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Introduction

The effects of the interaction between cellular- and tumor-scale processes on
cancer progression and treatment response remain poorly understood (for in-
stance, the crucial role of the microenvironment in cancer growth and invasion
[95, 65, 184, 183, 160, 110, 66, 166]). Three-dimensional tissue morphology, cell
phenotype, and molecular phenomena are intricately coupled; they influence
cancer invasion potential by controlling tumor-cell proliferation and migration
[78, 187, 198]. Hypoxia [88, 210, 186, 70, 91], acidosis [91, 199, 96], and associ-
ated diffusion gradients, caused by heterogeneous delivery of oxygen and nutri-
ents and removal of metabolites [104, 103] due to highly disorganized microvas-
culature [92, 106] and often exacerbated by therapy (e.g., anti-angiogenic
[160, 177]), can induce heterogeneous spatial distribution and invasiveness
of tumor cells through a variety of molecular [175, 209, 208, 44, 165, 173, 145,
118, 28, 29, 190, 156, 185, 120, 122, 24, 160, 177, 174, 61] and tissue-scale
[59, 127, 72] mechanisms corresponding to different tissue-scale invasive pat-
terns [78, 164, 194, 167, 111, 187, 198, 204, 117, 206, 64, 179, 75, 77, 53, 172].
Such complex systems, dominated by large numbers of processes and highly
nonlinear dynamics, are difficult to approach by experimental methods alone
and can typically be better understood only by using appropriate mathemat-
ical models and sophisticated computer simulations, complementary to lab-
oratory and clinical observations. Mathematical modeling has the potential
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to provide insight into these interactions through studies based on physical
processes that treat cancer as a system. Our basic hypothesis, supported by
an integrative approach combining sophisticated mathematical models with
in vitro and in vivo experiments, is that the characteristics of the tumor-
host interface can be used to predict the underlying dynamical interactions
between tumor cell proliferation and adhesion, which, in turn, reflect both
micro-environmental factors and cellular gene expression.

Over the past 10 years, activity in mathematical modeling and computa-
tional (in silico) simulation of cancer has increased dramatically (e.g., reviews
such as [3, 26, 16, 37, 181, 168]). A variety of modeling strategies have been
developed, each focusing on one or more aspects of cancer. Cellular automata
and agent-based modeling, where individual cells are simulated and updated
based upon a set of biophysical rules, have been developed to study genetic
instability, natural selection, carcinogenesis, and interactions of individual
cells with each other and the microenvironment. Because these methods are
based on a series of rules for each cell, it is simple to translate biological
processes (e.g., mutation pathways) into rules for the model. However, these
models can be difficult to study analytically, and computational costs can in-
crease rapidly with the number of cells. Because a 1-mm tumor spheroid may
have several hundred thousand cells, these methods could become unwieldy
when studying tumors of any significant size. See [10, 4, 138] for examples of
cellular automata modeling, and [139, 1] for examples of agent-based mod-
eling. In larger-scale systems where the cancer cell population is on the or-
der of 1,000,000 or more, continuum methods may provide a more suitable
modeling technique. Early work including [90, 39, 40] used ordinary differ-
ential equations to model cancer as a homogeneous population, as well as
partial differential equation models restricted to spherical geometries. Linear
and weakly nonlinear analyses have been performed to assess the stability of
spherical tumors to asymmetric perturbations [49, 42, 59, 127, 16, 37] in order
to characterize the degree of aggression. Various interactions of a tumor with
the microenvironment, such as stress-induced limitations to growth, have also
been studied [108, 6, 7, 176, 17, 18, 5]. Most of the modeling has considered
single-phase (e.g., single cell species) tumors, although multiphase mixture
models have also been developed to provide a more detailed account of tumor
heterogeneity [7, 43, 50].

Recently, nonlinear modeling has been performed to study the effects of
morphology instabilities on both avascular and vascular solid tumor growth.
Results from this research will be the focus of this chapter, subdivided into
four sections. Cristini et al. (2003) [59] used boundary integral methods (Sect.
1) to perform the first fully nonlinear simulations of a continuum model of
tumor growth in the avascular and vascularized growth stages with arbitrary
boundaries. These investigations of the nonlinear regime of shape instabilities
predicted encapsulation of external, non-cancerous tissue by morphologically
unstable tumors. Li et al. (2007) [127] extended upon [59] in 3-D via an adap-
tive boundary integral method. Zheng et al. (2005) [212] (Sect. 2) built upon
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the model in [59] to include angiogenesis and an extratumoral microenviron-
ment by developing and coupling a level set implementation with a hybrid
continuum-discrete angiogenesis model originally developed by Anderson &
Chaplain (1998) [11]. As in [59], Zheng et al. found that low-nutrient (e.g.,
hypoxic) conditions could lead to morphological instability. Their work served
as a building block for recent studies of the effect of chemotherapy on tumor
growth by Sinek et al. (2004) [188] and for studies of morphological insta-
bility and invasion by Cristini et al., (2005) [55] and Frieboes et al. (2006)
[74]. Hogea et al. (2006) [97] have also begun exploring tumor growth and
angiogenesis using a level set method coupled with a continuum model of an-
giogenesis. Macklin & Lowengrub (2007) (Sect. 3) used a ghost cell/level set
method [136] for evolving interfaces to study tumor growth in heterogeneous
tissue and further studied tumor growth as a function of the microenviron-
ment [135]. Finally, Wise et al. (in review) [202] and Frieboes et al. (in review)
[73] have developed a diffuse interface implementation of solid tumor growth
to study the evolution of multiple tumor cell species, which was employed in
Frieboes et al. (in press) [72] to model the 3-D vascularized growth of malig-
nant gliomas (brain tumors) (Sect. 4).

1 Solid Tumor Growth Using a Boundary-Integral
Method*

1.1 Overview

In [59] and [127] we studied solid tumor growth in the nonlinear regime using
boundary integral simulations in 2-D and 3-D to explore complex morpholo-
gies. A new formulation of classical models [90, 142, 40, 41] demonstrated
that non-necrotic tumor evolution could be described by a reduced set of two
parameters that characterize families of solutions. The parameter G describes
the relative rate of mitosis to the relaxation mechanisms (cell mobility and
cell-to-cell adhesion). The parameter A describes the balance between apop-
tosis and mitosis. Both parameters also include the effect of vascularization.
The analysis revealed that tumor evolution is qualitatively unaffected by the
number of spatial dimensions. The 2-D simulations presented in [59] were the
first fully nonlinear simulations of a continuum model of tumor growth, al-
though there had been prior work on cellular automata-based simulations of
tumor growth (e.g. see [109] and references therein).

Results reveal that the two new dimensionless parameters uniquely sub-
divide tumor growth into three regimes associated with increasing degrees

t Portions of this section are reprinted from Journal of Mathematical Biology,
Cristini et al. Vol. 46, pp. 191-224, Copyright 2003 Springer (with kind permis-
sion of Springer Science and Business Media), and with permission from Discrete
and Continuous Dynamical Systems - Series B, Li et al., Vol. 7, pp. 581-604,
Copyright 2007 American Institute of Mathematical Sciences.
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of vascularization: low (diffusion dominated), moderate, and high vascular-
ization. Critical conditions exist for which the tumor evolves to nontrivial
dormant states or grows self-similarly (i.e., shape invariant). Away from these
critical conditions, evolution may be unstable leading to invasive fingering
into the external tissues and to topological transitions such as tumor breakup
and reconnection. Interestingly, the shape of highly vascularized tumors al-
ways stays compact and invasive fingering does not occur, even while growing
unbounded. This is in agreement with experimental observations [151] of in
vivo tumor growth and suggests that invasive growth of highly vascularized
tumors is associated to vascular and elastic anisotropies (such as substrate
inhomogeneities). Existence of non-trivial dormant states was recently proved
[81], but no examples of such states were given until this work. The self-similar
behavior described here is analogous to that recently found in diffusional crys-
tal growth [58], and leads to the possibility of shape control and of controlling
the release of tumor angiogenic factors by restricting the tumor volume-to-
surface-area ratio. This could restrict angiogenesis during growth.

In the model, a tumor is treated as an incompressible fluid, and tissue
elasticity is neglected. Cell-to-cell adhesive forces are modeled by a surface
tension at the tumor-tissue interface. Growth of tumor mass is governed by a
balance between cell mitosis and apoptosis (programmed cell-death). The rate
of mitosis depends on concentration of nutrient and growth inhibitor factors
that obey reaction-diffusion equations in the tumor volume. The bulk source
of factors is the blood. The concentration of capillaries in the tumor is assumed
to be uniform, as are concentrations of factors in the external tissues. This
work focused on the case of nonnecrotic tumors [38] with no inhibitor factors.
These conditions apply to small-sized tumors or when nutrient concentrations
in the blood and in external tissues are high. Such a model should over-predict
growth away from these conditions.

To simulate solid tumor growth in 3-D [127], we developed a new, adaptive
boundary integral method by extending to 3-D the continuum model in [59].
The 3-D problem is considerably more difficult owing to the singularities of
the integrals and the 3-D surface geometry. In 2-D, it is possible to develop a
spectrally accurate numerical algorithm together with a non-stiff time updat-
ing scheme for the tumor-host interface position. The numerical method relies
on accurate discretizations of singular surface integrals, a spatial rescaling and
the use of an adaptive surface mesh originally developed by [54]. In both 2-D
and 3-D, discretized boundary integral equations are solved iteratively using
GMRES, and a discretized version of the Dirichlet-Neumann map is used to
determine the normal velocity of the tumor surface. In 3-D, a version of the
Dirichlet-Neumann map is used that relies on a vector potential formulation
rather than a more standard double-layer potential. The vector potential has
the advantage that singularity subtraction can be used to increase the order
of accuracy of the numerical quadrature. Because of the difficulties in imple-
menting an implicit time-stepping algorithm in 3-D, we instead used explicit
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time stepping with numerical fitting, which allows us to achieve acceptably
large time steps.

Although the mathematical tumor model considered here is highly simpli-
fied, this work provides a benchmark to assess the effects of additional bio-
physical processes not considered, such as necrosis, multiple tumor cell types,
tissue stress, angiogenesis and a developing neovasculature as well as other
microenvironmental features and inhomogeneities. In addition, the boundary
integral results serve as a benchmark for validating other numerical methods
(e.g. level set, mixture models) that are capable of simulating more complex
biophysical processes.

1.2 Model Formulation

The model has only one intrinsic length scale, the diffusional length Lp, and
three intrinsic time scales corresponding to the relaxation rate A\r (associated
to Lp, cell mobility and cell-to-cell adhesion), the characteristic mitosis rate
Ay and the apoptosis rate A4. The dimensional problem can be reformulated
in terms of two nondimensional decoupled problems:

Vir-r=0, (Ng=1 (1)

X X
V=0, (p)s=r-AGE 22 )
in a d-dimensional tumor. Time and space have been normalized with the
intrinsic scales Lp and )\]}1, the interface X separates tumor volume from
external tissue, and variables I" and p represent a modified nutrient concen-
tration and a modified pressure (see [59] for definitions). Tumor surface X (of
local total curvature &) is evolved using normal velocity
n-(xX)sy

V = n-(p)s + Gn-(v1)s - AGE 02 Q
where n is the outward normal to X' and x is position in space. The instanta-
neous problem as stated has only two dimensionless parameters:

A Aa/Anv — B
G=—(1-B A= ——— 4

The former describes the relative strength of cell mitosis to the relaxation
mechanisms, and the latter describes the relative strength of cell apoptosis
and mitosis. Effects of vascularization are in the parameter B (defined in
[59]). Note that in the context of steady solutions, parameter A is related to
parameter A (introduced in [38]) by A = 3A. The rescaled rate of change of
tumor volume H = [, dz? is defined as the mass flux J = 4H = [ Vda®t.
By using (1) and (2) we obtain from (3):

J=-G | Idz®— AGH (5)
(7]
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1.3 Regimes of Growth

Considering evolution of a radially symmetric tumor identifies regimes of
growth. The interface X' is an infinite cylinder for d = 2 or a sphere for
d = 3, with radius R(t). All variables have only r-dependence, where r is the
polar coordinate. Equations (1)-(2) have the nonsingular solutions

Io(r) _
rep=] P T ©)
r, =
(sinthR) )_1 ( sinh(r) ) d=3

r )

and p(r,t) = (d — 1)R~! — AGR?/ (2d). Note that p(r,t) = p(R,t), i.e., p is
uniform across the tumor volume. From (3) the evolution equation for the
tumor radius R is:

Li(R) _
To(R) d=2,

1 1 _
(tanh(R) o R)’ d=3

For a radially symmetric tumor, |G| rescales time. In all dimensions, un-
bounded growth (R — oo) occurs if and only if AG < 0. Growth velocity
is plotted for d = 2 in Fig. 1. Note that, for d = 3, results are qualitatively
similar and were reported in Fig. 9 in [38], although in the framework of the
original formulation the growth regimes had not been identified. The figure is
included here to identify the growth regimes. For given A, evolution from ini-
tial condition R(0) = Ry occurs along the corresponding curve. Three regimes
are identified, and the behavior is qualitatively unaffected by the number of
spatial dimensions d.

dR R

S vy = A
o v Gd+G (7)

1. Low wvascularization: G > 0 and A > 0 (i.e., B < Aa/An). Note that
the special case of avascular growth (B = 0) belongs to this regime. Evolution
is monotonic and always leads to a stationary state R, that corresponds to
the intersection of the curves in Fig. 1 with the dotted line V' = 0. This be-
havior is in agreement with experimental observations of in vitro diffusional
growth [89] of avascular spheroids to a dormant steady state [147, 192]. In
the experiments, however, tumors always develop a necrotic core that further
stabilizes their growth [39].

2. Moderate vascularization: G > 0 and A < 0 (i.e., 1 > B > Aa/Aym)-
Unbounded growth occurs from any initial radius Ry > 0. The growth tends
to exponential for A < 0 with velocity V. — —AGR/d as R — oo, and to
linear for A = 0 with velocity V — G as R — oo.

3. High wvascularization: G < 0 (i.e., B > 1). For A > 0, growth (V' > 0)
may occur, depending on the initial radius, and is always unbounded; for
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A < 0 (for which cell apoptosis is dominant: A4/Ay; > B), the evolution is
always to the only stationary solution R., = 0. This stationary solution may
also be achieved for A > 0. The stationary radius R is independent of G,
and is a solution of V' = 0 with V' from (7). The stationary radius has limiting
behaviors

R, —dA™l, A0,

Roo —d¥(d+2)5(1—A)}, A—1 ()

where R, vanishes. Note that the limit A — 1 corresponds to A4 — Ajp.

Pressure Po at the center of the tumor (r = 0) can be calculated as (see
[59]):

P 1/Io(R), d=2,
¢ —(d-1)/R+G - AGR?/(2d) — G (9)
v/Lp R/sinh(R), d=3

which has asymptotic behavior Po(v/Lp)~" — —AGR2?/(2d) as R — oo,
indicating that if tumors grows unbounded (AG < 0) the pressure at the
center also does (unless A = 0). This is a direct consequence of the absence of a
necrotic core in this model. In reality, increasing pressure may itself contribute
to necrosis [150, 163]. It is known [46] that tumor cells continuously replace the
loss of cell volume in a tumor because of necrosis, thus maintaining pressure
finite.

1.4 Linear Analysis

Consider a perturbation of the spherical tumor interface X

cos(l0), d=2,
R(t) +6(t) (10)
Yim(0,0), d=3

where § is dimensionless perturbation size and Y] ,, is a spherical harmonic,
where [ and 6 are polar wavenumber and angle, and m and ¢ are azimuthal
wavenumber and angle. By solving the system of (1)-(3) in the presence of
a perturbed interface we obtain evolution (7) for unperturbed radius R and
perturbation size ¢ using the shape factor 6/R:

G_M_GHJH(R)_GIL+1(R)11(R)+ZATG’ d=2

R3 R Io(R) L(R) Io(R)
§._,d% ~
(E)fldilg -da- l(l-‘rQI%gl 1)
143 I (R) 1 1 AG _
_(G%—’_Gl;if;i(R))(tanh(R) - E)—’—IT’ d=3

(11)
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Note that linear evolution of the perturbation is independent of azimuthal
wavenumber m and there is a critical mode . such that perturbations grow
for I < I, and decay for [ > [.. The critical mode depends on the parameters A,
G and the evolving radius R. This agrees with the linear analyses presented
in [90, 38, 41] for the special case where the unperturbed configuration is
stationary (i.e. R constant).

1.5 Results
Unstable Growth in 2-D

We investigate unstable evolution in the low-vascularization (diffusion domi-
nated) regime, characterized by G, A > 0, for d = 2 using nonlinear boundary
integral simulations. The linear analysis demonstrates that evolution in the
other regimes is stable for d = 2. In Fig. 2, the evolution of the tumor surface
from a nonlinear boundary integral simulation with N = 1024 and At = 1073
(solid curve) is compared to the result of the linear analysis (dotted). In this
case A = 0.5, G = 20, and the initial shape of the tumor is

(x(a),y(a)) = (24 0.1 cos(2a)(cos(a), sin(c)) (12)

According to linear theory ((7) and Fig. 1), the tumor grows. The radially
symmetric equilibrium radius R, & 3.32. Mode [ = 2 is linearly stable ini-
tially, and becomes unstable at R = 2.29. The linear and nonlinear results
in Fig. 2 are indistinguishable up to ¢t = 1, and gradually deviate thereafter.
Correspondingly, a shape instability develops and forms a neck. At ¢t ~ 1.9
the linear solution collapses suggesting pinch-off ; the nonlinear solution is
stabilized by the cell-to-cell adhesive forces (surface tension) that resist de-
velopment of high negative curvatures in the neck. This is not captured by
the linear analysis. Instead of pinching off, as is predicted by linear evolution,
the nonlinear tumor continues to grow and develops large bulbs that eventu-
ally reconnect thus trapping healthy tissue (shaded regions in the last frame
in Fig. 2) within the tumor. The frame at t = 2.531 describes the onset of
reconnection of the bulbs. We expect that reconnection would be affected by
diffusion of nutrient outside the tumor, which is not included in the model
used here. However, predictions of development of shape instabilities and of
capture of healthy tissue during growth are in agreement with experimental
observations [169].

We have found that during unstable evolution the linear and nonlinear
solutions deviate from one another with the nonlinear solution being stabilized
against pinch-off and leading instead to tumor reconnection and encapsulation
of healthy tissue at later times as observed experimentally [169]. Reconnection
occurs even when the amount of apoptosis is increased.
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Unstable Growth in 3-D

We investigate the nonlinear, unstable evolution of 3-D tumors in the low-
vascularization regime characterized by G > 0 and A > 0 by focusing on the
parameters G = 20 and A = 0.5. Note that a spherical tumor with these
parameters reaches a steady state with corresponding scale factor S = 4.73.
The evolution is considered using three different initial conditions. In Fig. 3,
the morphological evolution of a tumor is shown from the initial radius

r=1+0.033Y22(0, ¢) (13)

with the initial scale factor S(0) = 3.002. Two 3-D views of the morphology
are shown, as indicated. The tumor does not change volume in the simulation
because spatial rescaling is used in the algorithm. The associated evolution of
the scale factor S(t) is shown in Fig. 4a.

At early times, the perturbation decreases and the tumor becomes sphere-
like. As the tumor continues to grow, the perturbation starts to increase
around time ¢ = 0.4 when the scale factor S ~ 3.7. The tumor then takes
on a flattened ellipse like shape. Around time ¢ ~ 2.2 when S = 4.6, the
perturbation growth accelerates dramatically, and dimples form around time
t ~ 2.42. The dimples deepen, and the tumor surface buckles inwards. The
instability and dimple formation allow the tumor to increase its surface area
relative to its volume, thereby allowing the cells in the tumor bulk greater
access to nutrient. This in turn allows the tumor to overcome the diffusional
limitations on growth and to grow to larger sizes than would be possible if the
tumor were spherical. For example, in Fig. 3d, the scale factor S ~ 4.78, which
is larger than the corresponding value (4.73) for the steady state spherical tu-
mor. (Note that the tumor is continuing to grow.) This provides additional
support in 3-D for the hypothesis put forth by [59, 55, 56] based on 2-D sim-
ulations that morphologic instability allows an additional pathway for tumor
invasion that does not require an additional nutrient source such as would be
provided from a newly developing vasculature through angiogenesis.

In this simulation, the number of mesh points is N = 1024 initially. As
seen in Fig. 3, the mesh adaptively clusters near the dimples where there is
large negative curvature thereby providing enhanced local resolution. At the
final time ¢ty = 2.67 (with S ~ 4.78) there are N = 2439 nodes on the tumor
surface. To compute for longer times, higher resolution is necessary.

‘We next compare the nonlinear results with the predictions of linear theory.
To estimate the shape perturbation size § in the nonlinear simulation, we take

0 = maxy |ry — 1] (14)

since the overall bulk growth is scaled out of the nonlinear evolution by the
scale factor S(t) (the maximum is taken over all the computational nodes of
the interface).

In Fig. 4b, the results of linear theory (solid) and nonlinear simulations
(dashed-dot) for the perturbation size are shown as functions of S(¢) for the
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evolution from Fig. 3. Linear theory predicts that for G = 20, A = 0.5, the
2-mode is stable for S < 3.54. This is borne out by the nonlinear simulation
that agrees very well with the linear theory up until S = 3.5 where the linear
theory predicts the perturbation starts to grow. In the nonlinear simulation,
the perturbation continues to decay until S =~ 3.7. Although the linear and
nonlinear results deviate at larger S with linear theory predicting larger per-
turbations, the qualitative behavior of the shape perturbation is very similar
in both cases. In particular, there is rapid growth of the perturbation near
R ~ 4.6. The circled points labeled A-D on the dashed-dot curve (nonlinear
simulation) correspond to the morphologies shown in Figs. 3a—d. Note that
at the final time, the nonlinear perturbation § ~ 0.5, and so the evolution is
highly nonlinear.

In Figs. 4c and 4d, the nonlinear and linear tumor morphologies, respec-
tively, are shown at time ¢ = 2.668 where S ~ 4.78 and Sjjjeqy ~ 4.73. The
linear morphology is generated by evolving a sphere to the shape prescribed
by linear theory. This is why the linear solution is shown with a triangulated
mesh. The corresponding nonlinear and linear perturbation sizes are § = 0.496
and §/R = 0.42 respectively. Note that the reason the linear result is smaller
than the nonlinear value at this time is because the linear scale factor is
slightly less than that from the nonlinear simulation which, when combined
with the rapid growth of the perturbation around S = 4.76, gives rise to this
behavior.

As seen in Figs. 4c and 4d, the nonlinear tumor morphology is more com-
pact than the corresponding linear result. In fact, the linear perturbation
eventually grows so large that the tumor pinches off in the center. In con-
trast, nonlinearity introduces additional modes that alter the growth direc-
tions, from primarily horizontal in Fig. 4d to more vertical in Fig. 4c, thereby
avoiding pinch-off and resulting in more compact shapes. This is consistent
with the 2-D results of [59].

Nontrivial Stationary States

We study the case of nontrivial nonlinear stationary states in the low-
vascularization regime. That such states exist was recently proved [81] and
is predicted by linear theory. To see this, let us consider the linear evolution
of a perturbation of a stationary radius R... The stationary radius is solution
of (7) with V' = 0 (see also the related text) and is a function of 0 < A < 1.
Thus, the flux J = 0 and (11) indicates that there exists a critical

_3 20(1%-1) _
R 2—A2F Roo 111 (Roo)/T1(Roo)]’ d=2,
G = (15)
R-3 31(1—1)(1+2) d=3

20 3—A[B+Rool143/2(Roo)/T141/2(Roo)]’

such that for G = G, the perturbation also remains stationary. It can be
shown that for both d = 2 and d = 3, G; > 0 and a perturbed stationary
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shape always exists. The perturbation §/R, grows unbounded for G > G
and decays to zero for G < G;. At large radii Ry, G; — 0; thus, in this limit
perturbations of stationary states always grow unbounded.

Next consider the nonlinear evolution for d = 2 of a mode [ perturbation,
which is predicted by the linear theory to be stationary. We let the value of
G be equal to G;, with R = R.,. Although the perturbations are linearly
stationary, there is evolution due to nonlinearity. Our results (not shown)

strongly suggest that for given [ there exists a critical G%\IL < Gy such that

for G = G}\IL a nonlinear, nontrivial steady shape exists. Thus, nonlinearity
is destabilizing for the stationary shapes. This is in contrast with the results
obtained earlier where nonlinearity stabilizes the pinch-off predicted by linear
theory during unstable evolution. Finally, as expected, the deviation of G}\IL
from the linear G is second order (not shown).

Self-similar evolution

We investigate conditions for which the tumor grows self-similarly, thus main-
taining its shape. This should have implications for angiogenesis, or tumor vas-
cularization. It is known that angiogenesis occurs as tumor angiogenic factors
are released, diffusing to nearby vessels and triggering chemotaxis of endothe-
lial cells and thus the formation of a network of blood vessels that finally
penetrates the tumor providing nutrients. Assuming the flux of angiogenic
factors to be proportional to the tumor/tissue interface area and the rate of
production of angiogenic factors to be proportional to the tumor volume, we
conclude that self-similar evolution divides tumor growth in two categories:
one (stable growth) characterized by a decrease of the area-to-volume ratio
during growth thus hampering or preventing angiogenesis, and the other (un-
stable growth) characterized by an increase of the area-to-volume ratio and
thus favoring angiogenesis.

To maintain self-similar evolution during growth we may set %(5 /R)=0
identically. This can be achieved by keeping G constant and varying A as a
function of the unperturbed radius R by

2(12—1 I(R L1 (R)IL(R
MR 2+ DA + R -1, a2

3-=1)(1+2) 3y1 1 1
A= arr— T30+ %(aws — 7 (16)
31 (R) 3
TIiﬁZ(R) (tanlhR - %) E d=3

In Fig. 5 (top) apoptosis parameter A(R) is shown for d = 2 (dashed lines)
and d = 3 (solid). Growth velocity corresponding to self similar evolution, ob-
tained from (7) with A given by (16), is plotted in Fig. 5 (bottom). Curves of A
divide the plot into regions of stable growth and regions of unstable growth of
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a given mode (. Figures 5 top and bottom indicate that in low-vascularization
(diffusion-dominated) regime (G > 0, A > 0) self-similar evolution towards a
stationary state is not possible for G constant (stationary states R, corre-
spond to intersection of curves (16) in Fig. 5 (top) with the curves describ-
ing stationary radii). For instance, growth velocity V' < 0 for initial radius
Ry < Ry, and thus self-similar shrinkage of the tumor to zero occurs. On
the other hand, for Ry > Rs, V > 0, and thus self-similar growth away
from stationary radius occurs. In the high-vascularization regime (G < 0),
during self-similar evolution the velocity V < 0. Thus self-similar shrinkage
of a tumor from arbitrary initial condition to a point occurs, and self-similar
unbounded growth is not possible.

To summarize, self-similar evolution, with the possiblity of shape control,
is found in both low and high vascularization regimes with varying A and
constant G. However, in the low-vascularization regime, self-similar evolution
to a steady state does not occur under these conditions. Similarly, self-similar
unbounded growth in the high- or moderate-vascularization regimes does not
occur. Further examinations [59] reveal the possibility of self-similar evolution
to a steady-state in the low-vascularization regime and of unbounded self-

similar growth in the high vascularization regime by varying G in addition to
A).

Effect of Nonlinearity

We investigate the effect of nonlinearity on the self-similar evolution for d = 2
predicted by the linear analysis. As discussed above, self-similar evolution
requires time-dependent apoptosis parameter A = A(l,G, R) and plotted in
Fig. 5 (top). Radius R, used in the nonlinear simulation, is determined by
area of an equivalent circle: R = y/H/7w. In Fig. 6, the linear and nonlinear
solutions are compared in the low-vascularization regime for [ = 5, G = 1,
A=A(,G,R) and Ry = 4. Since V < 0, the tumors shrink and A increases.
In the left frame, o = 0.2 and in the bottom Jy = 0.4. Results reveal that
large perturbations are nonlinearly unstable and grow, leading to a topolog-
ical transition. In the right frame, the onset of pinch-off is evident. This can
have important implications for therapy. For example, one can imagine an
experiment in which a tumor is made to shrink by therapy such that A is in-
creased by increasing the apoptosis rate A 4. This example shows that a rapid
decrease in size can result in shape instability leading to tumor break-up and
the formation of microscopic tumor fragments that can enter the blood stream
through leaky blood vessels thus leading to metastases.

Evolution in the High Vascularization Regime

In the high-vascularization regime (G < 0), both shrinkage and growth of
tumors occur. Shrinkage (A < 0) may be stable, self-similar and unstable.
In contrast, unbounded growth (A > 0) is always characterized by a decay
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of the perturbation to zero with respect to the unperturbed radius and is
thus stable for both d = 2 and d = 3. In the nonlinear regime, self-similar and
unstable shrinkage are qualitatively very similar to that presented in Fig. 6. In
fact, all the nonlinear simulations of growth in the high vascularization regime
lead to stable evolution, in agreement with the linear analysis. In contrast,
it is known experimentally that highly vascularized cancers evolve invasively
by extending branches into regions of the external tissue where mechanical
resistance is lowest (e.g. [46]). Thus these results suggest that formation of
invasive tumors should be due to anisotropies rather than to vascularization
alone. Anisotropies (e.g., in the distribution of the resistance of the external
tissue to tumor growth, or in the distribution of blood vessels) have been
neglected in the model studied here. This conclusion has not been recognized
before and is supported by experiments [151] of in vivo angiogenesis and tumor
growth.

1.6 Summary

This work [59, 127] studied solid tumor growth in the nonlinear regime us-
ing boundary-integral simulations. In the model investigated [90, 142, 40, 41],
the tumor core is assumed to be non-necrotic and no inhibitor factors to
be present. A new formulation of this classical model was developed, and it
was demonstrated that tumor evolution can be described by a reduced set
of two dimensionless parameters and is qualitatively unaffected by the num-
ber of spatial dimensions. By constructing explicit examples using nonlinear
simulations, it was demonstrated that critical conditions exist for which the
tumor evolves to nontrivial dormant states or grows self-similarly. Self-similar
growth separates stable tumors that grow maintaining a compact shape from
unstable tumors, for which vascularization is favored and growth leads to
invasive fingering into the healthy tissues. The possibility of tumor shape con-
trol during growth is suggested [59] by simulating a physical experiment in
which the dimensionless parameters are varied in time to maintain stable or
self-similar growth conditions thus preventing invasive growth and hampering
angiogenesis. It can also be shown that nonlinear unstable growth may lead to
topological transitions such as tumor breakup and reconnection with encap-
sulation of healthy tissue [59]. The boundary integral methods reviewed here
provide evidence that morphologic instability represents an additional means
for tumor invasion.
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2 Vascularized Tumor Growth Using an Adaptive
Finite-Element /Level-Set Method$

2.1 Overview

In [212] we use a reformulation of several well-known continuum-scale models
of growth and angiogenesis ([90, 38, 39, 46, 11, 80, 25, 16]. We build upon the
biological complexity of previous models that used boundary integral methods
[59, 127] (described in Section 1.0), where tissue is represented as a constant
density fluid whose elasticity is neglected. Some cell-cell adhesion is modeled
using a surface force at the tumor interface. A single vital nutrient is modeled,
e.g., oxygen or glucose that is required for cell survival and mitosis. Nutrient
diffuses through the extracellular matrix (ECM) and is uptaken by tumor
cells. Growth in this case is diffusion limited and necrosis may occur, unlike
the methods in Sect. 1. Necrosis is represented as the region where nutrient is
depleted below a certain level needed for cell viability. Once necrosis forms, the
tumor releases tumor angiogenic factors (TAF), such as vascular endothelial
growth factor (VEGF), which stimulate vascular endothelial cells to migrate
toward the tumor. TAF is described through a reaction-diffusion equation with
a point boundary condition set on the necrotic rim, modeling the release of
TAF. Endothelial cells’ density (ECD) obeys a reaction-diffusion-convection
equation. The problem is convection-dominated, with primary source of con-
vection driven by chemotaxis of endothelial cells with respect to TAF concen-
tration. Actual formation of capillaries from endothelial cells is modeled using
a combined continuum-discrete model [11], coupling the vascular system with
tumor growth for the first time.

This combined continuum/discrete-scale model demonstrates the capabil-
ities for nonlinear simulation of in vivo cancer progression in two dimensions,
for which state-of-the art numerical methods based on sophisticated finite el-
ement techniques are necessary. The level set method [154] is employed for
capturing invasive fingering and complex topological changes such as tumor
splitting and reconnection, and healthy tissue capture. An adaptive, unstruc-
tured mesh [54] is used that allows for finely resolving important regions of
the computational domain such as the necrotic rim, the tumor interface and
around capillary sprouts. The adaptive mesh provides for enormous compu-
tational savings by greatly reducing the number of finite elements needed to
resolve the finest length scale, when compared to a structured mesh having
equal resolution.

§ Portions of this section are reprinted with permission from Bull. Math. Biol.,
Zheng et al. Vol. 67, pp. 211-259, Copyright 2005 Springer (with kind permission
of Springer Science and Business Media).
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2.2 Dimensional formulation of the model

The growth component of the model is inspired by the work of [90, 38, 39, 46,
80, 59]. The angiogenesis model is essentially that of [11] with some additions
gleaned from [52, 159, 157]. Figure 7 gives a basic description of these compo-
nents, oversimplifying the underlying tumor physiology. The growth block is
composed of nutrient transport, cell proliferation, and a constitutive equation
that relates interstitial pressure and cell velocity. The angiogenesis block is
composed of endothelial cell, fibronectin, and tumor angiogenic factor (TAF)
transport equations. The schematic also illustrates how the two blocks are
coupled throughout the evolution of a solid tumor. The instantaneous posi-
tion of the necrotic rim Xy (¢) is determined by solving the growth problem
and becomes an input to the angiogenesis problem by acting as a source of
angiogenic factors.

Transfer of nutrients from capillaries to the tissue (characterized by the
rate T.) depends on the instantaneous spatial distribution of capillaries deter-
mined by solving the angiogenesis problem and is an input to the growth block
by acting as a source of nutrients. Rates (inverse time scales) are denoted by
lowercase Greek letters with the following subscripts: (A) Apoptosis, (D) nat-
ural Degradation, (M) Mitosis, (N) Necrosis, (P) Production, or (U) Uptake.
An overbar on a symbol indicates a dimensional parameter; the absence of
an overbar indicates the corresponding nondimensional parameter. The field
variables are

concentration of tumor angiogenic factor (TAF) ¢
endothelial cell’s density (ECD) e

density of fibronectin f

concentration of (vital) nutrient n

pressure p

velocity u

Both dimensional and nondimensional fields are expressed by the same sym-
bol; the difference will be clear from the context.

Tumor Growth

Consider a computational tissue domain {2 that contains three disjoint sub-
domains, viable tumor {2y, necrotic core {2, and external healthy tissue 2
(cf. Fig 8). The necrotic core contains cells that are not viable due to a lack
of available nutrients and is defined as 2y = {x|n(x) < nx}\2y, where Ty
is the minimum nutrient level for cell viability. For simplicity, healthy cells
are assumed to remain viable even when nutrient falls below 7. The tumor
domain, which is defined as 27 = 2y U {2y, contains both viable and necrotic
cells. The nutrient concentration n obeys the following:
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T.—vyn ifze Ry

0=D,Vn+<{ T, if x € Ny (17)
0 if z € 2n

where D,, is a diffusion constant, Uy is nutrient consumption rate by the
tumor cells, and T'¢ is the capillary-to-tissue nutrient transfer function. There

is assumed no transfer of nutrients in the necrotic core. T, may vary depending
on the differences in nutrient and pressure levels between the capillaries and

the surrounding tissue. We use the simple model T, = T;ang + Tg)re where

T8 — A8 (m, — n)bA18 (p)s, (18)
—pre _ —
T = oD (m, — n)bP™(p) (19)

where ‘ang’ and ‘pre’ denote new capillaries formed during angiogenesis and
the uniformly distributed, preexisting capillaries, respectively. The 7, (* =
ang, pre) are nutrient transfer (production) rates for new and old capillaries,
T is nutrient concentration in capillaries, and p is tissue pressure. Pressure
functions b*(p) have the form b*(p) = H(p: — p) (D —p)/Dr, where D’ are new
and preexisting capillary blood pressures, pp is a characteristic tissue pressure.
d¢ is a dimensionless line delta function supported on the line domain Y¢,
where Y describes the positions of all those capillaries that have formed
loops in the new vasculature, hereby assuming that effective blood flow only
occurs in capillaries that have formed loops (see Fig 8). Integrating (17) gives
line-sources of nutrients emanating from the looped capillaries.

The nutrient concentration is fixed at the outer (far field) boundary
Yoo, is continuous (up to the first derivative) at interface X between the
tumor and healthy tissue domains and at the necrotic interface Xy =
{x|n(x) = nn} \ 2y between necrotic core and healthy tissue:

n = Mo on Y

n=npy, [ngn]: on Xy (20)

where ¢ and (n are unit normal vectors on X and Xy, respectively and [
denotes the jump of the quantity across the interface (value inside minus value
outside). Tumor cell proliferation leads to motion of the cells and growth of
the overall tumor. The divergence of the cell velocity field obeys equations
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)\Mn/ﬁoo_XA ifxe Ny
V-u=<¢0 if x € 2y (21)

—XN if x e Ny

where cell mitosis is assumed proportional to local nutrient concentration and
A is characteristic tumor cell mitosis rate. Parameter A4 is tumor cell apop-
tosis rate, and Ay is a rate of volume loss in the necrotic core modeling cell
necrosis and disintegration therein. Note that diffusion and chemotaxis of tu-
mor cells is neglected, which have been taken into account in the model by
[48], to emphasize tissue invasiondue to uncontrolled proliferation of tumor
cells. It should be noted that diffusion of cells is orders of magnitude smaller
than advection, and that extent of chemotactic response of tumor cells is not
universally agreed upon. Tumor cells are modeled at the continuum level as
a viscous fluid [e.g., see [46]] flowing through a porous medium (extracellu-
lar matrix). Accordingly, motion of tumor cells obeys Darcy-Stokes law [also
called the Brinkman equation [196]: in {2 the velocity and pressure are related
by

u—zViu=-nuVp (22)
where € is a constant and 7 is cell mobility. This is also called hydraulic
conductivity [196] and represents in this case the extent of cell motion in
response to a given pressure gradient, caused by nonhomogeneous cell pro-
liferation. We introduce £V?u as a regularization term for the velocity and
pressure and assume that € is sufficiently small. This term helps keep the
numerical scheme stable, especially with regard to the velocity calculation at
the tumor interface. However, (22) can be regarded as physical (Batchelor,
1967, Chapter 3 [21]) - whence & becomes related to viscous stress associated
to cell motion-upon introducing the physical pressure P, which is related to
calculated (regularized) pressure p through p = P — %V .

Velocity is assumed continuous across the necrotic rim, X'y, and tumor bound-
ary X

[ul=0o0n ¥N,[uj=00n X (23)
A regularized Laplace-Young jump condition is assumed at the tumor interface
2’ to model cell-cell adhesion:

((—pT + %w) ) = —FKC on (24)

where 7 is surface tension related to cell-to-cell adhesive forces, and k is local
total curvature. Note that in this case the pressure may still experience a
jump at the boundary when 7 = 0 and  # 0. At the outer boundary X, we
enforce the natural boundary condition:

(—pI + %Vu) (oo =0o0n X (25)
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Angiogenesis

Once a tumor cell senses that the nutrient level has dropped below the mini-
mum for viability, the cell releases tumor angiogenic factors (TAF) that diffuse
throughout the extracellular space. Endothelial cells become activated and mi-
grate through the extracellular matrix towards the highest concentration of
TAF at the necrotic rim of the tumor. As cell clusters move towards the tumor,
the vasculature extends, using endothelial cells to construct the lining of cap-
illaries (endothelium). This process is illustrated in Fig. 8. TAF molecules are
much smaller than cells and diffuse quickly through the extracellular spaces.
The quasi-steady reaction-diffusion equation is assumed for the concentration
c(x,t) of TAF in 2y and 2y

0=D.V%c— Bpc— Byce/en (26)

where D, is diffusion constant, 3, is rate of natural decay of TAF, 3 is
rate of uptake of TAF by endothelial cells (of density e), and €; is maximum
density of endothelial cells in (2. Here, as a simplifying step and to reduce
unknowns, parameters in the last equation are assumed homogeneous, which
is in general not valid. In particular, diffusion can be different inside the tumor
from outside, as the diffusivity should depend upon parameters such as cellular
density of tumor and healthy tissues.

Concentration of TAF is constant at the necrotic interface, modeling re-
lease of TAF by tumor cells as they undergo necrosis

c=7¢yon Xy (27)
No-flux boundary conditions are imposed on X:
(oo - Ve=10 (28)

where ( is the surface unit normal on Y.

A primary component of the extracellular matrix is fibronectin, a long
binding molecule that does not diffuse. Endothelial cells produce, degrade,
and attach to these molecules during their migration toward the tumor. The
concentration of fibronectin f(x,t) obeys

8 _
a—J; = ﬁpfoe/éo — ﬁUfe/éO - ﬁNX-QNf (29)

where 7, is rate of production of fibronectin by endothelial cells and 7, is rate
of degradation of fibronectin by endothelial cells. Degradation of fibronectin
is modeled due to the presence of the necrotic core, where 77, is rate of decay
in the necrotic core. The initial condition for concentration of fibronectin is
taken as f(x,0) = f,, where f, is fibronectin concentration in healthy tissue.
Xs is the characteristic function of the set S: yg(x) = 1 if x € S and vanishes
otherwise.
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Endothelial cells are comparable in size to healthy and tumor cells. How-
ever, we assume that the former are few enough in number that the interaction
of the former does not affect the calculation of the cell velocity u. Indeed, the
ratio of endothelial to tissue cells is of the order 1/50 or 1/100 [35]. On the
other hand, the motion of healthy and tumor cells is an important consid-
eration on convection of endothelial cells. Density e(x,t) of endothelial cells
(related to the probability to find the tip of a capillary at that location and
time) obeys the convection-reaction-diffusion equation in 2y and 2y

oe — Xc —
— =D 20 _ . S e—— u
ot Ve-V <(1+ac/zovc+vaf+x u)e)
e(eg — e c—¢F
—pDe+ﬁpyH(c—E*)(,7) — PNX2y€ (30)
€0 Co

where D, is diffusion constant, X,., X are chemotaxis and haptotaxis coeffi-
cients, respectively, and Xy and « are dimensionless constants (herein, take
xu = 0.2 and o = 0.1). As assumed in [11], diffusion is dominated by convec-
tion. ¢* is a concentration of TAF above which proliferation occurs. pp, p,,
and py are rates of natural degradation, production and necrosis of endothe-
lial cells, respectively. Initial condition for e is

e(x,0) = ¢ Z exp(—r?/s?) (31)

where m is number of initial capillary sprout-tips, r; is distance from the i-
th spout tip, and s, is a distance measuring spread of initial endothelial cell
clusters. Boundary condition for e(x,t) is

(oo - (Ve—D.Ve) =0 on X, (32)
where (s is the unit normal vector, and V is the full convective velocity:

Xc

v:f
1+ ac/co

Ve+ XV I+ xuu (33)
The model for motion of capillary sprout-tips is comprised of continuum and
discrete components [11]. Equations (26), (29) and (30) constitute the contin-
uum component. The discrete component is founded on the assumption that
growth of the capillary is simply determined by the biased random migration
(random walk) of a single endothelial cell at the sprout-tip. Given the time
invariant spatial step size hreg, and continuum fields c(x,tp) and f(x,to), the
model predicts the probabilities that at time tg + At the single cell stays at
x or moves to one of four nearest neighbor sites, x + hrege;, where e; are
the canonical orthonormal basis vectors. These probabilities are calculated

by finite-differencing (30) following the method of [11]. The algorithm then
updates the cell’s position by a weighted random selection based on the five
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probabilities. Besides tip migration, the discrete-continuum scheme can pre-
dict capillary branching and anastomosis (fusion), and recently this framework
has been used to include flow and the delivery of nutrients and drugs [141].
Unlike [11] or [141], we allow for the possibility that the entire capillary may
be convected by the external cell velocity using the kinematic condition

dx

dt
where x is the position on the capillary and pc is to be interpreted as the
mobility of the capillary (herein use the small value uc = 0.1). This is a
simplified model for the vasculature treating all points on the vessels the
same. In fact, as the network becomes more established in time the capillaries
become harder to move, which is not accounted for here. Also, the precise
characteristics of flow in the capillary network are not considered, except for
accounting for the pressure effect on flow according to (18).

pou (34)

2.3 Results

The reaction-diffusion equations in the model outlined above are solved using
an adaptive [54, 9] finite-element /level-set method in two spatial dimensions.
We present a simulation using the combined growth and angiogenesis models.
Complete model parameters are given in Figure 9. Computational domain is
2 = (—40,40) x (—40, 40). Details of the simulation for nondimensional times
t = 0 to 900 are displayed in Fig. 10 (only part of the domain is shown). Left
column shows current shape of the tumor interface (thick solid line), location
of the necrotic rim (thin), and new capillaries (solid branching and looping
lines) and contours of ECD (dashed). Plots of fibronectin concentration (FIB),
nutrient concentration (N), pressure (P), endothelial cell density (ECD), and
tumor angiogenic factor (TAF) concentration are also calculated; nutrient is
shown in the right column. The tumor is initially centered at the origin with
its interface given by

(z(0),y(0)) = (24 0.1cos(20))(cos(d), sin(h)) (35)

where 0 is the angle measured counterclockwise off of the x-axis. The tu-
mor is surrounded by six preselected capillary sprouts, which provide initial
conditions for the free endothelial cell clusters. To accentuate the effect of an-
giogenesis, the transfer of nutrients from the uniform vasculature is assumed
negligible in the near environment of the tumor (U;I,) "® = 0), and the nutrient
is assumed to come only from the outside environment (n = 1 on Yo,) and
from the neo-vasculature.

Microphysical Parameters for Malignant Glioma

Input parameters were selected based on the following considerations. In vivo,
for example, malignant glioma (brain tumor), apoptosis is probably negligible
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(Aa = 0) since mutated clones after the initial selection has occurred are typi-
cally characterized by suppression of the p53 pathway and enhanced prolifera-
tion [137], and even normal glial cells are immortal. From experiments [74] on
growth of glioblastoma cell lines (the most malignant and proliferative brain
tumors) as multicellular millimeter-size spheroids in vitro, it was observed
that typically mitosis rate Ap; ~ 0.3 day ™!, that rate of volume loss in the
necrotic core is comparable or less than the rate of volume gain from mitosis,
hence the choice Ay = 0.25, and finally that minimum nutrient concentration
for cell viability is a small fraction of outer uniform concentration in growth
medium [74], hence the choice of a value for ny < 1 (although the value of
this parameter may be affected by the difficulty of reproducing the in vivo
conditions in vitro). Dimensionless nutrient concentration in the blood is cho-
sen as ngo = 1, i.e., in equilibrium with the concentration in the undisturbed
. . . ang . .
tissue environment. Nutrient transfer rate v, © is set after some experimen-
tation to a value that provides a continuous supply of nutrient during the
tumor’s entire evolution, in order to reproduce in vivo growth and infiltration
of neo-vascularized glioblastoma [137]. A value for the pressure is chosen as
pgng = O(1) in the capillaries, thus in near equilibrium with interstitial pres-
sure in glioma. By considering a characteristic diffusion constant for nutrient
D,, ~ 1075 cm?/s and a nutrient consumption rate vy ~ 1 min~! (the latter
from the observation that brain cells run out of glucose and die on that time
scale), a characteristic nutrient diffusion length £ a2 200 — 300um is obtained.
This is consistent with the observed thickness of the viable rim of cells in
tumor spheroids in vitro [2, 74]. For the simulation illustrated in Fig. 10, the
tumor grows to a size &~ 40- L ~ 8 mm — 1.2 cm on a time scale = 900)\];[1 ~T
years which is in quite good agreement with the observed time of growth of
high grade malignant glioma (astrocytoma) to secondary glioblastoma [137].
The surface tension parameter was chosen at a value small enough that cell
adhesive forces are weak and diffusional instability of the tumor shape occurs
during growth as observed in the experiments [74]. Angiogenesis parameters
were chosen to obtain continuous growth of neo-vasculature parallel to growth
of the tumor as is observed clinically. The dimensionless diffusion constant of
TAF was chosen to ensure a nonzero value of TAF concentration over the
length scale of the tumor size. Rates characterizing fibronectin evolution were
chosen to ensure an observable effect of haptotaxis (responsible for looping of
the neo-capillaries).

Diffusional Instability and Tissue Invasion

For the parameters given in Fig. 9 and an initial, noncircular shape (35),
the tumor will experience unstable growth due to a diffusional instability [306]
caused by the competition of growth of the tumor mass and surface tension
(cell adhesive forces) that tends to influence this growth. Note that without
angiogenesis, and with a circular initial shape, instabilities would grow only



22 Cristini et al.

due to random numerical error or because of the nonradially symmetric nu-
trient distribution due to the use of a square computational domain. The
instability is enhanced by the development of a necrotic core and its asso-
ciated volume sink. The tumor forms bulbs and breaks up into fragments.
Indeed, the beginning of instability can be seen at time ¢t = 200 (Fig. 10b).
The presence of the inhomogeneous nutrient field due to angiogenesis tends
to further destabilize the tumor, because the tumor tends to co-opt the com-
plexly shaped neo-vasculature in order to maximize nutrient transfer. Note
that the resulting shape of the tumor is therefore stable to random noise or
small perturbations because the patterns of growth of the tumor mass are
mainly driven by the spatial distribution of the newly formed capillaries. By
t = 400 the tumor breaks up into three parts, as fragments of the tumor
‘move’ in opposite directions up the gradient of the nutrient concentration
field (Fig. 10c). This net migration is due to the combination of cell death
in low nutrient concentration and cell birth in high nutrient concentration.
Note that in the simulations, this migration is exaggerated because we use a
simplified model (Darcy’s law) for the mechanical response of the tissue.

At the same time the formation of necrosis leads to release of tumor an-
giogenic factors (TAF) and thus triggers chemotaxis of endothelial cells and
new capillary formation and migration towards the tumor from the preex-
isting blood vessels. At time t = 400 penetration of the capillaries into the
tumor has occurred (Fig. 10b). It is assumed that the same model describes
angiogenesis outside and inside the tumor, which implies that an extracellular
matrix (ECM) exists inside the tumor thus allowing chemotaxis and hapto-
taxis of endothelial cells to occur. This is probably a valid assumption for
the case of malignant glioma, known to infiltrate through the brain ECM and
co-exist there with healthy cells [137]. Note also that we assume infinitesimal
thickness of capillaries and no mechanical interaction with the tissue (except
for the small mobility pc). Thus here capillaries are line sources of nutri-
ent. As the disjoint tumor fragments continue to grow, the tumor reconnects
(700 < t < 800). Note also the small fragment in the middle (¢ = 400) later
shrinks and disappears. By time ¢ = 900 (Fig. 10d), the tumor has almost
completely co-opted the neo-vasculature. It has been hypothesized that tis-
sue invasion occurs in cycles. Within one cycle, angiogenesis occurs followed
by tumor mass growth and co-option of the newly formed vessels. These cy-
cles would repeat themselves. Here, one of these cycles is simulated. Further
growth would require further vascularization. The complex tumor morpholo-
gies predicted in this simulation are ultimately due to the nonuniform distri-
bution of nutrient sources following angiogenesis. The capability of simulating
the coupled growth and angiogenesis processes leads to predictions of tumor
morphologies that are more realistic than those predicted in previous investi-
gations (Sect. 1).

By t = 900 two smaller tumor clusters have fragmented-off because of
diffusional instability and are migrating towards the computational boundary
Yo, where the nutrient level is highest (bottom of Fig. 10d), and a third will



Nonlinear Modeling and Simulation of Tumor Growth 23

fragment-off shortly. If the surface tension ~ were larger, the tumor shape
would remain compact, and fragmentation would not occur. Here low surface
tension (and cell mobility) models weak adhesive forces that enable cell clus-
ters to scatter and migrate and infiltrate through the extracellular matrix. In
malignant glioma, weak cell adhesion is probably the effect of excitation of
the FAK (focal adhesion kinase) pathways [149] that are triggered by over-
expression of EGFR (epidermal growth factor receptor) and its numerous
ligands on the tumor cell surfaces. EGFR signaling activates both MAPK
proliferative pathways and FAK cell-scattering pathways [149]. In this sim-
ulation, fragment migration occurs in a manner similar to the migration of
water droplets in ice in the presence of a temperature gradient [195] due to
a melt-and-freeze mechanism. Proliferation occurs near the leading edge of
the fragment, whereas necrosis occurs at the trailing edge, thus leading to
a net migration of cells up the nutrient concentration levels (Fig. 11, left).
This can be observed in the pressure field around the migrating fragments
at time ¢ = 900 (pressure (P) in Fig. 11, right). The pressure is higher at
the leading edge, and lower at the trailing edge. In fact there is a mass sink
at the trailing edge owing to the necrotic core. This provides insight into a
possible mechanism for tissue invasionby tumor cell clusters [76], especially in
brain tumors where the cancer cells are observed to powerfully infiltrate the
brain’s extracellular matrix. In addition there is migration due to gradients of
adhesiveness, which is neglected in this model, but considered by [48]. Finally,
here tumor cell apoptosis is neglected. However, if A4 > 0, the same net mi-
gration is observed in the simulations without the presence of a necrotic core,
in agreement with the infiltrative nature of low- and high-grade astrocytoma
that do not exhibit necrosis [137].

By multiplying the dimensionless tumor area at t = 900 by £? with £ =
300pm, and the dimensionless capillary length by £, and then by scaling the
two dimensional simulation to a three-dimensional tumor using an exponent
3/2, one obtains a total predicted tumor volume ~ 1 cm® and, by assuming
an equivalent volume per cell of 1000m?, a prediction of &~ 1 billion tumor
cells and a ratio of tumor-to-capillary cells =~ 61, in good agreement with
experimental observations [35].

Nutrient Transfer from the Neo-vasculature

Supply of nutrients is nonuniform and nonconstant in time in this model,
owing to the extension of the capillaries to the tumor. This extension is a
continuous feedback process because angiogenesis (i) occurs as a response to
diminishing nutrient levels in the tumor and (i) raises the nutrient supply
in the tumor allowing for increased growth and increased nutrient demand.
In addition there is a stabilizing effect of pressure in the nutrient transfer
[(18)]. In the initial stages of neo-vascularization when the amount of nutrient
coming from the new capillaries is low compared to that of other sources, the
angiogenesis process is decoupled from growth, as in [11]. This is the case up
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to approximately time ¢ = 200 (Fig. 10b). Note that the diffusional shape
instability is not due to angiogenesis. After this point, the nutrient supply
coming from the new capillaries is important for the growth of the tumor. By
time ¢t = 400 the capillaries penetrate the tumor. Splitting (branching) and
looping (anastomosis) are also observed. In our implementation nutrients are
transferred only from looped vessels, since these vessels can provide a more
effective flow of blood. One can effectively control the density of looped vessels
by adjusting the density of new capillaries through the splitting probability
and the looping criteria through the minimum age for looping and the effec-
tive loop-receptive regions on the capillaries [11]. Subsequent to penetration,
the tumor begins to co-opt the new capillaries. This process occurs because
the tumor grows more near the (looped) capillaries. In this simulation (Fig.
10d), the tumor takes on the shape of the new vasculature, roughly. A recent
hypothesis [137] for the infiltration of malignant glioma cells throughout the
brain is that these cells co-opt and crawl around the preexisting brain vas-
culature. The behavior observed in the simulation seems to corroborate this
hypothesis by providing an additional mechanism for infiltration.

In the present simulation, growth of the vasculature slows dramatically
after about time ¢ = 400 (and the capillaries are only advected by the grow-
ing tumor according to (34) thereafter). In the model, a minimum amount of
ECD is required for the continued growth of the sprout tips. Here, the amount
of endothelial cell proliferation is smaller than degradation and necrosis, and
the amount of endothelial cells decreases. However, with sufficient prolifer-
ation, the neovascularization can even speed-up, since the rate of capillary
splitting generally depends on local levels of ECD [11]. Although only six ac-
tivated sprout tips are included, one may also increase this number initially,
or stochastically add more sites as the tumor grows, with activation probabil-
ities depending upon the local TAF levels. In the simulation in Fig. 10, local
levels of TAF generally increase along the radial direction as the tumor grows.
Hence more active sprout tip sites are activated in time.

If suddenly the nutrient concentration became depleted, or the flow of
nutrients were cut off (n = 0 everywhere in §2) the tumor would shrink and
vanish, owing to the death term Ay in (21). If instead only the flow from
the neo-vasculature were cut off, with the far field nutrient source in place
(n =1 on Y), the tumor would shrink to a diffusion-limited, stationary
size. Additionally, the growth of the vascularized tumor depends vitally on
the nutrient transfer rate V?ng, the level of nutrient in the blood n¢, and
the blood pressure in the new capillaries pzéng . Here we have taken the blood

pressure to be pgng =1, i.e., equal to the characteristic pressure due to tumor
cell mitosis. Because of the form of 438 (p), there is no nutrient transfer in an
environment for which p > 1. This restricts growth by providing a stabilizing
mechanism because the tumor must balance the rate of growth with pressure
level its growth causes. The result is that total pressure tends to be bounded
away from pgng’ Increasing pressure in capillaries increases the rate of nutrient
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transfer, and hence the rate of growth. But again the pressure will be bounded
away from pgng. In vivo this pressure is responsible for the difficulties in
delivering chemotherapeutic agents through the vasculature to tumor cells.
The simulations in Figs. 10c and 10d reveal that inside the tumor the transfer
from the vasculature nearly vanishes. As a result of these phenomena the
tumor configuration at time ¢ = 900 is nearly stationary; further growth will
require an ongoing angiogenesis process. Finally note that the relatively small
amount of necrosis in the last frame is an artifact of the model used, which
implements a very sharp transition from live to necrotic cells at n = ny. In
reality, the transition is smoother and in the tumor body depicted in the last
frame (¢ = 900) necrotic and nearly necrotic cells are mixed over a larger
region.

2.4 Summary

The work presented here displays at least two new, important features vi-
tal for the development of a realistic virtual cancer simulator at the tumoral
level. First, it successfully incorporates a realistic model of angiogenesis [11]
with a continuum model for growth. Previous models for growth have only
included constant vascularization [59] or a field variable representing spatially
smooth vascularization [32]. In the model reviewed here, the capillary net-
work extends due to direct interaction with the growing tumor, primarily
through the TAF. At the same time, the tumor receives nutrient, by blood-
to-tissue transfer from the extending capillary network. Second, this work is
fully two-dimensional, incorporating more realistic tumor evolution than can
be realized in lower-dimensional (e.g., spherically symmetric, cylindrical or
one-dimensional) models of growth and angiogenesis. We used sophisticated
numerical techniques to accomplish this: the level set method [154] for captur-
ing complicated morphology and connectedness of the tumor interface, and
finite element methods based on a fully-adaptive unstructured mesh for ac-
curately resolving multiple length scales at the lowest possible computational
expense. Such efforts enable the simulator to model phenomena such as in-
vasive fingering, tumor fragmentation, and healthy tissue capture. This work
significantly extends that of Sect. 1, which used a simpler model for growth
and vascularization and the boundary integral method for two-dimensional
computation.

Our simulation results are supported by experimental data. In a parallel
study [74], we used the grade IV glioma (glioblastoma multiforme) human
cell line ACBT to culture spheroids in vitro over several weeks and observe
their growth pattern as a function of nutrient (glucose) and growth factor
(serum) variation. At high serum concentrations, spheroids were observed to
grow to a diffusion-limited millimeter size and then become unstable and
assume dimpled shapes as in our simulation. These sub-spheroidal structures
may eventually break off from the main spheroid (as a ‘bubble’ of cells or
as spheroid fragments) or merge with neighboring structures to enlarge the
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overall parental spheroid mass. This process can repeat itself on the sub-
spheroid, leading to recursive sub-spheroidal growth as the main mechanism
of spheroid morphogenesis. The stability of the sub-spheroidal components is
dependent on the rate of cell proliferation and death, as controlled by access to
nutrient and growth factors. Our simulations and these experiments indicate
that diffusional shape instability may be a powerful tissue invasion mechanism,
since for the same mitosis and death rates spherical tumors would remain of
millimeter size and never become clinically relevant. The results indicate that
diffusional instability allows clusters of tumor cells to invade and infiltrate the
surrounding brain even without resorting to further genetic alterations that
differentiate these cells from the bulk tumor by enhancing their mobility. Note
that it has been observed that cancer cell migration is different from model
cells. It has been shown that tumor cells migrate in cell clusters rather than as
single cells [76]. Note also that in malignant glioma genotypes, heterogeneity in
the mutations of the focal adhesion kinase (FAK) pathways that regulate cell
scattering and adhesion is rarely if ever observed [137], although this matter
is still very unclear and caution should be used when drawing conclusions.

3 Solid Tumor Growth Using a Ghost Cell/Level-Set
Method "

3.1 Overview

In [135, 136] we extended tumor growth models considered by [59, 133, 212]
and others, which reformulated classical models [90, 142, 3, 39, 40, 47] to
include more detailed effects of the microenvironment. This was done by al-
lowing variability in nutrient availability and the response to proliferation-
induced mechanical pressure (which models hydrostatic stress) in the tissue
surrounding the tumor. Using analysis and nonlinear numerical simulations,
we explored the effects of the interaction between the genetic characteris-
tics of the tumor and the tumor microenvironment on the resulting tumor
progression and morphology. We found that the range of morphological re-
sponses can be placed in three categories that depend primarily upon the
tumor microenvironment: tissue invasion via fragmentation due to a hypoxic
microenvironment; fingering, invasive growth into nutrient rich, biomechani-
cally unresponsive tissue; and compact growth into nutrient rich, biomechan-
ically responsive tissue. The qualitative behavior of tumor morphologies was
similar across a broad range of parameters that govern tumor genetic charac-
teristics. These findings demonstrate the importance of the microenvironment
on tumor growth and morphology and implications for therapy.

¥ This section includes an article published in J. Theor. Biol., Vol. 245, Macklin
& Lowengrub, Nonlinear simulation of the effect of microenvironment on tumor
growth, pp. 677-704, Copyright (© Elsevier (2007), and portions reprinted from
Macklin & Lowengrub (in review) [136].
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Previously [132, 133, 134] we considered a level set-based extension of the
tumor growth model by [59] (Sect. 1), where we developed new, highly accu-
rate numerical techniques to solve the resulting system of partial differential
equations in a moving domain. These methods are more accurate than those
used by [212] (Sect. 2) and [97]. Using the new methods, we modeled tumor
growth under a variety of conditions and investigated the role of necrosis in
destabilizing the tumor morphology. We demonstrated that non-homogeneous
nutrient diffusion inside a tumor leads to heterogeneous growth patterns that,
when interacting with cell-cell adhesion, cause sustained morphological insta-
bility during tumor growth, as well as repeated encapsulation of non-cancerous
tissue by a growing tumor. Building upon this earlier work, [136] developed an
accurate ghost cell/level set technique for evolving interfaces whose normal ve-
locity is given by normal derivatives of solutions to linear and nonlinear quasi-
steady reaction-diffusion equations with curvature-dependent boundary con-
ditions. The technique is capable of describing complex morphologies evolving
in heterogeneous domains. The algorithm involves several new developments,
including a new ghost cell technique for accurately discretizing jumps in the
normal derivative without smearing jumps in the tangential derivative, a new
adaptive solver for linear and nonlinear quasi-steady reaction-diffusion prob-
lems (NAGSI), an adaptive normal vector discretization for interfaces in close
contact, and an accurate discrete approximation to the Heaviside function.

In our model, the region surrounding a tumor aggregates the effects of
ECM and non-cancerous cells, which are characterized by two non-dimensional
parameters that govern diffusional and biomechanical properties of the tissue.
Fluids are assumed to move freely through interstitium and ECM, and thus
these effects are currently neglected. External nutrient and pressure varia-
tions, in turn, affect tumor evolution. Due to computational cost of 3-D sim-
ulations, we focus on 2-D tumor growth, although the model applies equally
well in three dimensions. In [59] (Sect. 1), it was found that the baseline model
predicts similar morphological behavior for 2-D and 3-D tumor growth. This
has been borne out by recent 3-D simulations by [127], as seen in Sect. 1.
Note that 2-D tumor growth may be well suited to study cancers that spread
relatively thinly, such as melanoma.

We also investigated internal structure of tumors, including volume frac-
tions of necrotic and viable regions. We found that even during growth, the
internal structure tends to stabilize due to apparent local equilibration of tu-
mors as characteristic feature sizes and shapes emerge. Whereas tumor mor-
phology depends primarily upon the microenvironment, internal structure is
most strongly influenced by tumor genetic characteristics, including resistance
to necrosis, the rate at which necrosis is degraded, and rate of apoptosis.
These results are not obvious from examination of the model and underly-
ing hypotheses alone. By hypothesis, the microenvironment, tumor genetics,
and tumor morphology are all nonlinearly coupled. Tumor genetics determine
biophysical properties like growth rates, which, in turn, are mediated by mi-
croenvironmental factors such as available nutrient supply. One would expect
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that tumor genetics have a greater impact on tumor morphology, and, indeed,
[59] provides evidence that tumor genetics completely determine the morpho-
logical behavior when the microenvironment is not taken into account.

3.2 Governing Equations

We model an avascular tumor occupying volume (27 (¢) with boundary 042,
denoted by X. The tumor is composed of a viable region {2y where nutri-
ent (e.g., oxygen and glucose) levels are sufficient for tumor cell viability and
a necrotic region {2y where tumor cells die due to low nutrient levels and
are broken down. Note that 27 = 2y U {2y. The growing tumor also inter-
acts with the surrounding microenvironment in the host tissue; this region is
denoted by 2y, which contains ECM and a mixture of non-cancerous cells,
fluid, and cellular debris. As observed in [59, 132, 133], a growing tumor may
encapsulate regions of {2y, and so these regions may lack living noncancerous
cells. Hereafter, we refer to {2y as non-cancerous tissue, although the model
applies equally well to the case in which 2y contains only ECM, fluid, and
cellular debris.

Nutrient Transport

As defined in Sect. 2, we set capillary-to-tissue nutrient transfer function T, =
0 and use relative nutrient diffusivity D to control level of nutrient in 2p:
D, =1in 27 and D,, = D in 2g.

Cellular Velocity Field

Cells and ECMin host tissue 25 and viable tumor region {2y are affected by a
variety of forces, each of which contributes to the cellular velocity field u. Pro-
liferating tumor cells in 2y generate an internal (oncotic) mechanical pressure
(hydrostatic stress) that also exerts force on surrounding non-cancerous tissue
in 2g. Tumor and non-cancerous cells and ECM can respond to pressure vari-
ations by overcoming cell-cell and cell-ECM adhesion and moving within the
scaffolding of collagen and fibroblast cells (i.e., ECM) that provides structure
to host tissue. The ECM in {2 can deform in response to pressure. Following
previous work, we assume constant cell density and model cellular motion
within the ECM as incompressible fluid flow in a porous medium. Response
of cells and ECM to pressure is governed by Darcy’s law:

u=—u,VP, z €2y Uy (36)

where cellular mobility 4, = p(x) measures overall ability of tissue to respond
to pressure. Note that 1, also measures permeability of tissue to tumor cells.
See [7] and [43] for further motivation of this approach from a mixture model-
ing viewpoint. When tumor cells are hypoxic, cellular pathways that stimulate
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cell migration may be activated [95, 110, 126, 66, 166]. This may be modeled
by increasing mobility u, as nutrient level decreases or as a tactic response to
nutrient gradients [78]. Here, we focus upon the effects of proliferative pres-
sure only; effects of increased cellular mobility in response to hypoxia will
be considered in future work [13]. Outward normal velocity V of the tumor
boundary X' is given by

V=u-n=—-y,VP-n (37)

where n is the outward unit normal vector along Y.

Proliferation, Apoptosis, and Necrosis

In the viable region {2y, proliferation increases the number of tumor cells
and thus the volume occupied by the viable region. Apoptosis decreases total
volume of 2y at a constant rate A4. We assume that cell birth and death
are in balance in {2y, and so there is no change in volume in that region.
(Note that if there are no cells in g, then there is no cell birth or death,
and the assumption still holds.) In fact, poorly vascularized tumors are often
hypoxic, leading to anaerobic glycolysis and acidosis [85, 86]. Non-cancerous
cells struggle survive in this condition, providing a relative survival advantage
for tumor cells and a potential volume loss in {2y when cells are present.

As a computational convenience, we can achieve the correct volume loss
by continuously extending the velocity u into 25. We also assume that the
normal velocity is continuous across the tumor boundary X, i.e., voids do
not form between tumor and host tissue. Therefore, we choose our extension
such that the normal velocity is continuous across the necrotic boundary, i.e.,
[u - n]=0 across Xy. Because the nutrient level determines Xy, the latter
is not a material boundary and is not advected by the velocity field u; the
extension of the velocity field is used solely to yield the correct volume change
in the tumor necrotic core. One means to attain this is to extend the pressure
continuously into the necrotic core as well, by setting € = 0 in 22:

u=—u,VP, x€ 2y
[P}:O, x € Xy

[—upVP -n]=0, xe Xy (38)

The jump condition [P] = 0 across X'y models low cellular adhesion and is
consistent with increased cellular mobility observed in hypoxic cells [33, 44,
96, 165, 173, 166]. Note that (38) automatically satisfies [u-n] =0 on Xy.

Mechanical Pressure

We can obtain an equation for the mechanical pressure in {27 U 2y by noting
the pressure extension in Eq. (38):
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0 if x € Ny
V. (upVP) =< bc— Ay if x e 2y (39)
—AN if x e Ny

By the continuity of the normal velocity across the tumor boundary, by
Darcy’s law (36) there is no jump in the normal derivative 1, VP -n across X.
Following [59] and others, we model cell-cell adhesion forces in the tumor by
introducing a Laplace-Young surface tension boundary condition. Therefore,

[P] =7k, x€X (40)

O=[u-n]=—[p,VP -n], xeX¥ (41)

where k is the mean curvature and -y is a constant cell-cell adhesion parameter.
Cellular proliferation and death are in balance outside of 27U {2g. Therefore,

P =P, XE@(QTUQH) (42)

on the far-field boundary.

Here we consider the special case of avascular growth in piecewise homoge-
neous tissue and take p, = pin 2y and p, = 1 in 27, where p is a constant.
Note that because p is constant within the tumor (and across X' ), the pres-
sure boundary conditions across Xy in (38) are automatically satisfied for
any C' smooth solution P.

3.3 Results

We investigate the effects of the tumor microenvironment on the morphol-
ogy and growth patterns of 2D, avascular tumors growing into piecewise
homogeneous tissues. Recall that D characterizes relative nutrient diffusiv-
ity, A is amount of apoptosis, G measures tumor aggressiveness (prolifera-
tion compared to cellular adhesion), G characterizes rate of degradation of
the necrotic tissue, and N is threshold nutrient level for tumor cell viabil-
ity. Viable rim size is determined by D, A, and N, while the necrotic core
size is determined by Gpu. In all simulations, we set the apoptosis parame-
ter A = 0 because the tumors are assumed to ignore inhibitory signals for
self-destruction (apoptosis). We numerically compute the solutions using a
computational mesh with Az = Ay = 0.08. All tumors are simulated to a
scaled nondimensional time of T' = Gt = A\j;t' = 20, where ¢’ is dimensional
time. (The dimensional time is given by ¢ = T/Ays.) Because Ay, ~ 1 day,
this non-dimensional time allows us to compare tumors of varying simulated
genotypes at fixed physical times (e.g., 7' = 20 ~ 20 days).

We characterize the effects of the modeled tumor microenvironment on
growth by presenting a morphology diagram (Fig. 12). We simulate growth
over a wide range of microenvironmental parameters (D and p) with G = 20;



Nonlinear Modeling and Simulation of Tumor Growth 31

Gy = 1, and N = 0.35, each with identical initial shape. Later, we shall
consider the effect of G, G, and N. We let D € {1,50,100,00} and u €
{0.25,1,50,00}. When D = oo, we set 0 = 1 in non-encapsulated regions of
2y and only solve the Poisson equation for ¢ in {2r and the encapsulated
portions of Qg (with diffusion constant 1). Likewise, when p = oo, we set
p = 0 in non-encapsulated regions of {2 and only solve the Poisson equation
for p in 27 and the encapsulated portions of 2y (with mobility 1). In Fig.
12, we plot the shape of each tumor at time 7' = 20.0. In all figures, the
black regions denote {2y where the tumor is necrotic, the gray regions show
the viable tumor region 2y, and the white regions correspond to {2, which
consists of the ECM, non-cancerous cells, and any other material outside of
the tumor.

On the horizontal axis, we vary the nutrient diffusivity of the surround-
ing tissue; as D increases from left to right, the simulated microenvironment
varies from nutrient poor to nutrient rich. On the vertical axis, we vary the
mobility of the surrounding material; as p increases from bottom to top, the
microenvironment ranges from low mobility to high mobility. The greater the
mobility u, the greater the ability of the external, non-cancerous tissue to
respond to the pressure generated by the growing tumor, and tumor cells
are more able to penetrate the tissue. We observe three distinct tumor mor-
phologies through this broad range of simulated tissue types. In the nutrient
poor regime on the left side of the diagram, tumors demonstrate fragmenting
growth, characterized by the repeated breakup of the tumor in response to the
low nutrient level. The nutrient-rich, low-mobility regime in the bottom right
of the morphology diagram is characterized by fingering growth, where buds
develop on the tumor boundary that invade the surrounding tissue, forming
long, invasive fingers. The nutrient-rich, high-mobility regime in the top right
of the diagram demonstrates compact/hollow growth, where the tumors tend
to grow into spheroids and typically form abscesses filled with non-cancerous
tissue and fluid, similar to a necrotic core. These morphologies are similar to
those observed experimentally in vitro (e.g., [74].

We have found that the tumor morphologies in Fig. 12 are qualitatively
similar when recomputed with different genetic characteristics (modeled by A,
G, Gy, and N), although, as demonstrated in Sec. 3.3, large changes in the
genetic parameter values can shift the morphology from one type to another.
Therefore, a tumor’s morphology depends primarily upon the characteristics
of the microenvironment, as we shall see next.

Fragmenting Growth Into Nutrient-Poor Microenvironments

Tumors growing into nutrient-poor microenvironments demonstrate repeated
fragmentation through a wide range of mitosis rates (governed by the param-
eter G) and necrotic tissue degradation rates (G ). Tumor fragmentation is
observed in almost all cases, particularly for fast-proliferating, aggressive tu-
mors with higher values of G. An increased aggressiveness (G) increases the
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rate of tumor fragmentation. Similarly, increasing the rate of necrotic tissue
degradation (G) tends to destabilize the tumor, also leading to an increased
rate of fragmentation. However, this effect is highly nonlinear: if G is large
relative to GG, then proliferation, necrosis, and cellular adhesion can balance
to maintain spheroids and prevent further tumor fragmentation. Note that for
sufficiently low levels of tumor aggressiveness (e.g., G = 0.10), tumor insta-
bility decreases until the steady-state configuration is as tumor spheroids, as
predicted in [59] for non-necrotic tumors.

We found that the volume fractions of viable and necrotic tissue were
largely independent of the tumor aggressiveness parameter G and the mi-
croenvironmental characteristics (D and p) and were primarily functions of
N and G . The occurrence of repeated tumor fragmentation is found to occur
over a broad range of G and G . This demonstrates that in the nutrient-poor
regime tumor morphology is largely determined by the characteristics of the
surrounding microenvironment, while the genetic characteristics of the tumor
(G, Gy, A, and N) determine the size and rate of evolution of the tumor.
In addition, increasing the apoptosis rate A to positive values results in simi-
lar morphological behavior, only with more rapid tumor fragmentation and a
greater number of fragments (results not shown).

The finding that tumor morphology in the nutrient-poor regime depends
primarily upon the tumor microenvironment and not upon the tumor’s ge-
netic characteristics has important implications for cancer treatment. In anti-
angiogenic therapy, drugs are supplied to prevent the neovascularization of
the growing tumor and the surrounding tissue. The resulting nutrient-poor
microenvironment may cause the tumors to fragment and invade nearby tis-
sues, particularly in higher-mobility tissues. This can negate the positive ef-
fects of anti-angiogenic therapy and lead to recurrence and metastasis. This
result is consistent with the findings of [55], who suggested that combining
anti-angiogenic therapy with adhesion therapy may counteract the negative
problems associated with tumor fragmentation in the nutrient-poor regime.

Invasive, Fingering Growth

In Fig. 13, we show the evolution of a tumor growing into a low-mobility,
nutrient-rich tissue, where D = 50 and g = 1. As in the previous section,
G =20, Gy = 1, and N = 0.35. Because nutrient readily diffuses through
the surrounding tissue {2p, the tumor is initially non-necrotic, allowing for
unchecked growth and the development of buds on the tumor periphery that
protrude into the surrounding tissue (see time 7' = 10 in Fig. 13). Due to the
cell-cell adhesion (modeled by the pressure jump in (40), the proliferation-
induced mechanical pressure is greatest surrounding any protrusions of the
tumor into the healthy tissue and approximately zero near flatter regions
of the tumor boundary. Because the cellular mobility p is low in the non-
cancerous tissue, the individual cells and the ECM cannot move to equilibrate
the pressure. As a result, the cellular velocity field is mostly parallel to the
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buds, in spite of adequate nutrient levels between the growing buds. This
makes it difficult for buds to merge, leading to the formation of long, invasive
fingers (see T' = 30.0—50.0 in Fig. 13). The net effect is highly invasive growth
into the surrounding tissue.

Within the nutrient-rich, low-mobility tissue regime, we examined two
levels of tissue mobility (¢ € {0.25,1}) and three nutrient diffusivities
(D € {50,100,00}), for a total of six combination of mobility and nutri-
ent diffusivity. We found that the shape depended primarily upon the tissue
mobility: the three lower-mobility tissue examples (u = 0.25) had an overall
higher shape parameter than the higher-mobility tissue (u = 1), which reflects
a higher degree of deformation. This trend is indeed observed in the morpholo-
gies along the p = 0.25 row of Fig. 12. This is because the lower the tissue
mobility, the more difficult it is for cells in the healthy tissue to overcome the
cell-cell and cell-ECM adhesion and move to equilibrate pressure variations,
and the more difficult it is for the ECM to deform in response to the pressure,
allowing for the formation of sharper corners and greater shape instabilities.

Overall, the larger deformation in the lower-mobility tissue simulations
leads to overall larger perimeters in the low-mobility tissue cases than in the
higher-mobility tissue cases. As a result of the increased surface area, the
low-mobility tissue tumors had greater access to nutrient. This leads to a
surprising result: the increased morphological instability from growing into
lower-mobility tissues improves access to nutrient and leads to larger tumors,
for each fixed nutrient diffusivity, the volume of the viable area of each tumor
was larger for the lower-mobility tissue simulation (p = 0.25) than for the
corresponding higher-mobility tissue example (u = 1). For all examples, in-
terface length, relative to a circle with same area, steadily rose as a function of
time, which reflects the increasing shape instability as the tumors invade the
surrounding tissue; this is characteristic of invasive, fingering growth. This has
implications for therapies that target cell-cell and cell-ECM adhesiveness: if
the therapy decreases the mobility in the surrounding microenvironment (by
increasing the cell-cell or cell-ECM adhesiveness or rendering the ECM more
rigid), then invasive, fingering growth into the surrounding tissue is likely.
Likewise, a treatment that decreases the permeability of the host tissue to
tumor cells may lead to an increase in tumor invasiveness.

The finger width is most strongly dependent upon the nutrient diffusivity
D, and largely independent of the tissue mobility u. As the nutrient diffusivity
increases, nutrient is better able to diffuse between the growing fingers, allow-
ing the nutrient to penetrate farther into the fingers. This allows the tumor to
support thicker fingers. In all cases, the length scale tended toward a roughly
fixed value, which demonstrates that each tissue can support a specific finger
thickness.

In Fig. 14, we examine the effect of the tumor aggressiveness parameter
G and the necrotic degradation parameter Gy on the invasive, fingering mor-
phology. We fix D = 50, u = 1; N = 0.35, and take 0.1 < Gy < 10.0 and
1 < G < 100. For lower tumor aggressiveness values (G = 1) and Gy > 1, the
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fingering effect was significantly reduced, resulting in more stable, tubular-
shaped tumors, an effect that has been observed in experiments [74]. These
structures form because tumor cell proliferation (the numerator of G) and
cell-cell adhesion (the denominator of G) are roughly in balance when G = 1.
The competition between proliferationand adhesion smoothes but does not
completely prevent shape instabilities, which may continue to grow. For suf-
ficiently large values of G, the invasive fingering morphology was observed in
all simulated tumors. For lower values of Gy (left column in Fig. 14), the
low rate of degradation of the necrotic tumor tissue leads to the formation
of very wide fingers; this morphology may be better described as a collection
of spheroids. As G is increased, the necrotic core is degraded more quickly,
leading to a decreased finger thickness, less stable morphology, and more ag-
gressive tissue invasion. As G is increased toward G = 10 (right column
in Fig. 14), the finger thickness is decreased to the point where the tumor
periodically breaks into fragments and then reconnects, leading to the encap-
sulation of non-cancerous tissue (white enclosed regions). This morphology,
which we refer to as compact/hollow, is characterized by the presence of a
large abscess containing a mixture of necrotic cells, fluid, ECM, and cellular
debris, much like a necrotic core. In a long-time simulation of a tumor with
the compact/hollow morphology, the effect of Gy on growth is seen to be non-
monotonic: increasing Gy at first limits the size of the tumor by decreasing
the thickness of the invasive fingers and limiting the overall spread of the tu-
mor, but after a certain point, instability breaks the tumor and allows greater
spread through the surrounding non-cancerous tissue.

Compact, Hollow Growth

We examine the effect of the tumor aggressiveness G and the necrotic degra-
dation rate Gy on the compact tumor morphology. In these simulations, we
fix D = 50; p = 00, and N = 0.35. For lower values of G, the tumors remain in
compact morphologies that fail to encapsulate non-cancerous tissue, although
shape instabilities may occur at long times. When G = 1, cell proliferation
(numerator of G) and adhesion (denominator of G) are roughly in balance,
which shrinks but does not completely prevent shape instabilities. For larger
values of G, the cell proliferation rate outstrips cell-cell adhesion, resulting
in folds in the outer tumor surface that encapsulate non-cancerous tissue.
For fixed values of GG, we find that increasing the necrotic tissue degradation
rate parameter Gy shrinks the necrotic volume fraction of the tumors. In the
cases where non-cancerous tissue has been encapsulated (G > 1), increasing
G increases the size of the central tumor abscess. Lastly, as in the fragment-
ing and fingering cases, we find that varying N changes the tumor evolution
quantitatively but not qualitatively. As N increases, the thickness of the vi-
able rim decreases, the necrotic volume fraction increases, and morphological
instability also increases.
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Complex Tissue

We model growth in a complex, heterogeneous brain tissue as shown in the
first frame in Fig. 15. We define B as the pre-existing blood vessel density (as
an indicator of bulk supply of nutrient to the vascularized tumor tissue). In
the white region at the right side, u = 0.0001, D = 0.0001, and B = 0, which
models a rigid material such as the skull. In the black regions, u = 10, D = 1,
and B = 0, which models an incompressible fluid (cerebrospinal fluid). The
light and dark gray regions model tissues of differing biomechanical properties
(white and gray matter). In the light gray regions, p = 1.5, D = 1, and B = 1;
in the dark gray regions, © = 0.5, D = 1, and B = 1. The tumor is denoted
by a white thin boundary in the middle right of the frame. We smoothed g,
B, and D using a Gaussian filter with standard deviation o0 =3 Az = 0.3 to
satisfy smoothness requirements of the reaction-diffusion equations. We used
(linear) extrapolation boundary conditions on the pressure along x = 0, y = 0,
and y = 50 to simulate growth into a larger (not shown) tissue and set p = 0
along the rigid boundary at x = 50.

We simulated from ¢ = 0 to ¢t = 60. Using a 3.3 GHz Pentium 4 worksta-
tion and a C++ implementation, the 501 x 501 simulation required less than
24 hours to compute. Because the (mitosis) time scale ranges from approxi-
mately 18 to 36 hours for this problem, this corresponds to 45 to 90 days of
growth. We plot the solution in ¢t = 10.0 (approximately 10 days) increments
in Fig. 15. In these plots, regions corresponding to viable tumor tissue (where
¢ > cpg), hypoxic tumor tissue (cg > ¢ > cy), and necrotic tumor cells
(cy > ¢) are shown. In hypoxic tissue, there is assumed to be no proliferation.
In this simulation, the tumor grows rapidly until the nutrient level drops be-
low cg = 0.30, at which time a large portion of the tumor becomes hypoxic.
The tumor continues to grow at a slower rate until the interior of the tumor
becomes necrotic (see ¢ = 10.0). This causes non-uniform volume loss within
the tumor and contributes to morphological instability. Note that because
the biomechanical responsiveness is continuous across the tumor boundary
and the microenvironment has a moderate nutrient gradient, this simulation
corresponds to the border between the invasive, fingering growth regime and
the invasive, fragmenting growth regime that was investigated earlier.

However, additional effects can be seen that were not observed before.
As the tumor grows out of the biomechanically permissive tissue (light gray;
@ = 1.5) and into the biomechanically resistant tissue (dark gray; p = 0.5), its
rate of invasion into the tissue slows (see ¢ = 20.0). This results in preferential
growth into the permissive (light gray) material, a trend which can be clearly
seen from ¢ = 30.0 onward. When the tumor grows through the resistive tissue
(dark gray) and reaches the fluid (black) (¢ = 40.0), the tumor experiences
a sudden drop in biomechanical resistance to growth. As a result, the tumor
grows rapidly and preferentially in the 1/2 mm fluid structures that separate
the tissue (¢t = 50.0 — 60.0). Such growth patterns are not observed when
simulating homogeneous tissues. Other observed differences are due to our
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new treatment of hypoxic (quiescent) tumor cells. Certain regions that had
previously been classified as necrotic (in [132, 133, 134, 135]) are now treated
as quiescent. As a result, tumor volume loss is reduced, and in particular, this
may result in large hypoxic regions that have little or no viable rim. Had these
regions been treated as necrotic, the invasive fingers would have been thinner,
and the tumor may have fragmented. Therefore, the separate treatment of the
hypoxic regions can have a significant impact on the details of the invasive
morphology of the tumor.

3.4 Summary

In this work [135, 136] we developed a framework to investigate the interaction
between avascular solid tumors and their microenvironment. In particular,
we model perfusion of nutrient through a tumor and surrounding microen-
vironment, build-up of pressure in the tissue from proliferation of cancerous
cells, cell-cell and cell-ECM adhesion, and loss of tumor volume due to necro-
sis. We observed three distinct morphologies: fragmenting, invasive/fingering,
and compact/hollow growth. If the microenvironment is nutrient poor, tu-
mors tend to break into small fragments and spread throughout the microen-
vironment, regardless of cellular mobility. Within this nutrient-poor growth
regime, decreasing microenvironmental mobility (by increasing noncancerous
cell-cell and cell-ECM adhesion or increasing ECM rigidity) decreases extent
of fragmentation and slows invasion into surrounding tissue, but does not
completely prevent hypoxia-induced morphological instability. (Unstable tu-
mor morphologies in the nutrient-poor regime have been observed by [10] and
[65].) An invasive, fingering morphology was found in cases of growth into
nutrient-rich, low-mobility microenvironments. Increasing nutrient perfusion
does not prevent this invasive morphology, and the lower the microenviron-
mental mobility, the greater the degree of morphological instability and in-
vasiveness. Tumors growing into nutrient-rich, high-mobility tissues develop
compact/ hollow morphologies. A hallmark of this growth regime is formation
and merger of buds on the tumor periphery, which leads to encapsulation of
noncancerous regions and formation of a large abscess that qualitatively is
similar to a necrotic core.

Since decreasing nutrient levels in the microenvironment tends to increase
tumor fragmentation and invasion into the surrounding tissue, this may have
to be taken into consideration during anti-angiogenic therapies, as it could
lead to morphological instability in the form of fragmentation and invasion.
A number of experimental studies have recently shown that anti-angiogenic
therapies may have this result [180, 177, 61, 173, 185, 122, 24]. Conversely, we
found that increasing nutrient levels leads to greater morphological stability
and increased tumor compactness, thereby rendering some tumors more re-
sectable. These results support the contention [55] that treatments that seek
to normalize tumor vasculature (by selectively “pruning” weak blood ves-
sels with targeted anti-angiogenic therapy) may stabilize tumor morphology



Nonlinear Modeling and Simulation of Tumor Growth 37

by providing increased access to nutrient. Since such treatments may also
increase the accessibility to chemotherapeutic agents [105, 188], our results
provide additional support for the use of targeted anti-angiogenic therapy as
adjuvant to chemotherapy and resection.

As pointed out by [55], another approach to therapy is to use anti-invasive
drugs such as Met inhibitors [30, 20, 146] or hepatocyte growth factor (HGF)
antagonists [60, 144] in addition to anti-angiogenic therapies. Such therapies
affect cell-cell and cell-ECM adhesive properties of the tumor. A recent exper-
imental study on mouse models of malignant glioma shows that fragmentation
can be prevented, and tumor satellites may be eliminated by a combined anti-
angiogenic and anti-invasive therapy [24]. In the nutrient-poor growth regime,
increasing cell-cell and cell-ECM adhesion of the microenvironment can help
limit the rate of fragmentation and the extent of invasion. Decreasing perme-
ability of the microenvironmental ECM to tumor cells by other means, such
as making the ECM more dense, stiffer, and less able to support tumor cell
movement, could also attain this effect.

Interestingly, the opposite approach is warranted in the nutrient-rich
growth regime. In this case, decreasing cell-cell and cell-ECM adhesion in the
microenvironment (while leaving tumor cells unaffected) or increasing the per-
meability of the microenvironment to tumor cells decreases invasive fingering.
This could also be accomplished by increasing tumor cell-cell and cell-ECM
adhesion or by decreasing the stiffness or density of the surrounding ECM,
respectively. Such subtleties highlight the importance of considering tumor-
microenvironment interactions when planning therapies that affect adhesive
and mechanical properties of a tumor, its surrounding tissue, or both.

4 Vascularized 3-D Tumor Growth Using a Diffuse
Interface Approach!

4.1 Overview

This section describes development of a model of Functional Collective Cell-
Migration Units (FCCMU) [72] that describes the large-scale morphology and
3-D cell spatial arrangements during tumor growth and invasion. This includes
the application of mathematical and empirical methods to quantify the com-
petition between cell substrate gradient-related pro-invasion phenomena and
molecular forces that govern proliferation and taxis, and forces opposing in-
vasion through cell adhesion. The latter, under normoxic conditions, often
enforce compact non-infiltrative tumor morphology while local oxygen gradi-
ents promote invasion [190, 156, 185, 120, 160, 122, 24, 177, 173, 174, 61, 55,
74, 135]. Interactions between cellular proliferation and adhesion and other

I This article was published in NeuroImage, Vol. 37, Frieboes et al., Computer simu-
lation of glioma growth and morphology, pp. S59-S70, Copyright 2007 (©) Elsevier.
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phenotypic properties may be reflected in both the surface characteristics,
e.g., stability, of the tumor-host interface and the growth characteristics of
tumors [59, 55, 74, 87, 135]. These characteristics give rise to various tumor
morphologies and influence treatment outcomes. The model thus enables the
deterministic linking of collective tumor cell motion on the balance between
cellular properties and the microenvironment.

We assemble this 3-D multiscale computational model of cancer as a key
step towards the transition from qualitative, empirical correlations of molecu-
lar biology, histopathology, and imaging to quantitative and predictive math-
ematical laws founded on the underlying biology. The model provides reso-
lution at various tissue physical scales, including the microvasculature, and
quantifies functional links of molecular factors to phenotype that currently
for the most part can only be tentatively established through laboratory or
clinical observation. This mathematical and computational approach allows
observable properties of a tumor, e.g., its morphology, to be used to both
understand the underlying cellular physiology and predict subsequent growth
(or treatment outcome), providing a bridge between observable, morphologic
properties of the tumor and its prognosis [56, 182].

4.2 Method Description

The FCCMU model is based on conservation laws (e.g., of mass and mo-
mentum) with conserved variables that describe the known determinants of
glioma (e.g., cell density) and with parameters that characterize a specific
glioma tissue. The conservation laws consist of well established, biologically
founded convection-reaction-diffusion equations that govern the densities of
the tumor cell species, the diffusion of cytokines and the concentration of vi-
tal nutrients. The model describes the cells’ (collective) migratory response
and interaction with the extra-cellular matrix (ECM) and an evolving neo-
vasculature. The collective tumor cell velocity depends on proliferation-driven
mechanical pressure in the tissue, chemotaxis and haptotaxis due to gradients
of soluble cytokines and insoluble matrix macromolecules. The cell species
velocity is obtained from a Darcy’s law coarse scale reformulation of the iner-
tialess momentum equation, which is the instantaneous equilibrium among the
following forces: pressure, resistance to motion (cell-adhesion), elastic forces,
forces exchanged with the ECM leading to haptotaxis and chemotaxis and
other mechanical effects (e.g. [59, 212, 55, 74, 181, 127, 11, 10, 12, 51, 3, 25,
48, 79, 16, 133, 90, 39, 40, 5, 135, 6, 43, 50]. Cells produce proteases, which
degrade the matrix locally, making room for cells to migrate. In the model,
matrix degradation releases cytokines and growth promoters, thus having bi-
ological effects on tumor cells (e.g., [48]). The model can account for cell-cell
interactions (cell-cell adhesion and communications), high polarity, and strong
pulling forces exchanged by cells and ECM [78].

The FCCMU model is coupled nonlinearly to a hybrid continuum-discrete,
lattice-free model of tumor-induced angiogenesis [161, 162]. The angiogene-
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sis component describes proliferation and migration due to chemotaxis and
haptotaxis of endothelial cells in response to tumor angiogenic factors (e.g.
VEGF) and matrix macromolecules, respectively. The angiogenic factors are
released by peri-necrotic tumor cells and host cells near the tumor-host inter-
face [193, 186], which stimulate vascular endothelial cells of the brain vascula-
ture to proliferate and begin to form vessels [107]. Anastomosed vessels may
provide a source of nutrient in the tissue and may undergo spontaneous shut-
down and regression during tumor growth [99]. We note that there are other
related lattice-based models of tumor neo-vascularization (e.g. [191, 140]).
Although tumor angiogenesis may occur via the formation of sprouts or in-
tussuception [158], for simplicity here only the former process is incorporated
in the model. Input parameter values to the model, e.g., cell proliferation and
apoptosis, are estimated from in vitro cell lines and ex-vivo patient data. The
parameters governing the extent of neovascularization and nutrient supply
due to blood flow are estimated in part from Dynamic Contrast Enhanced
Magnetic Resonance Imaging (DCE-MRI) observations in patients [152].

The model describes nutrient/oxygen delivery from the neo-vasculature
(via convection and diffusion [46, 105, 106]) and cellular uptake, and nutri-
ent, oxygen, and growth factor diffusion through the tumor tissue [36]. Oxy-
gen/nutrient availability limits the fraction of cycling cells. Regions of tissue
become hypoxic and then necrotic where nutrient/oxygen concentration falls
below a threshold. The model describes evolution of local mass fractions of
viable tumor species, necrotic and host tissues. Cell mass exchange occurs
due to mutations, mitosis, necrosis, and apoptosis. Lysis rates describe the
disintegration of tumor cell mass and the radial effusion of fluid away from
the necrotic regions. All rates are inverse times (unit time = 1 day). At any
given time during tumor growth, the model outputs the computed values of
all relevant variables at every location within the three-dimensional tumor tis-
sue, e.g., the spatial distributions of oxygen, nutrients and tumor cell species.
The result is a description of the complex, multi-scalar dynamics of in vivo
3-dimensional tumors through avascular, neo-vascular, vascular growth, and
invasion stages.

4.3 Multiscale Model

The minimal formulation of the FCCMU model is based on reaction-diffusion
equations that govern a tumor cell density, an evolving neovasculature, a vital
nutrient concentration, the ECM, and matrix degrading enzymes. Extensions
to include more complex biophysics, e.g., multiple nutrients, growth inhibitors
and matrix remodeling, are straightforward.

In this approach, each constituent moves with its own velocity field; mass,
momentum and energy equations are posed for each constituent. Through
experimental comparisons and the inclusion of molecular-scale effects, we for-
mulate functional relationships that close the FCCMU model. Generically, the
reaction-diffusion equations take the form
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v=-V-I+I, T (43)

where v is the evolving variable, J is the flux, Iy and I'_ are the sources
and sinks. Letting v = p;, o, f, m, respectively be the tumor cell density
of species i or host density, the vital cell substrate concentration (e.g. oxy-
gen), the (nondiffusible) matrix macromolecule (e.g. fibronectin [11, 10], and
matrix degrading enzyme, MDE (e.g. matrix metalloproteinases, urokinase
plasminogen activators [12, 10, 51] concentrations, we may take

Pitli +J 1 echanics.i if v =p;
ocuyw — D,Vo ifv=c
J= (44)
0 ifv=f
muy — D,,Vm ifv=m
pi}‘prolif,z‘ + Zj Si—; ifv=pi
Ablood ifv=o
Iy = (45)
)\f ifv= f
Amde fv=m
pi/\death,z‘ + Ej Sy if v =p;
)‘muptake fr=o
r = (46)
)‘f,degrade fv=f
Amde,degrade if v =m

where u; is the cell-velocity of species or host ¢, u,, is the velocity of water (i.e.
assuming transport of chemical factors is primarily through the interstitial lig-
uid), the D’s are diffusion constants, and /\prolifv Adeath> “blood: )‘uptake’
Afy Af degrades )‘mde’ and )‘mde,degrade are the mitosis, apoptosis and necro-
sis, blood-tissue nutrient transfer and uptake and decay rates, respectively, for
matrix molecules and MDE. An additional equation (not shown) is posed for
the mass fraction of water. The flux Jmechanics,i accounts for the mechan-
ical interactions among the different cell species. A major component of the
FCCMU model is the development of the constitutive law for J mechanics,i-
This is obtained from a variational approach from an energy formulation that
accounts for the mechanical forces, e.g. cell-cell and cell-matrix adhesion, and
elastic effects (residual stress). A feature of this approach is the incorporation



Nonlinear Modeling and Simulation of Tumor Growth 41

of a novel continuum model of adhesion in this flux. Following the variational
approach developed for diffuse interface models of multiphase flows and mate-
rials by Lowengrub and coworkers (e.g., [130, 124, 123, 112, 113, 203, 114]) and
others (e.g. [84, 101, 11]) we introduce a continuum model of cell-cell and cell-
matrix adhesion energy that can be written as an integral taken over the entire
tumor/host domain Egpesion,; = [ filp1s.-pN) + 3 Z;V:_ll &7 ;| Vp;|*da.
The first term is a bulk energy, which accounts for the degree of miscibility
of cell and host species, as directed by experiments. The second term intro-
duces cell-cell adhesion forces that generate a surface tension between the
phases and further accounts for intermixing across a diffuse interface of thick-
ness that roughly scales with ¢; ;. Typically, the cell-adhesion energy enforces
phase separation of tumor and host tissues sharing a diffuse interface with
thickness 1-100 pm. Under the assumption that tumor cells prefer to stay
bonded with each other rather than being in any other configuration, that
the cell density is roughly constant and that there is only isotropic stress
(pressure p), this reduces, in an asymptotic limit, to the ”jump” boundary
condition [p|=7k where 7 measures the affinity and & is the total curvature of
the interface [202, 73]. This is akin to surface tension in multiphase flows and
can also be used to describe tumor encapsulation by ECM fragments and is
characteristic of collective cell migration [78].

A thermodynamically consistent constitutive law for the flux J mechanics,i
is obtained by taking the gradient of the variational derivative of the to-
tal energy: Jppechanicsi2°V (B mechanics,i/9Pi), where Epechanics,; 18 0b-
tained by adding the contributions from each mechanism modeled, i.e. adhe-
sion, elasticity, etc. The velocities u; and u,, are determined from momen-
tum equations. For example, following previous approaches (e.g., [59, 212, 55,
74, 127, 133, 135]) that are reformulations and generalizations of models in
[90, 39, 40, 3, 25, 48] and neglecting viscoelastic effects, we take Darcy’s law
as a coarse scale reformulation of the inertialess momentum equation, which is
the instantaneous equilibrium among the following forces: pressure, resistance
to motion, elastic forces, forces exchanged with the ECM leading to hapto-
and chemo- taxis and other mechanical effects within E})) o anics s discussed
above. This leads to

u;, = —M;Vp+ ’}/i((SEmeChanich/(spi)vpi + XfJ'Vf + XU,iVU (47)

where p is the pressure (isotropic stress) and M, 7;, xs, and x, are the spa-
tially inhomogeneous mobility, mechano-, hapto- haptotaxis and chemo- taxis
tensors that also take into account cell-matrix adhesion. The parameter M
depends on the extent of cell-to-cell and cell-to-ECM adhesion in bulk regions.
Since a number of different parameters in the model describe various effects
of cell-cell and cell-ECM adhesion it is expected that this model should have
enough complexity to reproduce nontrivial and non-monotonic dependences of
migration on CAMs [78]. Note that other models such as Stokes, viscoelastic
and nonlinear-elastic/plastic can be incorporated as required.
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The FCCMU continuum-scale convection-reaction-diffusion equations are
solved numerically using a novel adaptive finite-difference method [202, 73,
201]. This method features an adaptive, block-structured Cartesian mesh re-
finement algorithm (e.g. [27]), centered differences in space and an implicit
time discretization for which there is no stability constraint on the space and
time steps. The nonlinear equations at the implicit time level are solved effi-
ciently using a multilevel, nonlinear multigrid method (e.g. [31]).

4.4 Tumor Vasculature

We model the physiology and evolution of glioma neovasculature in 3D using
a hybrid continuum-discrete, lattice-free model of tumor angiogenesiswhich
is a refinement of earlier work [161, 162]. This was shown to create den-
dritic structures consistent with experimentally observed tumor capillaries
[125, 189]. This random walk model generates vascular topology based on tu-
mor angiogenic factors, e.g., vascular endothelial growth factor (VEGF) [193],
represented by a single continuum variable that reflects the excess of pro-
angiogenic factors compared to inhibitory ones. Peri-necrotic tumor cells and
host tissue cells close to the tumor boundary are assumed to be a source of an-
giogenic factors (e.g., VEGF). Endothelial cells near the sprout tips proliferate
and their migration is described by chemotaxis and haptotaxis (e.g., motion
up gradients of angiogenic factors and matrix proteins such as fibronectin).
For simplicity, only leading endothelial cells are modelled and trailing cells
passively follow. The vasculature architecture, i.e., interconnectedness and
anastomoses, is captured via a set of rules, e.g., a leading endothelial cell
has a fixed probability of branching at each time step while anastomosis oc-
curs if a leading endothelial cell crosses a vessel trailing path. Glioma vessels
are more tortuous than normal vessels [34]. This can be quantified by various
means including a ”Sum of Angles Metric” (SOAM) that sums total curvature
along a space curve and normalizes by path length, indicating high frequency,
low-amplitude sine waves or coils [34].

The tumor-induced vasculature does not initially conduct blood, as the
vessels need to form loops first (anastomosis) [19]. As observed experimentally,
the neovasculature model may also account for increasing vessel diameters
and spontaneous shutdown and consecutive regression of initially functioning
tumor vessel segments or whole microvascular areas [99]. Here, functional
anastomosed vessels were assumed to provide a source of nutrient in the tissue
proportionally to local pressure.

4.5 Calculation of Model Parameters

Previous measurements of growth and histopathology of in vitro ACBT (hu-
man glioblastoma multiforme) tumor spheroids [74], and of human glioma
[23] were used to inform the parameters of the simulation presented herein.
Briefly, higher-grade glioma mitosis and apoptosis rates were taken to be 1
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day ™! and 0.32 day ! respectively. The characteristic time scale was taken to
be the inverse mitosis rate. The diffusion penetration length was measured to
be 100 pm [59, 74], and is used herein as the characteristic unit of length. The
necrosis threshold was taken to be on /oy = 0.5, where oy is the nutrient
concentration needed for viability and oy is the nutrient concentration in the
far-field. Mutation rates from low to high grade glioma were also estimated
in previous work [23] but not utilized here. In previous work, a critical value
of cell adhesion parameter was determined from shape stability analysis of
experimental and simulated spheroids [74]: compact spherical morphologies
exist only for sufficiently large adhesion, which is implemented via the pa-
rameter (after non-dimensionalization) in (47). The above set of parameters
provided the baseline for our simulations (the results show a simulation using
a sub-critical value of the adhesion parameter). Simulations were performed
using one fixed set of parameters as described above. Parameter sensitivity
studies were performed where cell adhesion (7;) and cell chemotaxis (Xs,)
parameters were varied to study their effect on the morphology of infiltrat-
ing collective-cell patterns (i.e., cell chains vs. strands vs. detached clusters
[78]). Representative resulting morphologies are reported elsewhere and con-
firm that for relatively low cell adhesion morphologic instability occurs when
nutrient heterogeneity is present leading to the development of infiltrative cell
protrusions [59, 74, 135, 23]. The shape features of these protrusions further
depends on the relative strengths of cell proliferation and cell chemotaxis. A
control was provided by simulations corresponding to relatively high cell ad-
hesion, for which tumors grow spherical and morphologic instability does not
occur.

4.6 Results

Figure 16 shows a mm-sized glioblastoma during early stages of growth sim-
ulated using our 3-D multiscale model. The model predicts regions of viable
cells, necrosis in inner tumor areas, and a tortuous neovasculature as observed
in vivo [34]. Conducting vessels are capable of releasing nutrient. The rate of
nutrient released may depend on their age and the solid pressure in the tis-
sue. The vessels migrate towards the tumor/host interface since peri-necrotic
tumor cells and host tissue cells close to the tumor boundary are assumed to
produce angiogenic factors and other regulators. The tumor eventually coopts
and engulfs the vessels. The tumor-induced vasculature does not initially con-
duct blood, as the vessels need to form loops first (anastomosis) [19], i.e.,
more mature vessels that have anastomosed conduct blood and may release
nutrient. By hypothesizing the underlying mechanisms driving these phenom-
ena, the model enables a quantitative analysis, e.g., viable region thickness of
about 100-200 um and extent of necrosis as seen in Fig. 16 are shown to be
strongly dependent on diffusion gradients of oxygen/nutrient in the microen-
vironment and agree with previous experiments [94, 74]. Chaotic angiogenesis
leads to heterogeneous perfusion in the tumor that then might be responsi-
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ble for regression of parts of the vascular network and necrosis of tumor cells
[45, 158], further enhancing variable tumor cell proliferation. By taking vessel
maturation into account, the simulations correctly predict that as tumor size
increases, inner vessels may regress or shut down, leading to nutrient deple-
tion and resulting in the formation of a large necrotic core (data not shown),
as observed in patients. For example, cm-sized human glioblastoma at later
stages as seen through Magnetic Resonance Imaging (MRI) in patients (e.g.,
[205]) is composed of viable cells delineating its boundary and surrounding
extensive necrosis in its inner region.

The multiscale model enables the prediction of tumor morphology by quan-
tifying the spatial diffusion gradients of cell substrates maintained by hetero-
geneous cell proliferation and an abnormal, constantly evolving vasculature.
Figure 16 shows a simulated time-sequence over the course of three months
predicting that the glioblastoma grows with a thin layer of viable tissue on
its periphery, displacing nearby tissue and internally generating necrosis. The
morphology is directly influenced by angiogenesis, vasculature maturation,
and vessel cooption [197, 19, 98]. The model predicts that the tumor boundary
moves at a rate of about 50-100 pum per week, presenting a mass of diameter
of about 5 cm in one year (data not shown). These results are supported by
well-known clinical observations (e.g., [148]). As the tumor grows and engulfs
vessels in its vicinity, the tumor may compress the vessels [155] and disrupt
flow of nutrients, leading to further necrosis and even temporary mass and
vascular regression [211, 99]. A growing tumor contends with increasing me-
chanical resistance from normal brain tissue, which has physical properties
resembling a gel [153, 68]. Nevertheless, this resistance is insufficient to con-
tain tumor growth, e.g., gliomas have been observed to displace cartilage [119].
Only hard bone (e.g., the skull) will be a physical barrier. The effect of such
physical barriers on tumor morphology and growth can be incorporated in the
multiscale model model (see methods in [72]).

4.7 Summary

We performed 3-D computer simulations of growing glioma and neovascular
morphologies employing a multiscale mathematical model based on first prin-
ciples and informed by experimental and clinical data, e.g., histopathology
data transformed into model input parameters, and calibrated so that tumor
morphology can be predicted beyond a purely empirical, observational ap-
proach [72]. The multiscale model predicts that glioma tissue structure and
tumor invasiveness are significantly influenced by diffusion gradients in the
microenvironment, as observed experimentally [177, 120, 122, 24, 74] and in
human patients [23]. These gradients may have a strong effect on glioma mor-
phology [55, 135], and are hypothesized in the model to reciprocally influence
a growing tumor’s continuously evolving vasculature in complex ways. The 3-
D model facilitates this study by calculating the chemotactic and haptotactic
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response of the blood vessels at the cell scale and its cumulative effect at the
tumor scale.

Conclusion

The mathematical models and simulation results reviewed in this chapter
aim to develop theories and numerical analyses to study cancer as a system
across physical scales linking tumor morphology with cellular and microenvi-
ronmental characteristics through experimentally tested functional relation-
ships. The central hypothesis underlying this research is inspired by an en-
gineering approach to tumor lesions as complex micro-structured materials,
where three-dimensional tissue architecture (”morphology”) and dynamics are
coupled in complex, nonlinear ways to cell phenotype, and this to molecular
properties (e.g., genetics) and phenomena in the environment (e.g., hypoxia).
These properties and phenomena act both as regulators of morphology and
as determinants of invasion potential by controlling cell proliferation and mi-
gration mechanisms [78, 187, 198]. The importance of this close connection
between tumor morphology and the underlying cellular/molecular scale is
that it could allow observable properties of a tumor (e.g., morphology) to
be used to understand the underlying cellular physiology and predict inva-
sive behavior through mathematical modeling. Tumor morphology could also
serve as a clinical prognostic factor because it may indicate the potential to
respond to treatment, for instance, an indication of hypoxia could adversely
affect oxygen-dependent such as radiation therapy and some chemotherapies.
This approach opens the possibility of using mathematical modeling to de-
sign novel therapeutic strategies in which the microenvironment and cellular
factors are manipulated with the aim of both imposing compact morphology
and reducing tumor invasion—an outcome that would benefit cancer therapy
by improving local tumor control through surgery or radiation.

The models also strive to provide a more comprehensive understanding of
the molecular and environmental bases of cellular diversity and adaptation by
describing the complex interactions among tumor cells and their microenviron-
ment [187, 198]. This approach is expected to improve current cancer modeling
efforts because a multiscale approach model connects previous work focused
on specific scales and specific processes (e.g., single cell motion) by performing
3-dimensional simulations of in vivo tumors. This methodology further allows
the possibility to see beyond the current reductionist picture of invasion and
migration [78, 111, 187, 198, 204, 117, 206, 64, 179, 75, 77, 53, 172], with the
goal to enable prediction of disease progression and treatment response based
on patient-specific tumor characteristics.
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Fig. 1. Rescaled rate of growth G~V from (7) as a function of rescaled tumor
radius R for radially symmetric tumor growth and d = 2; A labelled. Reprinted
from Journal of Mathematical Biology, Cristini et al. Vol. 46, p. 195, Copyright 2003
Springer. With kind permission of Springer Science and Business Media.
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Fig. 2. Evolution of the tumor surface in the low-vascularization regime, for d = 2,
A = 0.5, G = 20, and initial tumor surface as in equation (12). Dotted lines: solution
from linear analysis; solid: solution from a nonlinear calculation with time step
At = 1072 and a number of marker points N = 1024, reset, after time ¢ = 2.51, to
At =10"" and N = 2048. Reprinted from Journal of Mathematical Biology, Cristini
et al. Vol. 46, p. 202, Copyright 2003 Springer. With kind permission of Springer
Science and Business Media.
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(d) !

Fig. 3. Evolution of the tumor surface in the low vascularization regime, A = 0.5,
G = 20, and initial tumor surface as in (13). (a) t = 0, § = 0.0137, S = 3.0 (b)
t=221,0 =012, S = 4732 (c) t = 242,06 = 0.2, S = 4.745 (d) t = 2.668,
6 = 0.496, S = 4.781. Reprinted with permission from Discrete and Continuous
Dynamical Systems - Series B, Li et al., Vol. 7, p. 599. Copyright 2007 American
Institute of Mathematical Sciences.
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Fig. 4. Comparison of linear analysis (Solid) and nonlinear results (Dash-dotted)
for the simulation in Fig. 3. (a) Scale factor S(t); (b) Perturbation size § ; circles
correspond to morphologies in Fig. 3 (a)-(d). (c) Nonlinear tumor morphology at
t = 2.668, with S = 4.78 and § = 0.496; (d). Linear solution morphology (shown
with a triangulated mesh) at the same time, S = 4.73 and & = 0.42. Positive z-axis
view. Reprinted with permission from Discrete and Continuous Dynamical Systems -
Series B, Li et al., Vol. 7, p. 600. Copyright 2007 American Institute of Mathematical

Sciences.
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Fig. 5. Top: apoptosis parameter A as a function of unperturbed radius R from
condition (16) for self-similar evolution; d = 2 (dashed) and d = 3 (solid); G and [ la-
belled. Asymptotic behaviors are dotted (see [59]). The two solid curves labelled with
values of d correspond to stationary radii. Reprinted with permission from Discrete
and Continuous Dynamical Systems - Series B, Li et al., Vol. 7, p. 598. Copyright
2007 American Institute of Mathematical Sciences. Bottom: corresponding growth
velocity G~V for | = 4.
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Fig. 6. Left: self-similar shrinkage for Ry = 4 and dp = 0.2 (¢t = 0 to 0.96 shown).
Right: Unstable shrinkage for Rg = 4 and do = 0.4 (¢ = 0 to 0.99). The solid curves
correspond to the nonlinear solution and the dashed curves to the linear. In both
cases, d = 2, G = 1, | = 5 and the evolution is in the low-vascularization regime.
A= A(l,G, R) given in (16) and plotted in Fig. 5 (top). Reprinted from Journal of
Mathematical Biology, Cristini et al. Vol. 46, p. 215, Copyright 2003 Springer. With
kind permission of Springer Science and Business Media.
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Growth

Nutrient transport: Eq. (1) and related

Cell Prolifereation: Eg. (5) and related

Pressure (Darcy-Stokes): Eq. (6)
and related

IN Tc

Angiogenesis

TAF transport: Eqg. (10) and related

Fibronectin evolution: Eq. (13) and related

EC transport: Eq. (14) and related

Fig. 7. Progression of a solid tumor is the result of coupling of growth and angiogen-
esis components that are mainly linked by the instantaneous position of the necrotic
rim Xx and the blood-to-tissue nutrient transfer rate T.. Reprinted with permission
from Bull. Math. Biol., Zheng et al. Vol. 67, p. 214, Copyright 2005 Springer (with
kind permission of Springer Science and Business Media).
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c(x)

Fig. 8. Schematic (not to scale) of a necrotic tumor in transition from avascular
to vascular growth gives a basic description of the model. Disjoint regions 2, 2v
and 2y represent healthy tissue, viable tumoral tissue, and necrotic core domains,
respectively. Tumor region is 27 = 2y U 2n. Y« is far field boundary, X is tumor
interface, and X'y is necrotic rim. Capillaries are defined on X'¢. For illustration, nu-
trient concentration n(x), TAF concentration c(z), and endothelial cell density e(z)
are plotted along horizontal dashed line. Reprinted with permission from Bull. Math.
Biol., Zheng et al. Vol. 67, p. 215, Copyright 2005 Springer (with kind permission
of Springer Science and Business Media).
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Fig. 9. Complete model parameters used in the full simulation, the results for which
are displayed in Fig. 10. Reprinted with permission from Bull. Math. Biol., Zheng
et al. Vol. 67, p. 239, Copyright 2005 Springer (with kind permission of Springer
Science and Business Media).
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Fig. 10. Simulation of growth, neo-vascularization and infiltration of the brain by
a malignant glioma. Parameters are listed in Fig. 9. (a) Time ¢t = 0; (b) Time
t = 200; (c) Time ¢t = 400 shows penetration into the tumor by the neovasculature
and splitting of tumor into three fragments due to diffusional instability; (d) Time
t = 900 shows that tumor fragments have coopted the neo-vasculature, rejoined,
and reached a nearly stationary state of centimeter-size. Small clusters separate
from the main tumor and migrate up nutrient concentration gradients. Reprinted
with permission from Bull. Math. Biol., Zheng et al. Vol. 67, pp. 240, 242, 244, 247,
Copyright 2005 Springer (with kind permission of Springer Science and Business
Media).
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Fig. 11. Magnified view of the infiltrating tumor fragment in the bottom left of Fig.
10(d) (¢ = 900). Left: nutrient levels (N) and tumor fragment interface (dashed).
Right: cell velocity (arrows) and interstitial pressure (P). A net migration of this
fragment away from the main tumor body is the consequence of cell birth on the
leading edge and death on the trailing edge due to the gradient of nutrient concen-
tration. Note the high pressure in the proliferative leading edge, and the mass sink
due to necrosis in the trailing edge. Reprinted with permission from Bull. Math.
Biol., Zheng et al. Vol. 67, p. 254, Copyright 2005 Springer (with kind permission
of Springer Science and Business Media).
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Fig. 12. Tumor morphological response to the microenvironment. External tissue
nutrient diffusivity D increases from left to right, and the external tissue mobility pu
increases from bottom to top. Three major morphologies are observed: fragmenting
growth (left), invasive fingering (lower right), and compact/hollow (upper right). All
tumors are plotted to the same scale, where the indicated length is 25L ~ 0 : 5 cm.
Necrosis in black, viable region in gray. Reprinted with permission from Macklin &
Lowengrub, J. Theor. Biol. Vol. 245, p. 687, (2007). Copyright © Elsevier.
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Fig. 13. Long-time simulation of invasive, fingering growth into nutrient-rich (D =
50), low-mobility (¢ = 1) tissue. G = 20; Gy = 1; N = 0.35, and A = 0. Necrosis in
black, viable region in gray. Reprinted with permission from Macklin & Lowengrub,
J. Theor. Biol. Vol. 245, p. 693, (2007). Copyright © Elsevier.
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Fig. 14. Parameter study in G and Gy for invasive, fingering tumor growth into
nutrient-rich, low-mobility tissue (D = 50; p = 1). The tumor aggressiveness pa-
rameter G increases from bottom to top, and the necrotic degradation parameter
G increases from left to right. Necrosis in black, viable region in gray. Reprinted
with permission from Macklin & Lowengrub, J. Theor. Biol. Vol. 245, p. 696, (2007).
Copyright © Elsevier.
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Fig. 15. Tumor simulation from ¢ = 0.0 days (top left) to ¢ = 60.0 days (bottom
right) in 10 day increments. White band on the right of each frame models a rigid
material such as the skull; black denotes an incompressible fluid (e.g., cerebrospinal
fluid); light and dark gray regions represent tissues of differing biomechanical prop-
erties (e.g., white and gray matter). Tumor tissue is shown growing in the middle
right with viable (outer layer, white), hypoxic (middle layer, gray), and necrotic
(core, black) regions. Reprinted from Macklin & Lowengrub (in review) [136].
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Time

Fig. 16. Multiscale 3-D computer model predicts gross morphologic features of a
growing glioblastoma. Viable (VT) and necrotic (NT) tissue regions, and vascula-
ture (MV: mature blood-conducting vessels; NV: new non-conducting vessels) are
shown. Time sequence (from left to right, over a period of 3 months) reveals that
the morphology is affected by successive cycles of neovascularization, vasculature
maturation, and vessel cooption (VC). Bar, 250 um. Reprinted from NeuroImage,
Frieboes et al., in press, Copyright 2007, with permission from Elsevier.
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