1. Compute the gradient of the following functions
(a)

$$
f(x, y)=\left(5 y^{3}+2 x^{2} y\right)^{8}
$$

(b)

$$
F(\alpha, \beta)=\alpha^{2} \ln \alpha^{2}+\beta^{2}
$$

(c)

$$
G(x, y, z)=e^{x z} \sin y / z
$$

(d)

$$
S(u, v, w)=u \arctan (u \sqrt{w})
$$

2. Compute the all the partial second derivatives of the following functions
(a)

$$
f(x, y)=4 x^{3}-x y^{2}
$$

(b)

$$
f(x, y, z)=x^{k} y^{l} z^{m}
$$

(c)

$$
z=x^{-2 y}
$$

(d)

$$
v=r \cos (s+2 t)
$$

3. Find the linear approximation of the function

$$
f(x, y, z)=x^{3} \sqrt{y^{2}+z^{2}}
$$

at the point $(2,3,4)$, and use it to estimate the number $(1.98)^{3} \sqrt{(3.01)^{2}+(3.97) .{ }^{2}}$
4. If

$$
\begin{equation*}
z=y+f\left(x^{2}-y^{2}\right), \tag{1}
\end{equation*}
$$

where f is differentiable, show that

$$
\begin{equation*}
y \frac{\partial z}{\partial x}+x \frac{\partial z}{\partial y}=x \tag{2}
\end{equation*}
$$

5. If $g(s, t)=f\left(s^{2}-t^{2}, t^{2}-s^{2}\right)$ and f is differentiable, show that g satisfies

$$
t \frac{\partial g}{\partial s}+s \frac{\partial g}{\partial t}=0
$$

6. If $u=x^{2} y^{3}+z^{4}$, where $x=p+3 p^{2}, y=p e^{p}$ and $z=p \sin p$, use the chain rule to compute $d u / d p$.
7. Find the maximum rate of change of $f(x, y)=x^{2} y+\sqrt{y}$ at the point $(2,1)$. In which direction does it occur?
8. If $z=x y+x e^{y / x}$, show that

$$
\begin{equation*}
x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}=x y+z \tag{3}
\end{equation*}
$$

9. If $z=\sin (x+\sin t)$, show that

$$
\begin{equation*}
\frac{\partial z}{\partial x} \frac{\partial^{2} z}{\partial x \partial t}=\frac{\partial z}{\partial t} \frac{\partial^{2} z}{\partial x^{2}} . \tag{4}
\end{equation*}
$$

10. If z depends on x and y implicitly following

$$
\begin{equation*}
\cos (x y z)=1+x^{2} y^{2}+z^{2} \tag{5}
\end{equation*}
$$

using implicit differentiation find, $\partial_{x} z$ and $\partial_{y} z$.
11. Determine whether the following statements are true or false. If it is true explain why, otherwise find a counterexample.
(a) $f_{y}(a, b)=\lim _{y \rightarrow b} \frac{f(a, y)-f(a, b)}{y-b}$.
(b) $D_{\hat{\mathbf{k}}} f(x, y, z)=\partial_{z} f(x, y, z)$.
(c) If $f(x, y) \rightarrow L$ as $(x, y) \rightarrow(a, b)$ along every straight line through (a, b), then $\lim _{(x, y) \rightarrow(a, b)} f(x, y)=$ L.
(d) If $f(x, y)=\ln y$ then $\nabla f=1 / y$.
(e) If $f(x, y)=\sin x+\sin y$, then $-2 \leq D_{\hat{\mathbf{u}}} f(x, y) \leq 2$ for any unitary vector $\hat{\mathbf{u}}$.
12. Find the local minimum and maximum values and the saddle points of the functions
(a) $f(x, y)=x^{2}-x y+y^{2}+9 x-6 y+10$
(b) $f(x, y)=x^{3}-6 x y+8 y^{3}$
(c) $f(x, y)=3 x y-x^{2} y-x y^{2}$
(d) $f(x, y)=\left(x^{2}+y\right) e^{y / 2}$
13. We want to show that the maximum value of the function

$$
\begin{equation*}
f(x, y)=\frac{(a x+b y+c)^{2}}{x^{2}+y^{2}+1} \tag{6}
\end{equation*}
$$

is $a^{2}+b^{2}+c^{2}$, where we suppose that $c \neq 0$.
(a) Compute the gradient of $f(x, y)$.
(b) (2 points) Show that the gradient is zero if

$$
\begin{equation*}
a x+b y+c=0 \tag{7}
\end{equation*}
$$

or if

$$
\begin{array}{r}
a y^{2}+a-b x y-c x=0, \\
b x^{2}+b-a x y-c y=0 .
\end{array}
$$

Hint: you will need to factorize the expression that you obtained for the partial derivatives.
(c) Check that if

$$
\begin{equation*}
a x+b y+c=0 \tag{8}
\end{equation*}
$$

then $f(x, y)=0$
(d) Check that $x=a / c$ and $y=b / c$ are solution of

$$
\begin{array}{r}
a y^{2}+a-b x y-c x=0, \\
b x^{2}+b-a x y-c y=0 .
\end{array}
$$

(e) Check that $f(a / c, b / c)=a^{2}+b^{2}+c^{2}$
(f) Define the following two vectors:

$$
\begin{equation*}
\mathbf{u}=\langle a, b, c\rangle \text { and } \mathbf{v}=\langle x, y, 1\rangle \tag{9}
\end{equation*}
$$

using that $\mathbf{u} \cdot \mathbf{v}=|\mathbf{u}||\mathbf{u}| \cos \theta$; where θ is the angle between $\mathbf{u} \cdot \mathbf{v}$, show that

$$
\begin{equation*}
a x+b y+c \leq\left(a^{2}+b^{2}+c^{2}\right)^{1 / 2}\left(x^{2}+y^{2}+1^{2}\right)^{1 / 2} . \tag{10}
\end{equation*}
$$

(g) Using the result from the question above show that

$$
\begin{equation*}
\frac{(a x+b y+c)^{2}}{x^{2}+y^{2}+1} \leq a^{2}+b^{2}+c^{2} \tag{11}
\end{equation*}
$$

(h) Argue, using the properties of the dot product, that the maximum is atteint at $x=a / c$ and $y=b / c$

