1. Let

$$
\mathbf{A}=\left[\begin{array}{cccc}
1 & 2 & 3 & -1 \tag{1}\\
-1 & 1 & 0 & 1 \\
0 & 3 & 3 & (\alpha-3) \\
2 & 1 & \alpha & -2
\end{array}\right], \quad \text { and } \mathbf{b}=\left[\begin{array}{c}
\beta \\
\beta^{2} \\
0 \\
-2
\end{array}\right]
$$

What are the conditions on α and β such that the system $\mathbf{A x}=\mathbf{b}$:
(a) has no solution?
(b) has an unique solution? Find the unique solution (Hint: you will need to row reduced the augmented system to echelon form, and then use the theorems seen in class to impose the conditions on α and β.)
(c) has infinite amount of solutions? Write the solution set in parametric form (Hint: You may have two equations for β that have to be satisfied simultaneously. Moreover, you may find useful to know that you can factorize $-2-\beta+\beta^{2}=(\beta-2)(\beta+1)$)
2. Let

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & 2 & 3 \tag{2}\\
2 & 3 & 4 \\
3 & 4 & \alpha
\end{array}\right], \quad \text { and } \mathbf{b}=\left[\begin{array}{c}
1 \\
\beta \\
1
\end{array}\right]
$$

What are the conditions on α and β such that the system $\mathbf{A x}=\mathbf{b}$:
(a) has no solution?
(b) has an unique solution? Find the unique solution (Hint: you will need to row reduced the augmented system to echelon form, and then use the theorems seen in class to impose the conditions on α and β.)
(c) has infinite amount of solutions? Write the solution set in parametric form.
3. Let

$$
\mathbf{A}=\left[\begin{array}{ccc}
1 & 1 & 1 \tag{3}\\
a & b & c \\
a^{2} & b^{2} & c^{2}
\end{array}\right]
$$

Show that if $\mathbf{A x}=0$, has an unique solution, then $a \neq b, b \neq c$ and $a \neq c$. I.e. a, b, c are different!
4. Consider the following lines in \mathbb{R}^{3}

$$
L 1:\left(\begin{array}{c}
-1 \tag{4}\\
2 \\
1
\end{array}\right)+t\left(\begin{array}{c}
1 \\
2 \\
-2
\end{array}\right), t \in \mathbb{R} \quad \text { and } \quad L 2:\left(\begin{array}{c}
3 \\
1 \\
-1
\end{array}\right)+s\left(\begin{array}{c}
0 \\
1 \\
-2
\end{array}\right), s \in \mathbb{R} .
$$

(a) Show that the lines do not intersect.
(b) Write the equation of the plane containing $L 1$ and that is parallel to L2. (Hint: Think geometrically!)
5. Consider the following lines in \mathbb{R}^{3}

$$
L 1:\left(\begin{array}{l}
3 \tag{5}\\
4 \\
5
\end{array}\right)+t\left(\begin{array}{c}
-1 \\
2 \\
-5
\end{array}\right), t \in \mathbb{R} \quad \text { and } \quad L 2:\left(\begin{array}{l}
2 \\
4 \\
6
\end{array}\right)+s\left(\begin{array}{c}
2 \\
1 \\
-5
\end{array}\right), s \in \mathbb{R} .
$$

Show that the lines intersect at an unique point, find it.
6. For $c \in \mathbb{R}$, we define the matrix $\mathbf{A}_{\mathbf{c}} \in \mathbb{R}^{3 \times 3}$ by

$$
\mathbf{A}_{\mathbf{c}}=\left[\begin{array}{ccc}
1 & -1 & 1 \tag{6}\\
2 & 2 & 0 \\
3 & c & 2
\end{array}\right]
$$

(a) For which values of c does the columns of $\mathbf{A}_{\mathbf{c}}$ span \mathbb{R}^{3}
(b) Let $b=(2,-4,1)^{t}$, find the solution $\mathbf{A}_{\mathbf{0}} x=b$

