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SUMMARY

In this work we propose a hybridizable discontinuous Galerkin
(hdG) discretization of the high-frequency Helmholtz equation
in the presence of point sources and highly heterogeneous and
discontinuous wave speed models. We show that it delivers
solutions that are provably second-order accurate and do not
suffer from the pollution error, as long as a slightly higher or-
der hdG method is used where the polynomial degree is chosen
such that p = O(logω). These results hold even if the discon-
tinuities in the wave speed are not resolved by the hdG mesh,
as long as the integration procedure used in the assembly of
the stiffness matrix respects the discontinuities. Further, we
show that the associated linear systems can be solved using a
modification of the method of polarized traces resulting in a
method with linear complexity up to a poly-logarithmic factor,
or sub-linear complexity in a parallel environment.
To our knowledge and surprise, this note contains the first in-
stance of a numerical method that is at the same time fast
(O(N) runtime) and accurate (second-order, pollution-free) in
the context of models of geophysical interest.

INTRODUCTION

The high-frequency Helmholtz equation defined over hetero-
geneous wave speeds is a ubiquitous problem in science and
engineering. In particular, in geophysics, it often serves as the
forward model for inverse problems, for example in oil ex-
ploration (see Chen (1997), Pratt (1999), Virieux and Operto
(2009)). Within this context, it is therefore crucial to solve
the Helmholtz equation in the high-frequency regime not only
accurately but also efficiently.

In view of accuracy, the main difficulty of the problem is rooted
in the pollution effect, whose primary consequence is a large
shift in the phase of propagating waves, even if the Shannon-
Nyquist sampling rate (see Shannon (1998)) is observed. In the
context of inverse problems, these phase errors dramatically
decrease the quality of the inversion. Indeed, when comput-
ing the imaging condition, these wavefields with large phase
error may correlate in a different position, or not at all. It has
been shown that the pollution error cannot be avoided for low-
order discretizations (see Babuska and Sauter (1997)) unless
the discretization is refined. This refinement either involves
oversampling of the wavefield, resulting in a suboptimal num-
ber of degrees of freedom, or an increase of the order of the
polynomial approximation.

A first class of methods proposed to deal with pollution errors

involves the choice of non-polynomial basis functions (see Git-
telson et al. (2009), Moiola et al. (2011), Turkel et al. (2013),
Hiptmair et al. (2015), Imbert-Gérard (2015), Nguyen et al.
(2015), Stolk (2015), Peterseim (2016)). However, point sources
may be problematic, these methods usually require piecewise
constant wave speed, and their associated linear systems can-
not be solved fast in general. A second class of methods in-
volves polynomial basis functions and deals with the pollution
error by increasing the polynomial degree. However, pollution-
free convergence of these polynomial methods has only been
established for constant wave speeds (Melenk and Sauter (2011)).
There seems to be no published result for problems involving
discontinuous wave speeds or point sources, which can induce
extra errors polluting the solution in the full domain. These
errors can be effectively handled using non-uniform meshes
such as meshes aligned with discontinuities in the wave speed
or adaptive meshes in the vicinity of point sources. How-
ever, meshes that are well-suited for numerical methods and
aligned with discontinuities in the wave speed can be very hard
to obtain, and adaptive meshes depend on the location of the
point source. Consequently, for any new distribution of point
sources a new mesh has to be generated.

In this note we aim to solve the deficiencies in accuracy de-
scribed above. We introduce an algorithm to solve the constant
density acoustic Helmholtz equation in the high-frequency regime
using a high-order hybridizable discontinuous Galerkin (hdG)
discretization (see Nguyen et al. (2011)). The method is based
on polynomial basis functions and uniform meshes, indepen-
dently of the wave speed and point source distribution. Even
though the mesh is not adapted to the discontinuities in the
wave speed or the point sources, the proposed method is rigor-
ously shown to be second-order accurate and to not be subject
to the pollution error. This is achieved by utilizing a correct
integration rule to handle discontinuities in the wave speed, a
singularity removal technique leveraging the Green’s function
of Laplace’s equation to handle point sources, and by increas-
ing the degree of the polynomial degree as p = O(logω) to
eliminate pollution error.

In addition, the proposed method can be solved in quasi-linear
runtime, or sub-linear runtime in a parallel environment. This
is because it can be placed in the framework of the method
of polarized traces (see Zepeda-Núñez and Demanet (2016),
Taus et al. (2016)). This is an exception to other published
fast iterative methods (see Engquist and Ying (2011), Calan-
dra et al. (2013), Chen and Xiang (2013), Stolk (2013), Vion
and Geuzaine (2014), Zepeda-Núñez and Demanet (2016)) or
direct methods (see Wang et al. (2013), Gillman et al. (2014)),
which either rely on low-order discretizations or do not scale
optimally in the high-frequency regime. Finally, fast solvers
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were introduced in (Zepeda-Núñez and Zhao (2016)) achiev-
ing optimal complexity with respect to the frequency but under
much stricter assumptions on the wave speed and source term.

The resulting method is second-order accurate, pollution-free
and can be solved with the method of polarized traces in an
asymptotic complexity of O(ω2 log6

ω) for the setup, or off-
line stage, and O(ω2 log4

ω) for the solve, or on-line stage
(These complexity figures are linear rather than sub-linear, be-
cause the fast algorithm component of the method of polarized
traces is absent in this note – it would be a simple matter to
restore it.) Further, the empirically most expensive operation
in the on-line stage, which is solving the global system, can be
performed in O(ω2 log2

ω) complexity.

The main advantage of this method is that given the amount
of globally coupled degrees of freedom and the use of a Schur
complement to decrease the connectivity between subdomains,
the cost of solving the global linear system issued from a high-
order hdG method is comparable to solving a linear system is-
sued from a second-order, finite difference discretization with
the same number of degrees of freedom, but with without pol-
lution effect. Finally, we point out that the ideas showcased in
this abstract can be easily extended to the 3D case.

METHOD

Model Problem and Absorbing Boundary Conditions
Let Ω = [a1,b1]× [a2,b2]⊂R2 be a rectangular domain of in-
terest. We solve the constant density acoustic Helmholtz equa-
tion given by

−∆u(x)−ω
2m(x)u(x) = f (x) for x ∈Ω, (1)

with absorbing boundary conditions (ABCs) on ∂Ω, where ω

is the frequency, m(x) is the squared slowness, and f (x) is the
source term.

The ABCs are realized via perfectly matched layers (PMLs)
(see Bérenger (1994), Bermúdez et al. (2007), Johnson (2010))
which allow one to rewrite the problem as a boundary value
problem defined on an extension of Ω:

−div
[
Λ̃(x)∇u(x)

]
−ω

2m̃(x)u(x) = f̃ (x) for x ∈ Ω̃, (2)

u(x) = 0 for x ∈ ∂ Ω̃, (3)

where Ω̃ = [a1−δ1,b1+δ1]× [a2−δ2,b2+δ2] for δ1,δ2 > 0,
the coefficients are defined as

Λ̃(x) =

α1(x)
α2(x)

0

0 α2(x)
α1(x)

 , m̃(x) =
m(x)

α1(x)α2(x)
,

and the right-hand side is defined as

f̃ (x) =
f (x)

α1(x)α2(x)
, with αi(x) =

1

1+ i σi(x)
ω

,

where

σi(x) =


C
δi

(
ai−xi

δi

)2
, for xi ∈ (ai−δi,ai)

0 , for xi ∈ (ai,bi)

C
δi

(
xi−bi

δi

)2
, for xi ∈ (bi,bi +δi)

with an appropriately chosen absorption constant C > 0.

Singularity Removal
We focus our attention to the case when f is modeled as a point
source located at x0, i.e., f (x) = δ (x−x0). In such cases, the
right-hand side of Eq. 1 is a distribution, and there is little the-
ory available to assess the accuracy of the solution. One alter-
native to dealing with a point source is to refine the mesh and
to mollify the source; however, this approach requires to use a
discretization adapted to the source, making the linear system
source dependent. We use a different strategy that allows us to
recover second-order accuracy and still retain a matrix that is
independent of the source distribution.

We suppose that the solution, u, to the Helmholtz equation can
be written as

u = us + v (4)

where v captures the singular part of the solution.

Substituting Eq. 4 in Eq. 1 we obtain

−
(

∆+mω
2
)

us = δ (x−x0)+
(

∆+mω
2
)

v. (5)

We suppose that v has the form

v(x) = G0(x,x0)χε (x,x0), (6)

where G0(x,x0) is the Green’s function of Laplace’s equation
and χε is a smooth cut-off function such that

χε (x,x0) =

{
1 if x ∈ [a1 + ε,b1− ε]× [a2 + ε,b2− ε]

0 if x ∈ Ω̃\Ω ,

(7)
where ε > 0 is frequency independent. Note that the support
of the cut-off function does not overlap with the PML, and
therefore the boundary conditions of Eq. 1 are preserved.

Following a standard computation and using the definition of
G0(x,x0), it can be shown that the Dirac delta on the right-
hand side of Eq. 5 cancels and we get an equation for us,

−
(

∆+mω
2
)

us = mω
2G0(x,x0)χε +2∇G0(x,x0) ·∇χε

+G0(x,x0)∆χε , (8)

whose right-hand side is in L2(Ω). Using standard regularity
theory, we will see that this is sufficient to show that us can be
approximated with second-order accuracy.

Hybridizable discontinuous Galerkin Methods

After the removal of the singularity, we discretize the boundary-
value problem in Eqs. 2 and 3 using a hdG method introduced
in (Cockburn et al. (2009)) for elliptic problems and extended
to the Helmholtz equation in (Griesmaier and Monk (2011)).
To this end, we introduce a partitioning Th with mesh-size h
of Ω̃ into squares and its corresponding set of faces Eh. Fur-
thermore, we introduce spaces of polynomials V h, Wh and Mh,
where V h and Wh are defined over Th and Mh over Eh. These
spaces are used to approximate q := Λ̃∇u, u, and û := u|Eh ,

respectively. The mesh-size is defined as h =

√
|Tmax|/|Ω̃|

where |Tmax| is the area of the largest square in Th.
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An approximate solution (qh,uh, ûh) of (q,u, û) is then found
such that

(iωΛ̃
−1qh,rh)Th − (uh,divrh)Th + 〈ûh,rh ·n〉∂Th

= 0,

(iωuh,wh)Th − (qh,∇wh)Th + 〈q̂h ·n,wh〉∂Th
= ( f̃ ,w)Th ,

〈ûh,µh〉∂ Ω̃
= 0,

〈q̂h ·n,µh〉∂Th\∂ Ω̃
= 0,

for all (rh,wh,µh) in V h×Wh×Mh. Here, n is the unit vec-
tor and q̂h := qh + τ(uh− ûh), where τ > 0 is a stabilization
parameter. Further, we used the common notation

( f ,g)Th =
∑

T∈Th

∫
T

f gdx, 〈 f̂ , ĝ〉∂Th
:=
∑

T∈Th

∫
∂T

f̂ ĝds

for functions f , g, f̂ and ĝ.

Here, the spaces V h, Wh, and Mh are spaces of (discontinu-
ous) piecewise polynomials of degree p. However, in order to
ensure stability on square elements, V h has to be enriched by
three polynomials of higher degree (Cockburn et al. (2012)).
Independently of the order p, this enrichment only involves
three basis functions and therefore does not affect the effi-
ciency of the method.

Error Analysis
The hdG method considered in this abstract has been analyzed
in (Griesmaier and Monk (2011)) for triangular elements and
constant functions m. Using results from (Cockburn et al.
(2012)), the techniques developed in (Griesmaier and Monk
(2011)) can be easily extended to basis functions defined on
squares and to bounded functions m. These error estimates de-
pend on the smoothness of the solution in each element. To
this end, we categorize the elements T ∈T in two groups: the
set T s

h containing the elements of Th on which u is smooth,
and the set T ns

h containing all other elements. It can be easily
argued that the sets T s

h and T ns
h can be determined a-priori

as the sets where m is smooth and non-smooth respectively.
Finally, assuming that∥∥∥∥ ∂u

∂xi

∥∥∥∥
L2(T )

≤Cω‖u‖L2(T )

for all T ∈Th, the error estimate is

‖u−uh‖L2(Ω̃)
≤C(ω)h2

∑
T∈T s

h

(
ωh
p

)p+1
+
∑

T∈T ns
h

(
ωh
p

)2


(9)

for a constant C(ω)> 0 independent of p and h. Note that this
can be bounded by

‖u−uh‖L2(Ω̃)
≤C(ω)

(
ωh
p

)2

and therefore we conclude that the our hdG method is second-
order accurate.

Pollution Error
It has already been argued in (Griesmaier and Monk (2011))

that keeping the polynomial degree p and the number elements
within each wavelength fixed causes the considered hdG method
to suffer from pollution effects. This can be easily seen from
the error estimate in Eq. 9. Indeed, keeping the number of ele-
ments per wavelength fixed means that ωh can be bounded by
a constant and therefore the error is bounded by C(ω). Further-
more, we can show that in our context, C(ω) depends linearly
on ω , i.e. C(ω) = Cω for a constant C > 0 independent of
ω . Therefore, if we keep the polynomial degree fixed at p = 1
and the numbers of degrees of freedom in each wavelength
constant ( ωh is constant ), with increasing frequency we get
that

‖u−uh‖L2(Ω̃)
≤Cω. (10)

Numerical examples, presented in the sequel, show that this
linear dependency on ω is a sharp estimate and therefore char-
acterizes the pollution error of the proposed hdG method.

If we assume that m is piecewise smooth, there are O(1/h)
elements in T ns

h since the discontinuities are all along lines.
Consequently, the error can be written as

‖u−uh‖L2(Ω̃)
≤C

[
ωh
(

ωh
p

)2
+

(
ω

1
p+1

ωh
p

)p+1
]
.

Therefore, if we choose h small enough such that ωh < 1 and
p large enough such that ω

1
p+1 /p ≤ 1, the error is bounded

and therefore the pollution error is eliminated. Note that this
restriction on p is equivalent to p = O(logω).

Solving the Linear System and Complexity
Since the support of every basis function in V h and Wh is re-
stricted to one single element in Th, all degrees of freedom
corresponding to uh and qh can be locally eliminated by static
condensation on the edges of the element, resulting in a global
system constituted by the degrees of freedom corresponding to
ûh only. The global linear system is then solved using a matrix-
free version of the method of polarized traces (see Zepeda-
Núñez and Demanet (2016)) specially adapted for this dis-
cretization in (Taus et al. (2016)).

The method of polarized traces consists of two stages: the off-
line and the on-line stage. The off-line stage has to be com-
puted only once for each wave speed distribution and mesh.
Then, in the on-line stage, the system can be solved for any
right-hand side. It was shown in (Taus et al. (2016)) that the
off-line and on-line stage can be computed in O(p4N) and
O(p2N) time respectively. It has also been shown that the
empirically most expensive part of the on-line stage, which
is solving the global system, can be performed in O(N) com-
plexity. Here, the degrees of freedom can be computed as N =
p2h−2. Therefore, for a given frequency ω , the off-line and on-
line stages can be performed in O(ω2 log6

ω) and O(ω2 log4
ω)

time, and the global system can be solved in O(ω2 log2
ω)

complexity.

NUMERICAL EXPERIMENTS

The method presented in this abstract was implemented in Ju-
lia v0.5 (see Bezanson et al. (2012)). The numerical experi-
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ments were performed in a dual socket server with two Xeon
E5-2780 CPU and 384 GB of RAM.

We performed two sets of numerical experiments: one to demon-
strate the second-order accuracy of the method, and the other
to verify the elimination of the pollution error. In both prob-
lems, the wave speed model is part of the 2004 BP model (see
Billette and Brandsberg-Dahl (2005)) and the mesh does not
align with the discontinuities of the medium (Figure 1).
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Figure 1: 2004 BP model (left) and wavefield generated by a
point source (right) .

To demonstrate the accuracy of the solver, we fixed the fre-
quency at ω = 12π , placed a point source at (0.8,0.8), and
computed a reference solution uref

h on an overly refined uni-
form mesh. We then fixed the polynomial degree at p = 1 and
computed solutions uh on coarser uniform meshes. To assess
the convergence of the method we computed the L2-error

E(h) :=

√∫
Ω

∣∣uref
h −uh

∣∣2 dx.

Figure 2 clearly shows that E(h) = O(h2), which implies that
the solution of the proposed method delivers a solution that
is second-order accurate, even if the problem involves point
sources and the uniform meshes are neither aligned with the
discontinuities in the wave speed nor adaptively refined in the
vicinity of the point source.

10-2 10-1

h

10-2

10-1

E
(h

)

E(h)

O(h2 )

Figure 2: Error E(h) for a solution computed for ω = 12π

using the 2004 BP model and a point source.

To demonstrate that the proposed method does not suffer from
pollution errors, we computed reference solutions uref

h (ω) for
different values of ω . For these reference solutions a uniform
mesh with mesh-size h is chosen so that there are 7 elements
within the shortest wavelength and the polynomial degree is
fixed at p = 6. For each of those meshes using their corre-
sponding frequencies ω , we computed two more solutions:

one using polynomial degree p = 1, and another where the
polynomial degree p is chosen so that ω

1
p+1 /p ≤ 1. For each

of those solutions we computed the L2-error E(h,ω) using the
reference solution uref

h (ω) similarly to E(h). We then esti-
mated the constant C(ω) introduced in Eq. 9 as

Cest(ω) = E(h,ω)

(
h
p

)−2
.

Figure 3 shows that if the polynomial degree is kept constant
at p = 1, C(ω) grows as O(ω) as the frequency is increased.
This shows two aspects: (i) if the polynomial degree in the
hdG method is kept constant, the solution suffers from pollu-
tion errors, and (ii) the estimate in Eq. 10 is sharp. Moreover,
Figure 3 also shows that if p is chosen so that ω

1
p+1 /p≤ 1, the

pollution error can be eliminated, even in the presence of point
sources and discontinuous wave speeds. In particular, we em-
phasize that for these examples the discontinuities in the wave
speed model were not resolved by the mesh.
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Figure 3: Estimated values for C(ω) for increasing ω where
for one set of solutions the polynomial degree is kept at p = 1
and for another set increased as O(logω).

DISCUSSION

We presented a modification of the hdG methods introduced in
(Taus et al. (2016)), which is pollution-free and second-order
accurate even in the presence of discontinuous media and dis-
tributional (point source) right-hand sides.

The presented method is particularly interesting for problems
involving discontinuous coefficients, in which meshing the dis-
continuities can be problematic. We point out that this ap-
proach can be further optimized by a parallel implementation
and by pipelining the right-hand sides as explained in (Scheuer
et al. (2016)). Moreover, the results can in principle be easily
extended to 3D problems.
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Bermúdez, A., L. Hervella-Nieto, A. Prieto, and R. Rodrı́guez,
2007, An optimal perfectly matched layer with unbounded
absorbing function for time-harmonic acoustic scattering
problems: Journal of Computational Physics, 223, 469 –
488.

Bezanson, J., S. Karpinski, V. B. Shah, and A. Edelman, 2012,
Julia: A fast dynamic language for technical computing:
arXiv preprint arXiv:1209.5145.

Billette, F., and S. Brandsberg-Dahl, 2005, The 2004 BP ve-
locity benchmark.: EAGE.

Calandra, H., S. Gratton, X. Pinel, and X. Vasseur, 2013, An
improved two-grid preconditioner for the solution of three-
dimensional Helmholtz problems in heterogeneous media:
Numerical Linear Algebra with Applications, 20, 663–688.

Chen, Y., 1997, Inverse scattering via Heisenberg’s uncertainty
principle: Inverse Problems, 13, 253.

Chen, Z., and X. Xiang, 2013, A source transfer domain de-
composition method for Helmholtz equations in unbounded
domain: SIAM Journal on Numerical Analysis, 51, 2331–
2356.

Cockburn, B., J. Gopalakrishnan, and R. Lazarov, 2009, Uni-
fied hybridization of discontinuous galerkin, mixed, and
continuous galerkin methods for second order elliptic prob-
lems: SIAM Journal on Numerical Analysis, 47, 1319–
1365.

Cockburn, B., W. Qiu, and K. Shi, 2012, Conditions for super-
convergence of hdg methods for second-order elliptic prob-
lems: Mathematics of Computation, 81, 1327–1353.

Engquist, B., and L. Ying, 2011, Sweeping preconditioner for
the Helmholtz equation: moving perfectly matched layers:
Multiscale Modeling & Simulation, 9, 686–710.

Gillman, A., A. Barnett, and P. Martinsson, 2014, A spectrally
accurate direct solution technique for frequency-domain
scattering problems with variable media: BIT Numerical
Mathematics, 1–30.

Gittelson, C. J., R. Hiptmair, and I. Perugia, 2009, Plane wave
discontinuous Galerkin methods: Analysis of the h-version:
ESAIM: Mathematical Modelling and Numerical Analysis,
43, no. 02, 297–331.

Griesmaier, R., and P. Monk, 2011, Error analysis for a hy-
bridizable discontinuous galerkin method for the helmholtz
equation: Journal of Scientific Computing, 49, 291–310.

Hiptmair, R., A. Moiola, and I. Perugia, 2015, A survey of Tr-
efftz methods for the Helmholtz equation: ArXiv e-prints.

Imbert-Gérard, L.-M., 2015, Interpolation properties of gener-
alized plane waves: Numerische Mathematik, 1–29.

Johnson, S., 2010, Notes on perfectly matched layers (PMLs).
Melenk, J. M., and S. Sauter, 2011, Wavenumber explicit

convergence analysis for galerkin discretizations of the
helmholtz equation: SIAM Journal on Numerical Analysis,

49, 1210–1243.
Moiola, A., R. Hiptmair, and I. Perugia, 2011, Vekua the-

ory for the Helmholtz operator: Zeitschrift fr angewandte
Mathematik und Physik, 62, 779–807.

Nguyen, N., J. Peraire, and B. Cockburn, 2011, High-order
implicit hybridizable discontinuous galerkin methods for
acoustics and elastodynamics: Journal of Computational
Physics, 230, 3695 – 3718.

Nguyen, N. C., J. Peraire, F. Reitich, and B. Cockburn, 2015,
A phase-based hybridizable discontinuous Galerkin method
for the numerical solution of the Helmholtz equation: J.
Comput. Physics, 290, 318–335.

Peterseim, D., 2016, Eliminating the pollution effect in
Helmholtz problems by local subscale correction: Math.
Comp. (Also available as INS Preprint No. 1411).

Pratt, R. G., 1999, Seismic waveform inversion in the fre-
quency domain; part 1: Theory and verification in a physi-
cal scale model: Geophysics, 64, 888–901.
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