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Abstract

In this paper, we perform a stability analysis of 2D, noncircular self-similar crystals with isotropic surface tension
growing in a supercooled melt. The existence of such self-similarly growing crystals was demonstrated recently in our
previous work (J. Crystal Growth 267 (2004) 703). Here, we characterize the nonlinear morphological stability of the
self-similar crystals, using a new spectrally accurate 2D boundary integral method in which a novel time and space
rescaling is implemented (J. Crystal Growth 266 (2004) 552). This enables us to accurately simulate the long-time,
nonlinear dynamics of evolving crystals. Our analysis and simulations reveal that self-similar shapes are stable to
perturbations of the critical flux for self-similar growth. This suggests that in experiments, small oscillations in the
critical flux will not change the main features of self-similar growth. Shape perturbations may either grow or decay.
However, at long times there is nonlinear stabilization even though unstable growth may be significant at early times.
Interestingly, this stabilization leads to the existence of universal limiting shapes. In particular, we find that the
morphologies of the nonlinearly evolving crystals tend to limiting shapes that evolve self-similarly and depend on the
flux. A number of limiting shapes exist for each flux (the number of possible shapes actually depends on the flux), but
only one is universal in the sense that a crystal with an arbitrary initial shape will evolve to this universal shape. The
universal shape can actually be retrograde. By performing a series of simulations, we construct a phase diagram that
reveals the relationship between the applied flux and the achievable symmetries of the limiting shapes. Finally, we use
the phase diagram to design a nonlinear protocol that might be used in a physical experiment to control the nonlinear
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morphological evolution of a growing crystal. Because our analysis shows that interactions among the perturbation
modes are similar in both 2D and 3D, our results apply qualitatively to 3D.

© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The morphological stability of a growing crystal
in the supercooled melt is a fundamental problem
in phase transformations and has been extensively
studied theoretically (e.g. Refs. [1-13,20-23]) and
experimentally (e.g. Refs. [14-19]). Crystal growth
is typically characterized by the formation of
complex morphologies due to the Mullins—Sekerka
instability. For example starting from a compact
circular or spherical-like seed, cellular, dendritic
growing shapes are widely observed during
growth. In many applications (e.g. castings) it is
desirable to suppress the instability and prevent
the formation of dendrites. In this paper, we
characterize the nonlinear morphological stability
of a growing crystal through long time simulations
by perturbing the noncircular, self-similar solu-
tions we have found recently [3]. This stability
analysis shows the existence of nonlinear limiting
shapes resulting from the evolution, and identifies
the protocols by which the compact growth of
crystals with a desired symmetries can be achieved
even in the nonlinear regime of growth.

It has long been recognized that growth
morphologies are determined by the interaction
between macroscopic driving forces (supercooling)
and microscopic interfacial properties (surface
tension, Kkinetics of atomic attachment, etc.).
Mullins and Sekerka were the first to incorporate
surface tension in a linear morphological stability
analysis of growing crystals in a supercooled liquid
[21]. Under the assumptions of local equilibrium
and quasi-steady evolution, they investigated the
behavior of an infinitesimal perturbation of a
spherical solid by a single spherical harmonic.
They found that the perturbation can decrease in
time (stable growth) or increase in time (unstable
growth) depending on the size of the precipitate,

such that above a critical radius, the perturbation
grows. Mullins and Sekerka [21] also identified the
possibility of growing crystals with compact
shapes when the supercooling is kept sub-critical
by interparticle interactions. This was not quanti-
fied further, however. Coriell and Parker showed
similar results hold for a growing cylinder [22].
Further, Coriell and Parker studied the stability of
a solid sphere when finite attachment kinetics at
the interface are included in the model. They
showed that kinetics can enhance the stability [23],
but when the size of the crystal increases, this
effect decreases and the evolution is unstable. The
Mullins—Sekerka instability leads to a wide variety
of morphologies. For example, in the absence of
anisotropy (or small anisotropy), Jacob proposed
that the repeated tip-splittings dominate the shape
of the interface and form dense branching
morphologies [24,25], which are seen in experi-
ments in a Hele-Shaw cell [26,27].

To grow compact crystals, the Mullins—Sekerka
instability has to be suppressed. Recently, Cristini
and Lowengrub reconsidered the three-dimen-
sional (3D) quasi-steady crystal growth problem
studied originally by Mullins and Sekerka [21] and
Coriell and Parker [23]. Using linear theory, they
demonstrated that there exist critical conditions of
an imposed far-field heat flux (rather than a far-
field supercooling) such that the classical Mul-
lins—Sekerka instability can be suppressed and that
the morphologies of growing crystals can be
compact and controlled [1,2]. Note that what we
mean by flux in Refs. [1-3] and this paper is the
integral flux applied at the far-field boundary, (see
Eq. (4)). Cristini and Lowengrub even found
conditions (based on linear theory) for which the
nonspherical crystals may grow self-similarly.
Cristini and Lowengrub [2] performed 3D
adaptive, dynamical simulations that suggest the
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existence of nonlinear self-similar shapes and that
a prescribed crystal symmetry can be achieved
even in the nonlinear regime of growth.

For an isolated quasi-steady evolving crystal, an
imposed far-field heat flux J represents the rate of
area (2D) or volume (3D) change in time. The heat
flux and the supercooling AT are related by J ~
—RAT in 3D [2,11], and by J ~ —log(Rw/R) AT
in 2D where R, is the radius of a large domain
containing the crystal, R is the effective radius of
the crystal (radius of a sphere with the same
volume) and AT denotes the difference between
the far-field temperature and the phase change
temperature for a flat interface [2,11]. Thus,
conditions of specified flux can be enforced by
varying AT with the crystal radius.

Very recently, we extended the studies of
Cristini and Lowengrub and developed a non-
linear theory of self-similar crystal growth and
melting [3]. Because the analysis is qualitatively
independent of the number of dimensions, we
focused on a perturbed 2D circular crystal growing
or melting in a liquid ambient. We demonstrated
that there exist nonlinear self-similar shapes with
k-fold dominated symmetries. In the isotropic
case, k 1s arbitrary and only growing solutions
exist. When the surface tension is anisotropic, k is
determined by the form of the anisotropy and both
growing and melting solutions exist.

In this paper, we perform a stability analysis for
2D, noncircular self-similar crystals with isotropic
surface tension growing in a supercooled melt, as
found in our previous work [3]. We characterize the
nonlinear morphological stability of the self-similar
crystals, using a new spectrally accurate 2D
boundary integral method in which a novel time
and space rescaling is implemented [2]. This enables
us to accurately simulate the long-time, nonlinear
dynamics of evolving crystals. Our analysis and
simulations reveal that self-similar shapes are stable
to perturbations of the critical flux for self-similar
growth in the sense that the symmetry of the crystal
remains unchanged. This suggests that in experi-
ments, small oscillations in the critical flux will not
change the main features of self-similar growth.
Shape perturbations may either grow or decay.
However, at long times there is nonlinear stabiliza-
tion even though unstable growth may be signifi-

cant at early times. Interestingly, this stabilization
leads to the existence of universal limiting shapes.
That is, we find that the morphologies of the
nonlinearly evolving crystals tend to limiting shapes
that evolve self-similarly and depend only on the
flux. A number of limiting shapes exist for each flux
(the number of possible shapes actually depends on
the flux), but only one is universal in the sense that
a crystal with an arbitrary initial shape will evolve
to this shape. The universal shape can actually be
retrograde so that a portion of the interface may be
melting during growth.

By performing a series of simulations, we
construct a phase diagram that reveals the
relationship between the applied flux and the
achievable symmetries of the limiting shapes.
Finally, we use the phase diagram to design a
protocol by which the compact growth of crystals
with desired symmetries can be achieved. Because
our analysis shows that interactions among the
perturbation modes are similar in both 2D and
3D, once the difference between the 2D and 3D
heat fluxes (i.e. area vs. volume growth) is scaled
out [3], our results apply qualitatively to 3D.

During crystal growth, there is at least one other
example we are aware of in which the evolution of
an arbitrary shaped crystal tends to a nonspherical
limiting self-similar shape. In this example the
velocity of the crystal is determined locally by the
surface energy and the limiting shape is character-
ized by the Wulff shape [28,29]. The relevance of
this example to our work is currently under study.
In our case, the evolution is much more compli-
cated since the velocity is determined nonlocally by
the solution of the diffusion equation and multiple
limiting morphologies are observed that depend on
the flux. We note that during melting, Glicksman
et al. [14] developed a quasi-static theory to
describe self-similar melting of prolate spheroids
in the absence of surface tension. Further self-
similar two-fold symmetric solutions were found
by Ham [30], and Horvay and Cahn [31] also in the
absence of surface tension.

This paper is organized as follows: in Section 2,
we review the governing equations, linear stability
analysis and nonlinear self-similar theory; in
Section 3, we present the numerical scheme;
in Section 4, we discuss numerical results; and in
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Section 5, we give conclusions and describe work
in progress.

2. The theory
2.1. Governing equations

We consider a 2D solid crystal growing quasi-
statically in a supercooled liquid phase. The
interface X separates the solid phase Q; from
the liquid phase ©2,. We assume that for simplicity
the surface tension along the interface is isotropic,
local equilibrium holds at the interface, and the
thermal diffusivities of the two phases are iden-
tical. The results apply more generally however
[32]. Using the nondimensionalization given in
Refs. [1,2] in which the length scale is the
equivalent radius of the crystal at time # = 0 and
the time scale is the characteristic surface tension
relaxation time scale, the following nondimen-
sional equations govern the growth of the crystal:

VT;=0 inQ, i=1,2, (1)

V=(NT,—VT;)-n on?Z, 2)

T1=T2=—K 01’12, (3)
1

J=— Vds 4)
277: >

and the interface 2 evolves via

n~%=V on 2, ®)

where T; is the temperature field, i = 1 for solid
phase and i = 2 for liquid phase, V' is the normal
velocity of the interface, n is the unit normal
directed towards Q,, x is the curvature, and J is the
integral far-field heat flux and specifies the time
derivative of the area of the solid phase.

2.2. Review of linear theory

Consider a circular crystal/melt interface per-
turbed by a linear combination of Fourier modes

r(0,1) = R(t) + 200: Ok () cos k0, (6)
k=2

where R(f) is the radius of a underlying growing
circle (R(0)=1) and the ¢'s are amplitudes of
perturbations. Note that in Eq. (6), K = 1 means a
translation of a circle (i.e. no shape perturba-
tion occurs); the shape perturbation d,/R induced
by the kK =2 mode is stable for any finite flux
(the amplitude 6, does not change in time) (see
Eq. (9)). The rate of area growth for the
unperturbed circle is

d
R(7) dif =J(), (7

where J(f) is the specified flux. A classical linear
stability analysis [33,11,3] yields the growth rate of
the kth mode perturbation,

S\ d (8 (k=2)(J = Ji) ®

R dt\R) R? ’
where the critical flux is

Ci
Ji(t) = 0]
with the linear flux constant
2k(k* — 1)

Ce="% =5 ©

Note that with flux specified, the far field
temperature is

Too(t) = —J log (i;") —1/R, (10)

where R, is the radius of a large domain
containing the crystal. Eq. (8) shows that pertur-
bations grow (decay) for J > J; (J<Ji). When J =
Ji, the critical flux, the perturbation, relative to
the underlying circle, is unchanged in time and the
crystal grows self-similarly (at the level of linear
theory). Hence in 2D, taking a constant flux J >0
results in the instability of perturbations with
successively higher wavenumbers as the crystal
grows, since J; ~ 1/R. This is the Mullins—Seker-
ka instability [21].

Eqgs. (7)—(10) are qualitatively similar to those
obtained by Cristini and Lowengrub [1] in 3D. As
discussed in Ref. [1], the critical flux in 3D is
independent of R, which implies that the Mul-
lins—Sekerka instability in 3D can be suppressed
by taking a constant far-field flux J >0, since no
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new unstable modes are created during the
evolution. In contrast, Egs. (8) and (9) show that
in 2D, Mullins—Sekerka instability can be sup-
pressed if the 2D far-field flux decreases as J ~
1/R. This difference exactly reflects the different
scaling of the flux between 2D and 3D (area vs.
volume evolution). If one rescales the far-field
flux J by R, ie. J=RJ, then R*(dR/dr)=J
and the right-hand side of Eq. (8) becomes
(k —2)(J — Cy)/R>. These equations are identical
to those obtained in 3D if Cy is replaced by J,3(D
and the 3D far-field flux is J [1]. This suggests that
our 2D work applies qualitatively to the 3D
problem.

Let us now determine the flux for which the kth
mode has the largest growth rate. This is
important if the shape of the interface is a mixture
of Fourier modes since the fastest growing mode
will dominate the shape. As in Ref. [2], we will
exploit this idea later to control the shapes of
growing crystals with desired symmetries. Follow-
ing Ref. [1], we get

6k> —2
R(?)

Further, from J}(¢), we can determine the mode ¢
that marks the upper bound of the band of
unstable modes. To find g, we equate Ji =J,
(replace k in Eq. (9) by ¢), so that mode ¢ has zero
growth rate (i.e. ¢ — 1 is the largest unstable mode)
if the applied flux is set to J}. A remarkable feature
is that the ¢(k) and the 3D analogue given in
Ref. [1] are nearly identical even though the ¢g(k)
are (positive) roots of different cubic poly-
nomials in 2D and 3D. This agreement suggests
the modes interact with each other in a similar
manner for both 2D and 3D when the flux is
rescaled by R.

Je(t) = (11)

2.3. Review of nonlinear theory

In the nonlinear theory we have recently
developed [3], we represent the temperature field
through a single-layer potential. This yields the
first kind Fredholm integral equations [34,35] for
V(x,t) and T'»(?), which are the normal velocity of
the interface X and the far-field temperature,

respectively:
—x(x,1) = Gx — XYWV (X, 1) ds(x") + Too(1),
()
(12)
1 / A
J(t) = I /Z(t) V(x', 1) ds(x), (13)

where G(x) = (1/2n) log|x| is the Green’s func-
tion.

A fundamental feature of self-similar evolution
is that time and space are separable, i.e.

x(s, 1) = R(H)X(s), (14)

where X(s) specifies the self-similar shape, R(¢) is a
scaling function related to the effective radius of
the growing crystal, and s is the arclength along
the self-similar interface. Substituting Eq. (14) into
Eq. (12) and using Eq. (13), then differentiating
the resulting equation with respect to arclength
gives [3]

(—R),/9I8], = JR = = C", (15)

where the notation (.), = 0/0s, CN" is a constant in
space and time (from separation of variables) and
is referred to as the nonlinear heat flux constant.
Further,

YIR](s) = /‘Z % - n()G(X(s) — X(s)) ds'. (16)

The above system is identical to the 3D system for
nonlinear self-similar crystal shapes if the constant
CNL is replaced by the 3D nonlinear self-similar
flux, G is replaced by the 3D Green’s function and
T (f) is defined appropriately [32]. This further
supports our contention that 2D analysis can
provide insight to 3D evolution.

In Ref. [3], we used a quasi-Newton method to
solve the system of equations numerically to
determine the heat flux constant and the self-
similar solution. Our numerical results revealed
that there exist nonlinear self-similar shapes with
k-fold dominated symmetries. An amplitude-de-
pendent nonlinear heat flux constant CR“ is
associated with each shape; for small-amplitude
perturbations of the cylindrical state Cp'™ tends to
the linear flux constant Cy in Eq. (9). In the



6 S. Li et al. | Journal of Crystal Growth 1 (1ill) 1I1-110

isotropic case, k is arbitrary and only growing
solutions exist. Moreover, in a k-fold dominant
self-similar shape, only mode k and its harmonics
(integer multiples of the wavenumber k) appear in
the Fourier series description of the interface. We
also find that one of the effects of nonlinearity is to
reduce the nonlinear critical flux compared to that
predicted by linear theory.

3. Boundary integral method with time and space
rescaling

In order to test the stability of self-similar
solutions we found in Ref. [3], we develop a
scheme to investigate the long-time, fully nonlinear
evolution of a crystal. Following Ref. [2], we
introduce the spatial and temporal scaling of the
dynamical equations

x = R(DX(7, ), (17)

- | ,

{ /0 R0 dr, (18)
where R(7) = R(#(f)) and X(7,o) is the position
vector of the scaled interface, and 7 is the new time
variable. The scaling R is chosen such that the
area A enclosed by the scaled interface is constant
in time. The scaling R can be found by integrating
the normal velocity over the interface and dividing
by 27 to get

A 1 dR()
TR O

The normal velocity in the new frame is V (7, o) =
0X(7,0)/07 - m and satisfies

(19)

— — JY[F] :/_ G(IX =XV ds' + Te(d)  (20)
P

and

0= / 7 ds, 1)
2
where

- nRJ d - -
J= = @ log(R(f)) and K = Rx.

Thus the scaling factor is

R(f):exp(/otjdf') (22)

Further, in Eq. (20) we have taken

Too(D) = J 4+ Too(((D)R(D),

and ¥9(X) = fz X -n(X)G(X — X')ds’. Note that
Eq. (20) reduces to the self-similar Eq. (15) when
the normal velocity ¥ = 0.

To evolve the interface numerically, Eqgs. (20)
and (21)) are discretized in space using spectrally
accurate discretizations and a scaled (equal ar-
clength) parametrization [36]. The resulting dis-
crete system is solved efficiently using GMRES
together with a diagonal preconditioner in Fourier
space [36,37]. Once V is obtained, the interface is
evolved by using a second order accurate nonstiff
updating scheme in time [36].

A log(R)
T

4. Results and discussions
4.1. Stability analysis

4.1.1. Stability analysis with respect to flux
perturbations

In this section, we study the stability of a self-
similar shape by perturbing the flux constant and
analyzing the resulting evolution of the shape
using the nonlinear time evolution scheme pre-
sented in Section 3. As a representative example,
we consider an eight-fold symmetric self-similar
shape with a shape factor /R = 0.0284 and flux
constant Cy“ = 16538104 (see the inset in
Fig. 3(a) labeled unperturbed). The shape factor
is defined as

5/R = max ||X|/Reir — 1, (23)

where X is the position vector from the centroid of
the shape to the interface and Ry is the effective
radius of the nonlinear (self-similar) shape.

In Fig. 1(a), we use a sine wave to perturb the
flux constant

J=CN(1 - o sin(27w)t))%, (24)
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Fig. 1. Effect of flux perturbations. (a) evolution of shape
factor §/R for a crystal with eight-fold symmetry when the flux
constant is perturbed by a sin wave with different amplitudes
(as indicated) through Eq. (24) with frequency = 100.
Associated morphologies shown as insets and (b) shape factor
when the flux constant is perturbed by a sin wave with different
frequencies through Eq. (24) with amplitude .« = 0.0284.

where .o/ is the perturbation amplitude, w is the
frequency and A is the area of the self-similar
shape. The self-similar shape is then used as initial
data and is evolved using the flux from Eq. (24). In
this calculation, we take w = 100 and consider
perturbation amplitudes, .7 = 0.0, 0.0284, 0.05.
When the perturbation amplitude increases, the
final shape deviates more from the original self-
similar shape. At early growth times, 6/R varies
rapidly. At later times, the shape stabilizes (6/R
tends to a nonzero constant) as the size of the

crystal grows larger. This is likely because the
overall flux J ~ J/R(t) decreases as crystal grows
making the crystal less sensitive to variations in J
at large radii.

Alternatively, in Fig. 1(b), we take .&/ = 0.0284
and perturb the flux constant with different
frequencies w = 100, 25, 8. Observe that the
deviation of shape factor 6/R from the original
self-similar shape decreases with increasing per-
turbation frequency. This is because the time scale
for flux oscillations ~ 1/w becomes much larger
than the time scale for growth when the frequency
w is large. As before the shape tends to stabilize as
the crystal radius increases although it appears to
take a longer time to do so particularly for the
low-frequency perturbations.

These two results strongly suggest that self-
similar evolution is stable with respect to flux
perturbations in the sense that symmetry of the
crystal remains unchanged. These results are
generic in that the conclusions hold for other
self-similar shapes. Further, these results have
important implications for an experimental inves-
tigation of self-similar growth, since in experi-
ments it may be difficult to precisely control the
far-field flux (via the far-field temperature).

4.1.2. Stability analysis with respect to shape
perturbations

We next study the morphological stability of
self-similar crystals by adding an arbitrary trigo-
nometric perturbation. The perturbed shapes are
then used as initial data for simulations of
nonlinear evolution. The flux is taken from the
result of the Quasi-Newton solver for the original
self-similar shape. The new time-space rescaling
scheme presented in Section 3 (effective crystal
radius grows exponentially in the new time
variable) enables us to investigate the shape
evolution for very large R (much larger than has
been previously possible) and hence completely
allows us to characterize the stability of the
perturbation.

4.1.2.1. Self-similar shapes with four fold symme-
try.  We consider a four fold isotropic self-similar
shape with shape factor /R =0.028 and flux
constant C4NL = 59.87 (see inset in Fig. 2(a) labeled
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Fig. 2. Effect of shape perturbations and evolution to a universal shape: (a) shape factor evolution and associated morphologies of a
four-fold self-similar shape (shown in an inset labeled unperturbed) with 6/R = 0.028 (and flux constant C4NL = 59.87) from Li et al. [3]
perturbed by adding a single mode with different wavenumbers and amplitudes as indicated. The flux constant is taken to be C4NL.
Linear theory overpredicts the growth of the perturbation as indicated in the figure. For generic perturbations, the nonlinear evolution
tends to a universal limiting shape with a three-fold symmetry and shown in the upper right corner of (a). A nonuniversal four-fold
limiting shape (lower right of (a)) is obtained when the shape is perturbed by adding mode 6. The mode 5 perturbation will tend to the
universal shape at longer times (larger R). In (b)—(e), evidence is shown that the three-fold universal shape is a self-similar solution and
satisfies Eq. (15) with CNF = Cf:”‘ = 59.87. (b) The mean value of Eq. (15) during the evolution. (c) The maximum deviation from the
mean value of Eq. (15). (d) The maximum normal velocity at different crystal sizes R. (¢) The evolution of interface arclength (in the
scaled frame).
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unperturbed). In Fig. 2(a), the evolution of the
shape factors 0/R is shown versus radius R for
different perturbation modes and amplitudes. For
this case, linear theory describing the evolution of
perturbations of a circle (see Section 2) predicts
that only mode 3 is unstable for the flux constant
CTL = 59.87. This linear theory typically over-
predicts the growth of perturbations as indicated
in the figure.

In general, and beyond the prediction of linear
theory, there is nonlinear stabilization and pertur-
bations eventually stop growing. For generic
perturbations, the nonlinear evolution tends to-
ward a single universal limiting shape with a three-
fold symmetry (for this value of flux), which is
shown in the upper right corner of Fig. 2(a). In this
case, a generic (arbitrary) perturbation requires at
least one odd perturbation mode, so that all modes
are eventually produced through nonlinear inter-
actions. Note that the time required to reach this
universal three-fold shape depends strongly on the
initial perturbation. On the other hand, for special
perturbations (e.g. perturbations containing only
even modes), the evolution tends toward a non-
universal limiting shape with four-fold symmetry,
as shown in the inset in the lower right of Fig. 2(a),
where the initial shape is perturbed by adding
mode 6.

As shown below, both the universal and
nonuniversal limiting shapes are actually nonlinear
solutions of the self-similar crystal growth Eq. (15)
with the same flux constant Cj"-. However the
nonuniversal shapes are unstable in the sense that
if they are perturbed by adding arbitrary wave-
numbers (which by definition contain odd modes),
the perturbations will grow and the shape will tend
towards the universal three-fold shape. Linear
theory predicts that mode 3 is the fastest growing
mode for this specific flux CN*, and this is reflected
in the three-fold symmetry of the universal shape.
However, linear theory does not predict the
existence of the universal shape. The existence of
limiting shapes is a surprising fully nonlinear
result.

Fig. 2(a) strongly suggests that the limiting
shapes, both the universal three-fold shape and the
nonuniversal four-fold shape, are actually self-
similar solutions of the Eq. (15) in Section 2.3.

Here we present evidence that this is indeed the
case. We consider the universal three-fold shape,
though similar results hold for the nonuniversal
shape. This new self-similar solution deviates
much more from the circle than those we found
previously [3].

In Figs. 2(b)—(e), we plot data from the three-
mode initial perturbation with 53(0) =0.028 as a
typical example. In Fig. 2(b), the mean value of the
flux constant C™ from the ratio in the left-hand
side of Eq. (15) is shown versus R throughout the
evolution. This ratio should be constant for a self-
similar shape and should be equal to the applied
far-field flux constant C)" = 59.87. The mean
value approaches a constant as is consistent with
self-similar evolution. The value of the mean
Cinean = 59.83 at R= 102 is slightly smaller than
the applied flux with flux constant C4NL = 59.87.
We next calculate the maximum deviation of CN-
from CNL - (i.e. max(|CNY — CRL ) as a function
of R. This is shown in Fig. 2(c) where it is seen that
the maximum deviation is indeed decreasing,
especially at later times. The deviation at R =
10'% is on the same order as the difference between
ChL and C)“. As further evidence of self-
similarity, we plot the maximum normal velocity
(i.e. max | V|) as a function of radius R in Fig. 2(d).
The normal velocity ¥ tends to zero as R
increases which is consistent with the self-similar
evolution of the limiting shape. Finally, in
Fig. 2(e), we plot the arclength of the interface
(in the rescaled reference frame used for computa-
tion) versus R and observe that the arclength
becomes constant indicating that the shape stops
changing. Since the surface tension is isotropic,
this also provides a measure of the surface energy
in the scaled frame.

Putting all of this direct quantitative evidence
together strongly suggests that the limiting shapes
are self-similar. Furthermore since the universal
three-fold shape is stable and can be achieved by
evolving arbitrary perturbations, it is an attractor
for the evolution. Although it is possible to
dynamically achieve a four-fold nonuniversal
limiting shape, this shape is not stable to arbitrary
perturbations and can only be achieved by
evolving special mode combinations (e.g. even
modes).
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4.1.2.2. Self-similar shapes with eight-fold symme-
try. In the previous section, we have analyzed the
stability of a perturbed self-similar shape with a
four-fold symmetry and demonstrated the exis-
tence of limiting shapes. We now extend this
analysis by examining the stability of an eight-fold
self-similar shape from Section 4.1.1 (see the inset
in Fig. 3(a) labeled unperturbed) with 6/R =
0.0284 and Cp* =165.38104. With this flux

constant, modes 3-7 are linearly unstable. Thus,
it is reasonable to expect that a larger number of
limiting shapes exist compared to the case
considered in the previous section. Note that the
flux CIS\IL/R for the eight-fold symmetric self-
similar shape is close to Ji(f) = 148/R(¢), from
Eq. (11), which is the flux such that mode 5
has the fastest growth rate according to linear
theory.

0.7 0.7
- Adding 5,(0)=5,(0)=3,(0)=0,{0)=0,(0)=0,(0)=0.0028
__ Adding 5,(0)=5,(0)=3,,(0)=5,(0)=0.0028
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Fig. 3. The effect of shape perturbations on an eight-fold self-similar shape (shown in an inset) with 6/R = 0.028 and flux constant
Cg”' = 16538 from Li et al. [3]: (a) Shape factor evolution is shown for perturbations of the original self-similar shape with
combinations of modes with different wavenumbers and amplitudes as indicated. The associated morphologies are shown for the solid
curve as a representative example. The flux constant is taken to be C?L. The evolution tends to a universal limiting shape with a six-
fold symmetry. (b) and (c) show that the evolution also may tend to two nonuniversal shapes each with an eight-fold symmetry
depending on the initial shape. In (b) the original self-similar shape is perturbed by adding mode 4 with amplitudes as indicated. Both
the four-fold and eight-fold symmetries remain throughout the evolution. In (c), the original shape is perturbed by adding mode 8 with
different amplitudes. (d) shows a comparison between the two eight-fold nonuniversal limiting shapes. Remarkably, the fingers are the

same and it is the troughs that differ.
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In Fig. 3(a) the shape factor is shown versus R
for perturbations of the original self-similar shape
with combinations of modes with different wave-
numbers and amplitudes as indicated. The asso-
ciated morphologies are shown for the solid curve
as a representative example. The evolution is
highly nonlinear and, as in the lower symmetry
simulations shown in the previous section, there is
nonlinear stabilization during growth. The non-
linear stabilization seems to characterize the
process of “finger” competition (i.e. generation,
retraction and tip-splitting) and the associated
formation of channels between neighboring
“fingers” as seen in the sequence of evolving
morphologies.

At early times (small R), mode 5 dominates the
shape in agreement with the prediction of linear
theory. However, when R increases, certain fingers
of the five-fold shape experience a complex process
of tip-splitting, finger shrinking and tip re-split-
ting. Eventually, mode 6 emerges and the evolu-
tion tends toward a single six-fold universal
limiting shape with identical fingers as indicated
in the figure. An analysis (not presented) similar to
that given in the previous section strongly suggests
this limiting shape evolves self-similarly. Interest-
ingly, the six-fold universal shape is retrograde and
thus cannot be parametrized by the polar angle.
Moreover, the evolution (not shown) of the
arclength in the scaled frame is nonmonotone as
a function of R due to the complex shape
transitions.

Next, consider special perturbations of the
original eight-fold self-similar shape by adding
modes 4 and 8 in Figs. 3(b) and (c), respectively.
The evolution tends toward two different eight-
fold nonuniversal, retrograde limiting shapes. The
limiting shape obtained from the 4 mode perturba-
tion retains the four-fold symmetry even though 8
fingers are present. In contrast, the limiting shape
from the 8 mode perturbation retains only the
eight-fold symmetry. A detailed comparison of the
shapes is shown in Fig. 3(d), where the thick solid
line is the limiting shape for the mode 8 perturba-
tion and the dots correspond to the mode 4
perturbation (we rotate the limiting shape in
Fig. 3(b) by =/8). Observe that the fingers are
identical but the troughs are different.

As another example of a special perturbation,
the eight-fold self-similar shape can be perturbed
by adding mode 7. In this case (not shown), the
evolution tends toward a seven-fold nonuniversal,
retrograde limiting shape with identical fingers.

In summary, our stability analysis reveals the
existence of limiting shapes with six-, seven- and
eight-fold symmetries when the flux constant is
equal to CN, with the six-fold limiting shape
being universal in the sense that arbitrary pertur-
bations will eventually lead to this shape. Putting
this together with our results from stability
analysis for the four-fold self-similar shapes
suggests that the universal limiting shapes depend
only on the flux while the nonuniversal shapes
depend also on the initial data. Next we explore
the relation between the flux and the achievable
limiting shapes.

4.1.2.3. Limiting shape phase diagram. The simu-
lations in the previous sections demonstrate the
importance of far-field flux on the selection of
limiting shapes. Here, we bring together these
results and construct a limiting shape phase
diagram which is shown in Fig. 4(a). In this figure,
we plot the symmetry mode k of the limiting
shapes versus corresponding flux constants C, i.e.
the flux J = C/R.

The set of symmetries of the dynamically
achievable limiting shapes found in this paper lies
in Region II and roughly corresponds to those
modes that have growth rates between 0 (upper
dashed curve) and the maximum growth rate
(lower dashed curve) as predicted by linear theory.
There may be several shapes with a given
symmetry k and flux constant C (see Fig. 3(b)
and (c)). Region II is bounded below by a
piecewise constant curve that describe the relation
between the observed symmetries of the universal
limiting shape and the flux constant. The stars
denote actual simulation data. The upper bound of
region II is the piecewise constant curve obtained
from the nonlinear simulations of self-similar
shapes by Li et al. [3]. The dot-dashed curve is a
fit to numerical data from Li et al. [3]. We cannot
rule out the possibility of the existence of limiting
shapes in region I but we have not as yet been able
to compute them.
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Fig. 4. (a) Limiting shape phase diagram. The set of dynamically achievable shapes is found to be Region II. There may be several
shapes with a given symmetry k and flux constant C (see Fig. 5(b) and (c)). Region II is bounded by two piecewise constant curves that
describe the relation between the observed symmetries of the limiting shape and the flux constant. The stars denote actual simulation
data. The universal limiting shapes lie on the lower piecewise constant curve. The upper piecewise constant curve is obtained from the
nonlinear simulations of self-similar shapes in Li et al. [3]. In between these curves, nonuniversal shapes may occur with finite
multiplicity. The dot-dashed curve is a fit to that numerical data from Li et al. [3]. The dashed curves correspond to predictions of
linear theory and are shown for reference. The upper dashed curve shows the relation between the flux constant and the mode with zero
growth rate (i.e. self-similar). The lower dashed curve shows the relation between the flux constant and the fastest growing mode. (b)
The associated shape factors of the universal limiting shapes. The solid-dotted curve suggests that the asymptotic behavior may be
8/R ~ /C at large flux constants C. The vertical dashed lines indicate transitions from symmetry k to k + 1. Representative universal
morphologies are shown for each symmetry.

In between these piecewise constant curves, universal curve is calculated to be within 5%. The
nonuniversal shapes may occur with finite multi- jumps on the upper curve are only approximate.
plicity. The dashed curves correspond to predic- On the universal curve, the length of each step
tions of linear theory and are shown for reference. increases as the flux constant increases indicating
The upper dashed curve shows the relation that larger and larger fluxes are needed to produce
between the flux constant and the mode with zero higher and higher symmetries of the universal
growth rate (i.e. self-similar). The lower dashed shapes. Notice that there is a continuous set of flux
curve shows the relation between the flux constant constants that can be used to achieve a limiting
and the fastest growing mode. Note that while (but not necessarily universal) shape of a parti-
linear theory does not predict the existence of a cular symmetry. The shape factors d/R of these
universal limiting shape, linear theory prediction limiting shapes are different, however. In addition,
for the fastest growing mode does provide a good the time needed for an arbitrary initial shape to
estimate for the symmetry of the universal limiting evolve to the limiting shape is larger for fluxes near
shape. the transition points than for fluxes in the interior

To produce the phase-diagram, the limiting of the set.
shapes are found by performing simulations with In Fig. 4(b) we examine the relation between the
a variety of initial shapes and the specified flux shape factors 0/R of the universal limiting shapes
constant. The curves marking the upper and lower and the flux constant. The vertical dashed lines
bounds of region II takes a staircase pattern indicate transitions from symmetry k to k+ 1.
because there are morphology transitions from k- Representative universal morphologies are shown
fold to k + 1-fold symmetries. The circles mark the for each symmetry. The solid-dotted curve sug-

transitions. The accuracy in the jumps on the gests that the asymptotic behavior may be §/R ~
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V/C at large flux constants C. This reflects the fact
that larger symmetries require larger fluxes to
maintain as seen from the linear analysis of a
perturbed circle. Larger fluxes, in turn, allow more
modes to grow and result in larger shape
perturbations. Our results suggests that the uni-
versal shapes with symmetries six-fold and higher
are retrograde. Further, our results also suggest
the intriguing possibility that there may be a
critical value of C at which the topology of the
universal shape changes from a simply connected
to a multiply connected region characterized by a
shape with identical, equally spaced fingers that
are all connected at the origin (i.e. there is an inner
tangent circle with vanishing radius). This is
currently under study.

4.2. Application of phase diagram: shape control

The phase diagram discussed in the previous
section can be used to design a nonlinear protocol
that might be able to be carried out in a physical
experiment to control the nonlinear morphological
evolution of growing crystal. A less rigorous
strategy based on linear theory was previously
formulated in 3D by Cristini and Lowengrub [2].

The nonlinear protocol is as follows. From the
diagram, we have the relation between symmetry of
the universal limiting shape and the flux constant.
By choosing the flux constant consistent with the
diagram for a symmetry k, a crystal with an
arbitrary initial shape will evolve to the correspond-
ing k-fold limiting shape. To achieve the most rapid
evolution towards the universal limiting shape, the
flux constant should be chosen away from a
symmetry transition. In this manner, the prescribed
symmetry of the crystal is achieved in the shortest
time. As seen in the phase diagram, using linear
theory to determine the mode with maximum
growth rate (lower dashed curve in the Fig. 4(a))
provides only an approximation of the fluxes
needed to obtain the universal limiting shape. In
fact, in the shape control experiment presented by
Cristini and Lowengrub [2] the actual flux used was
slightly smaller than that predicted by linear theory.
This is consistent with our phase diagram.

In Fig. 5, we present shape factor evolution
towards universal limiting shapes corresponding to
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Fig. 5. Universal limiting shapes corresponding to different
fluxes: (a) shows the evolution to a four-fold limiting shape
using the flux constant C = 105; (b) shows the evolution to a
five-fold limiting shape using the flux constant C = 132.82 and
(c) shows the evolution to a seven-fold limiting shape using the
flux constant C = 292.
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different fluxes. The results are independent of the
initial shape. Fig. 5(a) shows the evolution to a four-
fold limiting shape using the flux constant C = 105.
Fig. 5(b) shows the evolution to a five-fold limiting
shape using the flux constant C = 132.82. Fig. 5(c)
shows the evolution to a seven-fold limiting shape
using the flux constant C = 292. Note that flux
constant in Fig. 5(a) is close to a symmetry
transition point and the evolution reaches the
universal shape at a larger radius compared to
Fig. 5(b) and Fig. 5(c) where the flux constants are
located away from symmetry transitions.

5. Conclusion and future work

In this paper, we performed a stability analysis
of 2D, noncircular self-similar crystals with
isotropic surface tension growing in a supercooled
melt. The existence of such self-similarly growing
crystals was demonstrated recently in our previous
work [3]. Here, we characterized the nonlinear
morphological stability of the self-similar crystals,
using a new spectrally accurate 2D boundary
integral method in which a novel time and space
rescaling is implemented [2]. This enabled us to
accurately simulate the long-time, nonlinear dy-
namics of evolving crystals.

Our analysis and simulations revealed that self-
similar shapes are stable to perturbations of the
critical flux for self-similar growth, in the sense
that the symmetry of the crystal remains un-
changed. This suggests that in experiments, small
oscillations in the critical flux will not change the
main features of self-similar growth. Shape per-
turbations either grow or decay. However, at long
times there is nonlinear stabilization even though
unstable growth may be significant at early times.
Interestingly, this stabilization leads to the ex-
istence of universal limiting shapes. That is, we
found that the morphologies of the nonlinearly
evolving crystals tend to limiting shapes that
evolve self-similarly and depend only on the flux.
A number of limiting shapes exist for each flux (the
number of possible shapes actually depends on the
flux), but only one is universal in the sense that a
crystal with an arbitrary initial shape will evolve to
this shape. The universal shape can actually be

retrograde. By performing a series of simulations,
we constructed a phase diagram that reveals the
relationship between the applied flux and the
achievable symmetries of the limiting shapes.
Finally, we used the phase diagram to design a
nonlinear protocol that might be able to be used in
a physical experiment to control the nonlinear
morphological evolution of growing crystal. Be-
cause our analysis shows that interactions among
the perturbation modes are similar in both 2D and
3D, once the difference between the 2D and 3D
heat fluxes (i.e. area vs. volume growth) is scaled
out [3], our results apply qualitatively to 3D.

In our simulations, the limiting shape is
achieved when the crystal grows very large
compared with its initial size. Depending on the
initial size, convective transport driven by buoy-
ancy effects may become important. They are
neglected here. However, this paper provides
insight to nonlinear crystal growth by demonstrat-
ing that there is a wide variation (that depends on
the flux and initial data) in the evolution to the
limiting shape. For instance, starting from an
arbitrary initial shape, there are certain fluxes such
that the evolution to the limiting shape occurs over
much shorter times (i.e. smaller crystal sizes) than
other fluxes. This suggests that it may be feasible
to control the shapes of growing crystals in an
experiment following the protocol proposed here.

A natural question is whether the limiting
shapes we have found here could have been
directly obtained as extrema of an energy function
in analogy with Wulff shapes that are obtained as
equilibria for crystals with fixed volume [29]. Here,
however, the system is open as heat is removed at
the far-field. The relation between the limiting
shapes and the system energy is currently under
study.

We have also neglected some other important
physical effects such as surface tension anisotropy
and interface kinetics. These effects can play a
central role in the development of the complex
patterns seen during crystal growth by favoring
certain directions of growth. We are currently
investigating these physical effects and our results
indicate that nonlinear, stable, self-similar shapes
exist in this context as well [32]. This will be
presented in a subsequent paper [38].
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We are currently performing 3D simulations to
confirm that our 2D model indeed captures the
significant features of 3D growth. In future work,
we will demonstrate that universal attractive 3D
limiting shapes exist.

Finally, we will also investigate the implications
of this work on the directional solidification of
both pure materials and binary alloys. In parti-
cular, based on previous linear stability analysis of
directional solidification (e.g. Ref. [39]), we con-
jecture that there may exist nonlinear limiting (and
universal) interface profiles that can be achieved
by careful control of the temperature gradients.
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