1. Find the value of a such that the following functions are continuous in \mathbb{R}, and plot them for that value of a.
(a)

$$
f(x)= \begin{cases}x^{2} & \text { if } x \leq 3 \tag{1}\\ a x & \text { if } x>3\end{cases}
$$

(b)

$$
f(x)= \begin{cases}1 / x & \text { if } x \leq 1 \tag{2}\\ a x^{2} & \text { if } x>1\end{cases}
$$

(c)

$$
f(x)=\left\{\begin{array}{cc}
\sin (x) / x & \text { if } x \neq 0 \tag{3}\\
a & \text { if } x=0
\end{array}\right.
$$

2. Using the Intermediate value theorem, show that there is a root of the equation $\cos (\pi \sqrt{x})=$ $e^{x}-2$ in the interval $(0,1)$.
3. Using the Squeeze Theorem find the following limits:
(a)

$$
\begin{equation*}
\lim _{x \rightarrow 0} x^{2} \cos ^{4}\left(\frac{1}{x}\right) \tag{4}
\end{equation*}
$$

(b)

$$
\begin{equation*}
\lim _{x \rightarrow 0} x^{2} \sin ^{4}\left(\frac{1}{x}\right) . \tag{5}
\end{equation*}
$$

(c)

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{\sin (x)}{x} \tag{6}
\end{equation*}
$$

(d)

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{\cos (x)+4}{x} \tag{7}
\end{equation*}
$$

4. Find all the horizontal and vertical asymptotes of the following functions
(a)

$$
\begin{equation*}
f(x)=\frac{x^{2}-x-6}{x^{2}-2 x-3} \tag{8}
\end{equation*}
$$

(b)

$$
\begin{equation*}
g(x)=\frac{\cos (x)}{\sin (x)} \tag{9}
\end{equation*}
$$

(c)

$$
\begin{equation*}
h(x)=\frac{\cos (x)}{x^{2}-2 x-3} \tag{10}
\end{equation*}
$$

5. Compute the following limits (using the Limit Laws)
(a)

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{\sqrt{x+1}-1}{x} \tag{11}
\end{equation*}
$$

(b)

$$
\lim _{x \rightarrow 1} f(x), \quad \text { where } f=\left\{\begin{array}{cc}
\left(x^{2}-1\right) /(x-1) & \text { if } x \neq 1 \tag{12}\\
7 & \text { if } x=1
\end{array}\right.
$$

6. Find the tangent line of the following function at $x_{0}=3$
(a)

$$
\begin{equation*}
f(x)=\frac{1}{x} \tag{13}
\end{equation*}
$$

(b)

$$
\begin{equation*}
f(x)=\frac{1}{x^{2}} \tag{14}
\end{equation*}
$$

(c)

$$
\begin{equation*}
f(x)=\frac{1}{\sqrt{x}} \tag{15}
\end{equation*}
$$

(d)

$$
\begin{equation*}
f(x)=\sin (x) \tag{16}
\end{equation*}
$$

7. Compute the following limits using the comparison Theorems, or show that it does not exists (a)

$$
\begin{equation*}
\lim _{x \rightarrow 1} \frac{1+\sin ^{2}(1 / x)}{|x-1|} \tag{17}
\end{equation*}
$$

(b)

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{1+\sin ^{2}(1 / x)+\cos ^{2}\left(x^{2}\right)}{|x-1|} \tag{18}
\end{equation*}
$$

(c)

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{P(x)}{Q(x)} \tag{19}
\end{equation*}
$$

P, Q polynomials, and the degree of P is greater than the degree of Q.
(d)

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{P(x)}{Q(x)} \tag{20}
\end{equation*}
$$

P, Q polynomials, and the degree of P is less than the degree of Q.
8. Find the derivatives of the following functions using the definition, and state the domain of each of the derivatives
(a)

$$
\begin{equation*}
f(x)=3 x-8 \tag{21}
\end{equation*}
$$

(b)

$$
\begin{equation*}
g(x)=x^{2}-x^{3} \tag{22}
\end{equation*}
$$

(c)

$$
\begin{equation*}
h(x)=x^{3 / 2} \tag{23}
\end{equation*}
$$

(d)

$$
\begin{equation*}
f(x)=\sqrt{9-x} \tag{24}
\end{equation*}
$$

(e)

$$
\begin{equation*}
f(x)=\frac{1}{\sqrt{x}} \tag{25}
\end{equation*}
$$

9. Let suppose that you have a canon a 2 dimensional world. The amoun of powder is contant and you want to throw a canon ball as fasr as possible. The lonly parameter that you can control is the angle between the cannon and the floor, which we denote by θ.
You have that the motion is described by

$$
\begin{equation*}
x(t)=v t \sin (\theta) \quad \text { and } y(t)=v t \cos (\theta)-\frac{g}{2} t^{2} . \tag{26}
\end{equation*}
$$

(a) Compute the distance the cannon ball will travel in the x direction until it touches the ground ($y=0$).
(b) Plot the function that you found and found the θ for which the distance in x is maximum. (Hint: you can use the fact that $\sin (2 \theta)=2 \sin (\theta) \cos (\theta)$, and to find the maximum θ, you can take a look at the graph and convince yourself that the maximum will be atteing when the derivative of the distance function is equal to zero.)

