough to attenuate the fluctuations in the nucleus, which can be seen from the mean

numbers of pMad2 and pMMe molecules in Fig. 4.13.

Fig. 4.14 shows how the downstream signal responds to the change of the transcrip-

tion factor. In Fig. 4.14, PMAD2MEc and PMAD2MEn represent pMad2/Madea in

the cytoplasm and the nucleus respectively. The system labeled with +t is the system

with the formation of the trimer and the system labeled with b is the system in Sec-

tion 4.2.3. Fig. 4.14 shows the nuclear accumulation of pMad2/Madea leads to the

reduction of the fluctuations of pMad2/Madea in the nucleus. However, due to the

slow phosphorylation of Mad, the trimers pMad2/Madea are formed at a much lower

rate than pMad2 and pMMe. As a result, the promoter site and RNAn approach their

quasi-steady state more slowly.



Chapter 5

Conclusion and Future Work

Biochemical systems are stochastic due to random motion and collision of signaling

molecules, and environmental fluctuations. Stochasticity is identified as the major rea-

son for the phenotypic difference among genetically identical cells. However, the devel-

opment of organisms is highly reproducible. How the biological system filters noise is

the major topic we study in this thesis.

First, we have studied the effect of the localization of signaling molecules on the sig-

nal transduction pathway, in the deterministic and stochastic views. Using sensitivity

analysis of the deterministic models, we have found slow diffusion and the fast degra-

dation of the ligand near the receptor surface can interact with each other to sharpen

the gradient of the signal and accelerate the relaxation of the biochemical system to the

steady state. By analyzing the stochastic motion of a ligand molecule in a system with

locally distributed receptors and membrane proteins, we have estimated the extent of

localization in terms of diffusion coefficients and binding reaction rates. Our results also

demonstrate that although the membrane protein can concentrate the ligand molecule

around receptors, it has to pass the localized ligand molecule to receptors fast enough, in

order to enhance signaling. Otherwise, the localization will inhibit signaling. The effect

of localization on signal specificity has also been discussed. So far, we have assumed

that the receptors and the membrane proteins are in excess, which leads to first-order

reaction-diffusion systems. In the future, we plan to consider the change in the levels

of free receptors and membrane proteins.

Ligand molecules bind to receptors to initiate downstream networks that may lead
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to gene expression. Therefore, we study how the noise from the initiation step of

transcription evolves along the elongation step and affects the production of mRNA. Our

analysis shows that if the transcription complex forms at a random telegraph rate and

the complex proceeds deterministically along the DNA sequence, the noise can approach

zero as the length of the DNA sequence is long enough. During elongation, the complex

pausing at the DNA sequence is commonly observed in transcription. We consider a

system in which the complex arrives at the promoter site in a Poisson process and can

pause at specific sites of the DNA sequence. We show that the transcription pause has

to happen rarely and lasts long enough to lead to the bursts of mRNA production. In

the future, we will study how the randomly switching of the status of the promoter site

and the complex pausing interplay with each other to affect the production of mRNA.

During the process of determining the amnioserosa boundary in Drosophila, recep-

tors bound by Dpp/Scw initiate the downstream network, which leads to the expression

of an auxiliary membrane protein SBP (C). C can localize Dpp/Scw around receptors

and affect signaling as a coreceptor, thereby forming a feedback loop. The feedback

loop has been demonstrated by deterministic models in [5]. Here we use stochastic

simulations to show how the feedback loop can help the system specify the amnioserosa

boundary among a field of cells. Moreover, we propose a detailed single cell model

for the downstream network. Our estimation of the time scales of reactions identifies

the phosphorylation of Mad and nuclear export of mRNA are the two limiting steps in

signal transduction. Our stochastic simulations imply that fluctuations are amplified at

these steps. Moreover, we consider the system with the heterotrimer pMad2/Madea as

the transcription factor and compare it with the system with the dimers as the tran-

scription factor. The formation of the trimer can enhance the nuclear accumulation of

pMad2 and pMMe, and reduce the fluctuations in the nucleus. However, due to the

slow phosphorylation of Mad, the formation of the trimer is slow and the temporal evo-

lution of the signal is slower than the system with the dimer as transcription factors.

In the future, we will implement the single cell system in the whole pattern formation

process, to understand how reactions of different time scales affect the communication

between cells. However, the computation time can become a problem. Since the single

cell system is a multi-scale reaction network, we may be able to simplify the system in

an appropriate way to reduce the simulation time.
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[68] M. Voliotis, N. Cohen, C. Molina-Paŕıs, and T.B. Liverpool. Fluctuations, pauses,

and backtracking in dna transcription. Biophysical journal, 94(2):334–348, 2008.

[69] B. Fristedt and L.F. Gray. A modern approach to probability theory. Birkhauser,

1997.

[70] J.M.G. Vilar, R. Jansen, and C. Sander. Signal processing in the tgf-β superfamily

ligand-receptor network. PLoS Computational Biology, 2(1):e3, 2006.

[71] Peter ten Dijke and Carl-Henrik Heldin. Smad signal transduction: Smads in

proliferation, differentiation and disease. Proteins and Cell Regulation, 5, 2006.

[72] B. Schmierer and C.S. Hill. Kinetic analysis of smad nucleocytoplasmic shuttling

reveals a mechanism for transforming growth factor β-dependent nuclear accumu-

lation of smads. Molecular and cellular biology, 25(22):9845, 2005.

[73] B.Y. Qin, B.M. Chacko, S.S. Lam, M.P. de Caestecker, J.J. Correia, and K. Lin.

Structural basis of smad1 activation by receptor kinase phosphorylation. Molecular

cell, 8(6):1303–1312, 2001.

[74] ME Young, PA Carroad, and RL Bell. Estimation of diffusion coefficients of pro-

teins. Biotechnology and Bioengineering, 22(5):947–955, 1980.

[75] B. Marom, E. Heining, P. Knaus, and Y.I. Henis. Formation of stable homomeric

and transient heteromeric bmp receptor complexes regulates smad signaling. Jour-

nal of Biological Chemistry, 2011.

[76] A. Zilman, S. Di Talia, B.T. Chait, M.P. Rout, M.O. Magnasco, et al. Efficiency,

selectivity, and robustness of nucleocytoplasmic transport. PLoS Comput Biol,

3(7):e125, 2007.



129

[77] A. Mor, S. Suliman, R. Ben-Yishay, S. Yunger, Y. Brody, and Y. Shav-Tal. Dy-

namics of single mrnp nucleocytoplasmic transport and export through the nuclear

pore in living cells. Nature cell biology, 12(6):543–552, 2010.

[78] D.Y. Vargas, A. Raj, S.A.E. Marras, F.R. Kramer, and S. Tyagi. Mechanism of

mrna transport in the nucleus. Proceedings of the National Academy of Sciences of

the United States of America, 102(47):17008, 2005.

[79] E.A. Nalefski, E. Nebelitsky, J.A. Lloyd, and S.R. Gullans. Single-molecule detec-

tion of transcription factor binding to dna in real time: specificity, equilibrium, and

kinetic parameters. Biochemistry, 45(46):13794–13806, 2006.

[80] A.M. Kierzek, L. Zhou, and B.L. Wanner. Stochastic kinetic model of two com-

ponent system signalling reveals all-or-none, graded and mixed mode stochastic

switching responses. Mol. BioSyst., 6(3):531–542, 2009.

[81] A. Tiwari, G. Balázsi, M.L. Gennaro, and O.A. Igoshin. The interplay of multiple

feedback loops with post-translational kinetics results in bistability of mycobacte-

rial stress response. Physical Biology, 7:036005, 2010.

[82] D.M. Suter, N. Molina, D. Gatfield, K. Schneider, U. Schibler, and F. Naef. Mam-

malian genes are transcribed with widely different bursting kinetics. Science,

332(6028):472, 2011.

[83] S. Thomsen, S. Anders, S.C. Janga, W. Huber, and C.R. Alonso. Genome-wide

analysis of mrna decay patterns during early drosophila development. Genome

biology, 11(9):R93, 2010.



Chapter 6

Appendices

6.1 Ligand signaling in a complex medium

6.1.1 The smallest pole (in magnitude) for L[u](ȳ, s)

When θ = 1, L[u](ȳ, s) has an essential singularity and the smallest pole (in magnitude)

can not be used to estimate the relaxation time of u to the steady state. Therefore, we

assume θ 6= 1. Here we find the smallest pole (in magnitude) for θ > 1 and the result

can be extended to the case when θ < 1. For θ > 1, there exists a nonzero real pole of

Eq. (2.11) in (−1,−1
θ ). For any real s ∈ [(−1,−1

θ )], Eq. (2.12) becomes:

Γ
√
δ
√
s+ 1cos

(
α

√
−(s+

1

θ
)

)
sinh

(
β
√
s+ 1

)

−
√
−δ(s +

1

θ
) sin

(
α

√
−(s+

1

θ
)

)
cosh

(
β
√
s+ 1

)
= 0. (A1)

When s = −1, the left-side term in Eq. (A1) is less than zero. On the other hand, when

s = −θ, the left-side term in Eq. (A1) is greater than zero. Therefore, at least one real

zero of Eq. (A1) exists in (−1,−1
θ ). Let sre be a real zero of Eq. (A1) in (−1,−1

θ ).

Let x + yi be the smallest pole of Eq. (2.11) in magnitude. Then, |x + yi| 6 1,

|x| < 1 and |y| < 1. Now, we will show that |y| ≪ 1 . For simple notation, we set

(a+ bi)2 ≡ (x+ 1) + yi, (A2)

(m+ ni)2 ≡ (x+
1

θ
) + yi. (A3)
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Therefore, |a|2 + |b|2 =
√

(|x| + 1)2 + |y|2 <
√

5 and |m|2 + |n|2 <
√

(|x| + 1)2 + |y|2 <
√

5. Moreover, a+ bi and m+ ni satisfy the following:

Γ
√
δ(a+ bi) cosh {α(m+ ni)} sinh {β(a+ bi)}

+(m+ ni) sinh {α(m+ ni)} cosh {β(a+ bi)} = 0. (A4)

Multiplying the complex conjugate of the second term in Eq. (A4) to both sides of Eq.

(A4), we get

ℑ[(a+ bi) cosh {α(m+ ni)} sinh {β(a+ bi)}
×(m− ni) sinh {α(m− ni)} cosh {β(a− bi)}] = 0,

where ℑ is the ideal part of a complex number. For simple notation, we set

m̄ = αm, n̄ = αn, ā = βa, b̄ = βb.

Then Eq. (A5) gives

{m̄ sinh(2m̄) − n̄ sin(2n̄)}
{
b̄ sinh(2ā) + ā sin(2b̄)

}

= {n̄ sinh(2m̄) + m̄ sin(2n̄)}
{
ā sinh(2ā) − b̄ sin(2b̄)

}
. (A5)

Moreover, |m̄| = |α||m| < 5
1
4 |α| ≪ 1. Similarly, |n̄| ≪ 1, |ā| ≪ 1 and |b̄| ≪ 1. Using

Taylor expansion in Eq. (A5), we have

{
m̄
(
2m̄+O

(
m̄3
))

− n̄
(
2n̄+O

(
n̄3
))}{

b̄
(
2ā+O
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Therefore,

{
m2 − n2 +O

(
α2
)}{

2ab+O
(
β2
)}

=
{
2mn+O

(
α2
)}{

a2 − b2 +O
(
β2
)}
. (A6)

Since a2 − b2 = x+ 1, m2 − n2 = x+ θ, and 2ab = 2mn = y from Eq. (A2) and (A3),

Eq. (A6) becomes
{
x+

1

θ
+O(α2)

}{
y +O(β2)

}
=

{
y +O(α2)

} {
x+ 1 +O(β2)

}
. (A7)

Simplifying Eq. (A7) for α2 and β2 gives

y ≈ O
(
α2
)
(x+ 1 − y) +O

(
β2
)
(y − x− 1

θ
) +O

(
α2β2

)
.
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Since |x| < 1 and |y| < 1, using α≪ 1 and β ≪ 1, we get y ≪ 1.

We find the smallest pole of Eq. (2.11) below. Plugging x + yi in Eq. (2.12), we

have

Γ
√
δ
√
x+ 1 + yi cosh

{
α

√
x+

1

θ
+ yi

}
sinh

{
β
√
x+ 1 + yi

}

+

√
x+

1

θ
+ yi sinh

{
α

√
x+

1

θ
+ yi

}
cosh

{
β
√
x+ 1 + yi

}

= 0. (A8)

Therefore, the left hand side of Eq. (A8) only depends on x+ 1 + yi and x+ 1
θ + yi.

Due to y ≪ 1, we can consider x + 1 and x + 1
θ to find the smallest nonzero pole in

magnitude, i.e., we can estimate the smallest nonzero real pole, smin, of Eq. (2.11) in

magnitude. Letting y = 0 in Eq. (A8), for any x > −1
θ , the left hand side of Eq. (A8)

is always positive. So smin < −1
θ and smin obeys the following equation

Γ
√
δ
√
s+ 1 tanh

(
β
√
s+ 1

)
+

√
−δ(s +

1

θ
) tan

(
α

√
−(s+

1

θ
)

)
= 0. (A9)

Since there exist at least one real pole of Eq. (2.11) in [−1,−1
θ ], we have |smin| < 1. Due

to α ≪ 1 and β ≪ 1, we have α
√

−(smin + 1
θ ) ≪ 1 and β

√
smin + 1 ≪ 1. So Taylor

expansion of Eq. (A9) gives

Γ
√
δ
√
s+ 1

{
β
√
s+ 1 −

(
β
√
s+ 1

)3

3

}

+
√

−(s+ θ)




α

√
−(s+

1

θ
) −

(
α
√

−(s+ 1
θ )
)3

3





≈ 0

which is a quadratic equation for smin. Solving Eq. (A10) for s, we get

s ≈
−2
(

1
θα

3 + Γβ3
√
δ
)

+ 3
(
α+ Γβ

√
δ
)
±√△

2(α3 + Γβ3
√
δ)

(A10)

where

△ = 9(α+ Γβ
√
δ)2 + 4αβΓ

√
δ

{
3(α2 − β2)(1 − 1

θ
) − α2β2(1 − 1

θ
)2
}
.
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Using α ≪ 1 and β ≪ 1 and
√

1 + z ≈ 1 + z
2 for |z| ≪ 1, we approximate

√△ as

follows:

√
△ ≈ 3

(
α+ Γβ

√
δ
)

1 +

4αβΓ
√
δ(1 − 1

θ )
{
3(α2 − β2) − α2β2(1 − 1

θ )
}

18
(
α+ Γβ

√
δ
)2


 .

Since |smin| < 1, we get

s ≈
−2
(

1
θα

3 + Γβ3
√
δ
)

+ 3
(
α+ Γβ

√
δ
)
−√△

2(α3 + Γβ3
√
δ)

(A11)

Using α =

√
δ(1−ǫ)2

Λ , β =
√

ǫ2

Λ , and β
α = ρ√

δ
where ρ = ǫ

1−ǫ , we rewrite Eq. (A11) as

smin ≈ −1 +
1 − 1

θ

1 + Γρ
+

Γρ3(1 − 1
θ )2

3Λ(1 + ρ)2(1 + Γρ3√
δ
)(1 + Γρ)

.

6.1.2 The solution to the immobilization equations

The system governed by Eq. (2.18) can be rewritten in the following vector form

(
p1b

p1bc

)

t

=

(
D1∆

0

)(
p1b

p1bc

)
+

(
−k+ k−

k+ − k−

)(
p1b

p1bc

)
. (B1)

subject to the following initial and boundary conditions:

p1b(y, 0|y0, 0) = δ(y − y0),

p1bc(y, 0|y0, 0) = 0,

∂p1b

∂y
(y, t|y0, 0) = 0, at y = 0,

p1b(y, t|y0, 0) = 0, at y = H1.

Let D =

(
D1

0

)
and K =

(
−k+ k−

k+ − k−

)
. Then the solution to Eq. (B1)

has the form

(
p1b

p1bc

)
=

∞∑

n=0

eλntΨn(y), where Ψn(y) is the eigenfunction and λn is the

eigenvalue. Therefore, Ψn(y) is the solution to
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D∆Ψn + (K − λnI)Ψn = 0,
∂Ψn

∂y
|y=0 = 0, Ψn|y=H1 = 0.

Then it is easy to check that Ψn =

(
ν1n

ν2n

)
ψn, where ψn is a solution to the

following scalar eigenvalue problem

∆ψn + ω2
nψn = 0 for y ∈ [0,H1],

∂ψn

∂y
|y=0 = 0, ψn(y, t|y0, 0)|y=H1 = 0. (B2)

Moreover, νn =

(
ν1n

ν2n

)
satisfies the algebraic eigenvalue problem

(K − ω2
nD − λnI)νn = 0, (B3)

where I is the 2 × 2 identity matrix.

From Eq. (B2), we obtain ωn = (2n+1)π
2H1

and ψn = cos (2n+1)πy
2H1

. From Eq. (B3)), we

have det(K − ω2
n − λnI) = 0 and obtain

λn± =
−(k+ + k− + ω2

nD1) ± υn

2

, where

υn =
√

(k+ + k− + ω2
nD1)2 − 4k−ω2

nD1

. Define νn± such that

(
p1b

p1bc

)
=

∞∑

n=0

eλn+tψnνn+ + eλn−tψnνn−. Then we have (K −

ω2
nD − λn+I)νn+ = 0 and (K − ω2

nD − λn−I)νn− = 0. Using the initial condition of(
p1b

p1bc

)
, we obtain

νn+ =
1

H1υn
cos

(2n + 1)πy0

2H1




k− − k+ − ω2
nD1 + υn

2k+




νn− =
1

H1υn
cos

(2n + 1)πy0

2H1




k+ − k− + ω2
nD1 + υn

−2k+


 .
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Following the above procedure, we solve Eq. (2.21) and get p2 as follows:

p2(y, t|y0, 0) =

∞∑

n=0

2

H2
e
−
“

2nπ+π
2H2

”2
D2t

sin
(2n + 1)π(y0 −H1)

2H2
sin

(2n + 1)π(y −H1)

2H2
.

6.1.3 The probability density function of the molecule at the steady

state

The Laplace transform of Eq. (2.28) with respect to t gives

L[G1B ](s, y|y0)

= L[p1B ](s, y|y0) + L[G1B ](s, y|H1 − h)

× {sL[S1](s|y0, 0) − S1(0|y0, 0)} {sL[S2](s|H1 + h, 0) − S2(0|H1 + h, 0)} , (C1)

where L[f ](s) represents the Laplace transform of f(t). Based on the definition of

S1(t|y0, 0) and S2(t|H1 + h, 0), we have S1(0|y0, 0) = 1 and S2(0|H1 + h, 0) = 1.

Letting y0 = H1 − h in Eq. (C1), we obtain

L[G1B ](s, y|H1 − h)

=
L[p1B ](s, y|H1 − h)

sL[S1](s|H1 − h) + sL[S2](s|H1 + h) − s2L[S1](s|H1 − h)L[S2](s|H1 + h)

Therefore, for any y0 ∈ [0,H1 + h], we have

L[G1B ](s, y|y0)

= L[p1B](s, y|y0) + L[p1B](s,y|H1−h){sL[S1](s|y0)−1}{sL[S2](s|H1+h)−1}
1−{sL[S1](s|H1−h)−1}{sL[S2](s|H1+h)−1} . (C2)

Then we get

lim
t→∞

G1B(y, t|y0) = lim
s→0

sL[G1B ](s, y|y0)

=
L[p1B ](0, y|H1 − h)

L[S1](0|H1 − h) + L[S2](0|H1 + h)
. (C3)

By computing Laplace transforms of Eq. (C3), we get

lim
t→∞

G1B(y, t|y0)
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=

∞∑

n=0

(H1 + h)

D1(2nπ + π)2
cos

(2nπ + π)(H1 − h)

2(H1 + h)
cos

(2nπ + π)y

2(H1 + h)

∞∑

n=0

2(−1)n(H1 + h)2(k+ + k−)

D1k−(2nπ + π)3
cos

(2nπ + π)(H1 − h)

2(H1 + h)
+

∞∑

n=0

2(H2 + h)2

D2(2nπ + π)3
sin

h(2nπ + π)

H2 + h

.

Using the similar approach of deriving limt→∞G1B(y, t|y0), we get

lim
t→∞

G1(y, t|y0) (C4)

=

∞∑

n=0

(H1 + h)(k+ + k−)

k−D1(2nπ + π)2
cos

(2nπ + π)(H1 − h)

2(H1 + h)
cos

(2nπ + π)y

2(H1 + h)
∞∑

n=0

2(−1)n(H1 + h)2(k+ + k−)

D1k−(2nπ + π)3
cos

(2nπ + π)(H1 − h)

2(H1 + h)
+

∞∑

n=0

2(H2 + h)2

D2(2nπ + π)3
sin

h(2nπ + π)

H2 + h

= (1 +KD) lim
t→∞

G1B(y, t|y0)

and

lim
t→∞

G2(y, t|y0) (C5)

=

∞∑

n=0

(H2 + h)

D2(2nπ + π)2
sin

h(2nπ + π)

H2 + h
sin

(2nπ + π)(y −H1 + h)

2(H2 + h)
∞∑

n=0

2(−1)n(H1 + h)2(k+ + k−)

D1k−(2nπ + π)3
cos

(2nπ + π)(H1 − h)

2(H1 + h)
+

∞∑

n=0

2(H2 + h)2

D2(2nπ + π)3
sin

h(2nπ + π)

H2 + h

.

Letting h go to zero in Eq. (C4), we get 1

lim
h→0

lim
t→∞

G1B(y, t|y0) =

1
D1

∞∑

n=0

(−1)n cos (2nπ+π)y
2H1

(2nπ + π)

H1(1+KD)
4D1

+ H2
4D2

.

To calculate

∞∑

n=0

(−1)n cos (2nπ+π)y
2H1

(2jπ + π)
, we consider a function f(x) such that for any integer

k,

f(x) =





1, if x ∈ (4k − 1, 4k + 1),

−1, if x ∈ (4k + 1, 4k + 3),

0, if x = 4k − 1, 4k + 1 or x = 4k + 3.

1 Here, we use
∞

X

n=0

1

(2n + 1)2
=

π2

8
.
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The Fourier expansion of f(x) is as follows:

f(x) = 4

∞∑

n=0

(−1)n

(2nπ + π)
cos

(2nπ + π)x

2
.

Therefore for y ∈ (0,H1), we have

∞∑

n=0

(−1)n

(2nπ + π)
cos

(2nπ + π)y

2H1
=

1

4
.

So

lim
h→0

lim
t→∞

G1B(y, t|y0) =
1

D1

H1(1+KD)
D1

+ H2
D2

.

Similarly, letting h goes to zero in Eq. (C4) and (C5), we get

lim
h→0

lim
t→∞

G1(y, t|y0) =

(1+KD)
D1

H1(1+KD)
D1

+ H2
D2

,

lim
h→0

lim
t→∞

G2(y, t|y0) =
1

D2

H1(1+KD)
D1

+ H2
D2

.

6.1.4 The probability of escaping a perfectly absorbing surface

Define Pa,c(b) as the probability that the molecule starts at y = b hits y = a before

hitting y = c. To connect Region I ′ and II ′, we consider the probability PH1+h,0(y0) that

the molecule starting at y = y0 in Region I ′ reaches y = H1 +h before getting absorbed

at y = 0. We consider the steady-state probability density function of a molecule in a

one-dimensional system with absorbers at y = 0 and y = H1 + h. Since the system (b)

in Section 2.3.3 is uniform in x-direction, we only need to consider the one-dimensional

system here. Then PH1+h,0(y0) is the ratio of the outward flux at y = y0 to the total

flux at y = y0. Define C(y|y0) as the steady-state probability density function such

that C(y|y0) dy gives the probability of the ligand molecule starting at y0 to stay at

[y, y + dy) in the steady-state. The governing equation is given as

D1
d2C(y|y0)

dy2
= −δ(y − y0)

C(0|y0) = 0 (D1)
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C(H1 + h|y0) = 0.

By using Fourier transform, we solver the above equation and get

C(y|y0) =





C0

(
−y0

D1(H1+h) + 1
D1

)
y, if y 6 y0,

C0

(
−y0y

D1(H1+h) + y0

D1

)
, if y > y0,

where C0 is a constant.

Then we get

PH1+h,0(y0) =

lim
y→y+

0

−D1
dC(y|y0)

dy

lim
y→y+

0

−D1
dC(y|y0)

dy
+ lim

y→y−

0

D1
dC(y|y0)

dy

=
y0

H1 + h
.

To test PH1+h,0(y0), we assume that H1 = (2N − 1)h, where N is an integer.

PH1+h,0(H1 − h) = 1 − P0,H1+h(H1 − h). (D2)

Since the molecule starting at y = H1 − h should pass y = H1 − 3h to reach y = 0, we

rewrite the right-side term in Eq. (D2) as

Eq.(D2) = 1 − PH1−3h,H1+h(H1 − h)P0,H1+h(H1 − 3h). (D3)

Since y = H1 − 3h and y = H1 + h are symmetric with respect to y = H1 − h, we get

PH1−3h,H1+h(H1 − h) =
1

2
. (D4)

Using Eq. (D4), we rewrite Eq. (D3) as

Eq.(D3) = 1 − 1

2
P0,H1+h(H1 − 3h). (D5)

Repeating the procedure in Eq. (D2)-(D5), we compute PH1+h,0(H1 − h) as

PH1+h,0(H1 − h) = 1 −
(

1

2

)N−1

P0,H1+h(H1 − (2N − 1)h). (D6)

Since H1 = (2N − 1)h, we get

PH1+h,0(H1 − h) = 1 −
(

1

2

)N−1

=
H1 − h

H1 + h
.



139

6.1.5 The mean time for the ligand molecule to bind to receptors.

Following the procedure in Section 6.1.2, we solve Eq. (2.40) and obtain

p
(b)
1b (x, y, t|x0, y0, 0)

=
∞∑

i,j=0

ηije
−
“

k++k
−

+kb−Cij
2

”

t
[
cosh(ωijt) +

−k+ + k− + kb + Cij

2ωij
sinh(ωijt)

]

× cos
iπx

L
cos

(2j + 1)πy

2(H1 + h)
, (E1a)

p
(b)
1bc(x, y, t|x0, y0, 0)

= k+

∞∑

i,j=0

ηij

ωij
e
−
“

k++k
−

+kb−Cij
2

”

t
sinh(ωijt) cos

iπx

L
cos

(2j + 1)πy

2(H1 + h)
(E1b)

p
(b)
1br(x, y, t|x0, y0, 0)

= k+kb

∞∑

i,j=0

ηij

ωij
cos

iπx

L
cos

(2j + 1)πy

2(H1 + h)
[
e
−
“

−k++k
−

+kb−Cij
2

”

t
{

eωijt

k+ − (k− + kb) + Cij + 2ωij

− e−ωijt

k+ − (k− + kb) + Cij − 2ωij

}
+

ωij

k+kb − Cij(k− + kb)

]
, (E1c)

where Cij = −
[(

iπ
L

)2
+
(

(2j+1)π
2(H1+h)

)2
]
D1, ω

2
ij =

(
−k++k−+kb+Cij

2

)2
+ k−k+, and

ηij =





4
L(H1+h) cos iπx0

L cos (2j+1)πy0

2(H1+h) , if i 6= 0

2
L(H1+h) cos (2i+1)πy0

2(H1+h) , if i = 0.

Let P
(b)
1b (t, x0, y0), P

(b)
1bc(t, x0, y0) and P

(b)
1br(t, x0, y0) be the probabilities that the molecule

starting from (x0, y0) at time 0 lies in Region I ′ at time t as a molecule of species B,

BC and BR respectively, without leaving I ′ before time t. Using Eq. (E1), we get

P
(b)
1b (t, x0, y0)

=

∫ L

0

∫ H1+h

0
p
(b)
1b (x, y, t|x0, y0, 0) dy dx

=
∞∑

j=0

(−1)jη0jL(H1 + h)

2ωij(2j + 1)π

[
(−k+ + k− + kb + Cij + 2ωij)e

“

−k+−k
−

−kb+Cij+2ωij
2

”

t
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−(−k+ + k− + kb + Cij − 2ωij)e

“

−k
−

−kb−k++Cij−2ωij
2

”

t
]

P
(b)
1bc(t, x0, y0)

=

∫ L

0

∫ H1+h

0
p
(b)
1bc(x, y, t|x0, y0, 0) dy dx

= k+

∞∑

j=0

(−1)jη0jL(H1 + h)

ω0j(2j + 1)π

[
e

“

−k+−k
−

−kb+C0j+2ω0j
2

”

t − e

“

k+−k
−

−kb+C0j−2ω0j
2

”

t
]

P
(b)
1br(t, x0, y0)

=

∫ L

0

∫ H1+h

0
p
(b)
1br(x, y, t|x0, y0, 0) dy dx

= k+kb

∞∑

j=0

2(−1)jη0jL(H1 + h)

ω0j(2j + 1)π


 e

“

k+−k
−

−kb+C0j+2ω0j
2

”

t

k+ − k− − kb + C0j + 2ω0j

− e

“

k+−k
−

−kb+C0j+2ω0j
2

”

t

k+ − k− − kb + C0j − 2ω0j
+

ω0j

k+kb − C0j(k− + kb)


 ,

Let TR
(b)
1h be the random variable of the time when the molecule leaves Region I ′

for the first time or the molecule becomes of species BR before leaving Region I ′. Let

T
(b)
1h be the time when the molecule leaves Region I ′ for the first time. Then we have

P
(
T

(b)
1h < t|x0, y0

)
= 1 −

(
P

(b)
1b (t, x0, y0) + P

(b)
1bc(t, x0, y0) + P

(b)
1br(t, x0, y0)

)

P
(
TR

(b)
1h < t|x0, y0

)
= 1 −

(
P

(b)
1b (t, x0, y0) + P

(b)
1bc(t, x0, y0)

)

Let T
(b)
h be the time when the molecule becomes of species BR. Then

E
[
T

(b)
h |x0, y0

]
(E2)

= E
[
TR

(b)
1h |y0

]

+

∫ ∞

0

{
E
[
T

(b)
2h |H1 + h

]
+ E

[
T

(b)
h |H1 − h

]} dP
(
T

(b)
1h < t|y0

)

dt
dt (E3)

where T
(b)
2h is the random variable for the time when the molecule starting in Region

II ′ leaves Region II ′ for the first time and
dP
“

T
(b)
1h <t|y0

”

dt dt is the probability that the

molecule leaves Region I ′ during time interval [t, t+ dt). Letting y0 = H1 − h, we have

E
[
T

(b)
h |H1 − h

]
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= E
[
TR

(b)
1h |H1 − h

]
+

∫ ∞

0

{
E
[
T

(b)
2h |H1 + h

]
+ E

[
T

(b)
h |H1 − h

]} dP
(
T

(b)
1h < t|y0

)

dt
dt

=

∫ ∞

0

{
P

(b)
1b (t,H1 − h) + P

(b)
1bc(t,H1 − h)

}
dt

+
{
E
[
T

(b)
2h |H1 + h

]
+E

[
T

(b)
h |H1 − h

]} ∫ ∞

0

dP
(
T

(b)
1 < t|H1 − h

)

dt
dt

=

∫ ∞

0

{
P

(b)
1b (t,H1 − h) + P

(b)
1bc(t,H1 − h)

}
dt

+
{
E
[
T

(b)
2h |H1 + h

]
+E

[
T

(b)
h |H1 − h

]}
lim
t→∞

(
1 − P

(b)
1br(t,H1 − h)

)

Therefore,

E
[
T

(b)
h |H1 − h

]

=
E
h

T
(b)
2h

|H1+h
i

limt→∞

“

1−P
(b)
1br

(t,H1−h)
”

+
R

∞

0

n

P
(b)
1b

(t,H1−h)+P
(b)
1bc

(t,H1−h)
o

dt

limt→∞ P
(b)
1br(t,H1−h)

.

If (x0, y0) is in Region II ′, we have

∂p
(b)
2 (x, y, t|x0, y0, 0)

∂t
= D2∆p

(b)
2 (x, y, t|x0, y0, 0)

p
(b)
2 (x, y, 0|x0, y0, 0) = δ(x− x0)δ(y − y0),

∂p
(b)
2 (x, y, t|x0, y0, 0)

∂x
= 0, at x = 0 and x = L,

p
(b)
2 (x, y, t|x0, y0, 0) = 0, at y = H1 − h,

∂p
(b)
2 (x, y, t|x0, y0, 0)

∂y
= 0, at y = H1 +H2.

Similar to Section 2.3.1, we can get

E
[
T

(b)
2h |y0

]
=

∞∑

i=0

16(H2 + h)2 sin (2i+1)π(y0−(H1−h))
2(H2+h)

D2(2iπ + π)3
.

Then the average time for the molecule starting at y = H1 − h is

E
[
T

(b)
h |H1 − h

]



142

=

∞∑

i=0

16(H2 + h)2 sin (2i+1)πh
H2+h

D2(2iπ + π)3


1 − k+kb

∞∑

j=0

Xj


+ (k+ + k− + kb)

∞∑

i=0

Xi

k+kb

∞∑

i=0

Xi

,

where Xi =
4(−1)i cos

(2i+1)π(H1−h)
2(H1+h)

(2j+1)π(k+kb−C0i(k−+kb))
.

If y0 < H1, we can substitute E
[
T

(b)
h |H1 − h

]
into Eq. (E3) and get E

[
T

(b)
h |y0

]
. If

y0 > H1, we have

E
[
T

(b)
br |y0

]
= E

[
T

(b)
2h |y0

]
+E

[
T

(b)
br |H1 − h

]

If the initial position of the molecule is uniformly distributed in the whole domain,

we have the average time for the molecule to become of species BR as follows:

E
[
T

(b)
br

]
= lim

h→0

∫ H1+H2

0

E
[
T

(b)
h |y0

]

H1 +H2
dy0

=
H1H2

D2

∞∑

i=0

Ai

{
1

2k+kb
− H1

H1 +H2

∞∑

i=0

Ai

(2iπ + π)2

}
(E4)

+
k+ + k− + kb

k+kb
+

32H3
2

D2(H1 +H2)

∞∑

i=0

1

(2iπ + π)4
,

where Ai = 1

k+kb+
“

2iπ+π
2H1

”2
D1(k−+kb)

.

6.2 Stochastic fluctuations in dorsal surface patterning in

Drosophila

Parameter Description Value Reference

Diffusion Diffusion

Coefficients

DB B in the PV space 7.3 ∗ 10µm2

sec [5]

DMad Mad in the cytoplasm 1.6 ∗ 10µm2

sec estimated

and in the nucleus
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DpMad pMad in the cytoplasm 1.6 ∗ 10µm2

sec estimated

and in the nucleus

DmRNA mRNA in the cytoplasm 3 ∗ 10−2 µm2

sec [77, 78]

and in the nucleus

DpMad2 pMad2 in the cytoplasm 1.3 ∗ 10µm2

sec estimated

and in the nucleus

DMe Madea in the cytoplasm 1.4 ∗ 10µm2

sec estimated

and in the nucleus

DpMMe D pMad/Madea in the cytoplasm 1.2 ∗ 10µm2

sec estimated

and in the nucleus

DpMad2ME pMad2/Madea in the cytoplasm 1.05 ∗ 10µm2

sec estimated

and in the nucleus

Production / Degradation

ksb ∅ → B 1 nM
min estimated

in the PV space

kdb B → ∅ in the PV space 3.3 ∗ 10−2 1
min [5]

ksr ∅ → R in the PV space 5 ∗ 10−4 nM
min estimated

kdr R→ ∅ 5 ∗ 10−4 1
min [5]

in the PV space and cytoplasm

kdc C → ∅ 1.67 ∗ 10−4 1
min [5]

in the PV space and cytoplasm

kdbr BR→ ∅ 1.67 ∗ 10−4 1
min [5]

in the PV space and cytoplasm

kdbc BC → ∅ 1.67 ∗ 10−4 1
min [5]

in the PV space and cytoplasm

kdbcr BCR→ ∅ 1.67 ∗ 10−4 1
min [5]

in the PV space and cytoplasm

kdmrna mRNA→ ∅ 6.6 1
min [83]

in the cytoplasm

ksc mRNA→ Ccyto +mRNA 1 1
min estimated
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in the cytoplasm

kdmrnan mRNA→ ∅ 0 estimated

kbt DNA→ TEC +DNA 2 1
min [81]

Basal transcription rate

ket DNA→ TEC +DNA 20 1
min [81]

Transcription enhanced by

transcription factors binding

Receptor Interactions

k4 B + C → BC 1 1
nM∗min [5]

k−4 BC → B + C 2 1
min [5]

k5 B +R→ BR 2.4 ∗ 10−2 1
nM∗min [5]

k−5 BR→ B +R 4 1
min [5]

k6 BC +R→ BCR 0.5 1
nM∗min [5]

k−6 BCR→ BC +R 10 1
min [5]

k7 BR+ C → BCR 1.3 ∗ 10−1 1
nM∗min [5]

k−7 BCR→ BR+ C 10 1
min [5]

Cytoplasmic Interactions

kMad BR+Mad→ pMad+BR 2.4 ∗ 10−2 1
nM∗min [6]

k8 2pMad→ pMad2 1.1 ∗ 10−1 1
nM∗min [6]

pMad+Me→ pMMe

k−8 pMad2 → 2pMad 1 1
min [6]

pMMe→ pMad+Me

Nuclear Interactions

k−pMadn pMad→Mad 3.96 ∗ 10−1 1
min [6]

k8 2pMad→ pMad2 1.1 ∗ 10−1 1
nM∗min [6]

pMadn+Me→ pMMe

k−8 pMad2 → 2pMad 1 1
min [6]

pMMe→ pMad+Me

kon pMad2 +DNA→ pMad2DNA 60 1
nM∗min [79]

pMMe+DNA→ pMMeDNA

koff pMad2DNA→ pMad2n+DNA 6.7 ∗ 10−2 1
min [79]
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pMMeDNA→ pMMe+DNA

krnaprod TEC → mRNA 6.7 ∗ 10−2 1
min estimated

Movement Across Membrane

kendo Endocytosis rate of 3.33 ∗ 10−1 1
min [70]

BR, BCR, C and BC

kex Exocytosis rate of 3.33 ∗ 10−2 1
min [?]

BR, BCR, C and BC

kmin Nuclear import rate of 1.56 ∗ 10−1 1
min [6]

Mad,pMad and Madea

kin Nuclear import rate of 9 ∗ 10−1 1
min [6]

pMad2 and pMME

kout Nuclear outport rate of 3.36 ∗ 10−1 1
min [6]

Mad and pMad

kmout Nuclear import rate of Madea 1.56 ∗ 10−1 1
min [6]

ksec Ccyto → C 1 1
min estimated

Secretion rate of C
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