1. Let $M \in \mathbb{R}^{m \times n}$ such that $M^{t} M \in \mathbb{R}^{n \times n}$ is invertible. Define the matrix $P \in \mathbb{R}^{m, m}$

$$
P=I_{m}-M\left(M^{t} M\right)^{-1} M^{t}
$$

Show that
(a) $P^{2}-P$ and $P \cdot M=0$, where 0 is the nul matrix of dimension m .
(b) The matrices $M^{t} M$ and P are symmetric. A matrix A is symmetric if and only if $A^{t}=A$.
(c) P is not invertible.
2. Consider the linear system $A x=b$ given by

$$
A=\left[\begin{array}{cccc}
-2 & 1 & (1-2 \alpha) & (\beta+1) \tag{1}\\
0 & 1 & -1 & (\beta-\alpha) \\
0 & -2 & 2 & (2-2 \beta) \\
2 & 0 & 2 & \alpha \\
2 & 1 & 1 & (\alpha+\beta-1)
\end{array}\right], \text { and let } \mathbf{b}=\left(\begin{array}{c}
\beta-3 \\
-1 \\
-2 \\
4 \beta-3 \\
0
\end{array}\right)
$$

Find the conditions on α and β such that the system
(a) has a unique solution
(b) has infinity number of solutions
(c) has no solution
3. Let $B \in R^{n \times n}$ such that $B^{3}=0$. For every $\lambda \in \mathbb{R}$ we define the matrix $M(\lambda) \in \mathbb{R}^{n}$ given by

$$
M(\lambda)=I_{n}+\lambda B+\frac{\lambda^{2}}{2} B^{2}
$$

(a) Show that

$$
\forall \lambda, \beta \in \mathbb{R} \quad M(\lambda+\beta)=M(\lambda) \cdot M(\beta),
$$

conclude that $M(\lambda) \cdot M(\beta)=M(\beta) \cdot M(\lambda)$
(b) Show that $M(\lambda)$ is invertible and that $M(\lambda)^{-1}=M(-\lambda)$ (Hint: use $\left.M(0)\right)$
4. Consider the following linear systems

$$
L 1\left\{\begin{array} { c }
{ x _ { 1 } + x _ { 3 } = 1 } \tag{2}\\
{ \alpha x _ { 1 } + x _ { 2 } + x _ { 3 } = 0 }
\end{array} \quad L 2 \left\{\begin{array}{c}
2 \alpha x_{1}+x_{2}+x_{3}=1 \\
\alpha x_{1}+x_{2}+x_{3}+2=0
\end{array}\right.\right.
$$

(a) Solve the systems, and provide the conditions on α such that the solutions sets are lines,
(b) Write the vectorial equations for $L 1$ and $L 2$
(c) Suppose that th solution sets are straight lines, determine the value of α such that the solution sets of $L 1$ and $L 2$ do not intersect.

5 . Let B be the set given by

$$
B=\left\{\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)\right\}
$$

and the linear transformation $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ given by

$$
T\left(\begin{array}{l}
1 \tag{3}\\
0 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
1 \\
0
\end{array}\right), \quad T\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right)=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right), \quad \text { and } \operatorname{Nul}(T)=\operatorname{Col}(T)
$$

(a) Show that the B is a basis of \mathbb{R}^{4}.
(b) Compute the standard (or associated) matrix of T using the canonical basis.
(c) Show that a basis of $\operatorname{Nul}(T)$ is $\left\{\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)\right\}$.
(d) Compute the standard (or associated) matrix of T using B as basis in the domain and codomain.
6. Let S be the subspace given by

$$
S=\operatorname{span}\left\langle\left\{\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1 \\
1
\end{array}\right),\left(\begin{array}{l}
2 \\
3 \\
3 \\
3
\end{array}\right),\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)\right\}\right\rangle
$$

(a) Find a basis of S
(b) Let $T: \mathbb{R}^{4} \rightarrow \mathbb{R}^{4}$ be a linear transformation such that $N u l(T)=S$ and

$$
T\left(\begin{array}{l}
0 \tag{4}\\
0 \\
1 \\
0
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right), \quad T\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{c}
1 \\
-1 \\
1 \\
-1
\end{array}\right)
$$

(a) Find the rank of the T and find a basis of $\operatorname{Col}(T)$.
(b) Provide an explicit formula for T.
7. For $c \in \mathbb{R}$, we define the matrix $\mathbf{A}_{\mathbf{c}} \in \mathbb{R}^{3 \times 3}$ by

$$
\mathbf{A}_{\mathbf{c}}=\left[\begin{array}{ccc}
1 & -1 & 1 \tag{5}\\
2 & 2 & 0 \\
3 & c & 2
\end{array}\right]
$$

(a) Compute $\operatorname{det}\left(\mathbf{A}_{\mathbf{c}}\right)$, for which c is $\mathbf{A}_{\mathbf{c}}$ invertible
(b) Compute $\mathbf{A}_{\mathbf{0}}{ }^{-1}$
(c) Let $b=(2,-4,1)^{t}$, find the solution $\mathbf{A}_{\mathbf{0}} x=b$

