1. Find all the critical points of the function

$$
f(x, y)=\sin x+y^{2}+2 y \cos x+1
$$

and classify them (maximum, minimum or saddle point)
2. Determine if the following statements are true or false. If they are true, explain why, otherwise provide a counter-example.
(a)

$$
\int_{-1}^{2} \int_{0}^{6} x^{2} \sin (x-y) d x d y=\int_{0}^{6} \int_{-1}^{2} x^{2} \sin (x-y) d y d x
$$

(b)

$$
\int_{0}^{1} \int_{0}^{x} \sqrt{x+y^{2}} d y d x=\int_{0}^{x} \int_{0}^{1} \sqrt{x+y^{2}} d x d y
$$

(c)

$$
\int_{1}^{2} \int_{3}^{4} x^{2} e^{y} d y d x=\left(\int_{1}^{2} x^{2} d x\right)\left(\int_{3}^{4} e^{y} d y\right)
$$

(d)

$$
\int_{-1}^{1} \int_{0}^{1} e^{x^{2}+y^{2}} \sin (y) d x d y=0
$$

(e) If f is continuous on $[0,1]$, then

$$
\int_{0}^{1} \int_{0}^{1} f(x) f(y) d x d y=\left[\int_{0}^{1} f(x) d x\right]^{2}
$$

(f)

$$
\int_{1}^{4} \int_{0}^{1}\left(x^{2}+\sqrt{y}\right) \sin \left(x^{2} y^{2}\right) d x d y \leq 9
$$

(g) If f has a local minimum at (a, b) and f is differentiable at (a, b), then $\nabla f(a, b)=0$
(h) If $(2,1)$ is a critical point of f and

$$
\left(\partial_{x x} f(2,1)\right)\left(\partial_{y y} f(2,1)\right)<\left(\partial_{x y} f(2,1)\right)^{2}
$$

then f has a saddle point at $(2,1)$.
(i) If $f(x, y)$ has two local maxima, then f must have a local minimum.
(j) There exists a function f with continuous second-order partial derivatives such that

$$
\begin{equation*}
\partial_{x} f(x, y)=x+y^{2} \text { and } \partial_{y} f(x, y)=x-y^{2} \tag{1}
\end{equation*}
$$

(k)

$$
\begin{equation*}
f_{x y}=\frac{\partial^{2} f}{\partial x \partial y} \tag{2}
\end{equation*}
$$

3. (a) Evaluate

$$
\iint_{D} \frac{1}{\left(x^{2}+y^{2}\right)^{n / 2}} d A
$$

where n is an integer, and D is the region bounded by the circles with center in the origin and radii r and R, such that $0<r<R$. (Hint: use polar coordinates.)
(b) For what values of n does the integral above have a limit when $r \rightarrow 0^{+}$.
4. Show the following identities:
(a)

$$
\begin{equation*}
\int_{0}^{1} \int_{0}^{1} \frac{1}{1-x y} d x d y=\sum_{n=1}^{\infty} \frac{1}{n^{2}} \tag{3}
\end{equation*}
$$

Hint: expand the integrand as a geometric series, and interchange the order of the sum and integrals.
(b)

$$
\begin{equation*}
\int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \frac{1}{1-x y z} d x d y d z=\sum_{n=1}^{\infty} \frac{1}{n^{3}} \tag{4}
\end{equation*}
$$

5. Suppose that a function F is defined as

$$
F(x, y)=f(x, g(x) k(y), h(x, y)),
$$

where f, g, h, k are twice differentiable functions. Find

$$
\frac{\partial^{2} F}{\partial x \partial y}
$$

in terms of the partial derivatives of f, g, h, k.
6. Let $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ a function twice differentiable, and let f be a function defined on $\Omega=\{(x, y) \in$ $\left.\mathbb{R}^{2}, y \neq 0\right\}$ twice differentiable such that $f(x, y)=g(x y, x / y)$.
Suppose, that f satisfies

$$
\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=0
$$

and define $u=x y$ and $v=\frac{x}{y}$. Show that g satisfies

$$
\left(u v+\frac{u}{v}\right) \frac{\partial^{2} g}{\partial u^{2}}+2\left(1-v^{2}\right) \frac{\partial^{2} g}{\partial u \partial v}+\frac{v}{u}\left(1+v^{2}\right) \frac{\partial^{2} g}{\partial v^{2}}+2 \frac{v^{2}}{u} \frac{\partial g}{\partial v}=0 .
$$

Hint: use the equation that f satisfies, and compute the partial derivatives of f using the chain rule on g.
7. A disk or radius 1 is rotating in the counter-clockwise direction at a constant angular speed ω. A particle starts at the center of the disk and moves toward the edge along a fixed radius so that it position at time $t \geq 0$, is given by $\mathbf{r}(t)=t \mathbf{R}(t)$, where

$$
\mathbf{R}(t)=\cos (\omega t) \mathbf{i}+\sin (\omega t) \mathbf{j} .
$$

(a) Show that the velocity \mathbf{v} of the particle is

$$
\mathbf{v}(t)=\cos (\omega t) \mathbf{i}+\sin (\omega t) \mathbf{j}+t \mathbf{v}_{d}
$$

where $\mathbf{v}_{d}=\mathbf{R}^{\prime}(t)$ is the velocity of a point at the edge of the disk.
(b) Show that the acceleration a of the particle is given by

$$
\mathbf{a}=2 \mathbf{v}_{d}+t \mathbf{a}_{d}
$$

where, $\mathbf{a}_{d}=\mathbf{R}^{\prime \prime}(t)$ is the the acceleration of a point on the edge of the disk. In this case, $2 \mathbf{v}_{d}$ corresponds to the Coriolis acceleration.
(c) Compute the Coriolis acceleration of a moving particle that moves on a rotating disk according to the equation

$$
\mathbf{r}(t)=e^{-t} \cos (\omega t) \mathbf{i}+e^{-t} \sin (\omega t) \mathbf{j}
$$

8. Suppose that you have two planets: one of mass M situated at $\mathbf{y} \in \mathbb{R}^{3}$ and the other of mass m located at $\mathbf{x} \in \mathbb{R}^{3}$. Following the gravitation law we have that the force on the planet located at x is given by

$$
\mathbf{F}=-\gamma \frac{M m}{|\mathbf{x}-\mathbf{y}|^{3}}(\mathbf{x}-\mathbf{y})
$$

If $\mathbf{x}(t)$ is the position in the space of a planet of mass m that moves under the action of the gravitational force due to a mass M located in the origin, then show that the energy, defined as

$$
E(t)=\frac{m}{2}\left|\frac{d \mathbf{x}(t)}{d t}\right|^{2}-\gamma \frac{M m}{|\mathbf{x}(t)|}
$$

is preserved, i.e., show that $E^{\prime}(t)=0$.
Hint: you need to use Newton's second law $\mathbf{F}=m \mathbf{a}$, where $\mathbf{a}=\mathbf{x}^{\prime \prime}(t)$. Moreover, you may want to recall that $|\mathbf{x}(t)|=\sqrt{\mathbf{x} \cdot \mathbf{x}}$.
9. (a) Maximize $\sum_{i=1}^{n} x_{i} y_{i}$ subject to the constraints $\sum_{i=1}^{n} x_{i}^{2}=1$ and $\sum_{i=1}^{n} y_{i}^{2}=1$.

Hint: computing the derivatives may seem overwhelming, this can be easily tackled by exploiting the symmetry in the problem. In this case, you may want to treat x first and then treat y, and then put them together in the equation for the Lagrange multipliers.
(b) Let $\mathbf{a}=\left\langle a_{1}, a_{2}, \ldots, a_{n}\right\rangle$ and $\mathbf{b}=\left\langle b_{1}, b_{2}, \ldots, b_{n}\right\rangle$ two vectors in \mathbb{R}^{n}.

Put

$$
x_{i}=\frac{a_{i}}{\sqrt{\sum_{j}^{n} a_{i}^{2}}} \quad \text { and } \quad y_{i}=\frac{b_{i}}{\sqrt{\sum_{j}^{n} b_{i}^{2}}}
$$

and using the last question show that

$$
\mathbf{a} \cdot \mathbf{b} \leq|\mathbf{a}||\mathbf{b}|
$$

This inequality is known as the Cauchy-Schwarz inequality.
Hint: recall that $\mathbf{a} \cdot \mathbf{b}=\sum_{i=1}^{n} a_{i} b_{i}$ and $|\mathbf{a}|=\sqrt{\sum_{j}^{n} a_{i}^{2}}$
10. If $\llbracket x \rrbracket$ denotes the greatest integer in x, evaluate the integral

$$
\iint_{R} \llbracket x+y \rrbracket d A
$$

where $R=[1,3] \times[2,5]$.
11. Evaluate the integral

$$
\int_{0}^{1} \int_{0}^{1} e^{\max \left(x^{2}, y^{2}\right)} d x d y
$$

where $\max \left(x^{2}, y^{2}\right)$ means the larger of the numbers x^{2} and y^{2}.
12. If f is continuous, show that

$$
\int_{0}^{x} \int_{0}^{y} \int_{0}^{z} f(t) d t d z d y=\frac{1}{2} \int_{0}^{x}(x-t)^{2} f(t) d t
$$

13. (Example from Statistical physics) We define the entropy of a system as the function $S: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined as

$$
S\left(x_{1}, x_{2}, \ldots, x_{n}\right)=-\sum_{i=k}^{n} x_{k} \ln x_{k}
$$

we aim to maximize this function.
(a) Find the domain of S, and compute its partial derivatives.
(b) Find a critical point and show that it is a maximum. (You will need to use a higher dimension version of the second derivative test.)
(c) Find a critical point with the restriction that $\sum_{k=1}^{n} x_{k}=1$. Show that it is a maximum.
(d) Let $E_{1}<E_{2}<E_{3}<\ldots E_{n}$ and E be given reals number (i.e. they are constant). In the next questions we want to maximize S under the restrictions

$$
\sum_{k=1}^{n} x_{k}=1 \text { and } \sum_{k=1}^{n} x_{k} E_{k}=E
$$

write the equations for the Lagrange multipliers. (You will obtain $n+2$ equations)
(e) Argue that the solution of the system of equations has the form $x_{i}=e^{-\beta E_{i}} / Z$ where $Z=\sum_{i=1}^{n} e^{-\beta E_{i}}$, and its known as the partition function.
(f) Write the equation to find beta (do not try to find it).
(g) Argue that the solution to the system maximizes S under the constraints.

