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Abstract

In this paper, Part I of our study, we revisit the linear analysis (J. Appl. Phys. 34 (1963) 323; J. Appl. Phys. 36 (1965)

632; in: H.S. Peiser (Ed.), Crystal Growth, Pergamon, Oxford, 1967, p. 703) of the quasi-steady diffusional evolution of

growing crystals in 3-D. We focus on a perturbed spherical solid crystal growing in an undercooled liquid with isotropic

surface tension and interface kinetics. We investigate the relation between the far field flux of temperature and

undercooling in the far field. In 3-D, the flux scales with the undercooling and with the instantaneous size of the crystal;

this behavior is qualitatively different from 2-D, where there is no dependence on the size. As a consequence of this

peculiarity, we demonstrate using linear analysis that in 3-D there exist critical conditions of flux at which self-similar

evolution occurs. This leads to nonspherical, shape-invariant growing crystals. Rather than that using the concept of

critical radius (Mullins and Sekerka, 1963; Coriell and Parker, 1965), we repose the problem in terms of a critical flux.
The critical flux increases with increasing wave number of the perturbation, and separates regimes of stable and

unstable growth, where stable growth implies that the perturbation decays with respect to the underlying sphere. The

interfacial kinetics have a strong stabilizing effect (Coriell and Parker, 1965, 1967), which is explored in detail here.

These results demonstrate that the classical Mullins–Sekerka (Mullins and Sekerka, 1963) instability, that arises in the

presence of constant undercooling, can be suppressed by maintaining near-critical flux conditions (our formulation

reduces to that in Mullins and Sekerka (1963) under constant undercooling). Correspondingly, there is little creation of

unstable modes during growth and unstable growth is very constrained or completely eliminated. Near-critical flux

conditions can be achieved by appropriately varying the undercooling in time; thus this work has important

implications for shape control in processing applications. Experiments are currently being designed (by Stefano Guido

and coworkers (Personal communication) at the University of Naples) to test this possibility. Moreover, in Part II

(Cristini and Lowengrub, in preparation) of our study, we will investigate the nonlinear evolution using adaptive

boundary-integral simulations. r 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The case of quasi-steady crystal growth is a
fundamental problem both in phase transitions
and in diffusion-dominated growth (e.g., see the
review paper by Fried and other papers in Ref.
[1]). The growth of a spherical germ from a
supercooled melt or supersaturated solution (with
isotropic surface tension) was first analyzed by
Mullins and Sekerka [2]. It was found that a
growing sphere is linearly unstable to large-
wavelength perturbations. Moreover, as the sphere
becomes larger, smaller wavelengths successively
become unstable. This provides a heuristic ex-
planation for the dendritic and highly complex
shapes typically observed in freezing processes in
nature (e.g. snowflakes). Later, Coriell and Parker
[3,4] extended the study to finite interfacial
kinetics, which was found to have a stabilizing
effect, while leaving the qualitative behavior
unchanged.
In this paper, Part I of our study, we revisit the

linear analysis [2–4] of the quasi-steady diffusional
evolution of growing crystals in 3-D. We focus on
a perturbed spherical solid crystal growing in an
undercooled liquid with isotropic surface tension
and interface kinetics. We exploit the relation
between temperature flux and undercooling to
directly control shape evolution during growth. In
3-D, the flux scales with the undercooling and with
the instantaneous size of the crystal, J0BjTNjR
using characteristic values; this behavior is quali-
tatively different from 2-D, where there is no
dependence on the size. Because of this peculiarity,
we find that in 3-D there exist critical values Jl of
flux, that depend on the wave number l of the
perturbation, so that, corresponding to a weakly
time-dependent flux JEJl ; self-similar evolution
occurs, leading to nonspherical, shape-invariant
growing crystals. The evolution is identically self-
similar for constant (critical) flux and no kinetics.
In the presence of kinetics, the evolution is self-
similar at long times for constant flux; identically
self-similar evolution may be achieved using the
weakly time-dependent flux. Rather than using the
concept of critical radius [2,3], we repose the
problem in terms of a critical flux. In fact, under
constant-flux conditions, we demonstrate that the

concept of critical radius does not apply in the
absence of kinetics. The critical flux increases as
JlBl2 at large l; and separates regimes of stable
and unstable growth. The interfacial kinetics have
a strong stabilizing effect [3,4], which is explored in
detail here. Analogous self-similar evolution has
been recently found in tumor growth [5].
These results reveal that the Mullins–Sekerka [2]

instability, that arises in the presence of constant
undercooling (J0BR), can be suppressed by
maintaining flux conditions close to critical (our
formulation reduces to that in Ref. [2] under
constant undercooling). Correspondingly, there is
little creation of unstable modes during growth
and unstable growth is very constrained or
completely eliminated. Near-critical flux condi-
tions can be achieved by appropriately varying the
undercooling in time. Note that Mullins and
Sekerka recognized the possibility of stable growth
paths obtained by varying the undercooling (see
Fig. 1 in Ref. [1]). In Part II of our study, we
demonstrate using boundary-integral simulations
that the linear relation between flux and under-
cooling, that is presented in this paper, holds
quantitatively even in the nonlinear regime. This
result has important implications for shape control
in processing applications; shape control may be
achieved by varying the undercooling in time to
approximate near-critical conditions. Experiments
are currently being designed (by Stefano Guido
and coworkers [6] at the University of Naples) to
test this possibility.
In Section 2, the equations that govern the

problem are formulated. The linear analysis is
presented in Section 3. Conclusions, work in
progress and directions of future work are given
in Section 4.

2. Governing equations

2.1. Dimensional formulation

Consider the quasi-steady [2] diffusional evolu-
tion of temperature T in the unbounded multi-
phase domain R3 ¼ O1,O2; where an interfacial
surface S divides the solid phase 1 from the
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(infinite) liquid phase 2. The dimensional system is

0 ¼ r2Ti in Oi; i ¼ 1; 2; ð2:1Þ

where temperature Ti ¼ Tiðx; tÞ; where x is the
position in space and t is the time. The Gibbs–
Thomson boundary conditions on the moving
boundary S � qO1 are [3]

ðT1ÞS ¼ ðT2ÞS ¼ TPH 1�
gk
L

� �
� m�1V ; ð2:2Þ

where TPH is the phase change temperature for a
flat interface, g is the (uniform) surface tension,L
is the latent heat per unit volume (the density is
taken to be equal in the two phases and constant),
k is the total curvature of S(k ¼ 2 on the unit
sphere), m is the (uniform) kinetic coefficient (a
linear kinetic relation is assumed), and V is the
normal velocity of S:

V ¼ n � ðK1rT1 � K2rT2ÞS; ð2:3Þ

where n is the normal vector to S directed into O2
and K1;2 ¼ k1;2=L; where k1;2 are the heat
conductivities.
In the far field, we prescribe the flux J of T into

system: J ¼ �ð4pÞ�1
R
Sy n � rT dSN; where SN is

an arbitrary boundary in the far field, and n is its
outward normal. Using the quasi-steady diffusion
Eq. (2.1) in O1 and O2; it can be easily shown that
this definition of J is equivalent to

J ¼ ð4pÞ�1
Z
S

V dS; ð2:4Þ

which also gives the rate of volume growth (the
numeric factor 4p is introduced to simplify the
formulas in Section 3. This far field condition is
different from that taken in the classical Mullins–
Sekerka (MS) problem [2] in which Eq. (2.4) is
replaced by

lim
jxj-N

T2ðx; tÞ ¼ TN; ð2:5Þ

where TN is the temperature in the far field.
In this physical system, the diffusion times

tD1;2 ¼ R20=D1;2; where R0 is the initial equivalent
radius of the crystal and D1;2 are the diffusion
coefficients, are small compared to all other time
scales, Thus, there are three relevant time scales:
the surface tension relaxation time tg; the kinetic
attachment time tm and the growth time tN; which

are given by

tg ¼
R20

K2DTg
; tm ¼

R0

mDTg
; tN ¼

R20
K2DTN

0

; ð2:6Þ

where DTg ¼ gTPH=ðLR0Þ is the characteristic
decrease in phase change temperature with respect
to a flat interface, and DTN

0 ¼ TPH � TN

0 is the
initial undercooling (TN

0 is the initial temperature
in the far field).
From Eq. (2.4), with motion on the time scale

tN given by Eq. (2.6), we obtain the following
relation between the characteristic flux J0 ¼
R30=tN and undercooling DTN

0 :

J0

K2DTN

0

BR0: ð2:7Þ

Eq. (2.7) reveals that in three dimensions, the
relative magnitude of the flux and undercooling
scales with characteristic size of the system R0:We
note that this result in different than the analogous
result in two dimensions, where J0 ¼ R20=tN; and
thus, from Eq. (2.6), J0BK2DTN

0 ; independently
of system size. Scaling (2.7), peculiar to three
dimensions, gives rise to a very different behavior
than in two dimensions [7,8], and to the possibility
of self-similar evolution under constant-flux con-
ditions, as will be exploited in this paper.

2.2. Dimensionless formulation

We nondimensionalize the physical variables as

t0 ¼ t=tg; jx0j ¼ jxj=R0; T 0 ¼
T � TPH

DTg
: ð2:8Þ

The nondimesnional flux J 0 is given by

J 0 ¼ Ca J=J0; ð2:9Þ

where Ca is a dimensionless capillary number that
rescales flux as

Ca ¼ tg=tN; ð2:10Þ

which characterizes the relative importance of
surface tension and undercooling.
In dimensionless form, Eqs. (2.1)–(2.5) become,

after dropping all the primes,

0 ¼ r2Ti in Oi; i ¼ 1; 2;

ðT1ÞS ¼ ðT2ÞS ¼ � k� eV ;
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V ¼ n � ðkrT1 �rT2ÞS;

J ¼ ð4pÞ�1
Z
S

V dS

or

lim
jxj-N

T2ðx; tÞ ¼ TN: ð2:11Þ

In both the far field flux and MS formulations,
there are three dimensionless parameters1—the
kinetic coefficient e and the ratio of conductivities
k; given by

e ¼ tm=tg; k ¼ k1=k2 ð2:12Þ

and either J or TN: We note that e and Ca may
also be related to ratios of temperatures: e ¼
DTm=DTg and Ca ¼ DTN

0 =DTg; where the tem-
perature decrease associated with kinetics is DTm ¼
R0=ðmtgÞ:
As an example of physical system, for water,

typically [9] g ¼ 7
 10�2 N=m; TPHE273 K;L ¼
335
 106 J=m3; thus, for a crystal of radius R0 ¼
1 mm; DTgE0:057 K: A characteristic value of
k2 ¼ 0:6 J=ðmsKÞ; which gives K2 ¼ 1:8

10�9 m2=ðs KÞ; and tgE10�2 s: Data for kinetic
coefficients have a wide variation [4,9].

3. Linear analysis

We consider the linearized evolution of a sphere
of radius R perturbed by a spherical harmonic Yl;m

rSðy;f; tÞ ¼ RðtÞ þ dðtÞ Yl;mðy;fÞ; ð3:1Þ

where y is the polar angle (measured from #z to #r)
and f is the azimuthal angle (measured from #x to
the projection of #r in the x–y plane).2

To begin, expand Eq. (2.11) 4 in powers of d;
and use the expansion of the normal velocity V ¼
dR=dt þ Oðd=RÞ to obtain the flux

JðtÞ ¼ R2
dR

dt
þ Oðd=RÞ2: ð3:2Þ

Taking J constant in time, yields the simple result
in Eq. (3.13) using Rð0Þ ¼ 1 from the nondimen-
sionalization: R ¼ ð1þ 3JtÞ1=3: On the other hand,
Coriell and Parker [4] showed that

TNðtÞ ¼ �ðR þ eÞ
dR

dt
� 2=R þ Oðd=RÞ2: ð3:3Þ

Consequently from Eqs. (3.2) and (3.3), the flux
and TN are related by

J ¼
�1

1þ e=R
ðTNR þ 2Þ þ Oðd=RÞ2: ð3:4Þ

Thus, J > 0 and growth occurs when �TN > 2=R

which is the total curvature of the sphere. When
Rb1; the flux JB� TNR; as suggested by the
scaling analysis in Eq. (2.7). The result for 2-D,
analogous to Eq. (3.4), is J ¼ �ðTN þ 1Þ=ð1þ
e=RÞ þ Oðd=RÞ2:

3.1. Stability of perturbation

By expanding the system of Eq. (2.11) in powers
of d; and matching linear terms, we find that the
linear evolution of the perturbation is governed by

d�1
dd
dt

¼
l � 1
R3

J � ð1þ %klÞðl þ 2Þ
1þ ð1þ %klÞe=R

; ð3:5Þ

where %k ¼ 1þ k: Thus, the morphology of the
perturbed sphere results from competition between
the destabilizing effect of volume flux J and the
stabilizing effects of surface energy (in dimension-
less form, given by the negative term in the
numerator) and interface kinetics (in the denomi-
nator). Since e appears only in the ratio e=R;
kinetics becomes less important in the evolution as
the sphere grows. Also, observe that the parameter
m does not play a role in the linear analysis. Note
that Eq. (3.5) reduces to the formulation in Refs.
[2,3] under constant undercooling conditions.
Characterizing the evolution of the perturba-

tion, relative to the underlying evolution of the
sphere, one considers the ratio d=R; that describes
the shape of the crystal. We define three cases:

1. Stable evolution: d=R-0 as t-N:
2. Unstable evolution: d=R-N as t-N:
3. Bounded evolution: 0ojd=RjoN for tX0:

Note that Coriell and Parker [4] called case 1
absolute stability and the special case

1Actually, there is a fourth dimensionless parameter r1=r2
which we have taken to be equal to 1 by setting the densities

r1 ¼ r2:
2By the hat, we denote unit vectors. The vectors #x; #y and #z

define the Cartesian coordinate directions. The vectors #r; #y and
#f define the spherical coordinate directions.
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ðd=dtÞðd=RÞ ¼ 0 relative stability. Using Eqs. (3.2)
and (3.5), we obtain the growth rate

ðd=RÞ�1ðd=dtÞðd=RÞ

¼
1

R3
ðJ � JlÞðl � 2Þ � J ð1þ %klÞe=R

1þ ð1þ %klÞe=R
; ð3:6Þ

where a critical flux Jl is given by

Jl ¼
ðl þ 2Þðl � 1Þð1þ %klÞ

l � 2
: ð3:7Þ

Clearly, if 0pJpJl and tX0; then the growth rate
ðd=RÞ�1ðd=dtÞðd=RÞp0: Thus, the evolution is
either stable or bounded, and d=Rpd0; where d0 ¼
dð0Þ and Rð0Þ ¼ 1: For example, if the flux J ¼ 0
(the volume of the precipitate is conserved), then
from Eq. (3.2), we obtain R ¼ 1 identically and
from Eq. (3.5) the evolution is stable with the
perturbation decaying exponentially in time

d�1
dd
dt

¼ �
ðl þ 2Þðl � 1Þð1þ %klÞ
1þ ð1þ %klÞe

: ð3:8Þ

On the other hand, taking J ¼ Jl leads to bounded
(but not stable) evolution, as demonstrated in
Sections 3.2–3.4, where this case will be explored
in detail.
If J > Jl ; then the evolution may be either

unstable or bounded. Taking

J ¼ Jl

l � 2
l � 2� ð1þ %klÞe=R

; ð3:9Þ

the growth rate (3.6) vanishes and the evolution is
self-similar: d=R ¼ d0 identically. Note that this
special value of flux (3.9) is greater than Jl for
e > 0; and depends on the instantaneous size of the
growing crystal; note also that, if e ¼ 0; then
taking J ¼ Jl yields self-similar evolution. When
J ¼ constant; JoJl yields stable evolution, and
J > Jl yields unstable evolution.
In the special case when J and TN are related by

Eq. (3.4), one could alternatively have formulated
the problem in terms of a critical radius, as in Refs.
[2,3]. However, under constant-flux conditions it is
seen from Eqs. (3.6) and (3.7) that a critical radius,
above which evolution becomes unstable, cannot
be defined unless ea0:
Next, let us characterize the maximum growth

rate ðd=RÞ�1ðd=dtÞðd=RÞ: We determine the flux
that makes the lth mode posses the largest growth

rate. This is important if the initial condition
contains a superposition of spherical harmonics
since the fastest growing harmonic tends to
dominate the shape. Maximizing the growth rate
in Eq. (3.6) with respect to l; we find that the
corresponding flux J is given by

J ¼
1þ 2l þ %kð3l2 þ 2l � 2Þ
1þ ð1þ %kÞ e=R

þ
ð1þ 2l þ %klð2 %kl2 þ lð4þ %kÞ þ 2ÞÞ e=R

1þ ð1þ %kÞ e=R
: ð3:10Þ

In the limit e=R-0; this reduces to

Jn

l ¼ 1þ 2l þ %kð3l2 þ 2l � 2Þ: ð3:11Þ

Therefore, in this limit, the maximum growth rate
is achieved with the constant flux Jn

l : Note that for
l > 3; Jn

l > Jl : In Fig. 1, the flux J from Eq. (3.10)
is plotted versus R=e with %k ¼ 2 for several values
of l (solid curves). Corresponding to each mode l;
the mode q that marks the upper bound of the
band of unstable modes is shown (for e=R ¼ 0:
The mode q is found by equating Jn

l ¼ Jq; with Jq

obtained from Eq. (3.7) with l replaced by q: This
means that mode q has zero growth rate (q-1 is the
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Fig. 1. Flux J from Eq. (3.10) versus R=e (solid) when l is the

unstable mode with largest growth rate ðd=RÞ�1ðd=dtÞðd=RÞ;
k ¼ 1: Correspondingly, q marks the upper bound of the band

of unstable modes. Evolutions are also shown with J constant

(dotted) and TN constant (dashed, where the flux is obtained

from Eq. (3.4)).
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largest unstable mode) when the flux in the system
is equal to Jn

l : For large l; we obtain qE31=2l .
The effect of kinetics is seen in Fig. 1 through

the variation of J with R, which is most prominent
for large l since the nondimensional kinetic
parameter e is multiplied by ðl þ %klÞ in the growth
rate in Eq. (3.6). To demonstrate the difference
between constant flux and temperature, dotted
lines are plotted for two (constant) values of flux
and a dashed curve is plotted which corresponds to
the flux obtained from Eq. (3.4) for a constant
TN: When, during the evolution, a dotted line or
dashed curve intersects a solid one, the corre-
sponding mode l is the mode with largest growth
rate. Thus, when the flux is constant no unstable
modes are created as the precipitate grows unless
the kinetic effect is large, i.e. ð1þ %klÞeBR: In
contrast, when TN is constant, the number of
unstable modes increases without bound as the
precipitate grows.

3.2. Special cases

Let us now consider two special cases: constant
J and constant TN: If J is constant, then Eq. (3.6)
can be integrated to yield the growth factor

d=d0
R

¼Rð1�2Þð1�Jl=JÞ



1þ ð1þ %klÞe=R

1þ ð1þ %klÞe

� �1þðl�1Þð1�Jl=JÞ

; ð3:12Þ

where

R ¼ ð1þ 3J tÞ1=3; ð3:13Þ

from Eq. (3.2). Alternatively, if TN is constant,
then

d=d0
R

¼Rl�2 1þ ð1þ %klÞe=R

1þ ð1þ %klÞe

� �ðl�1Þð1þa1Þ



TN þ 2=R

TN þ 2

� ��a2

; ð3:14Þ

where the exponents are given by

a1 ¼
%klðl þ 2Þ

2� eTNð1þ %klÞ
;

a2 ¼
ðl � 1Þðl þ 2Þð1þ %klÞð2� eTNÞ

2ð2� eTNð1þ %klÞÞ
ð3:15Þ

and the radius R is given implicitly by

t ¼ �
1

2TN
ðR2 � 1Þ �

2� eTN

TN3


 �TNðR � 1Þ þ 2 log
2þ RTN

2þ TN

� �
ð3:16Þ

from Eq. (3.3). At long times. Eqs. (3.12)–(3.16)
reduce to

d=d0
R

E
Rðl�2Þð1�Jl=JÞ

ð1þ ð1þ %klÞeÞ1þðl�1Þð1�Jl=JÞ
; REð3J tÞ1=3

ðconstant JÞ; ð3:17Þ

d=d0
R

E
Rðl�2Þð1þ 2=TNÞa2

ð1þ ð1þ %klÞeÞðl�1Þð1þa1Þ
; REð�2TNtÞ1=2

ðconstant TNÞ: ð3:18Þ

The difference in scaling, RBt1=2 for constant
undercooling, and RBt1=3 for constant flux,
reflects the difference between the classical theories
of growth [2] and coarsening [10,11].
In the constant flux case, Eq. (3.12) shows that

for JoJl the evolution is stable, for J > Jl

unstable, and for J ¼ Jl bounded. In the constant
temperature case, Eq. (3.14) shows that the linear
solutions always become unstable. These beha-
viors are illustrated in Fig. 2 where the growth
factor ðd=d0Þ=R is plotted as a function of R: We
have set l ¼ 3; K ¼ 1 and e ¼ 0:1: The solid and
dashed curves correspond to constant J and TN;
respectively. At time t ¼ 0; the J and TN are
related by formula (3.4): J ¼ 7:27 corresponds to
TN ¼ �10; J ¼ 70 to TN ¼ �79; and J ¼ N to
TN ¼ �N: Eq. (3.12) shows that when J ¼ Jl ; the
evolution tends to be self-similar as t-N and

lim
t-N

d=d0
R

¼ ð1þ ð1þ %klÞeÞ�1; ð3:19Þ

which is marked by the open circle in the figure.
Note that the limiting shape depends on e: It is
easily shown, from Eqs. (3.12) and (3.13) with J ¼
Jl ; that there is a kinetic transient on a time scale
OðJ�1

l Þ that may reduce the perturbation by an
amount OðeÞ (cf. Eq. (3.19)). If J5Jl and constant,
there is transient on the time scale OðJ�1

l � ðl �
2Þ�1Þ in which the shape relaxes to a sphere ðd ¼
0Þ: In the constant temperature case, Eq. (3.14)
and (3.16) reveal that there is a transient on the
time scale OðjTNj�1Þ in which the perturbation
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may be reduced, both in the presence and in the
absence of kinetics. If JbJl and constant, then the
growth factor BRl�2 and the shape evolves on a
time scale OðJ�1Þ: If jTNjb1 and constant, then as
in the flux case, the growth factor BR1�2; on the
time scale OðjTNj�1Þ: The dot–dashed curves in
Fig. 2 have slope equal to l-2 corresponding to the
limiting behavior ðd=d0Þ=RBRl�2 that holds if
either TN is constant or JbJl and constant.
Finally, the dotted curve in Fig. 2 has slope equal
to ð1� J3=JÞ:

3.3. The effect of kinetics

We next examine the effect of kinetics in more
detail. Rewriting Eq. (3.9), we obtain the radius Rn

l

at which the growth rate is equal to zero

Rn

l ¼ e
1þ %kl

l � 2
ð1� Jl=JÞ�1; ð3:20Þ

which diverges as J-Jl : In the case of constant
flux or temperature, Rn

l corresponds to a minimum
in the growth factor ðd=d0Þ=R: For constant flux,
the associated time scale for evolution to this
minimum is tnl Bð1� Jl=JÞ�3: This shows that the

evolution of precipitates in near-critical conditions
is slow: tnl -N as J-Jl : if this scaling also holds
in the presence of nonlinearity, it may be used to
determine a critical nonlinear flux JNLl by extra-
polating numerical results for JEJNLl :
Another measure of the kinetics may be

obtained by considering the value Rnn
l such that

for RXRnn
l the growth factor ðd=d0Þ=RX1 indicat-

ing that perturbations grow relative to the under-
lying sphere. In the constant flux case, we obtain
the implicit relation

Rnn
l � ðRnn

l Þa3

ð1þ %klÞððRnn
l Þa3 � 1Þ

¼ e; ð3:21Þ

where

a3 ¼ 1�
ðl � 2Þð1� Jl=JÞ
l þ ðl � 1ÞJl=J

: ð3:22Þ

For the constant temperature case, an analogous
implicit relation can be derived from Eq. (3.14). In
Fig. 3, the dependence of Rn

l and Rnn
l on e for

several values of l is illustrated. The dot–dashed,
dashed and solid curves correspond to l ¼ N; 4
and 3, respectively. The flux J ¼ 1:1Jl and the
horizontal line marks e ¼ 0:1: Note that the curves
start at the same point ðRn

l ¼ Rnn
l ¼ 1Þ with the

upper curve being Rn
l : Observe that for a given

e;Rn
l oRnn

l and the difference Rnn
l � Rn

l increases
with decreasing l: For l ¼ 4 and e ¼ 0:1; for
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related by the formula (3.4): J ¼ 7:27 corresponds to TN ¼
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example, Rn
4E5 while Rnn

4 E90: As J-Jl ; the
growth factor ðd=d0Þ=Rp1 and Rn

l -N: The limit
J-N yields upper bounds, for each l and e; that
are qualitatively similar to the curves plotted in
Fig. 3. We note that the dependence of Rn

l upon e
and l was previously investigated by Coriell and
Parker [4] in the constant temperature case.

3.4. Self-similar evolution

In Section 3.1, we remarked that the evolution
may be self-similar if the flux J is given by
Eq. (3.9). In addition, self-similar behavior also
occurs, as t-N; if J ¼ Jl : This is seen from
Eq. (3.12), which reduces to

d=d0
R

¼
1þ ð1þ %klÞe=R

1þ ð1þ %klÞe
; ð3:23Þ

where R ¼ ð1þ 3JltÞ
1=3: Thus, in the limit as

t-NðR-NÞ; this yields Eq. (3.19). Therefore,
for each l and m; linear theory predicts that there is
a nontrivial limiting precipitate shape given by

rS

R
-1þ

d0
1þ ð1þ %klÞe

Yl;mðy;fÞ

as t-N: ð3:24Þ

Observe that the effect of e and l is to reduce the
size of the limiting perturbation. And, in the
absence of kinetics, the initial perturbation is
preserved.
There are also other, more general conditions

under which self-similar behavior is obtained at
long times. For example, by integrating the growth
rate ðd=RÞ�1ðd=dtÞðd=RÞ; we obtain the condition

lim
R-N

Z R

1

ð1� Jl=JðzÞÞ
dz
z

				
				oN ð3:25Þ

(where z is the integration variable), which, if
satisfied, ensures that there is a limiting nonsphe-
rical shape. This can be achieved if, for instance,
the flux satisfies

ð1� Jl=JðRÞÞ ¼ OðR�nÞ ð3:26Þ

for any n > 0:

4. Conclusions

We revisited the linear analysis of the quasi-
steady diffusional evolution of growing crystals in
3-D. We focused on a solid perturbed spherical
crystal growing in an undercooled liquid with
isotropic surface tension and interface kinetics. We
exploited the relation between temperature flux
and undercooling to use flux as a shape-control
parameter. Because of the peculiar scaling of flux
with the instantaneous size of the crystal and with
the far-field temperature, JBjTNjR; we found that
in 3-D there exist nearly constant critical flux
conditions JEJl at which destabilizing flux and
stabilizing surface tension effects balance identi-
cally. This leads to self-similar evolution during
growth, and to nonspherical, shape-invariant
crystals. This result reveals that the Mullins–
Sekerka [2] instability, that arises under constant-
temperature (increasing-flux) conditions, may be
suppressed by appropriately decreasing the far-
field temperature in time: TNj jBR�1Jl ; to main-
tain desired near-critical flux conditions during
growth.
The critical flux JlBl2 at large wave numbers,

and separates regimes of stable (decaying to zero
with respect to the underlying sphere) and unstable
growth of perturbations. In contrast to the
classical Mullins–Sekerka instability, unstable
growth is very constrained in 3-D under near-
critical-flux conditions, because there is little or no
creation of unstable modes during growth. The
interfacial kinetics have a strong stabilizing effect,
which was explored in detail here.
This work has important implications for shape

control in processing applications; shape control
may be achieved by varying the undercooling in
time to approximate near-critical flux conditions.
Experiments are currently being designed (by
Stefano Guido and coworkers [6] at the University
of Naples) to test this possibility.
In Part II [12] of our study, we will investigate

the nonlinear evolution using adaptive boundary-
integral simulations, in which the number of
marker points N of the computational mesh is
changed during a simulation to resolve the inter-
face SðtÞ to a prescribed accuracy. This enables us
to simulate three-dimensional crystals stably and
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accurately well into the nonlinear regime. Pre-
liminary results indicate that this class of solutions

is robust with respect to perturbations and is well
predicted by solutions of the linearized equations.
Simulations of both stable and unstable crystal
growth will be presented. An example is given in
Fig. 4 for the case of unstable growth and constant
far-field temperature TN: From Fig. 1 and for-
mula (3.10), the generation of an increasing
number of unstable modes is evident during the
evolution: there is no unstable mode at t ¼ 0;
whereas there are E16 unstable modes corre-
sponding to the last frame in Fig. 4 (the maximum
growth rate occurs for mode E10).
In the physical system, typically both surface

tension g and kinetic coefficient m are anisotropic
[13]. This introduces preferred directions of
growth, where surface tension (or kinetics) is
minimum, leading to the formation of dendrites,
traveling waves, and to nontrivial stationary
shapes and the possibility for self-similar growth.
Extension of the linear theory and the boundary-
integral method to include anisotropies in 3-D is
underway.
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