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Abstract. String theory has had a profound influence on research in Calabi-
Yau spaces over the past twenty-five years. We first briefly mention some of
the work in Kähler Calabi-Yau manifolds that was influenced by the discovery
of mirror symmetry in the late 1980s. We then discuss some of the mathemat-
ical motivations behind the recent work on non-Kähler Calabi-Yau manifolds,

which arise in string compactifications with fluxes. After extending mirror
symmetry to non-Kähler Calabi-Yau manifolds, we show how this leads to
new cohomologies and invariants of non-Kähler symplectic manifolds.

1. Introduction

String theory and mathematics have had a very close interaction over the past
thirty years. Indeed, the interaction has been extremely fruitful and produced
many beautiful results. As a prime example, mathematical research on Calabi-Yau
spaces over the past two decades has been strongly motivated by string theory, and
in particular, mirror symmetry.

Mirror symmetry started from the simple observation by Dixon [17] and Lerche-
Vafa-Warner [42] around 1989, of a possible geometric realization of flipping the sign
of a representation of the superconformal algebra. Geometrically, it implied that
Calabi-Yaus should come in pairs with the pair of Hodge numbers, h1,1 and h2,1,
exchanged. Shortly following this observation, Greene-Plesser [33] gave an explicit
construction of the mirror of the Fermat quintic using an orbifold construction. And
soon after, Candelas-de la Ossa-Green-Parkes [13] discovered as a consequence of
mirror symmetry a most surprising formula for counting rational curves on a general
quintic.

The identification of the topological A- and B-models by Witten [59] further
inspired a lot of rigorous mathematical work needed to justify various definitions
and relations, such as the Gromov-Witten invariants, multiple cover formula, and
other related topics. More works by Witten [60], Kontsevich [40, 41] and many
others led to the proofs, independently by Givental [29] and Lian-Liu-Yau [46], of
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the Candelas et al. formula for the genus zero Gromov-Witten invariants in the
mid-1990s. As for the genus one Gromov-Witten invariants, the string prediction
of Bershadsky-Cecotti-Ooguri-Vafa (BCOV) [9] made in 1993 for the quintic was
only proved by Zinger and Jun Li [62, 44] about five years ago.

Though we now know much about mirror symmetry, many important questions
remain open and progress continues to be made. In fact, the higher genus g ≥ 2
case is still mathematically not well-understood. In the celebrated work of BCOV
[10], a holomorphic anomaly equation for higher genus partition functions, Fg, was
written down. Yamaguchi-Yau [61] in 2004 were able to show that Fg for g ≥ 2
are polynomials of just five generators: (V1, V2, V3,W1, Y1). When these generators
are assigned degrees (1, 2, 3, 1, 1) respectively, Fg becomes a quasi-homogeneous
polynomial of degree (3g−3) . This result was used by Huang-Klemm-Quackenbush
[38] to compute the partition function on the mirror quintic up to genus g = 51.

As noted by BCOV, the higher genus B-model partition function can come from
the quantization of the Kodaira-Spencer gauge theory. Towards this aim, Costello
and Si Li have recently made significant progress. They have found a prescription
for quantizing the Kodaira-Spencer theory and have successfully carried it out in
the elliptic curve case [45].

Separately, much of the work on mirror symmetry has been based on toric ge-
ometry. To go beyond the toric cases, one needs to study period integrals and the
differential equations which govern them under complex structure deformations.
In this regard, Lian, Song, and Yau [47, 48] have very recently been able to de-
scribe explicitly a Picard-Fuchs type differential system for Calabi-Yau complete
intersections in a Fano variety or a homogeneous space.

And finally, from the geometric perspective, Strominger-Yau-Zaslow [53] gave
a T-duality explanation of mirror symmetry. This viewpoint has been clarified in
much detail in the work of Gross-Siebert [34, 35, 36] during the past decade.

As we can see from the influence of mirror symmetry, string theory has had
a strong effect on the development of mathematics. But let us now turn to a
more recent developing area of string-math collaboration. This is the study of
non-Kähler manifolds with trivial canonical bundle. They are sometimes called
non-Kähler Calabi-Yaus. For string theory, they play an important role as they
appear in supersymmetric flux compactifications. However, we will begin first by
describing why mathematicians were interested in them prior to string theory.

2. Non-Kähler Calabi-Yau

A large class of compact non-Kähler Calabi-Yau threefolds were already known
in the mid-1980s by a construction of Clemens [16] and Friedman [25]. Their
construction starts from a smooth Kähler Calabi-Yau threefold, Y .

Suppose Y contains a collection of mutually disjoint rational curves. These
are curves that are isomorphic to CP

1 and have normal bundles O(−1) ⊕ O(−1).
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Following Clemens, we can contract these rational curves and obtain a singular
Calabi-Yau threefold X0 with ordinary double-point singularities. Friedman then
gave a condition to deform X0 into a smooth complex manifold Xt. What we have
described is just the compact version of the local conifold transition which physicists
are familiar with

Y ��� X0 ��� Xt .

Here, Xt’s canonical bundle is also trivial, so it is a Calabi-Yau too. But in general
Xt is non-Kähler. To see this, we can certainly contract enough rational curves so
that H2(Y ) is killed and b2 = 0. In this case, after smoothing, we end up with
a complex non-Kähler complex manifold which is diffeomorphic to a k-connected
sum of S3 × S3, with k ≥ 2.

In 1987, Reid [50] put forth an interesting proposal, often called Reid’s fantasy.
Reid wanted to make sense of the vast collection of diverse Calabi-Yau threefolds.
He speculated that all (Kähler) Calabi-Yau threefolds that can be deformed to
Moishezon manifolds fit into a single universal moduli space in which families of
smooth Calabi-Yaus of different homotopy types are connected to one another by
the Clemens-Friedman conifold transitions that we have just described.

Now if we want to test this proposal, understanding non-Kähler Calabi-Yau
manifolds becomes essential. For example, a question one can ask is: what geomet-
rical structures exist on these non-Kähler Calabi-Yau manifolds? If the metrics are
no longer Kähler, do they have some other property?

2.1. Balanced Metrics. A good geometric structure to consider is the one
studied by Michelsohn [49] in 1982. Recall that a hermitian metric, with an asso-
ciated (1, 1)-form ω , is Kähler if

dω = 0 (Kähler) .

For threefolds, Michelsohn analyzed the weaker balanced condition:

d(ω ∧ ω) = 2ω ∧ dω = 0 (balanced) .

As should be clear, a Kähler metric is always balanced but a balanced metric need
not be Kähler.

The balanced condition has good mathematical properties. It is preserved
under proper holomorphic submersions and also under birational transformations
as shown by Alessandrini-Bassanelli [2]. There are also simple non-Kähler compact
balanced manifolds. For example:

• Calabi [14] showed that a non-trivial bundle of complex tori over a Rie-
mann surface cannot be Kähler, but it does have a balanced metric [32].

• The natural metric on compact six-dimensional twistor spaces is balanced.
As Hitchin showed, only those associated with S4 and CP

2 are Kähler [37].
One can get a non-Kähler Calabi-Yau by taking branched covers of twistor
spaces. Sometimes, if the four-manifold is an orbifold, the singularities on
the twistor space may be resolved to also give a non-Káhler Calabi-Yau.

• Three-dimensional Moishezon spaces are balanced.
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So how about the non-Kähler Calabi-Yaus from conifold transitions? Do they
admit a balanced metric? In this regard, J. Fu, J. Li, and S.-T. Yau proved the
following theorem.

Theorem 2.1 (Fu-Li-Yau [26]). Let Y be a smooth Kähler Calabi-Yau threefold
and let Y → X0 be a contraction of mutually disjoint rational curves. Suppose X0

can be smoothed to a family of smooth complex manifolds Xt. Then for sufficiently
small t, Xt admits smooth balanced metrics.

This constructive theorem provides us with balanced metrics on a large class
of complex threefolds. In particular, for the Clemens-Friedman construction, the
theorem implies

Corollary (Fu-Li-Yau [26]). There exists a balanced metric on #k(S
3 × S3) for

any k ≥ 2.

Knowing that a balanced metric is present is useful. But to really under-
stand Reid’s proposal for Calabi-Yau moduli space, it is important to define some
canonical balanced metric which would satisfy an additional condition, like the
Ricci-flatness condition for the Kähler Calabi-Yau case. So we would like to have
a natural condition, and here string theory gives some suggestions. As Calabi-Yau
has played an important role in strings, one may ask what would be the natural
setting to study compact conifold transitions and non-Kähler Calabi-Yau in physics.

Physicists have been interested in non-Kähler manifolds for more than a decade
now in the context of compactifications with fluxes and model building (see e.g.
[30, 19]). In this scenario, if one desires compact spaces without singularities from
branes, then one should consider working in heterotic string theory.

2.2. Strominger’s System. In the heterotic theory, the conditions for pre-
serving N = 1 supersymmetry with H-fluxes were written down by Strominger
[52] in 1986. Strominger’s system of equations specifies the geometry of a complex
threefold X (with a holomorphic three-form Ω) and in addition a holomorphic vec-
tor bundle E over X. The Hermitian metric ω of the manifold X and the metric h
of the bundle E satisfy the following system of differential equations:

(1) d(‖ Ω ‖ω ω ∧ ω) = 0 ;

(2) F 2,0
h = F 0,2

h = 0 , Fh ∧ ω2 = 0 ;

(3) i∂∂ ω = α′

4

[
tr
(
Rω ∧Rω

)
− tr

(
Fh ∧ Fh

)]
.

Notice that the first equation is equivalent to the existence of a (conformally)
balanced metric. The second is the Hermitian-Yang-Mills equations which is equiv-
alent to E being a stable bundle. The third equation is the anomaly equation.
When X is Kähler and E is the tangent bundle TX , the system is then solved with
h = ωCY , the Kähler Calabi-Yau metric.
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Using a perturbation method, J. Li and S.-T. Yau [43] have constructed smooth
solutions on a class of Kähler Calabi-Yau manifolds with irreducible solutions for
vector bundles with gauge group SU(4) and SU(5). Andreas and Garcia-Fernandez
[5, 6] have generalized our construction on Kähler Calabi-Yau manifolds for any
stable bundle E that satisfies c2(X) = c2(E). In recent years, our collaborators
and other groups have also constructed solutions of the Strominger system on non-
Kähler Calabi-Yaus [28, 7, 8, 27, 21, 58].

As is clear in heterotic string theory, understanding stable bundles on Calabi-
Yau threefolds is important. In this regard, Donagi, Pantev, Bouchard and others
have done nice work constructing stable bundles on Kähler Calabi-Yaus to obtain
realistic heterotic models of nature [18, 12]. Also, Andreas and Curio [3, 4] have
done analysis on the Chern classes of stable bundles on Calabi-Yau threefolds,
verifying in a number of cases a proposal of Douglas-Reinbacher-Yau [20].

But returning to conifold transitions on compact Calabi-Yaus, it has been pro-
posed by Yau to use Strominger’s system to study Reid’s proposal. Certainly the
first condition that there exists a balanced metric can be satisfied. As we have al-
ready mentioned, Fu-Li-Yau [26] showed the existence of a balanced metric under
conifold transitions. However, the second condition from the heterotic string adds
a stable gauge bundle into the picture. So one needs to know about the stability of
holomorphic bundles through a global conifold transition. In his recent PhD thesis,
M.-T. Chuan [15] examined how to carry a stable vector bundle through a conifold
transition, from a Kähler to a non-Kähler Calabi-Yau. Under the assumption that
the initial stable holomorphic bundle is trivial in a neighborhood of the contracting
rational curves, he proved that the resulting holomorphic bundle on the non-Kähler
Calabi-Yau also has a Hermitian Yang-Mills metric, and hence is stable. This shows
that two of the three conditions of Strominger’s system, the existence of a balanced
metric and a Hermitian-Yang-Mills metric on the bundle, can be satisfied. The
last condition, the anomaly equation, which couples the two metrics, is perhaps the
most demanding and difficult to analyze.

J. Fu and S.-T. Yau have analyzed carefully the anomaly equation when the
manifold is a T 2 bundle over a K3 surface [28]. In this case, the anomaly equation
reduces down to a Monge-Ampère type equation on the K3:

�(eu − α′

2
fe−u) + 4α′ detuij

det gij
+ μ = 0 ,

where f and μ are functions on the K3 satisfying f ≥ 0 and
∫
K3

μ = 0 and uij is

the ∂∂ partial derivative matrix on the function u. It would be interesting to show
that the anomaly equation can be satisfied throughout the non-Kähler Calabi-Yau
moduli space.

2.3. Symplectic Conifold Transitions: Smith-Thomas-Yau. So far we
have discussed conifold transitions between Calabi-Yaus that although non-Kähler
still maintain a complex structure. The contraction of a rational curve CP1 (and the
inverse operation of resolution) is naturally a complex operation. The smoothing of
a conifold singularity by S3 on the other hand is naturally symplectic. Friedman’s
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condition is needed to ensure that a smoothed out Calabi-Yau contains a global
complex structure.

But instead of preserving the complex structure, we can preserve the symplectic
structure throughout the conifold transition. This would be the symplectic mirror
of the Clemens-Friedman conifold transition. In this case, we would collapse disjoint
Lagrangian three-spheres, and then replace them by symplectic two-spheres. Such
a symplectic transition was proposed in a work of Smith-Thomas-Yau [51] in 2002.

Locally, of course, there is a natural symplectic form in resolving the singularity
by a two-sphere. But there may be obstructions to patching the local symplectic
forms to get a global one. Smith-Thomas-Yau wrote down the condition (analogous
to Friedman’s complex condition) that ensures a global symplectic structure. This
symplectic structure however may not be compatible with the complex structure.
So in general, the symplectic conifold transitions result in non-Kähler manifolds,
but they all have c1 = 0 and so they are called symplectic Calabi-Yaus. In fact,
Smith-Thomas-Yau used conifold transitions to construct many real six-dimensional
non-Kähler symplectic Calabi-Yaus.

In the symplectic conifold transition, if we can collapse all disjoint three-
spheres, then such a process should result in a manifold diffeomorphic to a con-
nected sum of CP3s. This mirrors the complex case, which after collapsing all dis-
joint rational curves gives a connected sum of S3×S3s. More recently, Fine-Panov
[23, 24] have also constructed interesting simply-connected symplectic Calabi-Yaus
with Betti number b3 = 0, which means that they cannot be Kähler.

As mentioned above, a balanced structure can always be found in a complex
conifold transition. So similarly, we can ask if there is any geometric structure
present before and after a symplectic conifold transition? Here we will be looking
for a condition on the globally (3, 0)-form which in the general non-Kähler case is
no longer d-closed. Again, we can turn to string theory for a suggestion. Is there a
mirror dual of a complex balanced manifold in string theory that is symplectic and
generally non-Kähler?

Such a symplectic mirror will not be found in heterotic string theory. All
supersymmetric solutions satisfy the Strominger system in heterotic string. So
the mirror dual of a complex balanced manifold with a bundle should be another
complex balanced manifold with a bundle. But it turns out the answer can be found
in type II string theories. As we will describe below, the equations for non-Kähler
Calabi-Yaus in type II string also give us insights into the natural cohomologies on
non-Kähler manifolds.

3. Type II Strings: Non-Kähler Calabi-Yau Mirrors

In type II string theory, supersymmetric compactifications preserving a SU(3)
structure have been studied by many authors in the last ten years. Since we are
interested in non-Kähler geometries of compact manifolds, any supersymmetric
solution will have orientifold sources. The type of sources helps determine the
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type of non-Kähler geometries. We shall describe the supersymmetric equations
written in a form very similar to that of Graña-Minasian-Petrini-Tomasiello [31]
and Tomasiello [54]. More details of our description here can be found in [57].

3.1. Complex Balanced Geometry in Type IIB. The supersymmetric
equations that involve complex balanced threefolds are found in type IIB theory in
the presence of orientifold 5-branes (and possibly also D5-branes). These branes
are wrapped on holomorphic curves. In this case, the conditions on the Hermitian
(1, 1)-form ω and (3, 0)-form Ω can be written as [54]

dΩ = 0 (complex integrability)

d(ω ∧ ω) = 0 (balanced)

2i ∂∂(e−2fω) = ρB (source)

where ρB is the sum of the currents Poincaré dual to the holomorphic curves that
the five-brane sources wrap around, and f is a distribution that satisfies

iΩ ∧ Ω = 8 e2f
ω3

3!
.

The balanced and the source equations together are noteworthy in that they
share a resemblance with the Maxwell equations. With the Hodge star operator
defined with respect to the compatible Hermitian metric, we can write ω = ∗(ω2/2) .
The equations can then be expressed (ignoring the conformal factor)

d(ω2/2) = 0 ,

2i ∂∂ ∗ (ω2/2) = ρB .

Now this might have been somewhat expected as the five-brane sources are associ-
ated with the three-form field strength F3 which is hidden in the source equation.
These two equations however do tell us something more.

Let us recall the Maxwell case. Maxwell’s equations in four dimensions are

dF2 = 0 ,

d ∗ F2 = ρe ,

where ρe is the Poincaré dual current of some electric charge configuration. Now, if
we consider the deformation F2 → F2+ δF2 with the source fixed, that is, δρe = 0 ,
this leads to

d(δF2) = d ∗ (δF2) = 0 ,

which are the harmonic conditions for a degree two form in de Rham cohomology.
Thus, the de Rham cohomology is naturally associated with Maxwell’s equations.

For the type IIB complex balanced equations, we can also deform ω2 → ω2 +
δω2. If this deformation is performed with the source current and the conformal
factor fixed (i.e. δρA = δA = 0), then we arrive at the conditions

d(δω2) = ∂∂ ∗ (δω2) = 0 ,
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which turn out to be precisely the harmonicity conditions for a (2,2)-element of the
Bott-Chern cohomology:

Hp,q
BC =

ker d ∩Ap,q

im ∂∂ ∩Ap,q
.

This cohomology was introduced by Bott-Chern [11] and Aeppli [1] in the mid-
1960s.

The string equations thus strongly suggest that the Bott-Chern cohomology
(or the dual Aeppli cohomology, see Table 1) is the natural one to use for studying
complex balanced manifolds. Let us point out that when the manifold is Kähler,
the ∂∂-lemma holds. In this case, the Bott-Chern and the Dolbeault cohomology
are in fact isomorphic. So the Bott-Chern cohomology is really most useful in the
non-Kähler setting, and especially when the ∂∂-lemma fails to hold.

3.2. Symplectic Mirror Dual Equations in Type IIA. The mirror dual
to the complex balanced manifold is found in the type IIA string. Roughly, the
type IIA equations can be obtained from the IIB equations by first replacing ω2/2
with (Re ei ω) and then exchanging ei ω with Ω [22]:

d(ω2/2) = 0 ⇔ d(Re ei ω) = 0 ←→ dRe Ω = 0 .

Thus, dReΩ = 0 is the condition that is suggested by string theory for symplectic
conifold transitions.

This condition turns out to be part of the type IIA supersymmetry conditions
in the presence of orientifold (and D-) six-branes wrapping special Lagrangian sub-
manifolds. The type IIA equations that are mirror to the type IIB complex balanced
system can be written as follows:

dω = 0 , (symplectic)

dRe Ω = 0 , (almost complex)

∂+∂− ∗ (e−2f ReΩ) = ρA , (source)

with

8
ω3

3!
= i e2fΩ ∧ Ω .

In the above system, ρA is the current Poincaré dual to the wrapped special La-
grangian submanifolds. The operators ∂+ and ∂− are linear symplectic operators
that can be thought of as the symplectic analogues of the Dolbeault operators, ∂
and ∂ , and were recently introduced by us in [56]. If we naively compare the above
symplectic system with the mirror complex one, a natural question arises: does the
type IIA symplectic system suggest the existence of a symplectic cohomology of the
form

ker d

im ∂+∂−
analogous to the complex Bott-Chern cohomology? Interestingly, as we found in
[55, 56], such a cohomology is indeed natural and finite-dimensional on a compact
symplectic manifold. Moreover, it provides new invariants for non-Kähler sym-
plectic manifolds. But to discuss more about this symplectic cohomology and its

248



This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.
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relation to the IIA symplectic system, we will need certain properties of the sym-
plectic differential operators, (∂+, ∂−). Since these linear operators are new, let us
proceed now to give some more details.

4. Symplectic Differential Operators and Cohomologies

4.1. Linear Differential Symplectic Operators. Like their Dolbeault coun-
terparts, (∂+, ∂−) can be naturally defined by an intrinsically symplectic decompo-
sition of the exterior derivative. Recall that in the complex case, the differential
forms are decomposed into (p, q) components Ap,q. The exterior derivative d acting
on each component gives two terms:

d : Ap,q → Ap+1,q ⊕ Ap,q+1 .

This then defines the Dolbeault operators ∂ and ∂ as the projections of dAp,q onto
Ap+1,q and Ap,q+1, respectively.

On a symplectic space (M,ω) of dimension d = 2n, we can do the analogous
analysis. Indeed, there is also a decomposition of differential forms, specifically
into representations of the sl(2) lie algebra. This is well-known in the Kähler
literature as the Lefschetz decomposition. Let us however emphasize that this
decomposition requires only a non-degenerate two-form, which we do have here in
ω. More explicitly, acting on a differential form A ∈ Ω∗(M), the sl(2) generators
take the form

L : A → ω ∧A

Λ : A → 1

2
(ω−1)ij i∂xi i∂xjA

H : A → (n− k)A for A ∈ Ωk(M)

with commutation relations

[H,Λ] = 2Λ , [H,L] = −2L , [Λ, L] = H .

The sl(2) irreducible modules are standardly constructed from the highest
weight forms, which are commonly called primitive forms. Denoting the space
of primitive forms by P∗(M), let us recall that a differential form is primitive, i.e.
Bs ∈ Ps(M), if

ΛBs = 0 or equivalently, Ln+1−s Bs = 0 .

Hence, an irreducible sl(2) module is the span of the elements
{
Bs , ω ∧Bs , ω2 ∧Bs , . . . , ωn−s ∧Bs

}
.

Since each element of this basis consists of ω raised to some power r exterior mul-
tiplied with a primitive s-form, it is natural to label basis elements of the sl(2)
module by the pair (r, s) and define

Lr,s(M) =
{
A ∈ Ω2r+s(M)

⏐⏐A = ωr ∧Bs and ΛBs = 0
}
.

In a rough sense then, the space of forms Lr,s are the symplectic analogs of Ap,q of
complex geometry.
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Continuing the analogy with the complex case, let us act on Lr,s by the exterior
derivative d. Since dω = 0, we have

dLr,s = d (ωr ∧Bs) = ωr ∧ dBs .

Clearly, the derivative only acts on the primitive forms. This is suggestive that
much if not all of the data of differential forms on symplectic manifolds are encoded
within primitive forms. Now as for d acting on a primitive form, it can be shown
(see for example [39]) that

dBs = B0
s+1 + ω ∧B1

s−1 .

Combining the above two equations, we find that

d : Lr,s → Lr,s+1 ⊕ ω ∧ Lr,s−1

which has only two components on the right hand side just as in the complex case.
Therefore, projecting onto each component, we can express the exterior derivative
as [56]

d = ∂+ + ω ∧ ∂−

where the first-order differential operators (∂+, ∂−) are defined by the derivative
mapping

∂± : Lr,s −→ Lr,s±1

∂± : Ps −→ Ps±1 for r = 0

By the above definition, ∂+ and ∂−, respectively, raise and decrease the degree of
the forms by one. Moreover, (∂+, ∂−) are operators that map primitive forms to
primitive forms (in the case of r = 0). And similarly to their complex counterparts,
it follows from d2 = 0 and the Lefschetz decompostion that they square to zero, i.e.

(∂+)
2 = (∂−)

2 = 0 ,

and anticommute: ω ∧ (∂+∂−) = −ω ∧ (∂−∂+) .

4.2. Symplectic Cohomologies and a Type IIA System. With the linear
symplectic operators, (∂+, ∂−) and their properties at hand, we can now write down
an interesting primitive symplectic elliptic complex.

Proposition (Tseng-Yau [56]). On a symplectic manifold of dimension d = 2n,
the following differential complex is elliptic.

0
∂+ �� P0

∂+ �� P1
∂+ �� . . . ∂+ �� Pn−1

∂+ �� Pn

∂+∂−

��
0 P0

∂−�� P1
∂−�� . . .

∂−�� Pn−1
∂−�� Pn

∂−��
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Symplectic (M,ω) Complex (M,J)

PHs
∂±

=
ker ∂± ∩ Ps

im ∂± ∩ Ps
, s < n Hp,q

∂
=

ker ∂ ∩Ap,q

im ∂ ∩Ap,q
(Dolbeault)

PHs
∂+∂−

=
ker ∂+∂− ∩ Ps

(im ∂++ im ∂−) ∩ Ps
, s ≤ n Hp,q

∂∂
=

ker ∂∂ ∩ Ap,q

(im ∂ + im ∂) ∩ Ap,q
(Aeppli)

PHs
∂++∂−

=
ker d ∩ Ps

im ∂+∂− ∩ Ps
, s ≤ n Hp,q

∂+∂
=

ker d ∩ Ap,q

im ∂∂ ∩ Ap,q
(Bott-Chern)

Table 1. Finite-dimensional primitive symplectic cohomologies
(Tseng-Yau [55, 56]) and their complex analogs. The complex
cohomologies involving ∂∂ were introduced in the mid-1960s by
Aeppli [1] and Bott-Chern [11].

Since the complex is elliptic, we can write down four different types of finite-
dimensional primitive cohomologies associated with it.

PHs
∂±(M) =

ker ∂± ∩ Ps(M)

im ∂± ∩ Ps(M)
for 0 ≤ s < n ,

PHn
∂+∂−(M) =

ker ∂+∂− ∩ Pn(M)

im ∂+ ∩ Pn(M)
,

PHn
∂++∂−(M) =

ker ∂− ∩ Pn(M)

im ∂+∂− ∩ Pn(M)
.

Furthermore, by considering extended elliptic complexes involving non-primitive
forms, it is possible to also define PHs

∂+∂−
(M) and PHs

∂++∂−
(M) for all degree

s, 0 ≤ s ≤ n . On a compact symplectic manifold, these cohomologies are also
finite-dimensional [55]. We list the finite-dimensional symplectic cohomologies and
their complex analogues in Table 1.

In [55, 56], we analyzed some of the basic properties of the new symplec-
tic cohomologies. Since they are associated with an elliptic complex, each has an
associated elliptic Laplacian and thus have standard nice Hodge theoretical proper-
ties. Moreover, we have calculated the cohomologies explicitly for some non-Kähler
symplectic nilmanifolds and found that the cohomologies indeed lead to new sym-
plectic invariants. Perhaps not too surprisingly, the new invariants do not contain
new information when the manifold is Kähler.

Finally, returning back to the type IIA symplectic system of equations in Sec-
tion 3.2. the middle-degree cohomology

PHn
∂++∂−=

ker d ∩ Pn

im ∂+∂− ∩ Pn

with n = 3 turns out to be particularly relevant. Consider deforming the type IIA
system by Ω −→ ReΩ+ δReΩ with δρA = 0 and conformal factor remaining fixed,
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δA = 0. Then, δReΩ is required to satisfy (dropping the conformal factor)

d(δReΩ) = 0 , ∂+∂− ∗ (δReΩ) = 0 ,

which are the harmonicity conditions of the primitive PHn
∂++∂−

cohomology. In

fact, assuming δρA = δA = 0, it can be shown [57] that a subspace of the linearized
deformation of the type IIA symplectic system can be parametrized by the primitive
cohomology with

δReΩ ∈ PH3
∂++∂− ∩ ReA2,1 .

5. Concluding Remarks

String theory has motivated much research in non-Kähler geometry in the past
couple of years. We fully expect that investigations especially revolving around six-
dimensional non-Kähler geometry will remain very active in the near future too. Of
particular interest, six-dimensional non-Kähler geometries can have relations with
four- and three-dimensional manifolds. As has been known for some time, one can
construct many non-Kähler six-manifolds by the twistor construction. The twistor
space of an anti-self dual four-manifolds has a complex structure, and the twistor
space of a hyperbolic four-manifold has a symplectic structure. The S3 bundle
over a hyperbolic three-manifold is also complex. (Fine-Panov have given examples
of the hyperbolic constructions [24].) There should also be interesting dualities
relating complex and symplectic structures on non-Kähler six-manifolds. We have
no doubt that string theory will continue to be a guiding influence in future work
on non-Kähler geometry.
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