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Abstract. This paper presents a fast iterative solver for Lippmann-Schwinger equation for high-
frequency waves scattered by a smooth medium with a compactly supported inhomogeneity. The
solver is based on the sparsifying preconditioner [63] and a domain decomposition approach similar
to the method of polarized traces [64]. The iterative solver has two levels, the outer level in which a
sparsifying preconditioner for the Lippmann-Schwinger equation is constructed, and the inner level, in
which the resulting sparsified system is solved fast using an iterative solver preconditioned with a bi-
directional matrix-free variant of the method of polarized traces. The complexity of the construction
and application of the preconditioner is O(N) and O(N logN) respectively, where N is the number
of degrees of freedom. Numerical experiments in 2D indicate that the number of iterations in both
levels depends weakly on the frequency resulting in a method with an overall O(N logN) complexity.

1. Introduction. In this paper we present a fast solver for the high-frequency
Lippmann-Schwinger equation in 2D. Let ! be the frequency of a time-harmonic wave
propagating in a medium with wave-speed denoted by c(x), where x = (x, z). Let
⌦ be a rectangular domain and assume that the refraction index is constant up a
to compactly supported perturbation. The refraction index is denoted by 1/c2(x) =
1 + m(x), where supp(m) = D ⇢ ⌦ ⇢ R2. In this case, u(x), the wave scattered
by the perturbation m from an incident wave u

I

(x), is the solution to the Helmholtz
equation

(1.1)
�
� + !2(1 + m(x))

�
(u(x) + u

I

(x)) = 0,x 2 Rd;

where u(x) satisfies the Sommerfeld radiation condition

(1.2) lim
r!1

r1/2

✓
@u

@r
� i!u

◆
= 0,

and the incoming field u
I

(x) satisfies the homogeneous Helmholtz equation

(1.3)
�
� + !2

�
u

I

(x) = 0,

in some neighborhood of ⌦ containing D.
From eqs. (1.1) and (1.3) it follows that the unknown field u satisfies

(1.4)
�
� + !2(1 + m(x))

�
u(x) = �!2m(x)u

I

(x), x 2 Rd.

Convolving (1.4) with

(1.5) G(x) =
i

4
H1

0 (!|x|),

the Green’s function for the 2D free space Helmholtz operator, results in the Lippmann-
Schwinger equation:

(1.6) u + !2G ⇤ (mu) = �!2G ⇤ (mu
I

).

We chose (1.6) among di↵erent formulations of the Lippmann-Schwinger equation
(for other formulations see [2]) by the following reasons :
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• the unknown scattered field, u(x), satisfies the Sommerfeld radiation condi-
tions automatically;

• the convolution kernel is translation invariant which allows for a rapid appli-
cation via fast Fourier transforms (FFT) [21].

Even though u can be computed by discretizing (1.4) using finite di↵erences, finite
elements or composite spectral discretizations [38, 39]; and then solving the resulting
linear system using state-of-the art preconditioners [18, 29, 30, 56, 61, 64], there are
several advantages on computing u by solving (1.6) :

1. (1.6) arises from a second kind Fredholm formulation, implying that the con-
ditioning number of the discretized system does not deteriorate as the dis-
cretization is refined;

2. (1.6) is defined on a bounded set ⌦ and the solution satisfies the Som-
merfeld radiation condition automatically, whereas (1.4) is defined in the
whole R2thus; and hence one needs to truncate the computational domain,
and to impose absorbing boundary conditions (ABC) at the boundary of
the truncated computational domain, using perfectly matched layers (PML)
[12, 13, 44] or other techniques [28] (see [14] for a review);

3. most discretizations of (1.4) via finite di↵erences or finite elements su↵er from
dispersion error and the pollution e↵ect [7, 8, 9] (see [57, 59] for recent refer-
ences to methods designed to alleviate this issue); whereas the introduction of
the analytical Green’s function in (1.6) and the use of an accurate quadrature
rule automatically alleviates these issues.

However, solving (1.6) raises other numerical issues. The discretization of (1.6)
produces large dense linear systems, which becomes impractical, both memory- and
complexity-wise, for typical direct solvers. Although a new generation of direct meth-
ods based on hierarchical compression, such as [20, 22, 42, 2], have been able to
considerably reduce the complexity of solving integral equations coming from elliptic
partial di↵erential equations (PDE), when applying these methods to integral equa-
tions coming from wave equations such as (1.6), they manage to exhibit linear or
quasi-linear complexity for low frequency problems, but they fall back to O(N3/2) in
high-frequency regimes. This phenomenon can be clearly explained by recent studies
of the approximate separability of the Green’s functions. It was shown in [11] that
the Green’s functions for elliptic operators are highly separable, implying that the o↵-
diagonal blocks of the discrete Green’s function are extremely low-rank. In contrast,
it was shown in [32] that the Green’s functions for the Helmholtz operator in high-
frequency regime are highly non-separable in general. This last results provides an
asymptotic frequency-dependent lower bound on the ranks of the o↵-diagonal blocks
of the discrete Green’s function, which hinders the compressibility of the blocks, thus
resulting in algorithms with higher complexity.

In addition, the Lippmann-Schwinger equation becomes numerically-ill condi-
tioned as the frequency and contrast increases, due to multiple scattering, hindering
the convergence rate of iterative methods. This di�culty has led to the development
of e�cient preconditioners, such as [6, 16, 17, 55, 60]; however, they tend to require
significantly more iterations to converge as the frequency increases. Some of them are
based on semi-analytical techniques, which require fairly strict assumptions on the
perturbation (for example [17]); they tend to work well under the assumptions, but
they naturally deteriorate if not.

There is an extensive literature on volume integral methods, including fast meth-
ods [10, 41, 50] and, in particular, methods solving the Lippmann-Schwinger equation
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[45, 20, 26, 63, 6, 17, 22, 60, 16, 1], and we do not review it here, but to the au-
thors’ knowledge there is no method that can handle general smooth perturbations
in quasi-linear time in the high-frequency regime.

In the present paper we introduce a new preconditioner for the 2D high-frequency
Lippmann-Schwinger equation, with a total asymptotic cost O(N logN), which com-
pares favorably with respect to most of the methods (both iterative and direct) in
the literature. The scaling holds for general smooth perturbations without large
resonant cavities. The solver is based on the sparsifying preconditioner and a fast
iterative solver in a domain decomposition setting. In particular, the sparsifying pre-
conditioner is used to approximate the Lippmann-Schwinger equation with a sparse
system, which is solved fast using a bi-directional matrix-free variant of the method
of polarized traces [66].

The method has two stages, the o↵-line, or setup, stage that is only performed
once for each linear system to solve with an asymptotic cost of O(N), and the on-
line, or solve, stage that is performed for each right-hand-side, with an asymptotic cost
O(N logN). Furthermore, the on-line stage has two levels: the inner level in which the
approximate sparse system is solved iteratively using a bi-directional preconditioner,
and the outer level, in which the resulting solution from the inner level is used to
precondition the Lippmann-Schwinger equation.

Under the assumptions that the perturbation is smooth and it does not represent
a resonant cavity the number of outer iterations is essentially independent of the
frequency [63], and numerical experiments presented in this paper, indicate that the
number of inner iterations depends, at worst, logarithmically with the frequency,
resulting in the aforementioned complexity.

1.1. Results. In this paper we propose a new two-level preconditioner for the 2D
high-frequency Lippmann-Schwinger equation that results in a method with O(N logN)
complexity. We follow the approach in [63] to construct a sparsifying preconditioner,
and we develop a fast iterative solver to solve the sparsified system, in order to achieve
an overall optimal complexity. The main improvement with respect to the sparsifying
preconditioner is how the resulting sparse linear system is solved. In [63] the system
is solved via multi-frontal methods [37, 27] incurring an asymptotic cost O(N3/2) for
the setup and O(N logN) for the application. Exchanging the multifrontal solver
by an iterative one, preconditioned using a bi-directional variant of the method of
polarized traces, results in a drastic reduction of the asymptotic cost.

The inner-level preconditioner is a matrix-free variant of the method of polarized
traces [66], which has been adapted to solve the sparsified Lippmann-Schwinger equa-
tion e�ciently. As it will be explained in the sequel, preconditioning the sparsified
system using the original method of polarized traces results in an algorithm that is
sensitive to the sign of the perturbation and to the direction of the incident waves.
Then a new bi-directional variant is introduced to eliminate these adverse e↵ects.

The method of polarized traces is a domain decomposition method [64], which
relies on a layered domain decomposition coupled with an equivalent surface integral
equation (SIE) that is easy to precondition. The matrix-free variant introduced in [66]
uses local solves on extended subdomains in order to apply the SIE and the precondi-
tioner. The number of iterations to convergence depends on the underlying medium
and the quality of the absorbing boundary conditions (ABC) imposed at the interfaces
between subdomains. For the Helmholtz problem, there exist a myriad of di↵erent
formulations of ABC [14, 44, 12, 28]; unfortunately, for the sparse system resulting
from sparsifying the Lippmann-Schwinger equation such ABC are not readily avail-
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able. We give details on building such ABC for the sparsified Lippmann-Schwinger
system in Section 3.3.

Alas, the formulation of the ABC in this paper is not perfect, which is evidenced by
numerical tests showing that the number of iteration needed to convergence using the
matrix-free version of the method of polarized traces grows sub-optimally as O(

p
!).

Optimality can be restored by introducing an alternating bi-directional sweep, and by
preconditioning the volume problem directly, which reduces the number of iterations
to O(log!). To show the e↵ectiveness of our proposed method, we also include an
example arising from plasma physics, in particular, an electromagnetic wave impinging
on a confined plasma in a fusion reactor.

In the present work we mainly focus on explaining the key ideas and verification
of the method by 2D tests. The algorithm presented in this paper can be easily
extended to 3D, with an o✏ine complexity of O(N4/3) and an on-line complexity
of O(N log2 N). The complexities can be further reduced using a nested approach
such as the one presented in [49, 66] resulting in O(N) and O(N logN) complexity
respectively.

1.2. Outline of the paper. The present paper is organized as follows: we
present the discretization of the Lippmann-Schwinger equation and the provide a
brief review of the sparsifying preconditioner in Section 2. In Section 3, we review the
method of polarized traces and we discuss the modifications needed to adapt it to the
sparsified Lippmann-Schwinger equation, in particular we explain the formulation for
the ABC in Section 3.3 and the bi-directional preconditioner in Section 3.5. In Section
4 we present the two-level preconditioner and we discuss its complexity. Finally, in
Section 5, we present various numerical experiments to support the complexity claims.

2. Discretization and sparsifying preconditioner. In this section we discuss
the discretization used and we provide a brief review of the sparsifying preconditioner
[63]. We refer the interested reader to Section 2 of [63] for further details.

We discretize the domain ⌦ with an uniform mesh1 of a step size h, such that
we have 10 points per wavelength in the background wavespeed, h! = O(1). We
denote the collocations points by x

i,j

= (x
i

, z
j

) = (hi, hj), and we define a vector
index k = (i, j), notation that will be useful to explain the sparsifying preconditioner.
We use a simple modification of the trapezoidal rule [26] to discretize the integral
within the convolution operation in (1.6). In particular, we use a quadrature that
only modifies the weight in the diagonal, obtaining a quadrature rule with order
O(h4 log h).

We denote the unknown scattered field in ⌦ as uk = u
i,j

= u(x
i,j

), and we write
the resulting discretized linear system as

(2.1) Hu = f ,

in which H can be written as

(2.2) H = I + !2G ·D,

1If the perturbation has sharp transitions the sparsifying preconditioner can be modified to handle
adaptive quadratures without asymptotic penalty. However, the convolution product will have to be
handled di↵erently [15] and the construction of the preconditioner will require randomized techniques
in order to keep the same asymptotic complexity.
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where I is the identity matrix, and D is a diagonal matrix that encodes the multipli-
cation of u times m(x

i,j

). Finally, f is given by

(2.3) f = �!2G ·Du
I

,

with (u
I

)
i,j

= u
I

(x
i,j

).
Given that the convolution kernel is translation invariant and that the mesh is

uniform we can easily embed G in a Toeplitz matrix and use the FFT to apply it in
O(N logN) operations (or we can use the method in [15] if the mesh is non-uniform).

The sparsifying preconditioner is based on designing a sparse matrix A such that
the product AH is approximately sparse in the sense that a large amount of it entries
are extremely small. The main idea is to multiply A by H, and threshold all the
small entries of the product to zero, obtaining a sparse matrix C that approximates
AH. As it will be explained in the sequel, the sparsity pattern of A is the same as a
second-order compact finite di↵erence discretization of the Laplacian, and its entries
are specially constructed to annihilate the free space Green’s function away from the
source. In return, the matrix C, which shares the same sparsity pattern as A, is
similar to the matrix arising from a finite di↵erences discretization of the Helmholtz
equation (1.1).

Since AH = A + !2AGD, it follows that to make AH approximately sparse,
we only need to find A such that the product AG is approximately sparse. The
last requirement is equivalent to enforce that the entries of the matrix A approxi-
mately annihilate the o↵-diagonal blocks of G. This requirement can be recast as a
minimization problem, which is solved via a singular value decomposition (SVD).

Define the set of immediate neighbors (stencils) of k as

(2.4) µ(k) = {p : kk� pk
`1(N2) < 1,xp 2 ⌦}.

We seek A such that for each k:
• only A(k, µ(k)) are non-zeros (sparsity of A);
• A(k, :)G(:, µ(k)c) ⇡ 0 (approximate sparsity of the AG).

Given that G is translation invariant we impose A to be translation invariant.
In such case, it is su�cient to consider only the case when k = 0. Then the problem
can be recast as

(2.5) min
↵:k↵k=1

k↵ ·G(µ(0), µ(0)c)k,

which can be e�ciently solved via a singular value decomposition of G(µ(0), µ(0)c) =
U⌃V ⇤ such that

(2.6) ↵ = U(:, µ(0))⇤.

Finally, A is built such that A(k, µ(k)) = ↵, for k in the interior of ⌦. For k on @⌦
a special treatment is needed, which depends on the geometry of ⌦. For the sake of
simplicity we omit such treatment but we refer the interested reader to Section 4 of
[63].

By multiplying (2.1) by A and sparsifying the product, we obtain the approxi-
mated sparse system

(2.7) Cu ⇡ Af ,
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for which the preconditioner is defined as

(2.8) u
approx

= C�1g, where g = Af .

It has been shown in [63] that when the preconditioner mentioned above is used
within GMRES iterations, the number of iterations to convergence is almost indepen-
dent of the frequency.

One alternative to this preconditioner would be to discretize (1.4) via finite di↵er-
ences or finite elements, and then use this approximate solution to precondition (2.1).
Unfortunately, such preconditioners tend to behave poorly, due to the pollution er-
ror that is normally introduced with the discretizations. The pollution error creates
serious phase errors making the preconditioner incompatible with the linear system
being preconditioned (see [57] for a similar example for multigrid). The optimization
procedure used in the construction of the sparsifying preconditioner takes into ac-
count the exact free space Green’s function and hence minimizes the dispersion error.
The size of the stencils used in A and C should strike a balance between sparsity
and dispersion error. Since the matrix A mimics the discretization of the Helmholtz
di↵erential operator, it is expected that the ideas for fast solver for the Helmholtz
equation can be applied to the resulting sparse system. This is what we propose in
the next Section.

3. Method of polarized traces. As seen from Section 2, the sparsifying pre-
conditioner for the Lippmann-Schwinger equation relies on solving the sparsified sys-
tem

(3.1) Cv = g,

which, in the present paper, is solved fast using a bi-directional variant of the method
of polarized traces. In this section, we first briefly introduce the matrix-free version of
the method of polarized traces [66] in one direction, and then we discuss the modifica-
tions needed to adapt it to the sparsified Lippmann-Schwinger equation. We provide
a simple description of the three key elements in the method of polarized traces for
the Helmholtz equation as follows

1. the layered domain decomposition with the extended subdomains;
2. how to define the transmission conditions between subdomains using a dis-

crete Green’s representation formula issued from an algebraic decomposition;
3. how to implement an absorbing boundary conditions for the subdomains to

obtain a fast converging iterative method.
We then provide the full algorithm for the one-directional preconditioner; we

provide the physical intuition and discuss its short-comings, which are rectified by
the bi-directional preconditioner that is introduced right after.

3.1. Domain decomposition. The domain ⌦ is partitioned in L horizontal lay-
ers {⌦`}L

`=1. Following [64] we extend each subdomain, which we denote by {⌦`

ext

}L

`=1.
Within each extended subdomain we assemble the discrete local problem

(3.2) C`w` = g` = �⌦`g, for ` = 1, ..., L.

We impose C` to satisfy the compatibility condition, i.e., C` coincides exactly with
C in the interior of ⌦`. Within ⌦`

ext

� ⌦`, i.e., the extension of the subdomain, we
do not require C` to coincide with C, instead we use the extra degrees of freedom
to impose an analogue to an absorbing boundary condition. Given that C in the
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sparsified Lippmann-Schwinger system (3.1) does not arise from a direct discretization
of the Helmholtz equation, the boundary condition for subdomains needs a di↵erent
treatment, which is presented in Section 3.3.

Fig. 1 shows an example of such decomposition. At the left we have all the
degrees of freedom, in the middle we have the domain decomposed in several layers,
and at the right we have the extended domains. We represent in gray for those grid
points whose associated entries of each local matrix remain the same, and in orange
for those grid points that correspond to the extended degrees of freedom. Note that
the entries of C` associated to these extended grid points will be modified in order to
impose an ABC.

⌦

⌦1

⌦2

⌦3 ⌦3
ext

⌦2
ext

⌦1
ext

Fig. 1. Layered domain decomposition. The orange grid-points represent artificial grid points
in the extended domain.

We point out, that the bidirectional preconditioner uses two of such decomposi-
tions, one in which the domain is decomposed in horizontal layers, such as in Fig. 1,
and one in which the domain is decomposed in vertical layers. Alternating sweeping
will be performed on these two settings.

3.2. Algebraic decomposition. As for any domain decomposition method,
the objective is to solve the global problem (3.1) by solving the local problems (3.2)
iteratively, which requires transmission conditions at the interfaces between subdo-
mains. In the case of high-frequency problems, due to possible pollution errors [8],
such transmissions conditions need to be of higher order or algebraically exact with
respect to the discrete global problem, in order to ensure a fast convergence. One
advantage of the method of polarized traces is that such conditions can be seamlessly
imposed in an algebraic level, bypassing the need to define optimized transmission
conditions [35, 36].

In order to impose algebraically exact transmission conditions between layers, we
use the blocks of C to define a discrete Green’s representation formula. Such a formula
can be deduced by imposing a discontinuous local solution, as it was performed in
[58, 66].

By construction we have that

(3.3) C =

2

66666664

C1,1 C1,2

C2,1 C2,2 C2,3

. . .
. . .

. . .

. . .
. . . C

n

z

�1,n
z

C
n

z

,n

z

�1 C
n

z

,n

z

3

77777775

,
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in which all the sub-matrices are sparse. Given that the mesh is uniform we use
the following ordering of the unknowns

(3.4) v = (v1,v2, ...,vn

z

),

where v
j

2 Cn

x is given by

(3.5) v
j

= (v1,j

, v2,j

, ..., v
n

x

,j

),

which corresponds to v sampled at a constant z.
We write v` for the wavefield defined locally at the `-th layer, i.e., v` = �⌦`v,

and v`

k

for the values at the local depth2 z`

k

of v`.
In particular, v`

1 represents the wavefield sampled at the bottom of the layer, and
v`

n

`

is the wavefield at the top of the layer. Moreover, v`

0 is the local wavefield sampled
immediately below the bottom of the layer, in the extended region within the PML;
v`

n

`+1 is the local wavefield sampled immediately above the top of the layer.
Finally, we use the notation �

k

to denote a discrete measure. For a generic vector
p 2 Cn

x , �
k

p 2 Cn

x

⇥n

z is defined as follows:

(3.6) (�
k

p)
i,j

=

⇢
p

i

if j = k,
0 if j 6= k.

This notation will be used extensively to characterize the forcing terms necessary to
transfer the information from one subdomain to its neighbors.

The correct Green’s representation formula is given by the equivalent and more
manageable expression3

C`w` = � �
n

`C`

n

`

,n

`+1vn

`+1 + �
n

`+1C
`

n

`+1,n

`

v
n

`(3.7)

� �1C
`

1,0v0 + �0C
`

0,1v1 + g`.

It can be shown that if the traces of the global v, i.e. Cv = f , are known and
used in (3.7), then w` coincides exactly with v inside the layer, i.e., w = �⌦`v (see
Appendix C of [64] for a rigorous proof for matrices arising from finite di↵erences). In
[66] the above formula is used to build an equivalent surface integral formulation in a
matrix-free fashion, which is then solved iteratively. The convergence is fast provided
that high-quality ABC are implemented, which is the topic of the next subsection.

3.3. Absorbing boundary conditions. One of most the important elements
of the method of polarized traces is the implementation of ABC at the interfaces
between subdomains. ABC have successfully been used in domain decomposition for
elliptic equations [31], and a simpler version of ABC were extensively used in the first
domain decomposition method for the Helmholtz equation to ensure convergence [25].
High-quality absorbing conditions between subdomains are key to the fast convergence
of iterative solvers for the high-frequency Helmholtz equation [56, 61, 30, 48, 18, 19,
46, 49, 58, 47].

The high-quality ABC are needed in order to minimize the artificial reverbera-
tions at the interfaces between subdomains that arise from the truncation introduced

2We hope that there is little risk of confusion in overloading zj (local indexing) for zn`

c

+j (global

indexing), where n`
c =

P`�1
j=1 n

j is the cumulative number of points in depth.
3It is possible to recover the Green’s representation formula by multiplying (3.7) by the inverse

of C`
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by the domain decomposition. One of the objectives of the ABC, is to make the local
Green’s functions, which are defined by the local problem (3.2), as close as possible
to the global Green’s function restricted to the subdomain without scattering outside
the subdomain. In other words, the local Green’s functions should capture the local
interactions within the subdomain, but should not contain pollution e↵ects due to
artificial reflections at the truncated boundary. Given that medium outside the sub-
domain is not involved in the local system, the local Green’s functions do not capture
those long range interactions among subdomains; these interactions will be captured
in an iterative manner during the sweeps.

In practice, without careful treatment at the truncated boundaries, the artificial
reverberations can heavily pollute the local Green functions and hinder the conver-
gence of the iterative method. For example, the adverse e↵ect of the artificial rever-
berations can be overwhelming for the cases when Dirichlet or Neumann boundary
conditions are imposed at the boundaries between subdomains [61, 33], causing the
method to converge in O(!) iterations, thus resulting in a super-linear complexity.

Given that the matrix C in our problem does not arise from a direct discretization
of the Helmholtz equation, absorbing boundary conditions are not readily available.
A natural way is to localize the perturbation, m(x), to the subdomain via a smooth
cut-o↵. The localization produces a local discrete system in the form of (3.2) that
satisfies the compatibility conditions.

Now, we proceed to give an explanation of how to define the local problems (3.2)
using the localization to obtain an approximated ABC. Intuitively, the solution to
(3.2) should provide an approximation of the wave scattered by the perturbation
supported in ⌦`. Thus, one naive approach would be to define the local problem as

(3.8) H`u` := u` + !2G ⇤ (�⌦`mu`),

and then use the sparsifying preconditioner to obtain a sparse local problem in the
form of (3.2).

However, the local perturbation �⌦`m is discontinuous at the interfaces between
subdomains, which will produce strong artificial reflections for waves impinging on
the artificial boundary of ⌦`. These strong reflections will pollute the local Green’s
function and result in a slow convergence. Fortunately, this adverse e↵ect can be easily
rectified by using a window, or cut-o↵, function that transitions the perturbation
smoothly to zero.

Define a set of smooth cut-o↵ functions {⇠`(x)}L

`=1, such that

(3.9) ⇠`(x) =

⇢
1 , if x 2 ⌦`;
0 , if x /2 ⌦`

ext

.

We can define the continuous counterpart of (3.2) as the problem

(3.10) H`u` := u` + !2G ⇤ (⇠`mu`).

which is posed for x 2 ⌦. We recall that the matrix D, is a diagonal matrix that
encodes the multiplication by m(x

i,j

); we define D` as the diagonal matrix that rep-
resents the multiplication by ⇠`(x)m(x). We can define the discrete local Lippmann-
Schwinger equation as,

(3.11) H`

global

= I + !2G ·D`.

The global subscript indicates that H`

global

is a N ⇥ N matrix. In this case we
can multiply (3.11) by A, and we would obtain a local system that satisfies the
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compatibility condition of (3.2). However, this would be prohibitively expensive given
that would need to solve a N ⇥N system for each subdomain.

The key observation is that only a small portion of H`

global

in (3.11) deviates from

an identity matrix. This is caused by the small support of ⇠`m, in which supp(⇠`m) ⇢
⌦`

ext

. Thus, we can re-write (3.10) in ⌦`

ext

instead of ⌦, and discretize it resulting in

(3.12) H` = I + !2G ·D`,

which is a quasi-1D (see [30]) qn⇥ qn system, where q is the thickness, in grid points,
of each subdomain. In the implementation of the method, the cut-o↵ is constant in
the direction tangential to the boundary, x direction in our layered setting, and it is a
third order spline in the direction normal to the boundary, z direction in our setting.

In theory, we could apply the sparsifying preconditioner to (3.12); however, given
that the mesh is also truncated, the optimization via a SVD can provide di↵erent
results, hindering the compatibility condition. Instead, we multiply (3.12) by the
corresponding block of A, but with a special care at the boundaries of ⌦`

ext

, where
we use the stencil generated at the boundary of ⌦, which provides a satisfying ABC
[63] for the background wave-speed at the outer boundary of the extended domain.

Unfortunately, the smooth cut-o↵ used to localize the perturbation is not equiv-
alent to an ABC, which would approximate the Dirichelet to Neumann (DtN) map
at the boundary; such that it can absorb and dampen waves propagating out of the
boundary in all directions with little reflections. The smooth cut-o↵ in the normal di-
rection to the boundary minimally a↵ects waves propagating out of the domain close
to the normal direction. However, for waves propagating near and almost tangential
to the boundary, a smooth cut-o↵ may not be good enough depending on the sign
of the perturbation as illustrated in Figures 2 and 3. If the perturbation is nega-
tive, the waves propagate faster inside the subdomain than in the cut-o↵ region. If
a wave propagates almost tangentially to the boundary to the cut-o↵ region it will
bend outwards, and it will be ultimately absorbed by the numerical ABC situated
at the artificial boundary of the extended subdomain. On the other hand, if the
perturbation is positive, then the waves propagate slower inside the subdomain than
in the background media. Under these circumstances, the subdomain with a smooth
cut-o↵ to the background media creates an artificial wave-guide e↵ect at the subdo-
main boundary. Waves propagating almost normal to the boundaries will still cross
the smooth cut-o↵ and get absorbed by the numerical ABC at the artificial boundary
of the extended subdomain. However, waves propagating almost transversally along
the subdomain boundary will bend inwards due to the artificial cut-o↵, producing
spurious grazing waves that pollute the local solution within the subdomain. This
last problem can be attenuated to some extent by introducing a O(!) complex shift
within the cut-o↵ region, thus dampening the grazing waves. We point out that we
are only introducing a complex shift in the extended domain; it would be possible to
introduce a complex shift in ⌦ as in [40], however, that would violate the compatibility
condition.

Although the complex shift helps to reduce the number of iterations for the orig-
inal method of polarized traces from O(!) to O(

p
!), which is better than standard

iterative methods, it is not optimal. In order to obtain the lower rate of O(log!)
iterations to converge, we introduce in the next section an e↵ective bi-directional al-
ternating sweeping preconditioner to handle those grazing waves due to either the
incoming waves or the smooth cut-o↵ at the artificial boundaries between two subdo-
mains in one directional sweeping.
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Fig. 2. Example of a global (top) and local (bottom) Green’s function for a positive perturbation,
we can observe that there is some interference in the local Green’s function given by the spurious
grazing wave that is concentrated at the top of the slab.

Fig. 3. Example of a global (top) and local (bottom) Green’s function for a negative perturbation,
we can observe some di↵erences between the Green’s functions, but we do not observe the kind of
interference, nor the concentration at the boundaries, as observed in Fig. 2.

3.4. One-directional algorithm. In this section we discuss the preconditioner
for the sparse problem based on the method of polarized traces for one-directional
sweep and provide the algorithm in pseudo-code with a physical interpretation.

The main intuition behind the method of polarized traces is the directionality of
the waves, which are imposed by the polarizing conditions (see Section 3 of [64]) and
the absorbing boundary conditions. For example, the wavefield generated by a local
source, g`

(3.13) C`v` = g`,

irradiates from the interior of ⌦` to the exterior of it. If we sample v` at the bottom of
⌦`, we can physically interpret it as the trace of a wavefield propagating downwards.

Following this physical interpretation, the wavefield propagating downwards from
⌦` propagates inwards ⌦`�1. By using the Green’s representation formula we can
propagate the wavefield from ⌦` to ⌦`�1 by artificial sources located at the top of
⌦`�1 following

C`�1v`�1 = � �
n

`�1C`�1
n

`�1
,n

`�1+1v
`

1 + �
n

`�1+1C
`�1
n

`�1+1,n

`�1v
`

0 + g`�1,(3.14)

which is an alternate expression for the incomplete Green’s representation formula
introduced in [64].

We can observe that v`�1 contains the energy radiating from g`�1 and g`. If we
sample v`�1 at the bottom of ⌦`�1, it can be interpreted as the downwards wavefield
consisting of the downwards wavefield generated by g`�1 and the wavefield generated
by g` that propagated through ⌦`�1.

We can continue the propagation by adding the local wavefields in a manner that
is usually called a multiplicative Schwartz iteration (see [36]). Analogously, the same
procedure can be performed for the wavefields propagating upwards. The application
of both sweeps, downwards and upwards can be easily understood as a block Jacobi
iteration as presented in [64]. Furthermore, the polarizing conditions can be further
exploited to reduce the number of iterations by using a Gauss-Seidel approach de-
scribed by Alg. 1, which in practical terms reduces the number of iterations by a
factor of two (see [66]).
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All the intuitive arguments provided in the current exposition can be made rig-
orous from an algebraic point of view, we skip such explanation and redirect the
interested readers to [64].

Algorithm 1. Gauss-Seidel Preconditioner

1: function v = Preconditioner( g )

2: for ` = 1 : L do . Downwards Sweep

3: g` = g�⌦`

. Partition of the Source

4: if ` 6= 1 then

5: g`+ = ��n`

C`
n`,n`+1w

`�1
1 + �n`+1C

`
n`+1,n`

w`�1
0

6: end if

7: w` = (C`)�1g` . Local Solve

8: end for

9: for ` = L : �1 : 1 do . Upwards Sweep

10: if ` 6= L then

11: g`+ = ��1C
`
1,0v

`+1
n`

+ �0C
`
0,1v

`+1
n`+1

12: end if

13: v` = (C`)�1g` . Local Solve

14: end for

15: v =
�
v1,v2,v3, ...,vL�1,vL

�
. Concatenation

16: end function

3.5. Bi-directional algorithm. In this Section we first discuss briefly the short-
comings of Alg. 1 when applied to the sparsified Lippmann-Schwinger equation and
then introduce the bi-directional preconditioner in order to achieve the optimal com-
plexity.

The algorithm as presented in Alg. 1, may not work optimally in our setting
for the Lippmann-Schwinger equation, in which the perturbation is localized using a
smooth cut-o↵. The main issue is that waves propagating nearly tangential to the arti-
ficial boundaries between subdomains are perturbed due to the cut-o↵ and depending
on the perturbation they can be bended inwards and thus generate spurious grazing
waves. Even though the spurious grazing waves are dampened by the introduction of
a complex shift in the cut-o↵ region to some extent, they can still cause significant
deviations of the local Green’s functions with respect to the global ones. Thus, they
hinder the fast convergence of the iterations, especially when the perturbation is pos-
itive, i.e., the wave-guide situation, as explained in Section 3.3 and shown in Figures
2 and 3.

Moreover, a closer inspection to Alg. 1 reveals that within the algorithm pipeline,
the residual given by r = Cv

precond

�g, where v
precond

= Preconditioner(g) are con-
centrated at the boundaries between subdomains. In particular, r can be interpreted
in the continuous case as a measure supported at the boundaries between subdomains
with most singular term of the form �0(x). Then, as explained in Page 243 of [56],
the restriction of such measure to a subdomain (line 3 in Alg. 1) is not well defined,
resulting in a slow convergence rate. One way to solve the residual problem is pre-
sented in [56, 58, 67], where an overlapping domain decomposition is used to ensure
that at each iteration the residual lies at the interior of a subdomain.

In this work, we solve both problems simultaneously by introducing a simple al-
ternating bi-directional preconditioner, that consists on applying an up-down sweep
performed by Alg. 1 followed by an left-right pass sweep, performed by Alg. 1 but
applied to the transpose of C, which is denoted PreconditionerT in Alg. 2. The intro-
duction of the bi-directional preconditioner in Alg. 2 handles e↵ectively the spurious
grazing waves in one sweep by performing another sweep in the orthogonal direction.
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Stage Complexity

O↵-line O (N)

On-line O
⇣
n
sp
iter

�
N logN +N · niter

�⌘

Table 1
Complexity for each state of the solver, supposing the q ,the thickness of each extended local

subdomain, is O(1).

In addition, the application of the preconditioner in the orthogonal direction, after
a step of iterative refinement confines the residual to the interior of the subdomains,
thus eliminating the ambiguity and resulting in fast convergence.

In particular, as it will be shown in the numerical tests, the bi-directional pre-
conditioner is more e�cient and less sensitive to the geometry, direction of incoming
waves and sign of the perturbation, albeit with a higher memory footprint. The
sweep in the orthogonal direction can easily be implemented as preconditioning the
transpose of the matrix C using Alg. 1.

Algorithm 2. Bi-directional Preconditioner

1: function v = BiDirectionalPreconditioner( g )

2: u1 = Preconditioner (g) . Up-Down pass

3: e = g �Cu1 . Iterative refinement

4: u2 = Preconditioner

T (e) . Left-Right pass

5: v = u1 + u2

6: end function

4. Two-level Preconditioner. Now we summarize the two-level preconditioner:
• the inner level, in which u

approx

in (2.8) is computed approximately using the
bi-directional preconditioner Alg. 2;

• and, the outer level, in which (2.1) is solved iteratively using GMRES pre-
conditioned with Alg. 3.

Algorithm 3. Lippmann-Schwinger Preconditioner

1: function u = Lippmann-Schwinger Preconditioner( f )

2: u = GMRES(C,Af , BiDirectionalPreconditioner, tol = 10�3)
3: end function

There is a balance to the choice of the tolerance for the inner GMRES iteration
(in Alg. 3): if the tolerance is chosen too small, then the constants are large; on the
other hand, if the tolerance is too big, the constants will decrease but the number of
outer iterations will grow with the frequency, thus increasing the asymptotic cost. The
best choice in our case, is to set the inner loop tolerance to 10�3. This choice ensures
that the amount of outer iterations will be the same as using a direct multi-frontal
method and produces reasonable constants.

As mentioned in the introduction, the algorithm presented in this paper has two
phases: an o↵-line phase performed only once, and an on-line phase performed for
each right-hand-side, or incoming wave. The complexity of the solver is summarized
in Table 1; in the sequel we provide further details for the complexity for each phase,
in which we suppose the number of subdomains, L, is O(n) and that q = O(1).

4.1. O↵-line complexity. For the o↵-line or setup phase, we need to build C
for which we need to compute A. As explained in [63] A can be constructed by
solving only a hand-full of optimization problems. This property arises mainly by the
translation invariance of the convolution kernel, meaning that we can reuse the same
stencil for many grid-points. Solving the minimization problem needs a SVD of a
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9 ⇥N matrix, which can be performed in O(N) complexity. To create C we need to
multiply A times H; exploiting the sparsity of A and performing the multiplication
in the correct order, the product can be carried in O(N) operations.

We can build all the local matrices C` in O(N) complexity by reusing A, we
build L = O(n) matrices with O(n) elements each. Finally, the factorization of all
the local problems can be performed in O(N) complexity. Each local matrix is a
circulant matrix and their factorization can be performed in O(n) time, and we have
L = O(n) systems to factorize, which results in O(N) complexity. We point out that
assembly and factorization of the local matrices is a embarrassingly parallel operation
which can be e↵ortlessly parallelized.

4.2. On-line complexity. For the outer GMRES we need to apply H, which
consists of multiplications by sparse matrices and a convolution that can be performed
fast via a FFT (see section 2.3 of [26]). The cost of applying H is dominated by the
application of the FFT, resulting on an overall O(N logN) complexity. For Alg. 1
each local solve can be performed in O(n) time resulting in a complexity O(N). We
have an overall complexity of O(N) for each application of Alg. 1.

Finally, the overall on-line complexity depends on the number of outer and inner
iterations to converge. From [63] the number of outer iterations is almost indepen-
dent of the frequency, n

sp
iter = O(1), and we provide in the next section numerical

evidence that under the assumptions mentioned in the introduction, the number of
inner iterations grows logarithmically with the frequency, niter = O(log!), and given
that we are in the high-frequency regime niter = O(logN), resulting in the overall
complexity mentioned in the introduction.

5. Numerical Experiments. The numerical experiments were implemented in
Julia v0.4.3 linked against Intel MKL 11.2, and were performed in a server with dual
socket Intel Xeon CPU E5-2670, and 386 Gb in RAM. We used the FFT library
FFTW3 [34] for the application of H . For the local solves in the inner iteration we
used the PARDISO [54] and UMFPACK [23] solvers.

One of the main advantages of the method of polarized traces lies on its modu-
larity. We used the state-of-the-art library FFTW3 for the application of H but it is
possible to further accelerate the application of H by using GPU-accelerated libraries
(such as cuFFT [51]), or a distributed-memory FFT libraries. Within the main bottle
neck of the algorithm, which is the application of the preconditioner, it is possible
to e↵ortlessly exchange the linear solver. In our experiments we used PARDISO [54]
and UMFPACK [23], but it is easy to exchange them by solvers using compressed
linear algebra [52, 3, 43, 38], or by massively parallel solvers such as MUMPS [5] (or
its compressed linear algebra variant [4]) or SuperLU-DIST [24], among many others.

In this section we corroborate the complexity claims for our method; in particular,
present 3 di↵erent kinds of numerical experiments:

1. we study the asymptotic cost of solving sparsified systems from discretizations
of the Lippmann-Schwinger equation using the bi-directional preconditioner;

2. we solve a wave scattering example in three di↵erent medium profiles shown
in Fig. 4 using the full two level preconditioner,

3. we solve an example arising from reflectometry of plasmas confined in a fusion
reactor [62].

5.1. Sparsified system. First, we assemble two linear systems by sparsifying
the Lippmann-Schwinger equation for the perturbation given in Fig. 4 (left) and
demonstrate the performance of the original method of polarized traces, and the new
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Fig. 4. (left) Perturbation used for the wave scattering. (right) Wave-speed for 64 randomly
placed Gaussian bumps

N ! L T+
PT [s] T+

BD [s] T�
PT [s] T�

BD

200⇥ 200 200 4 0.5 (3.6) 0.2 (2.7) 0.5 (3.7) 0.2 (2.9)
400⇥ 400 400 8 2.1 (4.2) 0.7 (3.1) 2.2 (4.3) 0.6 (3.0)
500⇥ 500 500 10 3.5 (4.6) 1.1 (3.2) 3.3 (4.5) 1.0 (3.0)
800⇥ 800 800 16 11.5 (5.7) 3.2 (3.8) 8.62 (4.8) 2.7 (3.1)

1000⇥ 1000 1000 20 20.4 (6.6) 5.1 (4.1) 14.0 (5.2) 4.2 (3.1)
1250⇥ 1250 1250 25 30.5 (7.9) 8.7 (4.3) 22.5 (5.4) 7.3 (3.3)
1400⇥ 1400 1400 28 43.5 (8.9) 11.1 (4.7) 29.1 (5.6) 8.7 (3.4)
1600⇥ 1600 1600 32 62.8 (10.1) 15.8 (4.7) 41.8 (5.8) 12.6 (3.4)
2000⇥ 2000 2000 40 120.5 (12.6) 25.0 (5.3) 63.8 (6.1) 18.1 (3.5)

Table 2
Average execution time and number of iterations (in parenthesis) to solve the sparsified system

arising from the Lipmann-Schwinger equation using the positive (+) and negative (-) perturbation,
using either the method of polarized traces (PT), or the new bi-directional preconditioner(BD). We
use GMRES with a tolerance of 10�6, in this case N = n2 is the number of degrees of freedom, !
is the frequency and L is the number of subdomains.

bi-directional preconditioner. The two sparsified Lippmann-Schwinger systems (3.1)
correspond to the same perturbation shown in Fig. 4 (left) but with a di↵erent sign,
to which we refer to as the positive and negative perturbation. We solve the resulting
sparsified systems with GMRES (tolerance of 10�6) preconditioned with the method
of polarized traces [66] and the bi-directional preconditioner in Alg. 2. We solve
(3.1) for 64 di↵erent right-hand sides representing 64 di↵erent incident waves, and we
compute an average time. We repeat the process for a set of increasing frequencies,
such that we have 10 points per wavelength in the background medium. Moreover,
the domain is decomposed in L = n/50 subdomains, such that each subdomain is
roughly 5 wavelengths thick, and each subdomain is extended by 10 grid points in
both directions (see Fig 1). The average execution times are presented in Table 2.

Table 2 clearly depicts the di↵erent behavior between the matrix-free version of
the method of polarized traces, and its bi-directional variant. We can clearly observe
that the execution time increases faster for the original method of polarized traces.
This trend is more marked in the case of the positive perturbation as explained in
Section 3.3. In particular, we observe that the execution time (due to an increase
in the number of iterations) grows as O(N!1/2) = O(N5/4) instead of O(N logN)
and thus increasing overall the complexity of the global algorithm. In addition, we

15



can observe that the constants are lower for the bi-directional preconditioner. We
point out that the bottleneck of both preconditioners is the local solves, which are
performed using a multifrontal solver; the main di↵erence between both methods is
the number of such solves at each iteration: for the method of polarized traces we need
7 solves per layer and per iteration, whereas the bi-directional preconditioner needs
only 4; in addition, the bi-directional preconditioner converges in a lower number of
iterations.

Fig. 5. Left: execution time of the o↵-line stage; Right: execution time of the on-line stage of
solving the Sparsified Lippmann-Schwinger equation using GMRES preconditioned with Alg. 2. The
tolerance was fixed to 10�6, and !h = O(1).

Fig. 5 (left), shows the scaling for the factorization of the local problems and the
assembly of the sparsified system. In addition, Fig. 5 (right), shows the execution
time for the solution of the sparsified system using the bi-directional algorithm as
reported in Table 2 but in logarithmic scale. We can observe from Fig. 5 that the
assembly and factorization cost is O(N) and that the online cost of one inner iteration
is O(N logN), and, in particular, niter = O(log!).

Fig. 6. Real part of the total wavefield generated by the scattering of a plane wave impinged on
the negative perturbation (left) and on the positive perturbation (right), in both examples we have
! = 500.

5.2. Wave scattering. We test the performance of the two-level preconditioner
by solving the Lippmann-Schwinger equation (2.1) associated to three problems on
wave scattering. We use three di↵erent perturbation profiles, the negative smooth
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perturbation, the positive smooth perturbation and Gaussian bumps as shown in Fig.
4 (left) and (right). The profiles were chosen to depict the behavior of the method
in three generic settings for wave propagation: a defocussing medium (negative per-
turbation), a focusing medium (positive perturbation) and a medium with multiple
scattering (Gaussian bumps). We can observe the total wavefield scattered by a plane-
wave impinging on each perturbation in Fig. 6 (left), Fig. 6 (right) and Fig. 10 (left),
respectively.

Fig. 7. Average execution time for the on-line stage of solving the high-frequency Lippmann-
Schwinger equation with GMRES (tolerance of 10�10) preconditioned with Alg. 3 with an inner
tolerance of 10�3, for the three di↵erent perturbation profiles; !h = O(1).

For each perturbation profile we solve a system of increasing size, keeping !h con-
stant. Each system is solved using GMRES with a tolerance of 10�10, preconditioned
with Alg. 3 with a inner tolerance of 10�3; the domain is decomposed in L = n/50
subdomains, and each subdomain is extended 10 grid points in each direction (see
Fig. 1). At each frequency, we compute the wavefield generated by a set of 64 di↵er-
ent incident waves impinging on the perturbation by solving the Lippmann-Schwinger
equation, and we report the average execution time in Fig. 7. From Fig. 7 we can
observe that the execution time scales as O(N logN) for each perturbation profile,
which corroborates the claims made in the introduction. For the o↵-line stage we
obtain the same execution times as in Fig. 5 (left).

Fig. 8. Left: average execution time for the on-line stage of solving the Lippmann-Schwinger
with the Gaussian bumps perturbation with the original sparsifying preconditioner, i.e., using mul-
tifrontal methods, and using the two-level preconditioner with !h = O(1); Right: execution time of
the o↵-line stage for the two-level preconditioner and the original sparsifying preconditioner.

Moreover, for the sake of comparison, we time the execution time of solving the
Lippmann-Schwinger equation using the original sparsifying preconditioner [63] (i.e.,
solving (3.1) via a multifrontal solver [23]). For the comparison we used the multiple
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scattering perturbation in Fig. 4 (right), with the same set of frequencies and incoming
waves as before. We use the implementation of the sparsifying preconditioner in
[65]. The average execution times of the on-line stage are reported in Fig. 8 (left)
together with the averages times for the two-level preconditioner. From Fig. 8 (left)
we can observe that, unsurprisingly, the original sparsifying preconditioner has the
same asymptotic on-line cost as the two-level preconditioner presented in this paper;
however, the main di↵erence lies in the o↵-line stage, in which the multifrontal solver
has a complexity of O(N3/2) compared to O(N) for the two-level preconditioner as
shown in Fig. 8 (right).

Fig. 9. Perturbation for the plasma physics example (taken from [2]) we can observe the at
the interior the perturbation becomes negative, thus yielding a strongly elliptic problem locally, thus
becoming an evanescent medium.

Fig. 10. Real part of the total wavefield generated by the scattering of a plane wave in the
Gaussian bumps model (left) and in the plasma model (right). In both examples ! = 500.

5.3. Plasma physics. Finally, we test the performance of the two-level precon-
ditioner using a problem arising from plasma physics, in particular, a radio-frequency
(RF) wave propagating in a fusion reactor. Under some simplifications, the propaga-
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Fig. 11. Average execution time for solving the Lippmann-Schwinger equation using the plasma
perturbation profile (left), and the average number of outer iterations needed for convergence (right).
The problem was solved with GMRES (tolerance of 10�10) preconditioned with the two-level precon-
ditioner with an inner tolerance of 10�3 and !h = O(1). The extra logarithmic factor comes from
the increasing number of outer iterations.

tion of a RF wave can be described using a cold plasma model [62]. We borrow from
[2] a model4 corresponding to an idealized plasma density profile shown in Fig. 9. The
physics in this case are di↵erent, an incoming wave propagates until it hits a cut-o↵
region in which the problem becomes strictly elliptic or evanescent, thus causing the
waves to reflect, as depicted in Fig. 10 (right).

We solve a system of increasing size, keeping !h constant; we decompose the
domain such that we have roughly 5 wavelengths inside each subdomain, and each
subdomain is extended 10 grid points in each direction. At each frequency, we com-
pute the wavefield generated by a set of 64 di↵erent incident waves impinging on the
perturbation by solving the Lippmann-Schwinger equation and report the average
execution times in Fig. 11 (left).

In the case of the plasma example, we observe from Fig. 11 (left) a slightly bigger
scaling. The main reason for this scaling is the fact that the number of outer iteration
grows logarithmically, as shown in Fig. 11 (right), which is presumably caused by
the transition of the physics at the cut-o↵ region. Nonetheless, the number of inner
iterations grows like O(logN), the same as in the wave scattering case, resulting in an
overall complexity of O(N log2 N), which, to the our knowledge, compares favorably
to most of current solvers.

6. Conclusions. We have presented a new fast iterative method for the high-
frequency Lippmann-Schwinger equation in 2D. The method has an asymptotic cost
of O(N logN) for the wave scattering problems presented in this paper.

Some future work and extensions are: the design of more e�cient ABC, in order
to use only one directional preconditioner, thus decreasing the memory footprint;
extensions to 3D, in which a nested approach can be used to obtain low complexity
algorithms; parallelization of the solvers using state-of-the-art linear solvers; reduction
of the constant via compressed linear algebra, which can provide extra savings in the
plasma example, where the local ellipticity of the problem can be exploited.

Another line of research is to further reduce the on-line complexity by using
the original reduction to a SIE of the method of polarized traces, coupled to the
precomputation of integral operators and their compression.

We point out that it is envisageable to change the outer GMRES loop with the

4We refer the interested reader to Example 4.3 of [2] for further details.

19



flexible GMRES [53] algorithm, and reduce the inner-level tolerance to accelerate the
algorithm, without a penalty on the asymptotic complexity.
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