1. In this question you will study how to change basis using polynomials as an example.

Let \mathbb{P}^{3} be the set of all the polynomials of degrees less or equal than 3 .
You can write any polynomial $p(x) \in \mathbb{P}^{3}$ in the form

$$
\begin{equation*}
p(x)=\alpha_{0}+\alpha_{1} x+\alpha_{2} x^{2}+\alpha_{3} x^{3} \tag{1}
\end{equation*}
$$

In that case you can easily write the following transformation $E: \mathbb{P}^{3} \rightarrow \mathbb{R}^{4}$, which is given by:

$$
E(p(x))=E\left(\alpha_{0}+\alpha_{1} x+\alpha_{2} x^{2}+\alpha_{3} x^{3}\right)=\left(\begin{array}{l}
\alpha_{0} \tag{2}\\
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right)
$$

In other words you are writting the polynomail p using the coefficients from the monomial basis, which is given by $\mathcal{E}=\left\{1, x, x^{2}, x^{3}\right\}$.
In order to alleviate the notation we will denote the \mathcal{E}-coordinates of a polynomial p as $[p]_{\mathcal{E}}=$ $E(p(x))$
(a) Compute $E\left(1+x+x^{2}+x^{3}\right)$.
(b) Show that the transformation is linear
(c) Show that the transformation E is one-to-one
(d) Show that E transformations \mathbb{P}^{3} onto \mathbb{R}^{4}.
(e) Conclude that the linear transformation E is invertible, and explain why the inverse E^{-1} : $\mathbb{R}^{4} \rightarrow \mathbb{P}^{3}$ is given by

$$
E^{-1}\left(\begin{array}{l}
\alpha_{0} \tag{3}\\
\alpha_{1} \\
\alpha_{2} \\
\alpha_{3}
\end{array}\right)=\alpha_{0}+\alpha_{1} x+\alpha_{2} x^{2}+\alpha_{3} x^{3}
$$

2. Now let us suppose that we have the transformation $T: \mathbb{P}^{3} \rightarrow \mathbb{P}^{3}$ which is given by differentiating the polynomial, i.e.,

$$
\begin{equation*}
T(p(x))=\frac{d}{d x} p(x) \tag{4}
\end{equation*}
$$

which is clearly linear.
(a) Show (by computing) that the standard matrix of T with respect to the basis \mathcal{E} is

$$
[T]_{\mathcal{E}}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \tag{5}\\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

(b) Check that your result is correct by computing the derivative of $r(x)=1+x+x^{2}+x^{3}$ in a standard manner (i.e. how you were taught in 2B).
(c) Now you will compute the same derivative but by using the following composition $T(r(x))=$ $E^{-1}\left([T]_{\mathcal{E}} \cdot E(r(x))\right)$. In other words, compute the coordinates of $r(x)$ in the \mathcal{E} basis, then multiply the coordinates by $[T]_{\mathcal{E}}$ and transform back the new coordinates to a polynomial.
(d) Using $[T]_{\mathcal{E}}$, check that T is not one-to-one nor it maps \mathbb{P}^{3} onto \mathbb{P}^{3}.
3. Now that you have understood how to represent the differentiation of polynomials in the monomial basis, we will explore how to change to different basis. Let consider the following set

$$
\begin{equation*}
\mathcal{B}=\left\{1,1+x, 1+x+x^{2}, 1+x+x^{2}+x^{3}\right\} . \tag{6}
\end{equation*}
$$

(a) Convince yourself that you can write any polynomial $p \in \mathbb{P}^{3}$ in the form

$$
\begin{equation*}
p(x)=\beta_{0}+\beta_{1}(1+x)+\beta_{2}\left(1+x+x^{2}\right)+\beta_{3}\left(1+x+x^{2}+x^{3}\right) . \tag{7}
\end{equation*}
$$

This means that \mathcal{B} is a basis of \mathbb{P}^{3}. In this case we will define the \mathcal{B} coordinates of p as

$$
[p]_{\mathcal{B}}=\left(\begin{array}{c}
\beta_{0} \tag{8}\\
\beta_{1} \\
\beta_{2} \\
\beta_{3}
\end{array}\right)
$$

(b) Use the fact that

$$
\begin{aligned}
p(x) & =\beta_{0}+\beta_{1}(1+x)+\beta_{2}\left(1+x+x^{2}\right)+\beta_{3}\left(1+x+x^{2}+x^{3}\right) \\
& =\left(\beta_{0}+\beta_{1}+\beta_{2}+\beta_{3}\right)+\left(\beta_{1}+\beta_{2}+\beta_{3}\right) x+\left(\beta_{2}+\beta_{3}\right) x^{2}+\beta_{3} x^{3} .
\end{aligned}
$$

to show that the matrix of change of basis B is given by

$$
B=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \tag{9}\\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

Argue that $[p]_{\mathcal{E}}=B \cdot[p]_{\mathcal{B}}$.
(c) Compute B^{-1}.
(d) Using the inverse of B, check that

$$
[r]_{\mathcal{B}}=\left(\begin{array}{c}
0 \tag{10}\\
0 \\
0 \\
1
\end{array}\right)
$$

where $r(x)=1+x+x^{2}+x^{3}$. Convince yourself that $[r]_{\mathcal{B}}$ and $[r]_{\mathcal{E}}$ are the SAME polynomial but written in different basis.
(e) Now that you all the necessary transformations, using the composition of transformations (and changes of coordinates) show that

$$
[T]_{\mathcal{B}}=\left[\begin{array}{cccc}
0 & 1 & -1 & -2 \tag{11}\\
0 & 0 & 2 & -1 \\
0 & 0 & 0 & 3 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

(f) Redo your computations by using the formula for standard matrices applied to T and \mathcal{B}.
(g) Check that $[T]_{\mathcal{B}}$ is correct by computing the derivative of $r(x)$ as defined before.
4. Can you generalize the same procedure. for higher order polynomials? How would the matrices $[T]_{\mathcal{B}}$ and $[T]_{\mathcal{E}}$ look like then? Which one would to prefer and why?

