
Fast and Scalable Solvers for the Helmholtz Equation

by

Leonardo Andrés Zepeda-Núñez

M.Sc., École Polytechnique (2010)
Diploma, École Polytechnique (2010)

Submitted to the Department of Mathematics
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2015

c○ Massachusetts Institute of Technology 2015. All rights reserved.

Author .
Department of Mathematics

May 7, 2015

Certified by. .
Laurent Demanet

Associate Professor
Thesis Supervisor

Accepted by .
Michel Goemans

Chairman, Department Committee on Graduate Theses

2

Fast and Scalable Solvers for the Helmholtz Equation
by

Leonardo Andrés Zepeda-Núñez

Submitted to the Department of Mathematics
on May 7, 2015, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

In this thesis we develop a new family of fast and scalable algorithms to solve the 2D
high-frequency Helmholtz equation in heterogeneous medium. The algorithms rely
on a layered domain decomposition and a coupling between subdomains using the
Green’s representation formula, which reduces the problem to a boundary integral
system at the interfaces between subdomains. Simultaneously, we introduce a po-
larization of the waves in up- and down-going components using incomplete Green’s
integrals, which induces another equivalent boundary integral formulation that is easy
to precondition.

The computation is divided in two stages: an offline stage, a computationally
expensive but embarrassingly parallel precomputation performed only once; and an
online stage, a highly parallel computation with low complexity performed for each
right-hand side.

The computational efficiency of the algorithms is achieved by shifting most of the
computational burden to an offline precomputation, and by reducing the sequential
bottleneck in the online stage using an efficient preconditioner, based on the polarized
decomposition, coupled with compressed linear algebra. The resulting algorithms
have online runtime 𝒪(𝑁/𝑃), where 𝑁 is the number of unknowns, and 𝑃 is the
number of nodes in a distributed memory environment; provided that 𝑃 = 𝒪 (𝑁𝛼).
Typically 𝛼 = 1/5 or 1/8.

Thesis Supervisor: Laurent Demanet
Title: Associate Professor

3

4

Acknowledgments
I would like to thank my advisor, Laurent Demanet, for his advice, support, and more
importantly, patience throughout my time as a graduate student.

I would like to acknowledge my thesis committee, Alex Barnett, Maarten de Hoop,
Steven Johnson and Laurent Demanet, for going through the grueling process of
reading, commenting, and correcting this manuscript. I really appreciated their time,
insight, and expertise.

I would like to thank my quals committee, Laurent, Steven and Michael Eichmair.

I would like to thank Oscar Bruno, for convincing me to cross the Atlantic for my
Ph.D. and for introducing me to computational wave propagation. I would like to
acknowledge all the professors from which I took classes at MIT, in particular Ali-
son Malcolm, for making me discover the beauty of computational geophysics, and
Richard Melrose for his excellent insight in theoretical wave propagation.

Thanks to my friends, to everyone that have already left and the ones that will
remain once I have left Cambridge. I would like to thank Jose and Geannina for
taking care of me, and the Chilean and French community for being a moral support
during all these years. Thanks to all my friends worldwide who have opened the doors
of their homes: Geoffrey, David, Damien, Meriem, Rachele, Bogdan, Clement, among
many others; you are always welcome wherever I will be.

Thanks to everyone with whom I spent long hours working together with: Augustin,
Rosalie, Jiawei, Ali, Martina, Russell, Vincent, Bram, David and David.

I want to thank all the staff in the Math department at MIT for making my life
easier, specially Tony, Barbara, Michele, and Ali.

I would like to thank my uncle Sergio and my aunt Veronica, who introduced me
to the world of mathematics.

My wholeheartedly thanks to my family and to Annika, who have always been with
me, especially when I needed them the most. They always gave me a small nudge to
get me back on my feet.

5

6

Contents

1 Introduction 15
1.1 The Helmholtz equation . 16
1.2 Applications . 17

1.2.1 Inverse problems . 17
1.2.2 Optimal design . 18

1.3 Results . 19
1.3.1 Sublinear Helmholtz solver . 19
1.3.2 Extensions . 20
1.3.3 Harmonic Extrapolation . 20

1.4 Related work . 21

2 The method of polarized traces 25
2.1 Rationale and results . 26

2.1.1 Polarization . 26
2.1.2 Algorithm . 28
2.1.3 Complexity scalings . 30

2.2 Discrete Formulation . 32
2.2.1 Discretization . 32
2.2.2 Domain Decomposition . 34
2.2.3 Discrete Green’s Representation Formula 35
2.2.4 Discrete Integral Equation . 37

2.3 Polarization . 40
2.3.1 Polarized Wavefields . 41
2.3.2 Polarized Traces . 42
2.3.3 Annihilation relations . 43
2.3.4 Extrapolation conditions . 44
2.3.5 Jump condition . 46

2.4 Preconditioners . 49
2.4.1 Jacobi Iteration . 49
2.4.2 GMRES . 50

2.5 Partitioned low-rank matrices . 52
2.5.1 Compression . 53
2.5.2 Compression scalings . 55

2.6 Computational Complexity . 57
2.6.1 Computational cost . 57

7

2.6.2 Communication cost . 59
2.7 Numerical Experiments . 60

2.7.1 Precomputation . 60
2.7.2 Smooth Velocity Model . 61
2.7.3 Rough Velocity Model . 61

Appendices 69
2.A Discretization . 69
2.B Triangular and block triangular matrices 72
2.C Properties of the Discrete Green’s representation formula 76

3 Extensions 83
3.1 Formulation . 84
3.2 A compressed-block LU solver . 85

3.2.1 Method . 86
3.2.2 Complexity . 87

3.3 Nested solver . 88
3.3.1 Gauss-Seidel preconditioner 91
3.3.2 Matrix-free approach . 93
3.3.3 Nested inner and outer solver 96
3.3.4 Complexity . 101

3.4 Numerical results . 104
3.4.1 Compressed-block LU . 104
3.4.2 Nested Solver . 106

3.5 Conclusion . 107

Appendices 109
3.A Discretization using Q1 finite elements 109
3.B Green’s representation formula . 111
3.C Schur Complement . 113

4 Harmonic Extrapolation 117
4.1 Harmonic extension: the Laplace equation 117
4.2 Generalized harmonic extension: the Helmholtz equation 118
4.3 Stability with respect to the Herglotz density 120

4.3.1 Truncation in the PSWF domain 121
4.3.2 Size properties of the PSWF and the extrapolation kernel . . . 123
4.3.3 Extrapolation Error . 125

4.4 Numerical Examples . 126
4.4.1 Extrapolation . 127
4.4.2 Pivoted QR and broken lines 130
4.4.3 Towards an efficient Helmholtz solver 132

Appendices 137
4.A Proofs . 137

8

List of Figures

2-1 Illustration of Eqs. 2.1 and 2.2. 27
2-2 Illustration of Eq. 2.6. The light-shaded layer around Ωℓ represents

the absorbing layer. 29
2-3 Sparsity pattern of the polarized system. 30
2-4 The domain Ω is extended to Ωext by adding the PML nodes (or-

ange). After decomposition into subdomains, the internal boundaries
are padded with extra PML nodes (light blue). 35

2-5 Left: Sparsity pattern of the system in Eq. 2.76. Right: Sparsity
pattern of reordered system in Eq. 2.76. 46

2-6 Left: Sparsity pattern of the system in Eq. 2.87. Right: Sparsity
pattern of the permuted system in Eq. 2.89. 48

2-7 Eigenvalues in the complex plane (the abscissa and ordinate present
the real and imaginary part respectively) of preconditioned boundary
system, for a homogeneous media , 𝐿 = 3, 𝑛 =, 𝜔 = 30; and 5 (left),
30 (center) and 100 (right) PML points. Notice the scale of the axes. 52

2-8 Eigenvalues in the complex plane (the abscissa and ordinate present the
real and imaginary part respectively) of the preconditioned boundary
system for the Marmousi2 model (Fig. 2-12), 𝐿 = 3, 𝑛 = 300, 𝜔 = 30;
and 5 (left), 30 (center) and 100 (right) PML points. 52

2-9 Illustration of compressed Green’s matrices in PLR form (𝜖-ranks ≤ 10,
𝜖 = 10−9). Each color represents a different numerical rank. Left:
nearby interactions. Right: remote interactions. 54

2-10 Illustration of the sparse form of a PLR matrix. Left: PLR matrix.
Right: its sparse factorization form. 55

2-11 Smooth version of the Marmousi2 model. The model was smoothed
with a box filter of size 375 meters. 61

2-12 Geophysical benchmark model Marmousi2; the wave speed is in meters
per second. 62

2-13 Geophysical benchmark model BP 2004 [19]. 63
2-14 Real part of wavefield generated by a point source at 15.86 [Hz] with

the Marmousi2 model [95] as a background model. 64
2-15 Run-time with their empirical complexities, for the Marmousi2 model

with 𝐿 = 3 and 𝜔 ∼ √𝑛 and maxrank ∼
√
𝑛. 65

2-16 Run-times and empirical complexities, for the Marmousi2 model with
𝐿 = 3 and 𝜔 ∼ 𝑛 and maxrank ∼

√
𝑛. 65

9

2-17 Wavefield generated by a point source at 60 [Hz] with the Marmousi2
model [95] as a background model; the red boundary indicates the
global PML used. 66

3-1 Sparsity pattern of Eq. 3.5. 86
3-2 Sparsity pattern of the LU factorization in Eq 3.6. 87
3-3 Nested Decomposition in cells. The orange grid-points represent the

PML for the original problem, the light-blue represent the artificial
PML between layers, and the pink grid-points represent the artificial
PML between cells in the same layer. 90

3-4 Eigenvalues for the preconditioned polarized systems using the block
Jacobi (left) and the block Gauss-Seidel (right) preconditioner, using
the Marmousi model with 𝐿 = 5, npml = 10, and 𝜔 = 34𝜋 (top row)
and 𝜔 = 70𝜋 (bottom row). 92

3-5 Sparsity pattern of the polarized matrix in Eq. 3.9. 92
3-6 Sketch of the application of the Green’s functions using a nested ap-

proach. The sources are in red (left) and the sampled field in green
(right). The application uses the inner boundaries as proxies to per-
form the solve. 98

3-7 Two iteration of the preconditioner, from top to bottom: initial guess
with only local solve; first iteration, second iteration, final solution.
The background model is given by the BP 2004 model [19]. 103

3-8 Left: Resonant wave-guide inspired in the Comedy Central logo; right:
typical solution. 104

3-9 Eigenvalues in the complex plane for the preconditioned polarized sys-
tem using the model in Fig. 3-8 for different contrasts left: 𝑐red = 10;
right: 𝑐red = 2. 105

3-10 Online runtime for different constrasts and problem sizes. 𝐿 is fixed
throughout. 106

3-11 Runtime for a fixed constrast. 𝐿 is fixed throughout. 106
3-12 Runtime for one GMRES iteration using the two different nested solves,

for 𝐿 = 9 and 𝐿𝑐 = 3, and 𝜔 ∼ √𝑛. 107
3.13 Sketch of the domain decomposition for the Schur complement. . . . 114

4-1 Dependence cone (light blue) and influence cone (yellow) of 𝛾 (red),
for a given aperture 𝑐/𝜅. 120

4-2 Extrapolation of two different PSWF, for 𝜅 = 60𝜋, 𝜅/𝑐 = 3/2, left:
𝜓𝑐
10, right: 𝜓𝑐

100. 124
4-3 Absolute value of the extrapolation of PSWF for different ratios 𝜅/𝑐,

𝜅 = 60𝜋. Top left : 𝜅/𝑐 = 6/5; top right : 𝜅/𝑐 = 5/3; bottom left :
𝜅/𝑐 = 5/2; bottom right : 𝜅/𝑐 = 6. The boundaries of the extrapolation
cone from Thm. 3 are drawn in each picture (in purple). 128

4-4 Extrapolation of a Gaussian beam. Left : analytical solution; right :
error in log scale (base 10) of the error of the extrapolation 𝜅 = 50𝜋. . 129

10

4-5 Extrapolation of 70 random complex exponentials for 𝜅 = 60𝜋 and
𝜅/𝑐 = 3. Top left : analytical solution; top right : error in log scale
(base 10) for the error of the extrapolation; bottom the direction and
magnitude of the 70 different plane waves. 130

4-6 Error of the extrapolation of 70 random complex exponentials from a
broken line, for 𝜅 = 60𝜋 and 𝜅/𝑐 = 2. We show different configurations
of 𝛾1, 𝛾2 (in purple.) . 132

4-7 Broken line configuration to ensure accuracy for the extrapolation. . . 133
4-8 Solution of the Helmholtz equation for a Gaussian beam, with homoge-

neous Dirichlet boundary conditions at the left and right boundary and
absorbing boundary condition at the bottom, for 𝜅 = 200𝜋; left : real
part of the solution wavefield; right : error between real and computed
solution. 135

11

12

List of Tables

2.1 Time complexities for the different stages of the solver. The parameter
𝛾 is striclty less than one; its value depends on the scaling of 𝜔 vs. 𝑁 .
A representative value is 𝛾 = 3/4 (more in the text). 31

2.2 Complexity of the different steps within the offline computation. . . 31
2.3 Complexity of the different steps within the online computation. . . 31
2.4 Compression scaling for the remote interactions, sampling a typical

oscillatory kernel (Analytic) and using the finite differences approxi-
mation (FD). The observed pre-asymptotic complexities are in square
brackets. 57

2.5 Number of GMRES iterations (bold) required to reduce the relative
residual to 10−7, along with average execution time (in seconds) of one
GMRES iteration for different 𝑁 and 𝐿. The solver is applied to the
smooth Marmousi2 model. The frequency is scaled such that 𝜔 ∼ √𝑛.
The matrices are compressed using 𝜖 = 10−9/𝐿 and rankmax ∼

√
𝑛. . 61

2.6 Average execution time (in seconds) for the online computation, with
a GMRES tolerance of 10−7, for different 𝑁 and 𝐿. The solver is
applied to the smooth Marmousi2 model. The frequency is scaled such
that 𝜔 ∼ √𝑛. The matrices are compressed using 𝜖 = 10−9/𝐿 and
rankmax ∼

√
𝑛. 62

2.7 Number of GMRES iterations (bold) required to reduce the relative
residual to 10−7, along with average execution time (in seconds) of one
GMRES iteration for different 𝑁 and 𝐿. The solver is applied to the
Marmousi2 model. The frequency is scaled such that 𝜔 ∼ √𝑛. The
matrices are compressed using 𝜖 = 10−9/𝐿 and rankmax ∼

√
𝑛. 63

2.8 Average execution time (in seconds) for the online computation, with a
tolerance on the GMRES of 10−7, for different 𝑁 and 𝐿. The solver is
applied to the Marmousi2 model. The frequency is scaled such that 𝜔 ∼√
𝑛. The matrices are compressed using 𝜖 = 10−9/𝐿 and rankmax ∼√
𝑛. 64

2.9 Number of GMRES iterations (bold) required to reduce the relative
residual to 10−7, along with average execution time (in seconds) of one
GMRES iteration for different 𝑁 and 𝐿. The solver is applied to the
BP 2004 model. The frequency is scaled such that 𝜔 ∼ √𝑛. The
matrices are compressed using 𝜖 = 10−9/𝐿 and rankmax ∼

√
𝑛. 64

13

2.10 Average execution time (in seconds) for the online computation, with a
tolerance on the GMRES of 10−7, for different 𝑁 and 𝐿. The solver is
applied to the BP 2004 model. The frequency is scaled such that 𝜔 ∼√
𝑛. The matrices are compressed using 𝜖 = 10−9/𝐿 and rankmax ∼√
𝑛. 66

2.11 Number of GMRES iterations (bold) required to reduce the relative
residual to 10−7, along with average execution time (in seconds) of one
GMRES iteration for different 𝑁 and 𝐿. The solver is applied to the
Marmousi2 model. The frequency is scaled such that 𝜔 ∼ 𝑛. The
matrices are compressed using 𝜖 = 10−9/𝐿 and rankmax ∼

√
𝑛. 66

2.12 Number of GMRES iterations (bold) required to reduce the relative
residual to 10−7, along with average execution time (in seconds) of
one GMRES iteration for different 𝑁 and 𝐿. The solver is applied to
the BP 2004 model. The frequency is scaled such that 𝜔 ∼ 𝑛. The
matrices are compressed using 𝜖 = 10−9/𝐿 and rankmax ∼

√
𝑛. 67

3.1 Complexity of the different steps of the compressed-block LU. We sup-
pose that we have one processor per layer, 𝐿 = 𝑃 . Typically 𝛼 = 3/4. 89

3.2 Communication cost of the different steps of the compressed-block LU.
We suppose that we have one processor per layer, 𝐿 = 𝑃 89

3.3 Complexity of the different steps of the preconditioner, in which 𝛼
depends on the compression of the local matrices, thus on the scaling
of the frequency with respect to the number of unknowns. Typically
𝛼 = 3/4. 102

3.4 Number of GMRES iterations (bold) required to reduce the relative
residual to 10−5, along with average execution time (in seconds) of one
GMRES iteration using the compressed direct method, for different 𝑁
and 𝑃 = 𝐿 × 𝐿𝑐. The frequency is scaled such that 𝑓 = 𝜔/2𝜋 ∼ √𝑛,
the number of points in the PML scales as log(𝑁), and the sound speed
is given by the Marmousi2 model (see [95]). 102

3.5 Number of GMRES iterations (bold) required to reduce the relative
residual to 10−5, along with average execution time (in seconds) of one
GMRES iteration using the compressed direct method, for different 𝑁
and 𝑃 = 𝐿 × 𝐿𝑐. The frequency is scaled such that 𝑓 = 𝜔/2𝜋 ∼ √𝑛,
the number of points in the PML scales as log(𝑁), and the sound speed
is given by the BP 2004 model (see [19]). 102

14

Chapter 1

Introduction

The main objectives of this thesis are the study and development of computationally
efficient numerical methods to solve the Helmholtz equation,

−△𝑢(x)− 𝜔2

𝑐2(x)
𝑢(x) = 𝑓(x), (1.1)

with absorbing boundary conditions. The Helmholtz equation arises from the tempo-
ral Fourier transform of the constant density acoustic wave equation, a good model for
acoustic waves, and in some setting for elastic and electromagnetic waves as well. In
Eq. 1.1, for a frequency 𝜔, we seek the wavefield 𝑢 generated by a general volumetric
source 𝑓 , in a medium in which the waves propagate at speed 𝑐.

When solving the Helmholtz equation numerically, we distinguish two radically
different regimes that depend on the scaling between the frequency 𝜔 and the number
of degrees of freedom of the discretized system:

∙ the low-frequency regime, i.e., when the frequency is kept constant as the num-
ber of degrees of freedom is increased;

∙ and the high-frequency regime, i.e., when the number of degrees of freedom
scales1 with the frequency.

In the low-frequency regime, Eq. 1.1 can be solved efficiently using standard nu-
merical methods for solving elliptic equations. In the high-frequency regime, efficient
methods tend to rely on extra knowledge about the structure of the wave speed.

If the wave speed 𝑐 is piecewise constant with smooth boundaries, then the problem
can be reduced to an integral equation posed on the interfaces. Integral formulations
of the second kind (see [43]) coupled with fast summation methods provide accurate
and fast algorithms (see [39, 57, 48]) to solve the high-frequency Helmholtz equation.

On the other hand, if the wave speed 𝑐 is heterogeneous or piecewise constant with
rough boundaries, solving the high-frequency Helmholtz equation efficiently is still an
area of active research. In particular, the remaining questions concern either the

1The precise scaling depends on the discretization used.

15

accuracy, i.e., obtaining an accurate answer in a rough medium; and computational
efficiency, i.e., computing the approximate solution in a fast and scalable manner.

Computing the numerical solution to the Helmholtz equation for a heterogeneous
medium is of prime importance in seismic imaging. The widespread use of inversion
techniques, such as full-waveform inversion (FWI), has been a major motivation for
developing new highly-efficient algorithms for solving the Helmholtz equation. FWI
requires the solution of the Helmholtz equation for large domains, with a possibly
rough velocity, at high frequency, and for many right-hand sides. Within this con-
text, complexity and scalability both play an important role. An algorithm needs
to have a low complexity and needs to be suitable for implementation in large com-
puting clusters. Moreover, it needs to be flexible enough to take advantage of highly
optimized low-level libraries and to support new hardware architectures. In practice,
there is no method currently capable of solving the Helmholtz equation for realistic
industrial applications, in which the discretized systems typically have of the order of
1010 unknowns, around 400 wavelength across the domain computed in a rough wave
speed for 104 different right-hand sides.

In this work we primarily deal with the question of complexity and scalability
in the context relevant to FWI, i.e., heterogeneous wave speed in the absence of
large resonant cavities. We argue that using domain decomposition with high-quality
transmission-absorbing conditions at the interfaces between subdomains, coupled with
fast summation methods is the right mix of ideas to obtain a fast and highly scalable
algorithm to solve the Helmholtz equation in the high-frequency regime.

We present the method of polarized traces, a fast and asymptotically scalable
algorithm for the high-frequency Helmholtz equation. The method of polarized traces
has an online runtime of 𝒪(𝑁/𝑃), where 𝑁 is the number of degrees of freedom and
𝑃 is the number of processors, provided that 𝑃 = 𝒪(𝑁𝛼) for 𝛼 = 1/5. The runtimes
are empirical but based on an analysis of the ranks of the off-diagonal blocks of the
high-frequency Green’s function.

To the author’s knowledge, this work is the first instance in which such scalings
have been reported. Although we deal mostly with the 2D high-frequency Helmholtz
equation, the ideas within this thesis are easily extended to 3D and they provide a
novel and powerful framework to develop fast and highly scalable solvers for the high-
frequency Helmholtz equation within the scope of realistic industrial applications.

1.1 The Helmholtz equation

Although the Helmholtz equation models the time-harmonic propagation of acoustic
waves, in some settings it can be a good approximation for time-harmonic elastic and
electromagnetic waves. For the elastic wave equation, it is known that the Helmholtz
decomposition enables to decouple elastic waves in p-waves and s-waves. In particular,
p-waves are the curl-free gradient of a scalar potential, which satisfy an acoustic wave
equation. If the medium is a fluid, only p-waves propagate, which are easily modeled
in frequency using the Helmholtz equation via the scalar potential.

For solutions of Maxwell’s equations, it is well known that in 2D, an electromag-

16

netic wave can be decomposed into a transverse magnetic and a transverse electric
component. With this decomposition, Maxwell’s equations reduce to the Helmholtz
equation for the z-component of either of the transverse components.

Although this work primarily addresses numerical analysis, let us provide a few
references on known theoretical properties of the Helmholtz equation. The classical
mathematical questions of existence and uniqueness of the Helmholtz equation have
been settled long ago, using Fredholm or Vekua theory [101], or energy estimates via
the time-dependent problem [92]. However, such results do not provide coercivity
estimates with an explicit dependence on the frequency, which has resulted in a
renewed interested in obtaining better estimates [16, 102, 124, 125, 126].

In the scope of numerical analysis, a great effort has concentrated on obtaining well
conditioned formulations (see [15] and references therein), pollution free formulations
with theoretical guarantees (see [77, 83]), and high-order discretizations (see [84] and
references therein).

Finally, we mention the work of Engquist and Zhao [61], which provides upper
and lower bounds for the approximate separability for the Green’s functions for the
Helmholtz equation in the high-frequency regime.

1.2 Applications

1.2.1 Inverse problems

The main motivating application for this thesis is inverse problems, in particular,
inverse problems in exploration geophysics.

In the scope of inverse problems, we can define two problems, the forward and the
inverse problem. The forward, or direct, problem consists in computing the solution to
a partial differential equation when the coefficients are known. The inverse problem
consists in recovering the coefficients of the PDE from partial information of the
solution.

In geophysics the forward problem is defined as follows: given the physical prop-
erties of the medium, in this case the wave speed 𝑐(x) as function of x = (𝑥, 𝑦, 𝑧), and
the location of the source, compute the wavefield 𝑢 at the surface. On the other hand,
the inverse problem is to compute the wave speed from the location of the sources
and the wavefields measured at the surface. One standard technique for solving the
inverse problem is full-waveform inversion (FWI), which recasts the inverse problem
as a minimization problem. The objective functional to minimize is the least-squares
misfit between the real and simulated data.

Even though the concept of FWI has been around since the mid 1980’s with the
seminal work of Tarantola in 1984 [134], it was not until Pratt’s work in 1999 [113],
that the method became popular. In particular, Pratt used a multi-scale approach to
avoid the local minima during the optimization routine. This multi-scale approach is
based on frequency sweeps: using Parseval’s Theorem the minimization is posed in
the frequency domain, processing the data from low to high frequencies (see [35, 120]).
Moreover, this approach is efficient given that only a handful of frequencies are needed

17

for inversion.
Although FWI has become increasingly popular, it is not as widespread in in-

dustry as would naively be expected. This is mainly due to its ill-posedness, the
non-convexity of the minimization objective functional and its prohibitively large
computational cost. Great effort has been devoted to regularize the problem, to alle-
viate the ill-possessedness, and to convexify the objective functional (see, for example,
[133]). In addition, the reduction of the computational cost, to which this thesis is
closely related, has been received much attention lately (see Section 1.4).

In fact, waves have a particularly favorable feature for inverse problems: they
propagate singularities (see [82, 135]). This allows the information to travel long
distances, which is extremely helpful when only boundary data is available, as in the
case of seismic imaging. Alas, the propagation of singularities makes the forward
problem, in which FWI relies, extremely difficult to solve efficiently. This difficulty
owes to the propagation of singularities that imposes that any solver needs to be
sequential, which appears to be in contradiction with modern computer architectures,
which tend to be highly parallel.

Although this thesis has focused on applications to geophysics, an efficient Helmholtz
solver is of great interest in any wave-based inverse problem, given that most of them
rely on the ability to solve the forward problem efficiently. In this category we have
biomedical applications, underwater acoustics, non-destructive material testing, non-
destructive testing for cracks, ground penetrating radar, sonar sensing, among many
others.

1.2.2 Optimal design

Also within the scope of geophysics, one of the most compelling applications of fast
Helmholtz solvers is optimal survey design. In marine seismic imaging, the first step
of the inversion is the acquisition of the data through a survey. The data acquisition
needs expensive and highly-specialized equipment; furthermore, it is an expensive
and potentially dangerous operation. In a nutshell, a survey consist of one of more
vessels equipped with air cannons to produce seismic waves, towing large arrays of re-
ceivers, which record the echoes of the seismic waves being reflected from the different
formations in the subsurface.

In general, one may have a priori knowledge of the area. This knowledge can be
a geological map, or an estimation of the wave speed from another study. Based on
this information one may want to focus the exploration in one particular region of the
subsurface. In such situations, we want to obtain an optimal survey, i.e., the number
and kind of vessels involved and the path they need follow to minimize the time spent
in the survey and to maximize the illumination of the region of interest. Illumination,
in this context, can be broadly understood as the the amount of acoustic energy
reflected from the particular area of interest that can be captured by the receivers
being towed. Within the optimization routine, one needs to solve the Helmholtz
equation several times with sources located on the possible paths of the vessels to
obtain the desired illumination.

Once again, even though the objective application arises from industry needs in

18

exploration geophysics, the range of optimal design problems related to waves is vast.
For civilian applications we can list, for example, the design of cellphone antennas,
the design of more powerful radars, the design of quieter airliners engines, optimal
focusing of ultrasound beam for non-invasive intra-cranial surgery and tumor ablation,
and the modeling and design of resonators in nanophotonics, among many others.
In military applications, we can list reduction of the radar cross-section, design of
electromagnetic shielding, etc.

1.3 Results

1.3.1 Sublinear Helmholtz solver

We present in Chapter 2 the method of polarized traces, a fast and asymptotically
scalable solver for the high-frequency Helmholtz equation with an online runtime
𝒪(𝑁/𝑃), provided2 that 𝑃 = 𝒪(𝑁1/8). The method combines:

∙ finite-differences discretization of the differential operator in the volume,

∙ domain decomposition in layers,

∙ exact transmission conditions based on the discrete Green’s representation for-
mula, and

∙ high-quality absorbing boundary conditions, in the form of perfectly matched
layers (PML), between the interfaces of the subdomains;

to reduce the problem in the volume to a discrete integral boundary problem at the
interfaces, based on the discrete Green’s functions arising from the finite differences-
discretization.

Using the transmission and absorbing conditions we define approximate polariz-
ing conditions that provide a natural decomposition of the wavefield into up- and
down-going components. The polarizing conditions, coupled with a detailed analy-
sis of the discrete integral boundary equation, are used to design a highly efficient
preconditioner for the integral boundary equation. The preconditioner is based on
an application of Green’s integrals to interface data, which can be highly compressed
using standard ℋ-matrices (see [20]), yielding a fast application and a fast solve.

The method has two stages: an offline stage, which is computationally expensive
but embarrassingly parallel and performed only once; and an online stage, which
is performed for each right-hand side, but has low complexity, which results in fast
online runtimes. When the number of different right-hand sides is large, the fast
online solves offset the expensive offline stage. The fast online runtimes are achieved
by shifting most of the computational burden to a parallel computation, and reducing
most of the sequential bottleneck using the efficient preconditioner and compressed
matrix-algebra mentioned earlier.

2We show first how to obtain an algorithm with online runtime 𝒪(𝑁/𝑃) provided that 𝑃 =
𝒪(𝑁1/8), then we present a variant with the less stringent condition of 𝑃 = 𝒪(𝑁1/5).

19

1.3.2 Extensions

The method of polarized traces introduced in Chapter 2 is an efficient iterative solver
for the Helmholtz equation; however, it has two main drawbacks. The complexity
deteriorates greatly in the case of large resonant cavities and sharp contrasts; and the
offline computational burden can be prohibitively expensive for large problems.

In Chapter 3, we alleviate these issues by introducing two different variants of the
method of polarized traces.

∙ First, we present a variant of the boundary integral equation presented in Chap-
ter 2, that we solve using a compressed-block LU approach. We obtain a direct
compressed method that has the same online complexity as the method of po-
larized traces, even for media featuring large resonant cavities, with a more
thorough offline precomputation.

This algorithm is particular well suited for situations in which a large amount
of fast solves for the same matrix is needed, such as optimal focusing for non-
invasive intra-cranial surgery, optimal survey design, optimal focusing for ultra-
sound tumor ablation, among others.

∙ Second, we present a nested sweeps extension to the method of polarized traces,
with improved asymptotic runtimes in a distributed memory environment. The
method has an online complexity of 𝒪(𝑁/𝑃) provided that 𝑃 = 𝒪(𝑁1/5), which
is an improvement with respect to the more stringent condition of 𝑃 = 𝒪(𝑁1/8)
for the method of polarized traces. The complexity holds even in the presence
of rough media of geophysical interest. Moreover, its performance is completely
agnostic to the source.

The gains in complexity are mainly due to the nested layered partitioning and
a special factorization of the Green’s integrals that allows for a more efficient
parallelization.

This algorithm would especially be of interest in the context of time-lapse
full-waveform inversion, continuum reservoir monitoring, and local inversion.
Thanks to the nested layered partition, if the update to the model is localized,
then most the precomputation can be re-used. The only extra cost is the refac-
torization and computation of the Green’s functions in the subdomains with
a non null intersection with the support of the update, greatly reducing the
computational cost.

We point out that this approach can be further parallelized using distributed
algebra libraries. Moreover, the sweeps can be pipelined to maintain a constant
load among all the nodes.

1.3.3 Harmonic Extrapolation

The numerical methods presented in this thesis are based on the same layered (or
nested layered) partitioning of the domain. The algorithms hinge on the fact that if

20

the wavefield and its normal derivative are known at one interface between layers, then
it is possible to compute the wavefield at the neighboring interfaces in a stable and fast
manner. From an algebraic point of view this corresponds to an ordered elimination
of unknowns running a three term recurrence. Analytically, this operation can be
understood as a depth extrapolation3 with full aperture data, i.e. data in the whole
real axis.

In Chapter 4 we study the analytical counterpart of the elimination of unknowns.
In particular, we study the extrapolation properties of waves in a homogeneous
medium with partial data, i.e., data supported on a segment instead of the full real
axis.

We show that, provided that the wavefield is one-way, and its restriction is ban-
dlimited, then it is possible to extrapolate the wavefield, with partial data supported
on a segment, in a stable manner in the direction orthogonal to the segment. The
extrapolation is accurate inside a cone supported on the segment, whose aperture is
linked to the bandlimit of the trace data.

1.4 Related work

As mentioned earlier, domain decomposition with accurate transmission and ab-
sorbing boundary conditions is the right mix of ideas to solving the high-frequency
Helmholtz equation. We provide a succinct overview of the recent work on domain
decomposition methods for the Helmholtz equation:

∙ The earliest suggestion to perform domain decomposition with transmission
boundary conditions is perhaps to be found in the work of Després [54], which
led, in joint work with Cessenat and Benamou, to the ultra weak variational
formulation [11, 29, 30, 31];

∙ Their work spawned a series of new formulations within the framework of Dis-
continuous Galerkin methods, such as the Trefftz formulation of Perugia et al.
[100], the plane wave discontinuous Galerkin method [76, 80] and the discontin-
uous enrichment method of Farhat et al. [66];

∙ Simultaneously to the ultra weak formulation, the partition of unity method
(PUM) by Babuska and Melenk [5], and the least-squares method by Monk and
Wang [103], were developed.

∙ A concise and good review of domain decomposition method with non-polynomial
basis can be found in [7], which includes a high-quality MATLAB toolbox for
computing scattering from polygons;

∙ Gander and Nataf introduced the AILU method in 2001 [69, 71];

3For a more complete exposition of wave extrapolation methods see [51, 118, 129] and references
therein.

21

∙ Meanwhile, finite elements tear and interconnect (FETI) methods were devel-
oped; a specialized version of the FETI method for the Helmholtz equation was
developed by Farhat et al. in [67, 65];

∙ Hiptmair et al. proposed the multi-trace formulation [79], which involves solving
an integral equation posed on the interfaces of a decomposed domain, which is
naturally well suited for operator preconditionning in the case of piece-wise
constant medium;

∙ Plessix and Mulder proposed a method similar to AILU in 2003 [109];

∙ One of the earlier methods using absorbing boundary conditions between sub-
domains can be found in the work of Engquist and Zhao [60];

∙ The first linear complexity claim was made in the work of Engquist and Ying
on sweeping preconditioners in 2011 [58, 59], using a special kind of domain
decomposition into grid-spacing-thin layers;

∙ Stolk in 2013 [128] presented a domain decomposition method, with a com-
plexity comparable to the sweeping preconditioners, that relies on single layer
potentials to transfer the information between subdomains;

∙ More recently, Geuzaine and Vion explored approximate transmission bound-
ary conditions [143, 142] coupled with a multiplicative Schwartz iteration, to
improve on traditional domain decomposition methods;

∙ Chen and Xiang proposed another instance of efficient domain decomposition
where the emphasis is on transferring sources from one subdomain to another
[37, 38];

∙ Luo et al. proposed a large-subdomain sweeping method, based on an approx-
imate Green’s function by geometric optics and the butterfly algorithm, which
can handle transmitted waves in very favorable complexity [94]; and a variant
of this approach that can handle caustics in the geometric optics Ansatz [114];

∙ Conen et al. developed an additive Schwarz iteration coupled with coarse grid
preconditioner based on an eigenvalue decomposition of the DtN maps inside
each subdomain [44];

∙ Poulson et al. parallelized the sweeping preconditioners in 3D to deal with
very large-scale problems in geophysics [112]. Tsuji et al. designed a spectrally
accurate sweeping preconditioner for time-harmonic elastic waves [139], and
time-harmonic Maxwell equations [138, 140].

∙ Liu and Ying recently developed a recursive version of the sweeping precondi-
tioner in 3D that decreases the off-line cost to linear complexity [93];

∙ Barnett et al. [8] developed an accurate 2D Helmholtz solver for stratified media
using integral equations via an accurate evaluation of the Green’s function.

22

Finally, Gander and Zhang performed a benchmark for small 3D problem with a
challenging geophysical model using different domain decomposition methods based
on local transmission conditions in [72].

Most of the methods mentioned above use either physical, or analytical infor-
mation to precondition the system, making them highly tailored for the Helmholtz
equation. On the other hand, purely algebraic methods, such a the incomplete LU pre-
conditioner, are more general, albeit providing suboptimal results for the Helmholtz
problem. In this direction, some extensions to the incomplete LU methods have been
proposed lately, complementing the work of Saad et al. [41] and Benzi et al. [12]. The
algorithms in this category hinge on using a fast direct method as a preconditioner. A
good example, for elliptic problems, is the recent work of Aminfar, Ambikasaran and
Darve [2, 3] that uses low tolerance ℋ-matrices to compute an approximate inverse,
which is used as a preconditioner. Along the same lines, but using sparse matrices,
we find the work of Saad et al. [104] and the work of Byckling and Huhtanen [26].
We point out that, although these techniques work well for elliptic problem with
sparse matrices, they are suboptimal when applied to the high-frequency Helmholtz
equation.

In a different direction, much progress has been made on making direct methods
efficient for the Helmholtz equation. Such is the case of Wang et al.’s method [50,
144], which couples multi-frontal elimination with ℋ-matrices (see [74, 55] for the
nested dissection reordering and multi-frontal methods). Another example is the work
of Gillman, Barnett and Martinsson on computing impedance-to-impedance maps
in a multiscale fashion [75], and the work of Bremer, Gillmann and Martinsson on
recursive construction of scattering matrices [24]. In the scope of integral equations,
Lai, Ambikasaran and Greengard proposed a direct method based on ℋ-matrices
to solve a scattering problem from large cavities in [88]. Finally, Cho and Barnett
[40] proposed a robust fast direct method based on integral equations to solve the
scattering from a quasi-periodic layered medium. It is not yet clear whether offline
linear complexity scalings can be achieved this way, though good direct methods are
often faster in practice than the iterative methods mentioned above. The main issue
with direct methods is the lack of scalability to very large-scale problems due to the
memory requirements.

Some progress has also been achieved with multigrid methods, though the com-
plexity scalings do not appear to be optimal in two and higher dimensions:

∙ Bhowmik and Stolk recently proposed new rules of optimized coarse grid cor-
rections for a two level multigrid method [131, 130];

∙ Brandt and Livshits developed the wave-ray method [23], in which the oscilla-
tory error components are eliminated by a ray-cycle, that exploits a geometric
optics approximation of the Green’s function;

∙ Elman and Ernst use a relaxed multigrid method as a preconditioner for an
outer Krylov iteration in [56];

∙ Haber and MacLachlan proposed an alternative formulation for the Helmholtz
equation [78], which reduces the problem to solve an eikonal equation and

23

an advection-diffusion-reaction equation, which can be solved efficiently by a
Krylov method using a multigrid method as a preconditioner; and

∙ Grote and Schenk [21] proposed an algebraic multi-level preconditioner for the
Helmholtz equation.

Erlangga et al. [63] showed how to implement a simple, although suboptimal,
complex-shifted Laplace preconditioner with multigrid, which shines for its simplicity,
and whose performance depends on the choice of the complex-shift. A suboptimal
multigrid method with multilevel complex shifts was implemented in 2D and 3D by
Cools, Reps and Vanroose [45]. Another variant of complex-shifted Laplacian method
with deflation was studied by Sheikh et al. [119]. The choice of the optimal complex-
shift has been studied by Cools and Vanroose [46] and by Gander et al. [73]. Finally,
some extensions of the complex-shifted Laplacian preconditioner have been proposed
recently by Cools and Vanroose [47].

Chen et al. implemented a 3D solver using the complex-shifted Laplacian with
optimal grids to minimize pollution effects in [36]. Multigrid methods applied to
large 3D examples have been implemented by Plessix [108], Riyanti et al. [115] and,
more recently, Calandra et al. [27]. A good review of iterative methods for the
Helmholtz equation, including complex-shifted Laplace preconditioners, is in [62].
Another review paper that discussed the difficulties generated by the high-frequency
limit is [64]. Finally, beautiful mathematical expositions of the Helmholtz equation
and a good reviews are [102] and [33].

24

Chapter 2

The method of polarized traces

Many recent papers have shown that domain decomposition with accurate trans-
mission boundary conditions is the right mix of ideas for simulating propagating
high-frequency waves in a heterogeneous medium. To a great extent, the approach
can be traced back to the AILU method of Gander and Nataf in 2001 [69, 71]. The
first linear complexity claim was perhaps made in the work of Engquist and Ying on
sweeping preconditioners in 2011 [58, 59] – a special kind of domain decomposition
into grid-spacing-thin layers. In 2013, Stolk [128] restored the flexibilty to consider
coarser layerings, with a domain decomposition method that realizes interface trans-
mission via an ingenious forcing term, homologous to a single layer potential, resulting
in linear complexity scalings very similar to those of the sweeping preconditioners.
Other authors have since then proposed related methods, including [37, 143], which
we reviewed in section 1.4. Many of these references present isolated instances of
what should eventually become a systematic understanding of how to couple absorp-
tion/transmission conditions with domain decomposition.

In a different direction, much progress has been made on making direct meth-
ods efficient for the Helmholtz equation. Such is the case of Wang et al.’s method
[50], which couples multi-frontal elimination with ℋ-matrices. Another example is
the work of Gillman, Barnett and Martinsson on computing impedance-to-impedance
maps in a multiscale fashion [75]. It is not yet clear whether offline linear complexity
scalings can be achieved this way, though good direct methods are often faster in prac-
tice than the iterative methods mentioned above. The main issue with direct methods
is the lack of scalability to very large-scale problems due to the memory requirements
and a costly communication overhead in distributed memory environments.

The method for solving the 2D high-frequency Helmholtz equation presented in
this chapter is a hybrid: it uses legacy direct solvers locally on large subdomains,
and shows how to properly couple those subdomains with accurate transmission in
the form of an incomplete Green’s representation formula acting on polarized (i.e.,
one-way) waves. The novelty of this method is twofold:

∙ We show how to reduce the discrete Helmholtz equation to an integral system at
interfaces in a way that does not involve Schur complements, but which allows
for polarization into one-way components;

25

∙ We show that when using fast algorithms for the application of the integral ker-
nels, the online time complexity of the numerical method can become sublinear
in 𝑁 in a parallel environment, i.e., 𝒪(𝑁/𝐿) over 𝐿≪ 𝑁 nodes1.

The proposed numerical method uses a layering of the computational domain, and
also lets 𝐿 be the number of layers. It morally reduces to a sweeping preconditioner
when there are as many layers as grid points in one direction (𝐿 = 𝑛 ∼ 𝑁1/2); and
it reduces to an efficient direct method when there is no layering (𝐿 = 1). In both
those limits, the online complexity reaches 𝒪(𝑁) up to log factors.

But it is only when the number of layers 𝐿 obeys 1≪ 𝐿≪ 𝑁 that the method’s
online asymptotic complexity scaling 𝒪(𝑁/𝐿) is strictly better than 𝒪(𝑁). In retro-
spect, this example shows that the goal of reaching linear sequential 𝒪(𝑁) complexity
(e.g. through a number of iterations independent of the frequency) was not ambitious
enough for the 2D Helmholtz equation.

2.1 Rationale and results

We provide the rationale behind the method of polarized traces using standard argu-
ments from integral equations and we introduce the concept of polarization. Then, we
give an intuitive glimpse of how the algorithm works and provide the main complexity
claims for the method.

2.1.1 Polarization

In the context of scalar waves in an unbounded domain, we say that a wave is polarized
at an interface when it is generated by sources supported only on one side of that
interface.

Polarization is key to localizing propagating waves. If, for instance, the Helmholtz
equation is posed with absorbing conditions in a large domain Ω, but with sources
in some small subdomain Ω1 ⊂ Ω, then the exterior unknowns can be eliminated to
yield a local problem in Ω1 by an adequate choice of “polarizing" boundary condition.
Such a boundary condition can take the form 𝜕𝑢

𝜕𝑛
= 𝐷𝑢, where 𝐷 is the Dirichlet-to-

Neumann map exterior to Ω1. In a finite difference framework, 𝐷 can be represented
via a Schur complement of the unknowns in the exterior region Ω ∖Ω1. See figure 2-1
for a sample geometry where Ω1 = Ωdown, the bottom half-plane.

A polarizing boundary condition at 𝜕Ω1 may be absorbing in some special cases
(such as a uniform medium), but is otherwise more accurately described as the image
of the absorbing boundary condition at 𝜕Ω by reduction as outlined above. Polarized
waves at 𝜕Ω1 – as we defined them – are not in general strictly speaking outgoing,
because of the presence of possible scatterers in the exterior zone Ω ∖Ω1. These
scatterers will generate reflected/incoming waves that need to be accounted for in the
polarization condition at 𝜕Ω1.

1The upper bound on 𝐿 is typically of the form 𝒪(𝑁1/8), with some caveats. This discussion is
covered in sections 2.1.3 and 2.6.

26

We say that a polarization condition is exact when the reduction of unknowns is
done in the entire exterior domain, without approximation. In a domain decompo-
sition framework, the use of such exact polarizing conditions would enable solving
the Helmholtz equation in two sweeps of the domain – typically a top-down sweep
followed by a bottom-up sweep [70].

However, constructing exact polarizing conditions is a difficult task. No matter the
ordering, elimination of the exterior unknowns by direct linear algebra is costly and
difficult to parallelize. Probing from random vectors has been proposed to alleviate
this problem [10], but requires significant user intervention. Note that elimination
of the interior unknowns by Schur complements, or equivalently computation of an
interior Dirichlet-to-Neumann map, may be interesting [75], but does not result in
a polarized boundary condition. Instead, this thesis explores a local formulation of
approximate polarized conditions in integral form, as incomplete Green’s identities
involving local Green’s functions.

⌦up

⌦down

�

D

x

z

Figure 2-1: Illustration of Eqs. 2.1 and 2.2.

To see how to express a polarizing condition in boundary integral form, consider
Fig. 2-1, in which we solve the 2D Helmholtz equations in a heterogeneous medium
(homogeneous background with a compactly supported perturbation) with Sommer-
feld radiation conditions at infinity. Let x = (𝑥, 𝑧) with 𝑧 pointing down. Consider
a linear interface Γ partitioning R2 as Ωdown ∪ Ωup (lower- and upper-half planes re-
spectively), with 𝑓 ̸= 0 in the interior of Ωdown. Let x ∈ Ωup, and consider a contour
made up of Γ and a semi-circle 𝐷 at infinity in the upper half-plane Ωup. Given that
the wave speed becomes uniform past some large radius, the Sommerfeld radiation
condition (SRC) puts to zero the contribution on 𝐷 in Green’s representation formula

27

(GRF) [87, 98] resulting in the incomplete Green’s formula

𝑢(x) =

∫︁

Γ

(︂
𝜕𝐺

𝜕𝑧𝑦
(x,y)𝑢(y)−𝐺(x,y)

𝜕𝑢

𝜕𝑧𝑦
(y)

)︂
𝑑𝑆y, x ∈ Ωup ∖Γ. (2.1)

On the contrary, if x approaches Γ from below, then we obtain the annihilation
formula

0 =

∫︁

Γ

(︂
𝜕𝐺

𝜕𝑧𝑦
(x,y)𝑢(y)−𝐺(x,y)

𝜕𝑢

𝜕𝑧𝑦
(y)

)︂
𝑑𝑆y, x→ Γ from below. (2.2)

Eqs. 2.1 and 2.2 are equivalent; either one can be used as the definition of a polarizing
boundary condition on Γ. This boundary condition is exactly polarizing if 𝐺 is taken
as the global Green’s function for the Helmholtz equation in R2 with SRC.2

Instead, this thesis proposes to use these conditions with a local Green’s function
𝐺 that arises from a problem posed in a slab around Γ, with absorbing boundary
conditions at the edges of the slab. With a local 𝐺, the conditions (Eq. 2.1 or 2.2)
are only approximately polarizing.

Other approximations of absorbing conditions, such as square-root operators, can
be good in certain applications [51, 118, 127, 68, 129], but are often too coarse to
be useful in the context of a fast domain decomposition solver. In particular, it
should be noted that square-root operators do not approximate polarizing conditions
to arbitrary accuracy in media with heterogeneity normal to the boundary.

Finally, we point out the this approach can be found for the homogeneous case
under the name of Rayleigh integrals in Chapter 5 of [14], in which the polarizing
condition is called a causality condition; moreover, this approach is equivalent to the
upwards-propagating radiation condition (UPRC) in [32].

2.1.2 Algorithm

Let Ω be a rectangle in R2, and consider a layered partition of Ω into slabs, or layers
{Ωℓ}𝐿ℓ=1. The squared slowness 𝑚(x) = 1/𝑐(x)2, x = (𝑥, 𝑧)3, is the only physical
parameter we consider in this Chapter. Define the global Helmholtz operator at
frequency 𝜔 as

ℋ𝑢 =
(︀
−△−𝑚𝜔2

)︀
𝑢 in Ω, (2.3)

with an absorbing boundary condition on 𝜕Ω, realized to good approximation by a
perfectly matched layer surrounding Ω. Let us define 𝑓 ℓ as the restriction of 𝑓 to Ωℓ,
i.e., 𝑓 ℓ = 𝑓𝜒Ωℓ . Define the local Helmholtz operators as

ℋℓ𝑢 =
(︀
−△−𝑚𝜔2

)︀
𝑢 in Ωℓ, (2.4)

with an absorbing boundary condition on 𝜕Ωℓ. Let 𝑢 be the solution to ℋ𝑢 = 𝑓 .
Using the local GRF, the solution can be written without approximation in each

2This fact remains true in higher dimension as long as Γ is a hyper-plane of co-dimension 1.
3We assume that 𝑧 points downwards, and that Ωℓ is above Ω𝑗 , provided that ℓ < 𝑗.

28

layer as

𝑢(x) = 𝐺ℓ𝑓 ℓ(x) +

∫︁

𝜕Ωℓ

(︀
𝐺ℓ(x,y)𝜕𝜈𝑦𝑢(y)− 𝜕𝜈𝑦𝐺ℓ(x,y)𝑢(y)

)︀
𝑑𝑆y (2.5)

for x ∈ Ωℓ, where 𝐺ℓ𝑓 ℓ(x) =
∫︀
Ωℓ 𝐺

ℓ(x,y)𝑓 ℓ(y)𝑑y and 𝐺ℓ(x,y) is the solution of
ℋℓ𝐺ℓ(x,y) = 𝛿(x− y).

Denote Γℓ,ℓ+1 = 𝜕Ωℓ ∩ 𝜕Ωℓ+1. Supposing that Ωℓ are thin slabs either extending
to infinity, or surrounded by a damping layer on the lateral sides, we can rewrite Eq.
2.5 as

𝑢(x) = 𝐺ℓ𝑓 ℓ(x)

−
∫︁

Γℓ−1,ℓ

𝐺ℓ(x,x′)𝜕𝑧𝑢(x′)𝑑𝑥′ +

∫︁

Γℓ,ℓ+1

𝐺ℓ(x,x′)𝜕𝑧𝑢(x′)𝑑𝑥′

+

∫︁

Γℓ−1,ℓ

𝜕𝑧𝐺
ℓ(x,x′)𝑢(x′)𝑑𝑥′ −

∫︁

Γℓ,ℓ+1

𝜕𝑧𝐺
ℓ(x,x′)𝑢(x′)𝑑𝑥′. (2.6)

The knowledge of 𝑢 and 𝜕𝑧𝑢 on the interfaces {Γℓ,ℓ+1}𝑁−1
ℓ=1 therefore suffices to

recover the solution everywhere in Ω.
We further split 𝑢 = 𝑢↑ +𝑢↓ and 𝜕𝑧𝑢 = 𝜕𝑧𝑢

↑ + 𝜕𝑧𝑢
↓ on Γℓ,ℓ+1, by letting (𝑢↑, 𝜕𝑧𝑢

↑)
be polarized up in Ωℓ (according to Eq. 2.2), and (𝑢↓, 𝜕𝑧𝑢

↓) polarized down in Ωℓ+1.
Together, the interface fields 𝑢↑, 𝑢↓, 𝜕𝑧𝑢↑, 𝜕𝑧𝑢↓ are the “polarized traces" that serve as
computational unknowns for the numerical method.

�`�1,`

�`,`+1

⌦`

u`," @zu
`,"

u`,# @zu
`,#

Figure 2-2: Illustration of Eq. 2.6. The light-shaded layer around Ωℓ represents the
absorbing layer.

The discrete system is then set up from algebraic reformulations of the local GRF
(Eq. 2.6) with the polarizing conditions (Eqs. 2.1 and 2.2), in a manner that will be
made explicit below. The reason for considering this sytem is twofold:

1. It has a 2-by-2 structure with block-triangular submatrices on the diagonal, and
comparably small off-diagonal submatrices as shown in Fig. 2-3. A very good
preconditioner consists in inverting the block-triangular submatrices by back-
and forward-substitution. One application of this preconditioner can be seen
as a sweep of the domain to compute transmitted (as well as locally reflected)
waves using Eq. 2.1.

2. Each of these submatrices decomposes into blocks that are somewhat com-
pressible in adaptive low-rank-partitioned format. This property stems from

29

the polarization conditions, and would not hold for the Schur complements of
the interior of the slab.

Point 1 ensures that the number of GMRES iterations stays small and essentially
bounded as a function of frequency and number of slabs. Point 2 enables the sublinear-
time computation of each iteration.

Figure 2-3: Sparsity pattern of the polarized system.

2.1.3 Complexity scalings

Time complexities that grow more slowly than the total number 𝑁 of volume un-
knowns are possible in a 𝐿-node cluster, in the following sense: the input consists
of a right-hand-side 𝑓 distributed to 𝐿 nodes corresponding to different layers, while
the problem is considered solved when the solution is locally known for each of the 𝐿
nodes/layers.

The Helmholtz equation is discretized as a linear system of the form Hu = f .
There is an important distinction between

∙ the offline stage, which consists of any precomputation involving H, but not f ;
and

∙ the online stage, which involves solving Hu = f for possibly many right-hand
sides f .

By online time complexity, we mean the runtime for solving the system once in
the online stage. The distinction is important in situations like geophysical wave
propagation, where offline precomputations are often amortized over the large number
of system solves with the same matrix H.

We let 𝑛 = 𝑁1/2 for the number of points per dimension (up to a constant). Since
most of our complexity claims are empirical, our 𝑂 notation may include some log
factors. All the numerical experiments in this Chapter assume the simplest second-
order finite difference scheme for constant-density, heterogeneous-wave-speed, fixed-
frequency acoustic waves in 2D – a choice that we make for simplicity of the exposition.

30

High frequency either means 𝜔 ∼ 𝑛 (constant number of points per wavelength), or
𝜔 ∼ 𝑛1/2 (the scaling for which second-order FD are expected to be accurate), with
different numerical experiments covering both cases.

The table below gathers the observed complexity scalings. We assume that the
time it takes to transmit a message of length 𝑚 on the network is of the form 𝛼+𝛽𝑚,
with 𝛼 the latency and 𝛽 the inverse bandwidth.

Step Sequential Zero-comm parallel Number of processors Comm cost
offline - 𝒪((𝑁/𝐿)3/2) 𝑁1/2𝐿 𝒪(𝛼𝐿+ 𝛽𝑁𝐿)

online 𝒪(𝑁𝛾𝐿) 𝒪 (𝑁 log(𝑁)/𝐿) 𝐿 𝒪(𝛼𝐿+ 𝛽𝑁1/2𝐿)

Table 2.1: Time complexities for the different stages of the solver. The parameter 𝛾
is striclty less than one; its value depends on the scaling of 𝜔 vs. 𝑁 . A representative
value is 𝛾 = 3/4 (more in the text).

These totals are decomposed over the different tasks according to the following
two tables.

Step Sequential Zero-comm parallel Number of processors
Factorization - 𝒪((𝑁/𝐿)3/2) 𝐿

Computation of the
Green’s functions - 𝒪 (𝑁 log(𝑁)/𝐿) 𝐿

Compression of the
Green’s functions - 𝒪(𝑅max𝑁 log𝑁) 𝑁1/2𝐿

Table 2.2: Complexity of the different steps within the offline computation.

Step Sequential Zero-comm parallel Number of processors
Backsubstitutions
for the local solves - 𝒪 (𝑁 log(𝑁)/𝐿) 𝐿

Solve for the
polarized traces 𝒪(𝑁𝛾𝐿) - 1

Reconstruction
in the volume - 𝒪 (𝑁 log(𝑁)/𝐿) 𝐿

Table 2.3: Complexity of the different steps within the online computation.

The “sweet spot" for 𝐿 is when 𝑁𝛾𝐿 ∼ 𝑁
𝐿

, i.e., when 𝐿 ∼ 𝑁
1−𝛾
2 . The value of 𝛾

depends on how the frequency 𝜔 scales with 𝑛:

∙ When 𝜔 ∼ 𝑛1/2 (𝒪(𝑛1/2) points per wavelength), the second-order finite differ-
ence scheme is expected to be accurate in a smooth medium. In that case, we

31

observe 𝛾 = 5
8

in our experiments, even when the medium is not smooth. Some
theoretical arguments indicate, however, that this scaling may not continue to
hold as 𝑁 → ∞, and would become 𝛾 = 3

4
for values of 𝑁 that we were not

able to access computationally. Hence we prefer to claim 𝛾 = 3
4
.

∙ When 𝜔 ∼ 𝑛 (𝒪(1) points per wavelength), the second-order finite difference
scheme is not pointwise accurate. Still, it is a preferred regime in exploration
geophysics. In that case, we observe 𝛾 = 7

8
. This relatively high value of 𝛾 is due

to the poor quality of the discretization. For theoretical reasons, we anticipate
that the scaling would again become 𝛾 = 3

4
as 𝜔 ∼ 𝑛, were the quality of the

discretization not an issue.

As the discussion above indicates, some of the scalings have heuristic justifications,
but we have no mathematical proof of their validity in the case of heterogeneous media
of limited smoothness. Counter-examples may exist. For instance, if the contrast
increases between the smallest and the largest values taken on by 𝑚 – the case of
cavities and resonances – it is clear that the constants in the 𝒪 notation degrade. See
section 2.6 for a discussion of the heuristics mentioned above.

2.2 Discrete Formulation

In this section we show how to reformulate the discretized 2D Helmholtz equation,
in an exact fashion, as a system for interface unknowns stemming from local Green’s
representation formulas.

2.2.1 Discretization

Let Ω = (0, 𝐿𝑥)× (0, 𝐿𝑧) be a rectangular domain. Throughout this Chapter, we pose
Eq. 2.3 with absorbing boundary conditions on 𝜕Ω, realized as a perfectly matched
layer (PML) [13, 85]. This approach consists of extending the computational domain
with an absorbing layer, in which the differential operator is modified to efficiently
damp the outgoing waves and reduce the reflections due to the truncation of the
domain.

Let Ωext = (−𝛿pml, 𝐿𝑥 + 𝛿pml) × (−𝛿pml, 𝐿𝑧 + 𝛿pml) be the extended rectangular
domain containing Ω and its absorbing layer. The Helmholtz operator in Eq. 2.3
then takes the form

ℋ = −𝜕𝑥𝑥 − 𝜕𝑧𝑧 −𝑚𝜔2, in Ωext, (2.7)

in which the differential operators are redefined following

𝜕𝑥 →
1

1 + 𝑖𝜎𝑥(x)
𝜔

𝜕𝑥, 𝜕𝑧 →
1

1 + 𝑖𝜎𝑧(x)
𝜔

𝜕𝑧, (2.8)

32

and where 𝑚 is an extension4 of the squared slowness. Moreover, 𝜎𝑥(x) is defined as

𝜎𝑥(x) =

⎧
⎪⎪⎨
⎪⎪⎩

𝐶
𝛿pml

(︁
𝑥

𝛿pml

)︁2
, if 𝑥 ∈ (−𝛿pml, 0),

0, if 𝑥 ∈ [0, 𝐿𝑥],

𝐶
𝛿pml

(︁
𝑥−𝐿𝑥

𝛿pml

)︁2
, if 𝑥 ∈ (𝐿𝑥, 𝐿𝑥 + 𝛿pml),

(2.9)

and similarly for 𝜎𝑧(x). We remark that 𝛿pml and 𝐶 can be seen as tuning parameters.
In general, 𝛿pml goes from a couple of wavelengths in a uniform medium, to a large
number independent of 𝜔 in a highly heterogeneous media; and 𝐶 is chosen to provide
enough absorption.

With this notation we rewrite Eq. 2.3 as

ℋ𝑢 = 𝑓, in Ωext, (2.10)

with homogeneous Dirichlet boundary conditions (𝑓 is the zero extended version of
𝑓 to Ωext).

We discretize Ω as an equispaced regular grid of stepsize ℎ, and of dimensions
𝑛𝑥 × 𝑛𝑧. For the extended domain Ωext, we extend this grid by 𝑛pml = 𝛿pml/ℎ points
in each direction, obtaining a grid of size (2𝑛pml + 𝑛𝑥)× (2𝑛pml + 𝑛𝑧). Define x𝑝,𝑞 =
(𝑥𝑝, 𝑧𝑞) = (𝑝ℎ, 𝑞ℎ).

We use the 5-point stencil Laplacian to discretize Eq. 2.10. For the interior points
x𝑖,𝑗 ∈ Ω, we have

(Hu)𝑝,𝑞 =
1

ℎ2
(−u𝑝−1,𝑞 + 2u𝑝,𝑞 − u𝑝+1,𝑞) +

1

ℎ2
(−u𝑝,𝑞−1 + 2u𝑝,𝑞 − u𝑝,𝑞+1)− 𝜔2𝑚(x𝑝,𝑞).

(2.11)
In the PML, we discretize

𝛼𝑥𝜕𝑥(𝛼𝑥𝜕𝑥𝑢) as 𝛼𝑥(x𝑝,𝑞)
𝛼(x𝑝+1/2,𝑞)(u𝑝+1,𝑞 − u𝑝,𝑞)− 𝛼𝑥(x𝑝−1/2,𝑞)(u𝑝,𝑞 − u𝑝−1,𝑞)

ℎ2
,

(2.12)

𝛼𝑧𝜕𝑧(𝛼𝑧𝜕𝑧𝑢) as 𝛼𝑧(x𝑝,𝑞)
𝛼(x𝑝,𝑞+1/2)(u𝑝,𝑞+1 − u𝑝,𝑞)− 𝛼𝑧(x𝑝,𝑞−1/2)(u𝑝,𝑞 − u𝑝,𝑞−1)

ℎ2
,

(2.13)

where
𝛼𝑥(x) =

1

1 + 𝑖𝜎𝑥(x)
𝜔

, 𝛼𝑧(x) =
1

1 + 𝑖𝜎𝑧(x)
𝜔

. (2.14)

Finally, we solve

(Hu)𝑝,𝑞 = f𝑝,𝑞, (𝑝, 𝑞) ∈ J−𝑛pml + 1, 𝑛𝑥 + 𝑛pmlK× J−𝑛pml + 1, 𝑛𝑧 + 𝑛pmlK, (2.15)

for the global solution u. We note that the matrix H in Eq. 2.15 is not symmetric,

4We assume that 𝑚(𝑥) is given to us in Ωext. If it isn’t, normal extension of the values on 𝜕Ω is
a reasonable alternative.

33

though there exists an equivalent symmetric (non-Hermitian) formulation of the PML
[58, 59]. While the symmetric formulation presents theoretical advantages5, working
with the non-symmetric form gives rise to less cumbersome discrete Green’s formulas
in the sequel.

2.2.2 Domain Decomposition

We partition Ωext in a layered fashion into 𝐿 subdomains {Ωℓ}𝐿ℓ=1, as follows. For
convenience, we overload Ωℓ for the physical layer, and for its corresponding grid.

We continue to let x𝑝,𝑞 = (𝑥𝑝, 𝑧𝑞) = (𝑝ℎ, 𝑞ℎ) in the global indices 𝑝 and 𝑞. The
ℓ-th layer is defined via a partition of the 𝑧 axis, by gathering all 𝑞 indices such that

𝑛ℓ
𝑐 < 𝑞 ≤ 𝑛ℓ+1

𝑐 ,

for some increasing sequence 𝑛ℓ
𝑐. The number of grid points in the 𝑧 direction in layer

ℓ is
𝑛ℓ = 𝑛ℓ+1

𝑐 − 𝑛ℓ
𝑐.

(The subscript 𝑐 stands for cumulative.) Many of the expressions in this Chapter
involve local indexing: we let 𝑖 = 𝑝 in the 𝑥 direction, and 𝑗 such that

𝑞 = 𝑛ℓ
𝑐 + 𝑗, 1 ≤ 𝑗 ≤ 𝑛ℓ,

in the 𝑧 direction.

We hope that there is little risk of confusion in overloading 𝑧𝑗 (local indexing)
for 𝑧𝑛ℓ

𝑐+𝑗 (global indexing). Similarly, a quantity like the squared slowness 𝑚 will
be indexed locally in Ωℓ via 𝑚ℓ

𝑖,𝑗 = 𝑚𝑖,𝑛ℓ
c+𝑗. In the sequel, every instance of the

superscript ℓ refers to restriction to the ℓ-th layer.

Absorbing boundary conditions in 𝑧 are then used to complete the definition of
the Helmholtz subproblems in each layer Ωℓ. Define ̃︀Ωℓ as the extension of Ωℓ in the
𝑧 direction by 𝑛pml points (see Fig. 2-4), and define ̃︀𝑚ℓ as the normal extension of
𝑚ℓ given by :

̃︀𝑚ℓ
𝑖,𝑗 =

⎧
⎨
⎩

𝑚ℓ
𝑖,1, 𝑗 < 0,

𝑚ℓ
𝑖,𝑗, 1 ≤ 𝑗 ≤ 𝑛ℓ,

𝑚ℓ
𝑖,𝑛ℓ , 𝑗 > 𝑛ℓ.

5In Appendix 2.A we use the symmetric formulation as a proof method, and provide the rela-
tionship between the Green’s functions in the symmetric and unsymmetric cases.

34

⌦ ⌦ext

⌦̃1

⌦̃2

⌦̃3
⌦3

⌦2

⌦1

Figure 2-4: The domain Ω is extended to Ωext by adding the PML nodes (orange).
After decomposition into subdomains, the internal boundaries are padded with extra
PML nodes (light blue).

The discretization inside Ωℓ is otherwise inherited exactly from that of the global
problem, via Eq. 2.11. Furthermore, on each PML the discrete differential operator
is modified following Eq. 2.13, using the extended local model ̃︀𝑚. The local problem
is denoted as
(︀
Hℓuℓ

)︀
𝑖,𝑗

= f ℓ𝑖,𝑗, (𝑖, 𝑗) ∈ J−𝑛pml + 1, 𝑛𝑥 + 𝑛pmlK× J−𝑛pml + 1, 𝑛ℓ + 𝑛pmlK, (2.16)

where f ℓ is extended by zero in the PML. The PML’s profile is chosen so that the
equations for the local and the global problem coincide exactly inside J−𝑛pml +1, 𝑛𝑥+
𝑛pmlK× J1, 𝑛ℓK.

2.2.3 Discrete Green’s Representation Formula

In this section we show that solving the discretized PDE in the volume is equivalent
to solving a discrete boundary integral equation from the Green’s representation for-
mula, with local Green’s functions that stem from the local Helmholtz equation. The
observation is not surprising in view of very standard results in boundary integral
equation theory.

We only gather the results, and refer the reader to Appendix 2.A for the proofs
and details of the discrete Green’s identities.

Define the numerical local Green’s function in layer ℓ by

HℓGℓ(x𝑖,𝑗,x𝑖′,𝑗′) = HℓGℓ
𝑖,𝑗,𝑖′,𝑗′ = 𝛿(x𝑖,𝑗 − x𝑖′,𝑗′), (2.17)

if (𝑖, 𝑗) ∈ J−𝑛pml + 1, 𝑛𝑥 + 𝑛pmlK× J−𝑛pml + 1, 𝑛ℓ + 𝑛pmlK; where

𝛿(x𝑖,𝑗 − x𝑖′,𝑗′) =

{︂
1
ℎ2 , if x𝑖,𝑗 = x𝑖′,𝑗′ ,
0, if x𝑖,𝑗 ̸= x𝑖′,𝑗′ ,

(2.18)

35

and where the operator Hℓ acts on the (𝑖, 𝑗) indices.
It is notationally more convenient to consider Gℓ as an operator acting on un-

knowns at horizontal interfaces, as follows. Again, notations are slighty overloaded.

Definition 1. We consider Gℓ(𝑧𝑗, 𝑧𝑘) as the linear operator defined from J−𝑛pml +
1, 𝑛𝑥 + 𝑛pmlK× {𝑧𝑘} to J−𝑛pml + 1, 𝑛𝑥 + 𝑛pmlK× {𝑧𝑗} given by

(︀
Gℓ(𝑧𝑗, 𝑧𝑘)v

)︀
𝑖

= ℎ

𝑛𝑥+𝑛pml∑︁

𝑖′=−𝑛pml+1

Gℓ((𝑥𝑖, 𝑧𝑗), (𝑥𝑖′ , 𝑧𝑘))v𝑖′ , (2.19)

where v is a vector in C𝑛𝑥+2𝑛pml, and Gℓ(𝑧𝑗, 𝑧𝑘) are matrices in C(𝑛𝑥+2𝑛pml)×(𝑛𝑥+2𝑛pml).

Within this context we define the interface identity operator as

(Iv)𝑖 = ℎv𝑖. (2.20)

As in geophysics, we may refer to 𝑧 as depth. The layer to layer operator Gℓ(𝑧𝑗, 𝑧𝑘)
is indexed by two depths – following the jargon from fast methods we call them source
depth (𝑧𝑘) and target depth (𝑧𝑗).

Definition 2. We consider 𝒢↑,ℓ𝑗 (v𝑛ℓ ,v𝑛ℓ+1), the up-going local incomplete Green’s
integral; and 𝒢↓,ℓ𝑗 (v0,v1), the down-going local incomplete Green’s integral, as defined
by:

𝒢↑,ℓ𝑗 (v𝑛ℓ ,v𝑛ℓ+1) = Gℓ(𝑧𝑗, 𝑧𝑛ℓ+1)

(︂
v𝑛ℓ+1 − v𝑛ℓ

ℎ

)︂
−
(︂
Gℓ(𝑧𝑗, 𝑧𝑛ℓ+1)−Gℓ(𝑧𝑗, 𝑧𝑛ℓ)

ℎ

)︂
v𝑛ℓ+1,(2.21)

𝒢↓,ℓ𝑗 (v0,v1) = −Gℓ(𝑧𝑗, 𝑧0)

(︂
v1 − v0

ℎ

)︂
+

(︂
Gℓ(𝑧𝑗, 𝑧1)−Gℓ(𝑧𝑗, 𝑧0)

ℎ

)︂
v0. (2.22)

In the sequel we use the shorthand notation Gℓ(𝑧𝑗, 𝑧𝑘) = Gℓ
𝑗,𝑘 when explicitly building

the matrix form of the integral systems.

The incomplete Green’s integrals in Def. 2 use the discrete counterparts of the
single and double layer potentials. After some simplifications it is possible to express
the incomplete Green’s integrals in matrix form:

𝒢↓,ℓ𝑗 (v0,v1) =
1

ℎ

[︀
Gℓ(𝑧𝑗, 𝑧1) −Gℓ(𝑧𝑗, 𝑧0)

]︀(︂ v0

v1

)︂
, (2.23)

𝒢↑,ℓ𝑗 (v𝑛ℓ ,v𝑛ℓ+1) =
1

ℎ

[︀
−Gℓ(𝑧𝑗, 𝑧𝑛ℓ+1) Gℓ(𝑧𝑗, 𝑧𝑛ℓ)

]︀(︂ v𝑛ℓ

v𝑛ℓ+1

)︂
. (2.24)

Definition 3. Consider the local Newton potential 𝒩 ℓ
𝑘 applied to a local source f ℓ as

𝒩 ℓ
𝑘 f

ℓ =
𝑛ℓ∑︁

𝑗=1

Gℓ(𝑧𝑘, 𝑧𝑗)f
ℓ
𝑗 . (2.25)

36

By construction 𝒩 ℓf ℓ satisfies the equation
(︀
Hℓ𝒩 ℓf ℓ

)︀
𝑖,𝑗

= f𝑖,𝑗 for −𝑛pml + 1 ≤ 𝑖 ≤
𝑛𝑥 + 𝑛pml and 1 ≤ 𝑗 ≤ 𝑛ℓ.

We can form local solutions to the discrete Helmholtz equation using the local
discrete Green’s representation formula, as

vℓ
𝑗 = 𝒢↑,ℓ𝑗 (vℓ

𝑛ℓ ,v
ℓ
𝑛ℓ+1) + 𝒢↓,ℓ𝑗 (vℓ

0,v
ℓ
1) +𝒩 ℓ

𝑗 f
ℓ, 1 < 𝑗 < 𝑛ℓ. (2.26)

This equation is, by construction, a solution to the local problem as long as 1 < 𝑗 < 𝑛ℓ.
It is easy to see that vℓ

𝑗 is otherwise solution to

Hℓvℓ = f ℓ + 𝛿(𝑧1 − 𝑧)vℓ
0 − 𝛿(𝑧0 − 𝑧)vℓ

1 − 𝛿(𝑧𝑛ℓ+1 − 𝑧)vℓ
𝑛ℓ + 𝛿(𝑧𝑛ℓ − 𝑧)vℓ

𝑛ℓ+1. (2.27)

Notice that writing local solutions via Eq. 2.26 can be advantageous, since Gℓ only
needs to be stored at interfaces. If a sparse LU factorization of Hℓ is available, and
if the boundary data vℓ

0,v
ℓ
1,v

ℓ
𝑛ℓ ,v

ℓ
𝑛ℓ+1

are available, then the computation of vℓ is
reduced to a local sparse solve with the appropriate forcing terms given in Eq. 2.27.
This approach can be seen as a generalization of the immersed boundary approach
developed by Peskin in [107].

Eq. 2.26 is of particular interest when the data used to build the local solution
are the traces of the global solution, as stated in the Lemma below. In other words,
Eq. 2.26 continues to hold even when 𝑗 = 1 and 𝑗 = 𝑛ℓ.

Lemma 1. If uℓ
0,u

ℓ
1,u

ℓ
𝑛ℓ , and uℓ

𝑛ℓ+1
are the traces of the global solution at the inter-

faces, then
uℓ
𝑗 = 𝒢↑,ℓ𝑗 (uℓ

𝑛ℓ ,u
ℓ
𝑛ℓ+1) + 𝒢↓,ℓ𝑗 (uℓ

0,u
ℓ
1) +𝒩 ℓ

𝑗 f
ℓ, (2.28)

if 1 ≤ 𝑗 ≤ 𝑛ℓ, where uℓ is the global solution restricted to Ωℓ. Moreover,

0 = 𝒢↑,ℓ𝑗 (uℓ
𝑛ℓ ,u

ℓ
𝑛ℓ+1) + 𝒢↓,ℓ𝑗 (uℓ

0,u
ℓ
1) +𝒩 ℓ

𝑗 f
ℓ, (2.29)

if 𝑗 ≤ 0 and 𝑗 ≥ 𝑛ℓ + 1.

The proof of Lemma 1 is given in Appendix 2.C. Thus, the problem of solving the
global, discrete Helmholtz equation is reduced in an algebraically exact manner to
the problem of finding the traces of the solution at the interfaces. Yet, the incomplete
Green’s operators are not the traditional Schur complements for Ωℓ.

What is perhaps most remarkable about those equations is the flexibility that we
have in letting Gℓ be arbitrary outside Ωℓ – flexiblity that we use by placing a PML.

2.2.4 Discrete Integral Equation

Evaluating the local GRF (Eq. 2.28) at the interfaces 𝑗 = 1 and 𝑗 = 𝑛ℓ of each layer
Ωℓ results in what we can call a self-consistency relation for the solution. Together
with a continuity condition that the interface data must match at interfaces between
layers, we obtain an algebraically equivalent reformulation of the discrete Helmholtz
equation.

37

Definition 4. Consider the discrete integral formulation for the Helmholtz equation
as the system given by

𝒢↓,ℓ1 (uℓ
0,u

ℓ
1) + 𝒢↑,ℓ1 (uℓ

𝑛ℓ ,u
ℓ
𝑛ℓ+1) +𝒩 ℓ

1 f
ℓ = uℓ

1, (2.30)

𝒢↓,ℓ
𝑛ℓ (uℓ

0,u
ℓ
1) + 𝒢↑,ℓ

𝑛ℓ (uℓ
𝑛ℓ ,u

ℓ
𝑛ℓ+1) +𝒩 ℓ

𝑛ℓf
ℓ = uℓ

𝑛ℓ , (2.31)
uℓ
𝑛ℓ = uℓ+1

0 , (2.32)
uℓ
𝑛ℓ+1 = uℓ+1

1 , (2.33)

if 1 < ℓ < 𝐿, with

𝒢↑,1𝑛1 (u1
𝑛1 ,u1

𝑛ℓ+1) +𝒩 1
𝑛1f1 = u1

𝑛1 , (2.34)
u1
𝑛1 = u2

0, (2.35)
u1
𝑛1+1 = u2

1, (2.36)

and

𝒢↓,𝐿1 (u𝐿
0 ,u

𝐿
1) +𝒩 𝐿

𝑛𝐿f
𝐿 = u𝐿

1 , (2.37)
u𝐿−1
𝑛𝐿−1 = u𝐿

0 , (2.38)
u𝐿−1
𝑛𝐿−1+1

= u𝐿
1 . (2.39)

Following Def. 2 we can define

M =
1

ℎ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−G1
𝑛,𝑛+1 − I G1

𝑛,𝑛 0 0 0 0

G2
1,1 −G2

1,0 − I −G1
1,𝑛+1 G1

1,𝑛 0 0

G2
𝑛,1 −G2

𝑛,0 −G2
𝑛,𝑛+1 − I G2

𝑛,𝑛 0 0

0
. . .

. . .
. . . 0 0

0 0 G𝐿−1
1,1 −G𝐿−1

1,0 − I −G𝐿−1
1,𝑛+1 G𝐿−1

1,𝑛

0 0 G𝐿−1
𝑛,1 −G𝐿−1

𝑛,0 −G𝐿−1
𝑛,𝑛+1 − I G𝐿−1

𝑛,𝑛

0 0 0 0 G𝐿
1,1 −G𝐿

1,0 − I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.40)

such that the discrete integral system can be written as

M u = −

⎛
⎜⎜⎜⎜⎜⎝

𝒩 1
𝑛1f1

𝒩 2
1 f

2

𝒩 2
𝑛2f2

...
𝒩 𝐿

1 f
𝐿

⎞
⎟⎟⎟⎟⎟⎠

= −f . (2.41)

By u, we mean the collection of all the interface traces. As a lemma, we recover
the required jump condition one grid point past each interface.

Lemma 2. If u is the solution to the discrete integral system given by Eq. 2.41 then

0 = 𝒢↑,ℓ𝑗 (uℓ
𝑛ℓ ,u

ℓ
𝑛ℓ+1) + 𝒢↓,ℓ𝑗 (uℓ

0,u
ℓ
1) +𝒩 ℓ

𝑗 f
ℓ, (2.42)

if 𝑗 = 0 or 𝑗 = 𝑛ℓ + 1.

38

All the algorithms hinge on the following result. We refer the reader to Appendix
2.C for both proofs.

Theorem 1. The solution of the discrete integral system given by Eq. 2.41 equals
the restriction of the solution of the discretized Helmholtz equation given by Eq. 2.15
to the interfaces between subdomains.

The computational procedure suggested by the reduction to Eq. 2.41 can be
decomposed in an offline part given by Alg. 1 and an online part given by Alg. 2.

Algorithm 1. Offline computation for the discrete integral formulation
1: function 𝐻 = Precomputation(m, 𝜔)
2: for ℓ = 1 : 𝐿 do
3: mℓ = m𝜒Ωℓ ◁ partition the model
4: Hℓ = −△−mℓ𝜔2 ◁ set local problems
5: [𝐿ℓ, 𝑈 ℓ] = lu

(︀
Hℓ
)︀

◁ factorize local problems
6: end for
7: for ℓ = 1 : 𝐿 do ◁ extract Green’s functions
8: Gℓ(𝑧𝑗, 𝑧𝑗′) = (𝑈 ℓ)−1(𝐿ℓ)−1𝛿(𝑧𝑗′) ◁ 𝑧𝑗′ and 𝑧𝑗 are in the interfaces
9: end for

10: Form M ◁ set up the integral system
11: end function

In the offline computation, the domain is decomposed in layers, the local LU
factorizations are computed and stored, the local Green’s functions are computed on
the interfaces by backsubstitution, and the interface-to-interface operators are used
to form the discrete integral system. Alg. 1 sets up the data structure and machinery
to solve Eq. 2.15 for different right-hand-sides using Alg. 2.

Algorithm 2. Online computation for the discrete integral formulation
1: function u = Helmholtz solver(f)
2: for ℓ = 1 : 𝐿 do
3: f ℓ = f𝜒Ωℓ ◁ partition the source
4: end for
5: for ℓ = 1 : 𝐿 do
6: 𝒩 ℓf ℓ = (Hℓ)−1f ℓ ◁ solve local problems
7: end for
8: f =

(︀
𝒩 1

𝑛1f1,𝒩 2
1 f

2,𝒩 2
𝑛2f2, . . . ,𝒩 𝐿

1 f
𝐿
)︀𝑡

◁ form r.h.s. for the integral system
9: u = (M)−1 (−f) ◁ solve for the traces (Eq. 2.41)

10: for ℓ = 1 : 𝐿 do
11: uℓ

𝑗 = 𝒢↑,ℓ𝑗 (uℓ
𝑛ℓ ,u

ℓ
𝑛ℓ+1

) + 𝒢↓,ℓ𝑗 (uℓ
0,u

ℓ
1) +𝒩 ℓ

𝑗 f
ℓ ◁ reconstruct local solutions

(Eq. 2.28)
12: end for
13: u = (u1,u2, . . . ,u𝐿−1,u𝐿)𝑡 ◁ concatenate the local solutions
14: end function

39

The matrix M that results from the discrete integral equations6 is block sparse
and tightly block banded, so the discrete integral system can in principle be factorized
by a block LU algorithm. However, and even though the integral system (after pre-
computation of the local Green’s functions) represents a reduction of one dimension
in the Helmholtz problem, solving the integral formulation directly can be extremely
hard to parallelize and prohibitively expensive for large systems. The only feasible
option in such cases is to use iterative methods; however, the condition number of M
is 𝒪(ℎ−2), resulting in a high number of iterations for convergence.

The rest of this Chapter is devoted to the question of designing a good precon-
ditioner for M in regimes of propagating waves, which makes an iterative solver
competitive for the discrete integral system.

Remark 1. The idea behind the discrete integral system in Def. 4 is to take the limit
to the interfaces by approaching them from the interior of each layer. It is possible to
write an equivalent system by taking the limit from outside. By Lemma 2 the wavefield
is zero outside the slab, hence by taking this limit we can write the equation for u as

M0u = −

⎛
⎜⎜⎜⎜⎜⎝

𝒩 1
𝑛1+1f

1

𝒩 2
0 f

2

𝒩 2
𝑛2+1f

2

...
𝒩 𝐿

0 f
𝐿

⎞
⎟⎟⎟⎟⎟⎠

= −f0, (2.43)

where

M0 =
1

ℎ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−G1
𝑛+1,𝑛+1 G1

𝑛+1,𝑛 0 0 0 0

G2
0,1 −G2

0,0 −G1
0,𝑛+1 G1

0,𝑛 0 0

G2
𝑛+1,1 −G2

𝑛+1,0 −G2
𝑛+1,𝑛+1 G2

𝑛+1,𝑛 0 0

0
. . .

. . .
. . . 0 0

0 0 G𝐿−1
0,1 −G𝐿−1

0,0 −G𝐿−1
0,𝑛+1 G𝐿−1

0,𝑛

0 0 G𝐿−1
𝑛+1,1 −G𝐿−1

𝑛+1,0 −G𝐿−1
𝑛+1,𝑛+1 G𝐿−1

𝑛+1,𝑛

0 0 0 0 G𝐿
0,1 −G𝐿

0,0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.44)

The systems given by Eq. 2.41 and Eq. 2.43 are equivalent; however, the first one
has more intuitive implications hence it is the one we deal with it in the immediate
sequel.

2.3 Polarization

Interesting structure is revealed when we reformulate the system given by Eq. 2.41,
by splitting each interface field into two “polarized traces". We start by describing
the proper discrete expression of the concept seen in the introduction.

6The resulting integral system can be seen as the discrete counterpart of a surface integral equa-
tion (see [147] and references therein) in which we used numerical Green’s functions instead of
analytical ones.

40

2.3.1 Polarized Wavefields

Definition 5. (Polarization via annihilation relations.) A wavefield u is said to be
up-going at the interface Γℓ,ℓ+1 if it satisfies the annihilation relation given by

𝒢↓,ℓ+1
1 (u0,u1) = 0. (2.45)

We denote it as u↑. Analogously, a wavefield u is said to be down-going at the interface
Γℓ,ℓ+1 if it satisfies the annihilation relation given by

𝒢↑,ℓ
𝑛ℓ (u𝑛ℓ ,u𝑛ℓ+1) = 0. (2.46)

We denote it as u↓.

A pair (u↑
0,u

↑
1) satisfies the up-going annihilation relation at Γℓ,ℓ+1 when it is a

wavefield radiated from below Γℓ,ℓ+1.
Up and down arrows are convenient notations, but it should be remembered that

the polarized fields contain locally reflected waves in addition to transmitted waves,
hence are not purely directional as in a uniform medium. The quality of polarization is
directly inherited from the choice of local Green’s function in the incomplete Green’s
operators 𝒢↓,ℓ+1 and 𝒢↑,ℓ. In the polarization context, we may refer to these operators
as annihilators.

The main feature of a polarized wave is that it can be extrapolated outside the do-
main using only the Dirichlet data at the boundary. In particular, we can extrapolate
one grid point using the extrapolator in Def. 6.

Definition 6. Let v1 be the trace of a wavefield at 𝑗 = 1 in local coordinates. Then
define the up-going one-sided extrapolator as

ℰ↑ℓ,ℓ+1v1 =
(︀
Gℓ+1(𝑧1, 𝑧1)

)︀−1
Gℓ+1(𝑧1, 𝑧0)v1. (2.47)

Analogously, for a trace v𝑛ℓ at 𝑗 = 𝑛ℓ, define the down-going one-sided extrapolator
as

ℰ↓ℓ,ℓ+1v𝑛ℓ =
(︀
Gℓ(𝑧𝑛ℓ , 𝑧𝑛ℓ)

)︀−1
Gℓ(𝑧𝑛ℓ , 𝑧𝑛ℓ+1)v𝑛ℓ . (2.48)

Extrapolators reproduce the polarized waves.

Lemma 3. Let u↑ be an up-going wavefield. Then u↑
0 is completely determined by

u↑
1, as

u↑
0 = ℰ↑ℓ,ℓ+1u

↑
1. (2.49)

Analogously for a down-going wave u↓, we have

u↓
𝑛ℓ+1

= ℰ↓ℓ,ℓ+1u
↓
𝑛ℓ . (2.50)

Lemma 4. The extrapolator satisfies the following properties:

Gℓ+1(𝑧0, 𝑧𝑗) = ℰ↑ℓ,ℓ+1G
ℓ+1(𝑧1, 𝑧𝑗), for 𝑗 ≥ 1, (2.51)

41

and
Gℓ(𝑧𝑛ℓ+1, 𝑧𝑗) = ℰ↓ℓ,ℓ+1G

ℓ(𝑧𝑛ℓ , 𝑧𝑗), for 𝑗 ≤ 𝑛ℓ. (2.52)

Moreover, we have the jump conditions

Gℓ+1(𝑧0, 𝑧0)− ℎℰ↑ℓ,ℓ+1 = ℰ↑ℓ,ℓ+1G
ℓ+1(𝑧1, 𝑧0), (2.53)

and
Gℓ(𝑧𝑛ℓ+1, 𝑧𝑛ℓ+1)− ℎℰ↓ℓ,ℓ+1 = ℰ↓ℓ,ℓ+1G

ℓ(𝑧𝑛ℓ , 𝑧𝑛ℓ+1). (2.54)

In one dimension, the proof of Lemma 4 (in Appendix 2.C) is a direct application
of the nullity theorem [132] and the cofactor formula, in which ℰ↑𝑗,𝑗+1 is the ratio
between two co-linear vectors. In two dimensions, the proof is slightly more complex
but follows the same reasoning.

Lemma 5. If u↑ is an up-going wave-field, then the annihilation relation holds inside
the layer, i.e.

𝒢↓,ℓ+1
𝑗 (u↑

0,u
↑
1) = 0, for 𝑗 ≥ 1. (2.55)

Analogously, if u↑ is a down-going wave-field, then the annihilation relation holds
inside the layer, i.e.

𝒢↑,ℓ𝑗 (u↓
𝑛ℓ ,u

↓
𝑛ℓ) = 0, for 𝑗 ≤ 𝑛ℓ. (2.56)

Remark 2. We gather from the proof of Lemma 4 that we can define extrapolators
inside the domain as well. In fact, from Proposition 4 in Appendix 2.B, we can easily
show that

[︀
Gℓ(𝑧𝑗, 𝑧𝑗)

]︀−1
Gℓ(𝑧𝑗, 𝑧𝑗+1)G

ℓ(𝑧𝑗, 𝑧𝑘) = Gℓ(𝑧𝑗+1, 𝑧𝑘) for 𝑘 ≤ 𝑗, (2.57)

and
[︀
Gℓ(𝑧𝑗+1, 𝑧𝑗+1)

]︀−1
Gℓ(𝑧𝑗+1, 𝑧𝑗)G

ℓ(𝑧𝑗+1, 𝑧𝑘) = Gℓ(𝑧𝑗, 𝑧𝑘) for 𝑗 ≤ 𝑘. (2.58)

2.3.2 Polarized Traces

Some advantageous cancellations occur when doubling the number of unknowns, and
formulating a system on traces of polarized wavefields at interfaces. In this approach,
each trace is written as the sum of two polarized components. We define the collection
of polarized traces as

u =

(︂
u↓

u↑

)︂
, (2.59)

such that u = u↑ + u↓. As previously, we underline symbols to denote collections of
traces. We now underline twice to denote polarized traces. The original system gives
rise to the equations [︀

M M
]︀
u = −f . (2.60)

This polarized formulation increases the number of unknowns; however, the num-
ber of equations remains the same. Some further knowledge should be used to obtain

42

a square system. We present three mathematically equivalent, though algorithmically
different approaches to closing the system:

1. a first approach is to impose the annihilation polarization conditions;

2. a second approach is to impose the extrapolator relations in tandem with the
annihilation conditions; and

3. a third approach uses the jump conditions to further simplify expressions.

The second formulation yields an efficient preconditioner consisting of decoupled
block-triangular matrices. However, its inversion relies on inverting some of the dense
diagonal blocks, which is problematic without extra knowledge about these blocks.
The third formulation is analogous to the second one, but altogether alleviates the
need for dense block inversion. It is this last formulation that we benchmark in the
numerical section. We prefer to present all three versions in a sequence, for clarity of
the presentation.

2.3.3 Annihilation relations

We can easily close the system given by Eq. 2.60 by explicitly imposing that the
out-going traces at each interface satisfies the annihilation conditions (Eq. 2.63 and
Eq. 2.64). We then obtain a system of equations given by :

𝒢↓,ℓ1 (uℓ,↑
0 ,uℓ,↑

1) + 𝒢↑,ℓ1 (uℓ,↑
𝑛ℓ ,u

ℓ,↑
𝑛ℓ+1

) + 𝒢↓,ℓ1 (uℓ,↓
0 ,uℓ,↓

1) + 𝒢↑,ℓ1 (uℓ,↓
𝑛ℓ ,u

ℓ,↓
𝑛ℓ+1

) +𝒩 ℓ
1 f

ℓ = uℓ,↑
1 + uℓ,↓

1 ,

(2.61)

𝒢↓,ℓ
𝑛ℓ (uℓ,↑

0 ,uℓ,↑
1) + 𝒢↑,ℓ

𝑛ℓ (uℓ,↑
𝑛ℓ ,u

ℓ,↑
𝑛ℓ+1

) + 𝒢↓,ℓ
𝑛ℓ (uℓ,↓

0 ,uℓ,↓
1) + 𝒢↑,ℓ

𝑛ℓ (uℓ,↓
𝑛ℓ ,u

ℓ,↓
𝑛ℓ+1

) +𝒩 ℓ
𝑛ℓf

ℓ = uℓ,↑
𝑛ℓ + uℓ,↓

𝑛ℓ ,

(2.62)

𝒢↑,ℓ
𝑛ℓ (uℓ,↓

𝑛ℓ ,u
ℓ,↓
𝑛ℓ+1

) = 0,

(2.63)

𝒢↓,ℓ1 (uℓ,↑
0 ,uℓ,↑

1) = 0.
(2.64)

plus the continuity conditions. To obtain the matrix form of this system, we define
the global annihilator matrices by

A↓ =
1

ℎ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−G1
𝑛,𝑛+1 G1

𝑛,𝑛 0 0 0 0

0 0 0 0 0 0
0 0 −G2

𝑛,𝑛+1 G2
𝑛,𝑛 0 0

0 0 0
. . .

. . . 0
0 0 0 0 0 0

0 0 0 0 −G𝐿−1
𝑛,𝑛+1 G𝐿−1

𝑛,𝑛

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.65)

43

and

A↑ =
1

ℎ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0
G2

1,1 −G2
1,0 0 0 0 0

0 0 0 0 0 0

0
. . .

. . .
. . . 0 0

0 0 G𝐿−1
1,1 −G𝐿−1

1,0 0 0

0 0 0 0 0 0
0 0 0 0 G𝐿

1,1 −G𝐿
1,0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.66)

Definition 7. We define the polarized system completed with annihilator conditions
as [︂

M M
A↓ A↑

]︂
u =

(︂
−f
0

)︂
. (2.67)

By construction, if u is solution to Eq. 2.67, then u = u↑ + u↓ is solution to
Eq. 2.41. Moreover, the non-zero blocks of A↑ and A↓ are full rank, and given their
nested structure it follows that [A↓ A↑] is full row rank as well.

2.3.4 Extrapolation conditions

One standard procedure for preconditioning a system such as Eq. 2.41 is to use a
block Jacobi preconditioner, or a block Gauss-Seidel preconditioner. Several solvers
based on domain decomposition use the latter as a preconditioner, and typically call it
a multiplicative Schwarz iteration. In our case however, once the system is augmented
from M to [M M], and completed, it loses its banded structure. The proper form
can be restored in the system of Def. 7 by a sequence of steps that we now outline.

It is clear from Def. 5 that some of the terms of M contain the annihilation
relations. Those terms should be subtracted from the relevant rows of M, resulting
in new submatrices M↓ and M↑. Completion of the system is advantageously done
in a different way, by encoding polarization via the extrapolator conditions from Def.
6, rather than the annihiliation conditions. The system given by Eq. 2.67 is then
equivalent to

𝒢↑,ℓ1 (uℓ,↑
𝑛ℓ ,u

ℓ,↑
𝑛ℓ+1

) + 𝒢↓,ℓ1 (uℓ,↓
0 ,uℓ,↓

1) + 𝒢↑,ℓ1 (uℓ,↓
𝑛ℓ ,u

ℓ,↓
𝑛ℓ+1

) +𝒩 ℓ
1 f

ℓ = uℓ,↑
1 + uℓ,↓

1 , (2.68)

𝒢↓,ℓ
𝑛ℓ (uℓ,↑

0 ,uℓ,↑
1) + 𝒢↑,ℓ

𝑛ℓ (uℓ,↑
𝑛ℓ ,u

ℓ,↑
𝑛ℓ+1

) + 𝒢↓,ℓ
𝑛ℓ (uℓ,↓

0 ,uℓ,↓
1) +𝒩 ℓ

𝑛ℓf
ℓ = uℓ,↑

𝑛ℓ + uℓ,↓
𝑛ℓ , (2.69)

uℓ,↓
𝑛ℓ+1

= ℰ↓ℓ,ℓ+1(u
ℓ,↓
𝑛ℓ), (2.70)

uℓ+1,↑
0 = ℰ↑ℓ,ℓ+1(u

ℓ+1,↑
1). (2.71)

We can switch to a matrix form of these equations, by letting

M↓ =
1

ℎ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−I 0 0 0 0 0
G2

1,1 −G2
1,0 − I −G1

1,𝑛+1 G1
1,𝑛 0 0

G2
𝑛,1 −G2

𝑛,0 −I 0 0 0

0
. . .

. . .
. . . 0 0

0 0 G𝐿−1
1,1 −G𝐿−1

1,0 − I −G𝐿−1
1,𝑛+1 G𝐿−1

1,𝑛

0 0 G𝐿−1
𝑛,1 −G𝐿−1

𝑛,0 −I 0

0 0 0 0 G𝐿
1,1 −G𝐿

1,0 − I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.72)

44

M↑ =
1

ℎ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−G1
𝑛,𝑛+1 − I G1

𝑛,𝑛 0 0 0 0

0 −I −G1
1,𝑛+1 G1

1,𝑛 0 0

G2
𝑛,1 −G2

𝑛,0 −G2
𝑛,𝑛+1 − I G2

𝑛,𝑛 0 0

0
. . .

. . .
. . . 0 0

0 0 0 −I −G𝐿−1
1,𝑛+1 G𝐿−1

1,𝑛

0 0 G𝐿−1
𝑛,1 −G𝐿−1

𝑛,0 −G𝐿−1
𝑛,𝑛+1 − I G𝐿−1

𝑛,𝑛

0 0 0 0 0 −I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.73)

E↓ =
1

ℎ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ℎ
(︀
G1

𝑛,𝑛

)︀−1
G1

𝑛,𝑛+1 −I 0 0 0 0

0 0 0 0 0 0

0 0 ℎ
(︀
G2

𝑛,𝑛

)︀−1
G2

𝑛,𝑛+1 −I 0 0

0 0 0
. . .

. . . 0
0 0 0 0 0 0

0 0 0 0 ℎ
(︁
G𝐿−1

𝑛,𝑛

)︁−1
G𝐿−1

𝑛,𝑛+1 −I

0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.74)

E↑ =
1

ℎ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

−I ℎ
(︁
G2

1,1

)︁−1
G2

1,0 0 0 0 0

0 0 0 0 0 0

0
. . .

. . .
. . . 0 0

0 0 −I ℎ
(︁
G𝐿−1

1,1

)︁−1
G𝐿−1

1,0 0 0

0 0 0 0 0 0

0 0 0 0 −I ℎ
(︁
G𝐿

1,1

)︁−1
G𝐿

1,0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.75)

The sparsity pattern of the system formed by these block matrices is given by Fig.
2-5 (left). We arrive at the following definition.

Definition 8. We define the polarized system completed with the extrapolation rela-
tions as [︂

M↓ M↑

E↓ E↑

]︂
u =

(︂
−f
0

)︂
. (2.76)

The interesting feature of this system, in contrast to the previous formulation,
is that uℓ,↓

𝑛ℓ is undisturbed (multiplied by an identity block) both in M↓ and in E↓.
Similarly, uℓ,↑

1 is left undisturbed by M↑ and E↑. This is apparent from Fig. 2-5 (left).
Following this observation we can permute the rows of the matrix to obtain

(︂[︂
D↓ 0
0 D↑

]︂
+

[︂
0 U
L 0

]︂)︂
u = P

(︂
−f
0

)︂
, (2.77)

where the diagonal blocks D↓ and D↓ are respectively upper triangular and lower
triangular, with identity blocks on the diagonal; P is an appropriate ‘permutation’
matrix; and U and L are block sparse matrices. We define the matrices

Dextrap =

[︂
D↓ 0
0 D↑

]︂
, Rextrap =

[︂
0 U
L 0

]︂
. (2.78)

We can observe the sparsity pattern of the permuted system in Fig. 2-5 (right).

45

Figure 2-5: Left: Sparsity pattern of the system in Eq. 2.76. Right: Sparsity pattern
of reordered system in Eq. 2.76.

2.3.5 Jump condition

The polarized system in Def. 8 can be easily preconditioned using a block Jacobi
iteration for the 2× 2 block matrix, which yields a procedure to solve the Helmholtz
equation. Moreover, using Dextrap as a pre-conditioner within GMRES, yields remark-
able results. However, in order to obtain the desired structure, we need to use the
extrapolator, whose construction involves inverting small dense blocks. This can be
costly and inefficient when dealing with large interfaces (or surfaces in 3D). In order
to avoid the inversion of any local operator we exploit the properties of the discrete
GRF to obtain an equivalent system that avoids any unnecesary dense linear algebra
operation.

Following Remark 1, we can complete the polarized system by imposing,
[︀
M0 M0

]︀
u = −f0, (2.79)

where M0 encodes the jump condition for the GRF. However, these blocks do not pre-
serve u↑ and u↓ like Dextrap did, because M0 does not have identities on the diagonal.
Fortunately, it is possible to include the information contained in the annihilation
relations directly into M0, exactly as we did with M. Lemma 6 summarizes the
expression resulting from incorporating the extrapolation conditions into M0.

Lemma 6. If u is solution to the system given by Def. 8 then

u↑,ℓ
0 =ℰ↑ℓ,ℓ+1u

↑,ℓ
1 = 𝒢↑,ℓ0 (uℓ,↑

𝑛ℓ ,u
ℓ,↑
𝑛ℓ+1

) + 𝒢↓,ℓ0 (uℓ,↓
0 ,uℓ,↓

1) + 𝒢↑,ℓ0 (uℓ,↓
𝑛ℓ ,u

ℓ,↓
𝑛ℓ+1

) +𝒩 ℓ
0 f

ℓ,

(2.80)

u↓,ℓ
𝑛ℓ+1

=ℰ↓ℓ,ℓ+1u
↓,ℓ
𝑛ℓ = 𝒢↓,ℓ

𝑛ℓ+1
(uℓ,↑

0 ,uℓ,↑
1) + 𝒢↑,ℓ

𝑛ℓ+1
(uℓ,↑

𝑛ℓ ,u
ℓ,↑
𝑛ℓ+1

) + 𝒢↓,ℓ
𝑛ℓ+1

(uℓ,↓
0 ,uℓ,↓

1) +𝒩 ℓ
𝑛ℓ+1f

ℓ.

(2.81)

The jump conditions in Lemma 2 are heavily used in the proof, see the Appendix.

46

We now replace the extrapolation relations by Eq. 2.80 and Eq. 2.81, which leads to
the next system :

𝒢↑,ℓ1 (uℓ,↑
𝑛ℓ ,u

ℓ,↑
𝑛ℓ+1

) + 𝒢↓,ℓ1 (uℓ,↓
0 ,uℓ,↓

1) + 𝒢↑,ℓ1 (uℓ,↓
𝑛ℓ ,u

ℓ,↓
𝑛ℓ+1

) +𝒩 ℓ
1 f

ℓ = uℓ,↑
1 + uℓ,↓

1 ,

(2.82)

𝒢↓,ℓ
𝑛ℓ (uℓ,↑

0 ,uℓ,↑
1) + 𝒢↑,ℓ

𝑛ℓ (uℓ,↑
𝑛ℓ ,u

ℓ,↑
𝑛ℓ+1

) + 𝒢↓,ℓ
𝑛ℓ (uℓ,↓

0 ,uℓ,↓
1) +𝒩 ℓ

𝑛ℓf
ℓ = uℓ,↑

𝑛ℓ + uℓ,↓
𝑛ℓ ,

(2.83)

𝒢↑,ℓ0 (uℓ,↑
𝑛ℓ ,u

ℓ,↑
𝑛ℓ+1

) + 𝒢↓,ℓ0 (uℓ,↓
0 ,uℓ,↓

1) + 𝒢↑,ℓ0 (uℓ,↓
𝑛ℓ ,u

ℓ,↓
𝑛ℓ+1

) +𝒩 ℓ
0 f

ℓ = uℓ,↑
0 , (2.84)

𝒢↓,ℓ
𝑛ℓ+1

(uℓ,↑
0 ,uℓ,↑

1) + 𝒢↑,ℓ
𝑛ℓ+1

(uℓ,↑
𝑛ℓ ,u

ℓ,↑
𝑛ℓ+1

) + 𝒢↓,ℓ
𝑛ℓ+1

(uℓ,↓
0 ,uℓ,↓

1) +𝒩 ℓ
𝑛ℓ+1f

ℓ = uℓ,↓
𝑛ℓ . (2.85)

We define the matrix form of Eq. 2.84 and Eq. 2.85 by

M↑
0 =

1

ℎ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−G1
𝑛+1,𝑛+1 G1

𝑛+1,𝑛 0 0 0 0 0 0

−I 0 −G2
0,𝑛+1 G2

0,𝑛 0 0 0 0

G2
𝑛+1,1 −G2

𝑛+1,0 −G2
𝑛+1,𝑛+1 G2

𝑛+1,𝑛 0 0 0 0

0 0 −I 0 −G3
0,𝑛+1 G3

0,𝑛 0 0

0 0 G3
𝑛+1,1 −G3

𝑛+1,0 −G3
𝑛+1,𝑛+1 G3

𝑛+1,𝑛 0 0

0 0 0
. . .

. . .
. . .

. . . 0

0 0 0 0 −I 0 −G𝐿−1
0,𝑛+1 G𝐿−1

0,𝑛

0 0 0 0 G𝐿−1
𝑛+1,1 −G𝐿−1

𝑛+1,0 −G𝐿−1
𝑛+1,𝑛+1 G𝐿−1

𝑛+1,𝑛

0 0 0 0 0 0 −I 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

M↓
0 =

1

ℎ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −I 0 0 0 0 0 0
G2

0,1 −G2
0,0 −G2

0,𝑛+1 G2
0,𝑛 0 0 0 0

G2
𝑛+1,1 −G2

𝑛+1,0 0 −I 0 0 0 0

0 0 G3
0,1 −G3

0,0 −G3
0,𝑛+1 G3

0,𝑛 0 0

0 0 G3
𝑛+1,1 −G3

𝑛+1,0 0 −I 0 0

0 0 0
. . .

. . .
. . .

. . . 0

0 0 0 0 G𝐿−1
0,1 −G𝐿−1

0,0 −G𝐿−1
0,𝑛+1 G𝐿−1

0,𝑛

0 0 0 0 G𝐿−1
𝑛+1,1 −G𝐿−1

𝑛+1,0 0 −I

0 0 0 0 0 0 G𝐿
0,1 −G𝐿

0,0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

and

f0 =

⎛
⎜⎜⎜⎜⎜⎝

𝒩 1
𝑛1+1f

1

𝒩 2
0 f

2

𝒩 2
𝑛2+1f

2

...
𝒩 𝐿

0 f
𝐿

⎞
⎟⎟⎟⎟⎟⎠
. (2.86)

The resulting matrix equations are as follows.

Definition 9. We define the polarized system completed with jump conditions as

Mu =

[︂
M↓ M↑

M0
↓ M0

↑

]︂
u =

(︂
−f
−f0

)︂
. (2.87)

By construction, the system given by Eq. 2.87 has identities at the same locations
as Eq. 2.76. The same row permutation P as before will result in triangular diagonal

47

blocks with identity blocks on the diagonal:

P

[︂
M↓ M↑

M0
↓ M0

↑

]︂
u =

(︀
Djump + Rjump)︀u = P

(︂
−f
−f0

)︂
, (2.88)

where,

Djump =

[︂
D↓,jump 0

0 D↑,jump

]︂
, Rjump =

[︂
0 Ujump

Ljump 0

]︂
. (2.89)

We can observe the sparsity pattern in Fig 2-6 (right).

Figure 2-6: Left: Sparsity pattern of the system in Eq. 2.87. Right: Sparsity pattern
of the permuted system in Eq. 2.89.

For reference, here is the explicit form of the blocks of Djump.

D↓,jump =
1

ℎ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−I 0 0 0 0 0 0
0 −I 0 0 0 0 0

G2
𝑛,1 −G2

𝑛,0 −I 0 0 0 0

G2
𝑛+1,1 −G2

𝑛+1,0 0 −I 0 0 0

0
. . .

. . .
. . .

. . . 0 0

0 0 0 G𝐿−1
𝑛,1 −G𝐿−1

𝑛,0 −I 0

0 0 0 G𝐿−1
𝑛+1,1 −G𝐿−1

𝑛+1,0 0 −I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.90)

D↑,jump =
1

ℎ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−I 0 −G2
0,𝑛+1 G2

0,𝑛 0 0 0

0 −I −G2
1,𝑛+1 G2

1,𝑛 0 0 0

0 0
. . .

. . .
. . .

. . . 0

0 0 0 −I 0 −G𝐿−1
0,𝑛+1 G𝐿−1

0,𝑛

0 0 0 0 −I −G𝐿−1
1,𝑛+1 G𝐿−1

1,𝑛

0 0 0 0 0 −I 0
0 0 0 0 0 0 −I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.91)

48

Ljump =
1

ℎ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G2
0,1 −G2

0,0 −G2
0,𝑛+1 G2

0,𝑛 0 0

G2
1,1 −G2

1,0 − I −G2
1,𝑛+1 G2

1,𝑛 0 0

0
. . .

. . .
. . . 0 0

0 0 G𝐿−1
0,1 −G𝐿−1

0,0 −G𝐿−1
0,𝑛+1 G𝐿−1

0,𝑛

0 0 G𝐿−1
1,1 −G𝐿−1

1,0 − I −G𝐿−1
1,𝑛+1 G𝐿−1

1,𝑛

0 0 0 0 G𝐿
0,1 −G𝐿

0,0

0 0 0 0 G𝐿
1,1 −G𝐿

1,0 − I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.92)

and

Ujump =
1

ℎ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−G1
𝑛,𝑛+1 − I G1

𝑛,𝑛 0 0 0 0

−G1
𝑛+1,𝑛+1 G1

𝑛+1,𝑛 0 0 0 0

G2
𝑛,1 −G2

𝑛,0 − I −G2
𝑛,𝑛+1 G2

𝑛,𝑛 0 0

G2
𝑛+1,1 −G2

𝑛+1,0 −G2
𝑛+1,𝑛+1 G2

𝑛+1,𝑛 0 0

0
. . .

. . .
. . . 0 0

0 0 G𝐿−1
𝑛,1 −G𝐿−1

𝑛,0 − I −G𝐿−1
𝑛,𝑛+1 G𝐿−1

𝑛+1,𝑛

0 0 G𝐿−1
𝑛+1,1 −G𝐿−1

𝑛+1,0 −G𝐿−1
𝑛+1,𝑛+1 G𝐿−1

𝑛+1,𝑛

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (2.93)

The formulations given by Eq. 2.76 and Eq. 2.87 are equivalent. The following
lemma can be proved from Lemma 2 and Lemma 6.

Proposition 1. u is solution to the system in Def. 8 if and only if u is solution to
the system in Def. 9.

The numerical claims of this Chapter concern the system in Eq. 2.88, and pre-
conditioned with the direct inversion of Djump defined by Eq. 2.89.

2.4 Preconditioners

2.4.1 Jacobi Iteration

In this section we let D for either Djump or Dextrap. While we mostly use the jump
formulation in practice, the structure of the preconditioner is common to both for-
mulations.

Inverting any such D is trivial using block back-substitution for each block D↓,
D↑, because they have a triangular structure, and their diagonals consist of identity
blocks. Physically, the inversion of D results in two sweeps of the domain (top-down
and bottom-up) for computing transmitted waves from incomplete Green’s formulas.
This procedure is close enough to Gauss-Seidel to be referred to as such7.

Algorithm 3. Jacobi iteration
1: function u = Jacobi(f , 𝜖tol)
2: u0 = (u↓,u↑)𝑡 = 0
3: while ‖u𝑛+1 − u𝑛‖/‖u𝑛‖ > 𝜖tol do
4: u𝑛+1 = (D)−1(P ̃︀f −R u𝑛)
5: end while
6: u = u↑,𝑛 + u↓,𝑛

7Another possibility would be to call it a multiplicative Schwarz iteration.

49

7: end function

Alg. 3 is generic: the matrices D and R can either arise from Def. 8 or Def. 9;
and ̃︀f can either be (f , 0)𝑡 or (f , f0)

𝑡 depending on the system being solved.

2.4.2 GMRES

Alg. 3 is primarily an iterative solver for the discrete integral system given by Def. 4,
and can be seen as only using the polarized system given by Eq. 2.87 in an auxiliary
fashion. Unfortunately, the number of iterations needed for Alg. 3 to converge to a
given tolerance often increases as a fractional power of the number of sub-domains.
We address this problem by solving Eq. 2.87 in its own right, using GMRES combined
with Alg. 3 as a preconditioner. As we illustrate in the sequel, the resulting number of
iterations is now roughly constant in the number of subdomains. The preconditioner
is defined as follows.

Algorithm 4. Block-Jacobi Preconditioner
1: function u = Preconditioner(̃︀f , 𝑛it)
2: u0 = (u↓,u↑)𝑡 = 0
3: for 𝑛 = 0, 𝑛 < 𝑛it, 𝑛+ + do
4: u𝑛+1 = (D)−1(P ̃︀f −R u𝑛)
5: end for
6: u = u𝑛it

7: end function

If we suppose that 𝑛it = 1 (good choices are 𝑛it = 1 or 2), then the convergence
of preconditioned GMRES will depend on the clustering of the eigenvalues of

(D)−1 P M = 𝐼 + (D)−1R =

[︂
𝐼 (D↓)−1U

(D↑)−1L 𝐼

]︂
. (2.94)

We can compute these eigenvalues from the zeros of the characteristic polynomial.
Using a well-known property of Schur complements, we get

det((D)−1 P M− 𝜆𝐼) = det(𝐼 − 𝜆𝐼) det
(︀
𝐼 − 𝜆𝐼 −

(︀
(D↑)−1L(𝐼 − 𝜆𝐼)−1(D↓)−1U

)︀)︀
.

(2.95)
This factorization means that half of the eigenvalues are exactly one. For the remain-
ing half, we write the characteristic polynomial as

det
(︀
(𝐼 − 𝜆𝐼)2 −

(︀
(D↑)−1L(D↓)−1U

)︀)︀
. (2.96)

Let 𝜇 = (1− 𝜆)2, and consider the new eigenvalue problem

det
(︀
𝜇𝐼 −

(︀
(D↑)−1L (D↓)−1U

)︀)︀
= 0. (2.97)

Hence the eigenvalues of (D)−1 P M are given by 1 and 1 ± √𝜇𝑖, where 𝜇𝑖 are
the eigenvalues of (D↑)−1L (D↓)−1U, and ±√𝜇𝑖 is either complex square root of 𝜇𝑖.

50

Notice that ±√𝜇𝑖 coincide with the eigenvalues of the iteration matrix (D)−1R of
the Gauss-Seidel method.

The smaller the bulk of the |𝜇𝑖|, the more clustered 1±√𝜇𝑖 around 1, the faster the
convergence of preconditioned GMRES. This intuitive notion of clustering is robust
to the presence of a small number of outliers with large |𝜇𝑖|. The spectral radius
𝜌 ((D)−1R) = max𝑖

√︀
|𝜇𝑖|, however, is not robust to outlying 𝜇𝑖, hence our remark

about preconditioned GMRES being superior to Gauss-Seidel. These outliers do occur
in practice in heterogeneous media; see Fig. 2-8.

To give a physical interpretation to the eigenvalues 𝜇𝑖 of (D↑)−1L (D↓)−1U, con-
sider the role of each block:

∙ U maps u↑ to u↓ traces within a layer; it takes into account all the reflections
and other scattering phenomena that turn waves from up-going to down-going
inside the layer. Vice-versa for L, which maps down-going to up-going traces.

∙ (D↓)−1 maps down-going traces at interfaces to down-going traces at all the
other layers below it; it is a transmission of down-going waves in a top-down
sweep of the domain. Vice-versa for (D↑)−1, which transmits up-going waves
in a bottom-up sweep. It is easy to check that transmission is done via the
computation of incomplete discrete GRF.

Hence the combination (D↑)−1L (D↓)−1U generates reflected waves from the hetero-
geneities within a layer, propagates them down to every other layer below it, reflects
them again from the heterogeneities within each of those layers, and propagates the
result back up through the domain. The magnitude of the succession of these oper-
ations is akin to a coefficient of “double reflection" accounting for scattering through
the whole domain. We therefore expect the size of the eigenvalues |𝜇𝑖| to be propor-
tional to the strength of the medium heterogeneities, including how far the PML are
to implementing absorbing boundary conditions. The numerical exeriments support
this interpretation.

As an example, Fig. 2-7 shows the eigenvalues of (D)−1 P M when the media is
homogeneous, but with a PML of varying quality. Fig 2-8 shows the eigenvalues of
(D)−1 P M in a rough medium, and again with PML of varying quality.

We can expect that, as long as the medium is free of resonant cavities, the eigen-
values of the preconditioned matrix will cluster around 1, implying that GMRES will
converge fast. Assuming that the reflection coefficients depend weakly on the fre-
quency, we can expect that the performance of the preconditioner will deteriorate no
more than marginally as the frequency increases.

51

Figure 2-7: Eigenvalues in the complex plane (the abscissa and ordinate present
the real and imaginary part respectively) of preconditioned boundary system, for a
homogeneous media , 𝐿 = 3, 𝑛 =, 𝜔 = 30; and 5 (left), 30 (center) and 100 (right)
PML points. Notice the scale of the axes.

Figure 2-8: Eigenvalues in the complex plane (the abscissa and ordinate present the
real and imaginary part respectively) of the preconditioned boundary system for the
Marmousi2 model (Fig. 2-12), 𝐿 = 3, 𝑛 = 300, 𝜔 = 30; and 5 (left), 30 (center) and
100 (right) PML points.

2.5 Partitioned low-rank matrices
Let 𝑛 ∼

√
𝑁 for the number of points per dimension, and 𝐿 be the number of

subdomains. So far, the complexity of solving the discrete integral system in polarized
form, assuming a constant number of preconditioned GMRES iterations, is dominated
by the application of D−1 and R in the update step u𝑛+1 = (D)−1(P ̃︀f − R u𝑛).
Each of the 𝒪(𝐿) nonzero blocks of D−1 and R is 𝑛-by-𝑛. A constant number of
applications of these matrices therefore results in a complexity that scales as 𝒪(𝑛2𝐿).
This scaling is at best linear in the number 𝑁 of volume unknowns.

It is the availability of fast algorithms for D−1 and R, i.e., for the blocks of M,
that can potentially lower the complexity of solving Eq. 2.41 down to sublinear in
𝑁 . In this setting, the best achievable complexity would be 𝒪(𝑛𝐿) – the complexity
of specifying 𝒪(𝐿) traces of size 𝒪(𝑛). As mentioned earlier, the overall online com-
plexity can be sublinear in 𝑁 if we parallelize the operations of reading off f in the

52

volume, and forming the volume unknowns u from the traces.
We opt for what is perhaps the simplest and best-known algorithm for fast ap-

plication of arbitrary kernels in discrete form: an adaptive low-rank partitioning of
the matrix. This choice is neither original nor optimal in the high-frequency regime,
but it gives rise to elementary code. More sophisticated approaches have been pro-
posed elsewhere, including by one of us in [28], but the extension of those ideas to the
kernel-independent framework is not immediate. This section is therefore added for
the sake of algorithmic completeness, and for clarification of the ranks and complexity
scalings that arise from low-rank partitioning in the high-frequency regime.

2.5.1 Compression

The blocks of M, which stem from the discretization of interface-to-interface oper-
ators, are compressed using the recursive Alg. 5. The result of this algorithm is
a quadtree structure on the original matrix, where the leaves are maximally large
square submatrices with fixed 𝜖-rank. We follow [18] in calling this structure parti-
tioned low-rank (PLR). An early reference for PLR matrices is the work of Jones,
Ma, and Rokhlin in 1994 [86]. PLR matrices are a special case of ℋ-matrices8.

It is known [9], that the blocks of matrices such as M can have low rank, provided
they obey an admissibility condition that takes into account the distance between
blocks. In regimes of high frequencies and rough heterogeneous media, this admissi-
bility condition becomes more stringent in ways that are not entirely understood yet.
See [28, 52] for partial progress.

Neither of the usual non-adaptive admissibility criteria seems adequate in our
case. The “nearby interaction" blocks (from one interface to itself) have a singularity
along the diagonal, but tend to otherwise have large low-rank blocks in media close
to uniform [96]. The “remote interaction" blocks (from one interface to the next)
do not have the diagonal problem, but have a wave vector diversity that generates
higher ranks. Adaptivity is therefore a very natural choice, and is not a problem in
situations where the only operation of interest is the matrix-vector product.

For a fixed accuracy 𝜖 and a fixed rank 𝑟max, we say that a partition is admissible
if every block has 𝜖-rank less or equal than 𝑟max. Alg. 5 finds the smallest admissible
partition within the quadtree generated by recursive dyadic partitioning of the indices.

Algorithm 5. Partitioned Low Rank matrix
1: function H = PLR(𝑀 , 𝑟max, 𝜖)
2: [𝑈,Σ, 𝑉] = svds(𝑀, 𝑟max + 1)
3: if Σ(𝑟max + 1, 𝑟max + 1) < 𝜖 then
4: H.data = {𝑈 · Σ, 𝑉 𝑡}
5: H.id = ‘c’ ◁ leaf node
6: else

7: 𝑀 =

[︂
𝑀1,1 𝑀1,2

𝑀2,1 𝑀2,2

]︂
◁ block partitioning

8We reserve the term ℋ-matrix for hierarchical structures preserved by algebraic operations like
multiplication and inversion, like in [9].

53

8: for i = 1:2 do
9: for j = 1:2 do

10: H.data{i,j} = PLR(𝑀𝑖,𝑗, 𝑟max, 𝜖)
11: end for
12: end for
13: H.id = ‘h’ ◁ branch node
14: end if
15: end function

Fig. 2-9 depicts the hierarchical representation of a PLR matrix of the compressed
matrix for the nearby interactions (left) and the remote interactions (right). Once
the matrices are compressed in PLR form, we can easily define a fast matrix-vector
multiplication using Alg. 6.

Algorithm 6. PLR-vector Multiplication
1: function y = matvec(x)
2: if H.id == ‘c’ then ◁ If leaf node
3: y = H.data{1}·(H.data{2}·x) ◁ perform mat-vec using SVD factors
4: else ◁ If branch node
5: for i = 1:2 do ◁ recurse over children
6: y1+=matvec(H.data{i,1},x1:end/2)
7: y2+=matvec(H.data{i,2},xend/2:end)
8: end for

9: y =
[︂
y1
y2

]︂
◁ concatenate solution from recursion

10: end if
11: end function

Figure 2-9: Illustration of compressed Green’s matrices in PLR form (𝜖-ranks ≤ 10,
𝜖 = 10−9). Each color represents a different numerical rank. Left: nearby interactions.
Right: remote interactions.

54

Alg. 6 yields a fast matrix vector multiplication; however, given its recursive na-
ture the constant for the scaling can become large. This phenomenon is overwhelming
if Alg. 6 is implemented in a scripting language such as MATLAB or Python. In
the case of compiled languages, recursions tend to not be correctly optimized by the
compiler, increasing the constant in front of the asymptotic complexity scaling. To
reduce the constants, the PLR matrix-vector multiplication was implemented via a
sparse factorization as illustrated by Fig 2-10. This factorization allows us to take
advantage of highly optimized sparse multiplication routines. An extra advantage of
using such routines is data locality and optimized cache management when perform-
ing several matrix-vector multiplications at the same time, which can be performed
as a matrix-matrix multiplication. This kind of sparse factorization is by no means
new; we suggest as a reference Section 4 in [1].

The maximum local rank of the compression scheme can be seen as a tuning
parameter. If it is too small, it will induce small off-diagonal blocks, hindering com-
pression and deteriorating the complexity of the matrix-vector multiplication. On the
other hand, a large maximum rank will induce a partition with big dense diagonal
blocks that should be further compressed, resulting in the same adverse consequences.

PLR U · V 0

Figure 2-10: Illustration of the sparse form of a PLR matrix. Left: PLR matrix.
Right: its sparse factorization form.

2.5.2 Compression scalings

It is difficult to analyze the compressibility of Green’s functions without access to an
explicit formula for their kernel. In this section we make the assumption of smooth
media and single-valued traveltimes, for which a geometrical optics approximation
such as

𝐺(x,y;𝜔) ≃ 𝑎𝜔(x,y)𝑒𝑖𝜔𝜏(x,y), (2.98)

holds. Here 𝜏(x,y) solves an eikonal equation; and 𝑎𝜔(x,y) is an amplitude factor,
smooth except at x = y, and with a minor9 dependence on 𝜔. Assume that both 𝑎

9In the standard geometrical optics asymptotic expansion, 𝑎 ∼∑︀𝑗≥0 𝑎𝑗𝜔
−𝑗 is polyhomogeneous

with increasingly negative orders in 𝜔.

55

and 𝜏 are 𝐶∞
x,y away from 𝑥 = 𝑦, with smoothness constants bounded independently

of 𝜔.
The following result is a straightforward generalization of a result in [28, 52] and

would be proved in much the same way.

Lemma 7. (High-frequency admissibility condition) Consider 𝐺 as in Eq. 2.98, with
x ∈ 𝐴 and y ∈ 𝐵 where 𝐴 and 𝐵 are two rectangles. Let 𝑑𝐴, 𝑑𝐵 be the respective
diameters of 𝐴 and 𝐵. If

𝑑𝐴𝑑𝐵 ≤
dist(𝐴,𝐵)

𝜔
,

then the 𝜖-rank of the restriction of 𝐺 to 𝐴× 𝐵 is, for some 𝑅𝜖 > 0, bounded by 𝑅𝜖

(independent of 𝜔).

The scaling is tight given the geometry of the problem. When dealing with 1D
geometries and uniform media as in [96] we can observe better scalings. For a more
comprehensive analysis of the different scalings depending on the geometry see [61].

In our case, we refer to “nearby interactions" as the case when x and y are on
the same interface (horizontal edge), and “remote interactions" when x and y are on
opposite horizontal edges of a layer Ωℓ. In both cases, 𝐴 and 𝐵 are 1D segments, but
the geometry is 2D for the remote interactions. Our partitioning scheme limits 𝐴 and
𝐵 to have the same length 𝑑𝐴 = 𝑑𝐵, hence the lemma implies that low ranks can in
general only occur provided

𝑑𝐴 ≤ 𝐶
1√
𝜔
.

In other words, 𝑑𝐴 is at best proportional to the square root of the (representative)
spatial wavelength, and even smaller when 𝐴 and 𝐵 are close. A square block of
the discrete G with 𝑑𝐴 ∼ 1√

𝜔
, on a grid with 𝑛 points per dimension, would be of

size ∼ 𝑛√
𝜔
× 𝑛√

𝜔
. We call such a block representative; it suffices to understand the

complexity scalings under the assumption that all blocks are representative10.
Let 𝜔 ∼ 𝑛𝜌 for some 𝜌 such as 1

2
or 1. This implies that the representative block

of G has size 𝑛1−𝜌/2 × 𝑛1−𝜌/2 (where we drop the constants for simplicity). Given
that the 𝜖-rank is bounded by 𝑅𝜖, this block can be compressed using Alg 5 in two
matrices of size 𝑛1−𝜌/2 ×𝑅𝜖 and 𝑅𝜖 × 𝑛1−𝜌/2. We have 𝒪(𝑛𝜌) such blocks in G.

We can easily compute an estimate for the compression ratio; we need to store
𝒪(2𝑅𝜖𝑛

1+𝜌/2) complex numbers for the PLR compressed G. Thus, the compression
ratio is given by 2𝑅𝜖𝑛1+𝜌/2

𝑛2 ∼ 𝑛𝜌/2−1.
Moreover, multiplying each block by a vector has asymptotic complexity 2𝑅𝜖𝑛

1−𝜌/2,
so that the overall asymptotic complexity of the PLR matrix vector multiplication is
given by 2𝑅𝜖𝑛

1+𝜌/2.
If 𝜌 = 1/2 and 𝑁 ∼ 𝑛2, we have that the asymptotic complexity of the PLR

matrix-vector multiplication is given by 2𝑅𝜖𝑛
5/4 ∼ 𝑁5/8. If 𝜌 = 1, the complexity

becomes ∼ 𝑁3/4.
10The complexity overhead generated by smaller blocks close to the diagonal only increase the

overall constant, not the asymptotic rate, much as in the fast multipole method.

56

Step Analytic Finite Differences
𝜔 ∼ √𝑛 | 𝑟 ∼ 1 𝒪(𝑁5/8) 𝒪(𝑁3/4)

𝜔 ∼ 𝑛 | 𝑟 ∼ 1 𝒪(𝑁3/4) 𝒪(𝑁7/8)

𝜔 ∼ √𝑛 | 𝑟 ∼ √𝑛
[︀
𝒪(𝑁5/8)

]︀
→ 𝒪(𝑁3/4)

[︀
𝒪(𝑁5/8)

]︀

𝜔 ∼ 𝑛 | 𝑟 ∼ √𝑛
[︀
𝒪(𝑁7/8)

]︀
→ 𝒪(𝑁)

[︀
𝒪(𝑁7/8)

]︀

Table 2.4: Compression scaling for the remote interactions, sampling a typical os-
cillatory kernel (Analytic) and using the finite differences approximation (FD). The
observed pre-asymptotic complexities are in square brackets.

The estimate for the asymptotic complexity relies on a perfect knowledge of the
phase functions, which is unrealistic for a finite difference approximation of the
Green’s functions. We empirically observe a deterioration of these scalings due to
the discretization error, as shown in Table 2.4.

One possible practical fix for this problem is to allow the maximum ranks in the
compression to grow as

√
𝑛. This small adjustment allows us to reduce the complexity

in our numerical experiments; though the theoretical predictions of those scalings
(from a completely analogous analysis) are quite unfavorable. The scalings we observe
numerically are reported in square brackets in the table. They are pre-asymptotic
and misleadingly good: if the frequency and 𝑁 were both increased, higher scaling
exponents would be observed11. The correct numbers are without square brackets.

2.6 Computational Complexity

The complexities of the various steps of the algorithm were presented in section
2.1.3 and are summarized in Table 2.1. In this section we provide details about the
heuristics and evidence supporting these complexity claims.

2.6.1 Computational cost

For the five-point discretization of the 2D Laplacian, the sparse LU factorization with
nested dissection is known to have 𝒪(𝑁3/2) complexity, and the back-substitution is
known to have linear complexity up to logarithmic factors, see [74, 81]. Given that
each sub-domain has size 𝒪(𝑁/𝐿), the factorization cost is 𝒪((𝑁/𝐿)3/2). More-
over, given that the factorizations are completely independent, they can be computed
simultaneously in 𝐿 different nodes. We used the stored LU factors to compute,
by back-substitution, the local solutions needed for constructing the right-hand side
of Eq. 2.41 and the reconstruction of the local solutions, leading to a complexity
𝒪(𝑁 log(𝑁)/𝐿) per solve. The local solves are independent and can be performed in
𝐿 different nodes.

11The same pre-asymptotic phenomenon occurs in the 𝑛-by-𝑛 FFT matrix: a block of size 𝑛/2 by
𝑛/2 will look like it has 𝜖-rank 𝒪(𝑛7/8), until 𝑛 ∼ 214 and beyond, where the 𝜖-rank because very
close to 𝑛/4.

57

To compute the Green’s functions from the LU factors, we need to perform 𝒪(𝑛)
solves per layer. Each solve is completely independent of the others, and they can be
carried in parallel in 𝑛𝐿 different processors. We point out that there is a clear trade-
off between the parallel computation of the Green’s functions and the communication
cost. It is possible to compute all the solves of a layer in one node using shared
memory parallelism, which reduces scalability; or compute the solves in several nodes,
which increases scalability but increases the communication costs. The best balance
between both approaches will heavily depend on the architecture and we leave the
details out of this presentation.

We point out that the current complexity bottleneck is the extraction of the
Green’s functions. It may be possible to reduce the number of solves to a fractional
power of 𝑛 using randomized algorithms such as [91]); or to 𝒪(1) solves, if more
information of the underlying PDE is available or easy to compute (see [10]).

Once the Green’s matrices are computed, we use Alg. 5 to compress them. A
simple complexity count indicates that the asymptotic complexity of the recursive
adaptive compression is bounded by 𝒪((𝑁 log(𝑁))) for each integral kernel12. The
compression of each integral kernel is independent of the others, and given that the
Green’s functions are local to each node, no communication is needed.

There are two limitations to the compression level of the blocks of M. One
is theoretical, and was explained in section 2.5.2; while the second is numerical.
In general, we do not have access to the Green’s functions, only to a numerical
approximation, and the numerical errors present in those approximations hinder the
compressibility of the operators for large 𝜔. Faithfulness of the discretization is the
reason why we considered milder scalings of 𝜔 as a function of 𝑛, such as 𝜔 ∼ √𝑛, in
the previous section 13.

With the scaling 𝜔 ∼ √𝑛, we have that the complexity of matrix-vector product
is dominated by 𝒪(𝑁5/8) for each block of M (see subsection 2.5.2). Then, the
overall complexity of the GMRES iteration is 𝒪(𝐿𝑁5/8), provided that the number
of iterations remains bounded.

Within an HPC environment we are allowed to scale 𝐿, the number of sub-
domains, as a small fractional power of 𝑁 . If 𝐿 ∼ 𝑁 𝛿, then the overall execution time
of the online computation, take away the communication cost, is 𝒪(𝑁max(𝛿+5/8,(1−𝛿))).
Hence, if 0 < 𝛿 < 3/8, then the online algorithm runs in sub-linear time. In particu-
lar, if 𝛿 = 3/16, then the runtime of the online part of the solver becomes 𝒪(𝑁13/16)
plus a sub-linear communication cost.

If the matrix-vector product is𝒪(𝑁3/4) (a more representative figure in Table 2.4),
then the same argument leads to 𝛿 = 1/8 and an overall online runtime of 𝒪(𝑁7/8).

12Assuming the svds operation is performed with a randomized SVD.
13To deduce the correct scaling between 𝜔 and 𝑛, we use the fact that the second order five point

stencil scheme has a truncation error dominated by ℎ2(𝜕4
𝑥 + 𝜕4

𝑦)𝑢 ∼ (𝜔/𝑐)4ℎ2. Given that ℎ ∼ 1/𝑛,
we need 𝜔 ∼ √𝑛 in order to have a bounded error in the approximation of the Green’s function. In
general, the scaling needed for a p-th order scheme to obtain a bounded truncation error is 𝜔 ∼ 𝑛

𝑝
𝑝+2 .

58

2.6.2 Communication cost

We use a commonly-used communication cost model ([6, 53, 111, 136]) to perform
the cost analysis. The model assumes that each process is only able to send or receive
a single message at a time. When the messages has size 𝑚, the time to communicate
that message is 𝛼 + 𝛽𝑚. The parameter 𝛼 is called latency, and represents the
minimum time required to send an arbitrary message from one process to another,
and is a constant overhead for any communication. The parameter 𝛽 is called inverse
bandwidth and represents the time needed to send one unit of data.

We assume that an interface restriction of the Green’s functions can be stored
in one node. Then, all the operations would need to be performed on distributed
arrays, and communication between nodes would be needed at each GMRES itera-
tion. However, in 2D, the data to be transmitted are only traces, so the overhead of
transmitting such small amount of information several times would overshadow the
complexity count. We gather the compressed Green’s functions in a master node and
use them as blocks to form the system M. Moreover, we reuse the compressed blocks
to form the matrices used in the preconditioner (D−1 and R).

We suppose that the squared slowness model 𝑚 and the sources f are already on
the nodes, and that the local solutions for each source will remain on the nodes to be
gathered in a post-processing step. In the context of seismic inversion this assumption
is very natural, given that the model updates are performed locally as well.

Within the offline step, we suppose that the model is already known to the nodes
(otherwise we would need to communicate the model to the nodes, incurring a cost
𝒪(𝛼+𝛽𝑁/𝐿) for each layer). The factorization of the local problem, the extraction of
the Green’s functions and their compression are zero-communication processes. The
compressed Green’s functions are transmitted to the master node, with a maximum
cost of 𝒪(𝛼 + 4𝛽𝑁) for each layer. This cost is in general lower because of the
compression of Green’s function. In summary, the whole communication cost for the
offline computations is dominated by 𝒪(𝐿(𝛼+ 4𝛽𝑁)). Using the compression scaling
for the Green’s matrices in section 2.5.2 the communication cost can be reduced.
However, it remains bounded from below by 𝒪(𝐿𝛼 + 𝛽𝑁).

For the online computation, we suppose that the sources are already distributed
(otherwise we would incur a cost 𝒪(𝛼+𝛽𝑁/𝐿) for each layer). Once the local solves,
which are zero-communication processes, are performed, the traces are sent to the
master node, which implies a cost of 𝒪(𝐿(𝛼+ 𝛽𝑁1/2)). The inversion of the discrete
integral system is performed and the traces of the solution are sent back to the nodes,
incurring another 𝒪(𝐿(𝛼+ 𝛽𝑁1/2)) cost. Finally, from the traces, the local solutions
are reconstructed and saved in memory for the final assembly in a post-processing step
not accounted for here (otherwise, if the local solutions are sent back to the master
node we would incur a 𝒪(𝛼+𝛽𝑁/𝐿) cost per layer). In summary, the communication
cost for the online computation is 𝒪(𝛼𝐿+ 𝛽𝐿𝑁1/2).

Finally, we point out that for the range of 2D numerical experiments performed
in this Chapter, the communication cost was negligible with respect to the floating
points operations.

59

2.7 Numerical Experiments
In this section we show numerical experiments that illustrate the behavior of the
proposed algorithm. Any high frequency Helmholtz solver based on domain decom-
position should ideally have three properties:

∙ the number of iterations should be independent of the number of the sub-
domains,

∙ the number of iterations should be independent of the frequency,

∙ the number of iterations should depend weakly on the roughness of the under-
lying model.

We show that our proposed algorithm satisfies the first two properties. The third
property is also verified in cases of interest to geophysicists, though our solver is not
expected to scale optimally (or even be accurate) in the case of resonant cavities.

We also show some empirical scalings supporting the sub-linear complexity claims
for the GMRES iteration, and the sub-linear run time of the online part of the solver.

The code for the experiments was written in Python. We used the Anaconda
implementation of Python 2.7.8 and the Numpy 1.8.2 and Scipy 0.14.0 libraries linked
to OpenBLAS. All the experiments were carried out in 4 quad socket servers with
AMD Opteron 6276 at 2.3 GHz and 256 Gbytes of RAM, linked with a gigabit
Ethernet connection. All the system were preconditioned by two iterations of the
Gauss-Seidel preconditioner.

2.7.1 Precomputation

To extract the Green’s functions and to compute the local solutions, a pivoted sparse
LU factorization is performed at each slab using UMFPACK [49], and the LU factors
are stored in memory. The LU factors for each slab are independent of the others,
so they can be stored in different cluster nodes. The local solves are local to each
node, enhancing the granularity of the algorithm. Then the Green’s function used to
form the discrete integral are computed by solving the local problem with columns of
the identity in the right-hand side. The computation of each column of the Green’s
function is independent of the rest and can be done in parallel (shared or distributed
memory).

Once the Green’s functions are computed, they are compressed in sparse PLR
form, following Alg. 5. M and R are implemented as a block matrices, in which
each block is a PLR matrix in sparse form. The compression is accelerated using the
randomized SVD [97]. The inversion of D is implemented as a block back-substitution
with compressed blocks.

We used a simple GMRES algorithm14 (Algorithm 6.9 in [117]). Given that the
number of iteration remains, in practice, bounded by ten, neither low rank update to
the Hessenberg matrix nor re-start are necessary.

14Some authors refer to GMRES algorithm as the Generalized conjugate residual algorithm [25],
[116]

60

𝑁 𝜔/2𝜋 [Hz] 𝐿 = 8 𝐿 = 16 𝐿 = 32 𝐿 = 64 𝐿 = 128
195× 870 5.57 (3) 0.094 (3) 0.21 (3) 0.49 (4) 1.02 (4) 2.11
396× 1720 7.71 (3) 0.14 (3) 0.32 (3) 0.69 (4) 1.55 (4) 3.47
792× 3420 11.14 (3) 0.41 (3) 0.83 (3) 1.81 (4) 3.96 (4) 9.10
1586× 6986 15.86 (3) 0.72 (3) 1.56 (3) 3.19 (4) 6.99 -

Table 2.5: Number of GMRES iterations (bold) required to reduce the relative resid-
ual to 10−7, along with average execution time (in seconds) of one GMRES iteration
for different 𝑁 and 𝐿. The solver is applied to the smooth Marmousi2 model. The
frequency is scaled such that 𝜔 ∼ √𝑛. The matrices are compressed using 𝜖 = 10−9/𝐿
and rankmax ∼

√
𝑛.

2000 4000 6000 8000 10000 12000 14000 16000

500

1000

1500

2000

2500

3000

1500

2000

2500

3000

3500

4000

4500

z
[m

]

Figure 2-11: Smooth version of the Marmousi2 model. The model was smoothed with
a box filter of size 375 meters.

2.7.2 Smooth Velocity Model

For the smooth velocity model, we choose a smoothed Marmousi2 model (see Fig.
2-11) that was partitioned in the longitudinal direction. Table 2.5 and Table 2.6 were
generated by timing 200 randomly generated right-hand-sides. Table 2.5 shows the
average runtime of one GMRES iteration, and Table 2.6 shows the average runtime
of the online part of the solver. We can observe that for the smooth case the number
of iterations is almost independent of the frequency and the number of sub-domains.
In addition, the runtimes scales sub-linearly with respect to the number of volume
unknowns.

2.7.3 Rough Velocity Model

In general, iterative solvers are highly sensitive to the roughness of the velocity model.
Sharp transitions generates strong reflections that hinder the efficiency of iterative
methods, increasing the number of iterations. Moreover, for large 𝜔, the interaction
of high frequency waves with short wavelength structures such as discontinuities,
increases the reflections, further deteriorating the convergence rate.

The performance of the method proposed in this Chapter deteriorates only marginally

61

𝑁 𝜔/2𝜋 [Hz] 𝐿 = 8 𝐿 = 16 𝐿 = 32 𝐿 = 64 𝐿 = 128
195× 870 5.57 0.36 0.72 1.53 3.15 7.05
396× 1720 7.71 0.79 1.26 2.35 4.99 11.03
792× 3420 11.14 2.85 3.69 6.41 13.11 28.87
1586× 6986 15.86 9.62 9.76 13.85 25.61 -

Table 2.6: Average execution time (in seconds) for the online computation, with a
GMRES tolerance of 10−7, for different 𝑁 and 𝐿. The solver is applied to the smooth
Marmousi2 model. The frequency is scaled such that 𝜔 ∼ √𝑛. The matrices are
compressed using 𝜖 = 10−9/𝐿 and rankmax ∼

√
𝑛.

as a function of the frequency and number of subdomains.

0 2000 4000 6000 8000 10000 12000 14000 16000

0

500

1000

1500

2000

2500

3000 1500

2000

2500

3000

3500

4000

4500

z
[m

]

Figure 2-12: Geophysical benchmark model Marmousi2; the wave speed is in meters
per second.

We use the Marmousi2 model [95], and another geophysical community bench-
mark, the BP 2004 model [19], depicted in Fig. 2-12 and Fig. 2-13 respectively,
both are partitioned in the longitudinal direction in order to obtain a smaller integral
system to solve.

Tables 2.7, 2.8, 2.9, and 2.10 were generated by running 200 randomly generated
right hand sides inside the domain. The number of points for the perfectly matched
layers is increased linearly with 𝑛. From Table 2.5 and Table 2.9 we can observe that,
in general, the number of iteration to convergence grows slowly. We obtain slightly
worse convergence rates if the number of points of the PML increases slowly or if it
remains constant. This observation was already made in [128] and [112]. However,
the asymptotic complexity behavior remains identical; only the constant changes.

The runtime for one GMRES iteration exhibits a slightly super-linear growth
when 𝐿, the number of sub-domains, is increased to be a large fraction of 𝑛. This is
explained by the different compression regimes for the interface operators and by the
different tolerances for the compression of the blocks. When the interfaces are very
close to each other the interactions between the source depths and the target depths
increases, producing higher ranks on the diagonal blocks of the remote interactions.

Tables 2.8 and 2.10 show that the average runtime of each solve scales sublinearly
with respect to the volume unknowns.

62

0 1 2 3 4 5 6

x 10
4

0

2000

4000

6000

8000

10000

1500

2000

2500

3000

3500

4000

4500

z
[m

]

Figure 2-13: Geophysical benchmark model BP 2004 [19].

𝑁 𝜔/2𝜋 [Hz] 𝐿 = 8 𝐿 = 16 𝐿 = 32 𝐿 = 64 𝐿 = 128
195× 870 5.57 (5) 0.08 (5) 0.18 (5) 0.41 (6) 0.87 (6) 1.83
396× 1720 7.71 (5) 0.17 (6) 0.41 (6) 0.88 (6) 2.06 (7) 4.57
792× 3420 11.14 (5) 0.39 (6) 0.85 (6) 1.82 (6) 4.06 (7) 9.51
1586× 6986 15.86 (5) 0.94 (6) 1.89 (6) 4.20 (6) 9.41 (7) 21.10

Table 2.7: Number of GMRES iterations (bold) required to reduce the relative resid-
ual to 10−7, along with average execution time (in seconds) of one GMRES iteration
for different 𝑁 and 𝐿. The solver is applied to the Marmousi2 model. The frequency
is scaled such that 𝜔 ∼ √𝑛. The matrices are compressed using 𝜖 = 10−9/𝐿 and
rankmax ∼

√
𝑛.

Table 2.12 and Table 2.11 illustrate the maximum and minimum number of itera-
tions and the average runtime of one GMRES iteration in the high frequency regime,
i.e. 𝜔 ∼ 𝑛. We can observe that the number of iterations are slightly higher but
with a slow growth. Moreover, we can observe the slightly sub-linear behavior of the
runtimes, which we called the pre-asymptotic regime in Section 2.5.

Finally, Fig. 2-15 summarizes the scalings for the different stages of the computa-
tion for fixed 𝐿. For a small number of unknowns the cost is dominated by the solve
of the integral system – a case in which the online part seems to have a sub-linear
complexity. However, after this pre-asymptotic regime, the LU solve dominates the
complexity, so it is lower-bounded by the 𝒪(𝑁 log(𝑁)/𝐿) runtime. The GMRES
timing is still in the pre-asymptotic regime, but the complexity would probably de-
teriorate to 𝒪(𝑁3/4) for frequencies high enough. The complexity of the online part
is non-optimal given that we only used a fixed number or layers and processors. (We
do not advocate choosing such small 𝐿.)

63

𝑁 𝜔/2𝜋 [Hz] 𝐿 = 8 𝐿 = 16 𝐿 = 32 𝐿 = 64 𝐿 = 128
195× 870 5.57 0.47 0.99 2.15 4.53 10.94
396× 1720 7.71 1.30 2.36 5.04 12.66 29.26
792× 3420 11.14 3.82 5.62 11.45 25.78 64.01
1586× 6986 15.86 13.68 16.08 28.78 62.45 145.98

Table 2.8: Average execution time (in seconds) for the online computation, with a
tolerance on the GMRES of 10−7, for different 𝑁 and 𝐿. The solver is applied to
the Marmousi2 model. The frequency is scaled such that 𝜔 ∼ √𝑛. The matrices are
compressed using 𝜖 = 10−9/𝐿 and rankmax ∼

√
𝑛.

𝑁 𝜔/2𝜋 𝐿 = 8 𝐿 = 16 𝐿 = 32 𝐿 = 64 𝐿 = 128
136× 354 1.18 (6) 0.07 (6) 0.18 (7) 0.38 (7) 0.80 (8) 1.58
269× 705 1.78 (6) 0.10 (6) 0.22 (7) 0.50 (8) 1.07 (8) 2.22
540× 1411 2.50 (6) 0.22 (7) 0.52 (7) 1.22 (7) 2.80 (9) 5.97
1081× 2823 3.56 (7) 0.38 (7) 0.87 (8) 1.93 (8) 4.33 (9) 10.07

Table 2.9: Number of GMRES iterations (bold) required to reduce the relative resid-
ual to 10−7, along with average execution time (in seconds) of one GMRES iteration
for different 𝑁 and 𝐿. The solver is applied to the BP 2004 model. The frequency
is scaled such that 𝜔 ∼ √𝑛. The matrices are compressed using 𝜖 = 10−9/𝐿 and
rankmax ∼

√
𝑛.

Figure 2-14: Real part of wavefield generated by a point source at 15.86 [Hz] with
the Marmousi2 model [95] as a background model.

64

105 106

N=n2

10-1

100

101

102

103

104

t[
s]

Gmres time (one iteration)

Online time

Offline time

O(N5/8)

O(N)

O(N3/2)

Figure 2-15: Run-time with their empirical complexities, for the Marmousi2 model
with 𝐿 = 3 and 𝜔 ∼ √𝑛 and maxrank ∼

√
𝑛.

105 106

N=n2

10-1

100

101

102

103

104

t[
s]

Gmres time (one iteration)

Online time

Offline time

O(N7/8)

O(N)

O(N3/2)

Figure 2-16: Run-times and empirical complexities, for the Marmousi2 model with
𝐿 = 3 and 𝜔 ∼ 𝑛 and maxrank ∼

√
𝑛.

65

𝑁 𝜔/2𝜋 [Hz] 𝐿 = 8 𝐿 = 16 𝐿 = 32 𝐿 = 64 𝐿 = 128
136× 354 1.18 0.45 1.09 2.69 5.67 12.44
269× 705 1.78 0.70 1.44 3.45 7.86 17.72
540× 1411 2.50 1.85 3.74 8.83 20.09 48.86
1081× 2823 3.56 4.93 7.87 15.91 35.69 83.63

Table 2.10: Average execution time (in seconds) for the online computation, with a
tolerance on the GMRES of 10−7, for different 𝑁 and 𝐿. The solver is applied to
the BP 2004 model. The frequency is scaled such that 𝜔 ∼ √𝑛. The matrices are
compressed using 𝜖 = 10−9/𝐿 and rankmax ∼

√
𝑛.

𝑁 𝜔/2𝜋 [Hz] 𝐿 = 8 𝐿 = 16 𝐿 = 32 𝐿 = 64 𝐿 = 128
195× 870 7.2 (5) 0.08 (5) 0.19 (6) 0.40 (6) 0.83 (6) 1.74
396× 1720 15 (5) 0.23 (6) 0.49 (6 0.98 (6) 2.17 (7) 5.13
792× 3420 30 (6) 0.69 (6) 1.54 (7) 2.48 (7) 4.93 (8) 10.64
1586× 6986 60 (6) 2.29 (6) 5.04 (7) 8.47 (8) 14.94 -

Table 2.11: Number of GMRES iterations (bold) required to reduce the relative
residual to 10−7, along with average execution time (in seconds) of one GMRES
iteration for different 𝑁 and 𝐿. The solver is applied to the Marmousi2 model. The
frequency is scaled such that 𝜔 ∼ 𝑛. The matrices are compressed using 𝜖 = 10−9/𝐿
and rankmax ∼

√
𝑛.

Figure 2-17: Wavefield generated by a point source at 60 [Hz] with the Marmousi2
model [95] as a background model; the red boundary indicates the global PML used.

66

𝑁 𝜔/2𝜋 [Hz] 𝐿 = 8 𝐿 = 16 𝐿 = 32 𝐿 = 64 𝐿 = 128
136× 354 1.4 (6) 0.073 (7) 0.18 (8) 0.37 (8) 0.84 (9) 1.52
269× 705 2.7 (7) 0.10 (7) 0.23 (7) 0.50 (9) 1.10 (9) 2.14
540× 1411 5.5 (7) 0.32 (8) 0.64 (9) 1.30 (9) 3.06 (12) 6.22
1081× 2823 11.2 (7) 0.87 (8) 1.46 (9) 2.78 (10) 5.75 (12) 12.7

Table 2.12: Number of GMRES iterations (bold) required to reduce the relative
residual to 10−7, along with average execution time (in seconds) of one GMRES
iteration for different 𝑁 and 𝐿. The solver is applied to the BP 2004 model. The
frequency is scaled such that 𝜔 ∼ 𝑛. The matrices are compressed using 𝜖 = 10−9/𝐿
and rankmax ∼

√
𝑛.

67

68

Appendix

2.A Discretization

Computations for Eq. 2.26 in 1D

The stencils for the derivatives of 𝐺 and 𝑢 are given by the discrete Green’s represen-
tation formula. We present an example in 1D, which is easily generalized to higher
dimension. Let 𝑢 = {𝑢𝑖}𝑛+1

𝑖=0 and 𝑣 = {𝑣𝑖}𝑛+1
𝑖=0 . Define Ω = {1, ...𝑛} with the discrete

inner product

⟨𝑢, 𝑣⟩Ω =
𝑛∑︁

𝑖=1

𝑢𝑖𝑣𝑖.

Let △ℎ𝑢 be the three-point stencil approximation of the second derivative. I.e.
(︀
△ℎ𝑢

)︀
𝑖

= 𝑢𝑖−1 − 2𝑢𝑖 + 𝑢𝑖+1.

We can use summation by parts to obtain the expression

⟨△ℎ𝑢, 𝑣⟩Ω = ⟨𝑢,△ℎ𝑣⟩Ω−𝑣0(𝑢1−𝑢0)+𝑢0(𝑣1−𝑣0)+𝑣𝑛+1(𝑢𝑛+1−𝑢𝑛)−𝑢𝑛+1(𝑣𝑛+1−𝑣𝑛).
(2.99)

The formula above provides the differentiation rule to compute the traces and the
derivatives of 𝑢 and 𝐺 at the interfaces. For example, let 𝐺𝑘

𝑖 be the solution to 1D
discrete Helmholtz operator defined by𝐻𝐺𝑘 = (−△ℎ−𝑚𝜔2)𝐺𝑘 = 𝛿𝑘𝑖 , for 𝑗 ∈ [1, ..., 𝑛].
Then

𝑢𝑘 = ⟨𝐻𝐺𝑘, 𝑢⟩Ω = ⟨𝐺𝑘, 𝐻𝑢⟩Ω−𝐺𝑘
0(𝑢1−𝑢0)+𝑢0(𝐺𝑘

1−𝐺𝑘
0)+𝐺𝑘

𝑛+1(𝑢𝑛+1−𝑢𝑛)−𝑢𝑛+1(𝐺
𝑘
𝑛+1−𝐺𝑘

𝑛).
(2.100)

To simplify the notations we define

𝜕+𝐺0 = 𝐺1 −𝐺0, 𝜕−𝐺𝑛+1 = 𝐺𝑛+1 −𝐺𝑛, (2.101)

which are upwind derivatives with respect to Ω, i.e. they look for information inside Ω.
Let us consider a partition of Ω = Ω1∪Ω2, where Ω1 = {1, 𝑛1} and Ω2 = {𝑛1 +1, 𝑛2}.
We can define local inner products between 𝑢 and 𝑣 analogously,

⟨𝑢, 𝑣⟩Ω1 =
𝑛1∑︁

𝑖=1

𝑢𝑖𝑣𝑖, ⟨𝑢, 𝑣⟩Ω2 =
𝑛2∑︁

𝑖=𝑛1+1

𝑢𝑖𝑣𝑖,

69

in such a way that
⟨𝑢, 𝑣⟩Ω1 + ⟨𝑢, 𝑣⟩Ω2 = ⟨𝑢, 𝑣⟩Ω.

We can use summation by parts in each sub-domain, obtaining

⟨𝐻𝐺, 𝑢⟩Ω1 = ⟨𝐺,𝐻𝑢⟩Ω1 −𝐺0𝜕
+𝑢0 + 𝑢0𝜕

+𝐺0 +𝐺𝑛1+1𝜕
−𝑢𝑛1+1 − 𝑢𝑛1+1𝜕

−𝐺𝑛1+1,
(2.102)

⟨𝐻𝐺, 𝑢⟩Ω2 = ⟨𝐺,𝐻𝑢⟩Ω2 −𝐺𝑛1𝜕+𝑢𝑛1 + 𝑢𝑛1𝜕+𝐺𝑛1 +𝐺𝑛2+1𝜕
−𝑢𝑛2+1 − 𝑢𝑛2+1𝜕

−𝐺𝑛2+1,
(2.103)

which are the 1D version of Eq. 2.26.

Computations for Eq. 2.26 in 2D

The 2D case is more complex given that we have to consider the PML in the 𝑥
direction when integrating by parts. To simplify the proofs, we need to introduce the
symmetric formulation of the PML’s for the Helmholtz equation. We show in this
section that the symmetric and unsymmetric formulations lead to the same Green’s
representation formula. In addition, we present Eq. 2.106, which links the Green’s
functions of both formulations. In Appendix 2.C we use the symmetric formulation in
all of the proofs; however, owing to Eq. 2.106 the proofs are valid for the unsymmetric
formulation as well.

Following [58] we define the symmetrized Helmholtz equation with PML’s given
by

−
(︂
𝜕𝑥
𝛼𝑥(x)

𝛼𝑧(x)
𝜕𝑥 + 𝜕𝑧

𝛼𝑧(x)

𝛼𝑥(x)
𝜕𝑧

)︂
𝑢− 𝑚𝜔2

𝛼𝑥(x)𝛼𝑧(x)
𝑢 =

𝑓

𝛼𝑥(x)𝛼𝑧(x)
, (2.104)

which is obtained by dividing Eq. 2.10 by 𝛼𝑥(x)𝛼𝑧(x) and using the fact that 𝛼𝑥 is
independent of 𝑧, and 𝛼𝑧 is independent of 𝑥. We can use the same discretization
used in Eq. 2.13 to obtain the system

(Hsu)𝑖,𝑗 =− 1

ℎ2

(︂
𝛼𝑥(x𝑖+1/2,𝑗)

𝛼𝑧(x𝑖+1/2,𝑗)
(u𝑖+1,𝑗 − u𝑖,𝑗)−

𝛼𝑥(x𝑖−1/2,𝑗)

𝛼𝑧(x𝑖−1/2,𝑗)
(u𝑖,𝑗 − u𝑖−1,𝑗)

)︂

− 1

ℎ2

(︂
𝛼𝑧(x𝑖,𝑗+1/2)

𝛼𝑥(x𝑖,𝑗+1/2)
(u𝑖,𝑗+1 − u𝑖,𝑗)−

𝛼𝑧(x𝑖,𝑗−1/2)

𝛼𝑥(x𝑖,𝑗−1/2)
(u𝑖,𝑗 − u𝑖,𝑗−1)

)︂

− 𝑚(x𝑖,𝑗)𝜔
2

𝛼𝑥(x𝑖,𝑗)𝛼𝑧(x𝑖,𝑗)
u𝑖,𝑗 = f𝑖,𝑗, (2.105)

in which we used the fact that the support of f is included in the physical domain,
where 𝛼𝑥 and 𝛼𝑧 are equal to 1. Moreover, from Eq. 2.104 and Eq. 2.16, it is easy to
prove that the Green’s function associated to Hs satisfies

G(x,y)𝛼𝑥(y)𝛼𝑧(y) = Gs(x,y). (2.106)

Given that f is supported inside the physical domain we have that 𝛼𝑥(y)𝛼𝑧(y)f(y) =
f(y), then applying G and Gs to f yield the same answer, i.e., u and u𝑠 (the solution

70

to the symmetrized system) are identical.

To deduce Eq. 2.26, we follow the same computation as in the 1D case. We use
the discrete ℓ2 inner product, and we integrate by parts to obtain

⟨Hsu,v⟩ =

𝑛𝑥,𝑛𝑧∑︁

𝑖,𝑗=1

(Hsu)𝑖,𝑗 v𝑖,𝑗,

= ⟨u,Hsv⟩

−
𝑛𝑧∑︁

𝑗=1

[︂
𝛼𝑥(x1/2,𝑗)

𝛼𝑧(x1/2,𝑗)

(︀
u0,𝑗𝜕

+
𝑥 v0,𝑗 − v0,𝑗𝜕

+
𝑥 u0,𝑗

)︀

+
𝛼𝑥(x𝑛𝑥+1/2,𝑗)

𝛼𝑧(x𝑛𝑥+1/2,𝑗)

(︀
u𝑛𝑥+1,𝑗𝜕

−
𝑥 v𝑛𝑥+1,𝑗 − v𝑛𝑥+1,𝑗𝜕

−
𝑥 u𝑛𝑥+1,𝑗

)︀]︂

−
𝑛𝑥∑︁

𝑖=1

[︂
𝛼𝑧(x𝑖,1/2)

𝛼𝑥(x𝑖,1/2)

(︀
u𝑖,0𝜕

+
𝑧 v𝑖,0 − v𝑖,0𝜕

+
𝑧 u𝑖,0

)︀

+
𝛼𝑧(x𝑖,𝑛𝑧+1/2)

𝛼𝑥(x𝑖,𝑛𝑧+1/2)

(︀
u𝑖,𝑛𝑧+1𝜕

−
𝑧 v𝑖,𝑛𝑧+1 − v𝑖,𝑛𝑧+1𝜕

−
𝑧 u𝑖,𝑛𝑧+1

)︀]︂
.

This is the general formula for the GRF. Moreover, given the nature of the layered
partition, we can further simplify this expression. In each subdomain we have

⟨Hsu,v⟩Ωℓ =

𝑛𝑥+𝑛pml∑︁

𝑖=−𝑛pml+1

𝑛𝑧∑︁

𝑗=1

(Hsu)𝑖,𝑗 v𝑖,𝑗,

= ⟨u,Hsv⟩Ωℓ

−
𝑛𝑧∑︁

𝑗=1

[︂
𝛼𝑥(x1/2−𝑛pml),𝑗)

𝛼𝑧(x1/2−𝑛pml),𝑗)

(︀
u−𝑛pml,𝑗𝜕

+
𝑥 v−𝑛pml,𝑗 − v−𝑛pml,𝑗𝜕

+
𝑥 u−𝑛pml,𝑗

)︀

+
𝛼𝑥(x𝑛𝑥+𝑛pml+1/2,𝑗)

𝛼𝑧(x𝑛𝑥+𝑛pml+1/2,𝑗)

(︀
u𝑛𝑥+𝑛pml+1,𝑗𝜕

−
𝑥 v𝑛𝑥+𝑛pml+1,𝑗 − v𝑛𝑥+𝑛pml+1,𝑗𝜕

−
𝑥 u𝑛𝑥+𝑛pml+1,𝑗

)︀]︂

−
𝑛𝑥+𝑛npml∑︁

𝑖=−𝑛npml+1

[︂
𝛼𝑧(x𝑖,1/2)

𝛼𝑥(x𝑖,1/2)

(︀
u𝑖,0𝜕

+
𝑧 v𝑖,0 − v𝑖,0𝜕

+
𝑧 u𝑖,0

)︀

+
𝛼𝑧(x𝑖,𝑛𝑧+1/2)

𝛼𝑥(x𝑖,𝑛𝑧+1/2)

(︀
u𝑖,𝑛𝑧+1𝜕

−
𝑧 v𝑖,𝑛𝑧+1 − v𝑖,𝑛𝑧+1𝜕

−
𝑧 u𝑖,𝑛𝑧+1

)︀]︂
.

In each subdomain this expression is never evaluated inside the PML for 𝑧, hence
𝛼𝑧(x) = 1. Moreover, if u and v both satisfy homogeneous Dirichlet boundary
conditions at the vertical boundaries (𝑖 = −𝑛pml and 𝑖 = 𝑛𝑥 + 𝑛pml + 1, which are

71

imposed in the formulation of the PML), we obtain

⟨Hsu,v⟩Ωℓ = ⟨u,Hsv⟩Ωℓ

−
𝑛𝑥+𝑛pml∑︁

𝑖=−𝑛pml+1

[︂
1

𝛼𝑥(x𝑖,1/2)

(︀
u𝑖,0𝜕

+
𝑧 v𝑖,0 − v𝑖,0𝜕

+
𝑧 u𝑖,0

)︀

− 1

𝛼𝑥(x𝑖,𝑛𝑧+1/2)

(︀
u𝑖,𝑛𝑧+1𝜕

−
𝑧 v𝑖,𝑛𝑧+1 − v𝑖,𝑛𝑧+1𝜕

−
𝑧 u𝑖,𝑛𝑧+1

)︀]︂
.

We can then replace u and v by u𝑠, the solution to H𝑠u𝑠 = f , and Gs. By construction
both satisfy homogeneous Dirichlet boundary conditions at 𝑖 = −𝑛pml and 𝑖 = 𝑛𝑥 +
1 + 𝑛pml, therefore, we obtain

⟨HsGs,u𝑠⟩Ωℓ = u𝑠

= ⟨Gs, f⟩Ωℓ −
𝑛𝑥+𝑛pml∑︁

𝑖=−𝑛pml+1

[︂
1

𝛼𝑥(x𝑖,1/2)

(︀
Gs

𝑖,0𝜕
+
𝑧 u

𝑠
𝑖,0 − u𝑠

𝑖,0𝜕
+
𝑧 G

s
𝑖,0

)︀

(2.107)

− 1

𝛼𝑥(x𝑖,𝑛𝑧+1/2)

(︀
Gs

𝑖,𝑛𝑧+1𝜕
−
𝑧 u

𝑠
𝑖,𝑛𝑧+1 − u𝑠

𝑖,𝑛𝑧+1𝜕
−
𝑧 G

s
𝑖,𝑛𝑧+1

)︀]︂
. (2.108)

Moreover, using the relation between both Green’s functions, the independence of 𝛼𝑥

with respect to z, the point-wise equality between u and u𝑠, and the properties of the
support of f ; we obtain the Green’s representation formula for the layered partition
as

u = ⟨G, f⟩+

𝑛𝑥+𝑛pml∑︁

𝑖=−𝑛pml+1

[︂ (︀
−G𝑖,0𝜕

+
𝑧 u𝑖,0 + u𝑖,0𝜕

+
𝑧 G𝑖,0

)︀
+
(︀
G𝑖,𝑛𝑧+1𝜕

−
𝑧 u𝑖,𝑛𝑧+1 − u𝑖,𝑛𝑧+1𝜕

−
𝑧 G𝑖,𝑛𝑧+1

)︀]︂
.

(2.109)

It is the discrete version of Eq. 2.6.

2.B Triangular and block triangular matrices

In this section we introduce the necessary tools for the proofs in Appendix 2.C. They
are by no means original.

Let 𝐻 be the symmetric discretized Helmholtz operator in 1D, where

𝐻 =

⎡
⎢⎢⎢⎢⎢⎣

𝑏1 𝑐1 0 . . . 0
𝑎1 𝑏2 𝑐2 . . . 0

0
. 0

0
. . . 𝑎𝑛−2 𝑏𝑛−1 𝑐𝑛−1

0 . . . 0 𝑎𝑛−1 𝑏𝑛

⎤
⎥⎥⎥⎥⎥⎦
, (2.110)

72

in which 𝑎 = 𝑐 by symmetry. We denote by 𝐺 the inverse of 𝐻.
We follow [141] in writing a simple recurrence formula based on the minors

𝜃−1 = 0, 𝜃0 = 1, 𝜃𝑖 = 𝑏𝑖𝜃𝑖−1 − 𝑎𝑖𝑐𝑖−1𝜃𝑖−2, (2.111)
𝜑𝑛+2 = 0, 𝜑𝑛+1 = 1, 𝜑𝑖 = 𝑏𝑖𝜑𝑖+1 − 𝑐𝑖𝑎𝑖+1𝜑𝑖+2. (2.112)

Lemma 8 (Lemma 2 in [141]). We have the following identity:

𝜃𝑖𝜑𝑖+1 − 𝑎𝑖+1𝑐𝑖𝜃𝑖−1𝜑𝑖+2 = 𝜃𝑛, ∀1 ≤ 𝑖 ≤ 𝑛. (2.113)

Theorem 2 (Theorem 1 in [141]). If 𝐻 is nonsingular, then its inverse is given by

(𝐻−1)𝑖,𝑗 =

⎧
⎪⎨
⎪⎩

(−1)𝑖+𝑗
(︀
Πℓ−1

𝑘=𝑖𝑐𝑘
)︀ 𝜃𝑖−1𝜑𝑗+1

𝜃𝑛
if 𝑖 < 𝑗,

𝜃𝑖−1𝜑𝑖+1

𝜃𝑛
if 𝑖 = 𝑗,

(−1)𝑖+𝑗
(︀
Π𝑖

𝑘=𝑗+1𝑎𝑘
)︀ 𝜃𝑗−1𝜑𝑖+1

𝜃𝑛
if 𝑖 > 𝑗.

(2.114)

Proposition 2. (Rank-one property). We have
(︀
𝐻−1

𝑖+1,𝑖+1

)︀−1
𝐻−1

𝑖+1,𝑖𝐻
−1
𝑖+1,𝑘 = 𝐻−1

𝑖,𝑘 , for 𝑖 < 𝑘, (2.115)
(︀
𝐻−1

𝑖−1,𝑖−1

)︀−1
𝐻−1

𝑖−1,𝑖𝐻
−1
𝑖−1,𝑘 = 𝐻−1

𝑖,𝑘 , for 𝑖 > 𝑘. (2.116)

Moreover
[︁(︀
𝐻−1

𝑖+1,𝑖+1

)︀−1
𝐻−1

𝑖+1,𝑖

]︁
𝐻−1

𝑖+1,𝑖 = 𝐻−1
𝑖,𝑖 + 𝑐−1

𝑖

[︁(︀
𝐻−1

𝑖+1,𝑖+1

)︀−1
𝐻−1

𝑖+1,𝑖

]︁
, (2.117)

[︁(︀
𝐻−1

𝑖−1,𝑖−1

)︀−1
𝐻−1

𝑖−1,𝑖

]︁
𝐻−1

𝑖−1,𝑖 = 𝐻−1
𝑖,𝑖 + 𝑎−1

𝑖

[︁(︀
𝐻−1

𝑖−1,𝑖−1

)︀−1
𝐻−1

𝑖−1,𝑖

]︁
. (2.118)

Proof. Eq. 2.115 and Eq. 2.116 are direct application of the expression for the inverse
of 𝐻 given by Thm. 2.

We only prove Eq. 2.117 – the proof of Eq. 2.118 is analogous. Using the
expression of the inverse given by Thm. 2 we have

(︀
𝐻−1

𝑖+1,𝑖+1

)︀−1
𝐻−1

𝑖+1,𝑖 = −𝑐𝑖
𝜃𝑖−1

𝜃𝑖
. (2.119)

Thus,
[︁(︀
𝐻−1

𝑖+1,𝑖+1

)︀−1
𝐻−1

𝑖+1,𝑖

]︁
𝐻−1

𝑖+1,𝑖 = 𝑐𝑖
𝜃𝑖−1

𝜃𝑖
𝑎𝑖+1

𝜃𝑖−1𝜑𝑖+2

𝜃𝑛

=
𝜃𝑖−1𝜑𝑖+1

𝜃𝑛
− 𝜃𝑖−1

𝜃𝑖

(︂
𝜃𝑖𝜑𝑖+1 − 𝑎𝑖+1𝑐𝑖𝜃𝑖−1𝜑𝑖+1

𝜃𝑛

)︂

=
𝜃𝑖−1𝜑𝑖+1

𝜃𝑛
− 𝜃𝑖−1

𝜃𝑖

= 𝐻−1
𝑖,𝑖 + 𝑐−1

𝑖

[︁(︀
𝐻−1

𝑖+1,𝑖+1

)︀−1
𝐻−1

𝑖+1,𝑖

]︁
.

73

Above, we used Lemma 8 and the expression for the inverse given by Thm. 2.

For the 2D case, we introduce the same ordering as in [58], where we increase the
index in 𝑥 first,

u = (𝑢1,1, 𝑢2,1, ..., 𝑢𝑛𝑥,1, 𝑢1,2, ..., 𝑢𝑛𝑥,𝑛𝑧). (2.120)

For simplicity of exposition, and only for this section, we do not take into account
the degrees of freedom within the PML. Let H be the discrete symmetric Helmholtz
operator in 2D (Eq. 2.104), which we rewrite as

H =

⎡
⎢⎢⎢⎢⎢⎣

H1 C1 0 . . . 0
C1 H2 C2 . . . 0

0
. 0

0
. . . C𝑛𝑧−2 H𝑛𝑧−1 C𝑛𝑧−1

0 . . . 0 C𝑛𝑧−1 H𝑛𝑧

⎤
⎥⎥⎥⎥⎥⎦
, (2.121)

in which each sub-block is a matrix in C𝑛𝑥×𝑛𝑥 matrix (or a matrix in C𝑛𝑥+2𝑛pml,𝑛𝑥+2𝑛pml

if we count the degrees of freedom within the PML). Each C𝑖 is a constant times the
identity, and each H𝑖 is a tridiagonal symmetric matrix. The ordering of the unknowns
implies that every block in H correspond to degrees of freedom with fixed depth (fixed
z).

In order to prove the equivalent of the rank-one property in the 2D case we follow
[17] and [99].

Definition 10. Let ∆𝑖 and Σ𝑖 be defined by the following recurrence relations

∆1 = H1, ∆𝑖 = H𝑖 −C𝑖 (∆𝑖−1)
−1C𝑡

𝑖; (2.122)

Σ𝑛𝑧 = H𝑛𝑧 , Σ𝑖 = H𝑖 −C𝑡
𝑖+1 (Σ𝑖+1)

−1C𝑖+1. (2.123)

Proposition 3. H is proper15, and its inverse is given by

H−1
𝑗,𝑘 =

{︂
U𝑗V

𝑡
𝑘 if 𝑗 ≤ 𝑘,

V𝑗U
𝑡
𝑘 if 𝑗 ≥ 𝑘.

(2.124)

where U𝑗 = C−𝑡
𝑗 ∆𝑗−1...C

−𝑡
2 ∆1 and V𝑡

𝑗 = Σ−1
1 C𝑡

2...C𝑗Σ
−1
𝑗 .

Proof. H is proper because C𝑗 are invertible; Eq. 2.124 is a direct application of
Theorem 3.4 in [99].

Proposition 4.
(︀
H−1

𝑗+1,𝑗+1

)︀−1
H−1

𝑗+1,𝑗 is symmetric and we have

(︀
H−1

𝑗+1,𝑗+1

)︀−1
H−1

𝑗+1,𝑗H
−1
𝑗+1,𝑘 = H−1

𝑗,𝑘 , for 𝑗 < 𝑘. (2.125)

Moreover, (︀
H−1

𝑗−1,𝑗−1

)︀−1
H−1

𝑗−1,𝑗H
−1
𝑗−1,𝑘 = H−1

𝑗,𝑘 , for 𝑗 > 𝑘. (2.126)

15A block Hessenberg matrix, with invertible upper and lower diagonal blocks. See Def. 2.2 in
[17].

74

Proof. First, it is easy to prove that ∆𝑗 are symmetric matrices using an inductive
argument and Def. 10. Then, using Eq. 2.124 we have

(︀
H−1

𝑗+1,𝑗+1

)︀−1
H−1

𝑗+1,𝑗 =
(︀
V𝑗+1U

𝑡
𝑗+1

)︀−1
V𝑗+1U

𝑡
𝑗,

= U−𝑡
𝑗+1U

𝑡
𝑗,

=
(︀
C−𝑡

𝑗+1∆𝑗...C
−𝑡
2 ∆1

)︀−𝑡 (︀
C−𝑡

𝑗 ∆𝑗−1...C
−𝑡
2 ∆1

)︀𝑡
,

= C𝑗+1∆
−𝑡
𝑗 ,

= C𝑗+1∆
−1
𝑗 . (2.127)

Using the symmetry of ∆𝑗 and the fact that C𝑗+1 is an identity times a constant, we
obtain the desired symmetry property.

Finally, a simple computation using Proposition 3 leads to Eq. 2.125. The proof
of Eq. 2.126 is analogous.

Definition 11. Let D𝑗 and E𝑗 be defined by the following recurrences

D1 = I, D2 = −C−1
1 H1, D𝑗 = − (D𝑗−2C𝑗−1 + D𝑗−1H𝑗−1)C

−1
𝑗 𝑗 = 3, ..., 𝑛𝑧;

(2.128)
E𝑛𝑧 = j, E𝑛𝑧−1 = −H𝑛𝑧C

−1
𝑛𝑧−1, E𝑗 = −C−1

𝑗 (H𝑗+1E𝑗+1 + C𝑗+1E𝑗+2) 𝑗 = 𝑛𝑧 − 2, ..., 1,

(2.129)

and define the generalized Casorati determinant by

R𝑗 = C𝑗−1 (D𝑗E𝑗−1 −D𝑗−1E𝑗) , 𝑗 = 2, ..., 𝑛𝑧; R := R𝑛𝑧 . (2.130)

Remark 3. We note that D𝑗 and E𝑗 are invertible. Indeed, we can see that D𝑗 has
𝑛 linearly independent solutions to the three-term recurrence. Then the determinant
of D𝑗 is always different from zero. The same is true for E𝑗 but using the backwards
recurrence.

Proposition 5. For the sequence of matrices D𝑗 and E𝑗, its generalized Casorati
determinant is constant.

Proof. We compute

R𝑗 −R𝑗+1 = C𝑗−1 (D𝑗E𝑗−1 −D𝑗−1E𝑗)−C𝑗 (D𝑗+1E𝑗 −D𝑗E𝑗+1) , (2.131)
= D𝑗 (C𝑗−1E𝑗−1 + C𝑗E𝑗+1)− (D𝑗+1C𝑗 + D𝑗−1C𝑗−1)E𝑗,

= D𝑗H𝑗E𝑗 −D𝑗H𝑗E𝑗,

= 0,

where we used the fact that the C𝑗 are a constant times the identity (then they
commute with all the matrices) and the recurrences satisfied by D𝑗 and E𝑗.

Proposition 6. The inverse of H is given by

H−1
𝑗,𝑘 =

{︂
−D𝑡

𝑗R
−𝑡E𝑡

𝑘 if 𝑗 ≤ 𝑘,
−E𝑗R

−1D𝑘 if 𝑗 ≥ 𝑘.
(2.132)

75

Proof. It is a direct application of Proposition 2.4 in [17].

Proposition 7. We have
[︁(︀
H−1

𝑗+1,𝑗+1

)︀−1
H−1

𝑗+1,𝑗

]︁
H−1

𝑗+1,𝑗 = H−1
𝑗,𝑗 + C−1

𝑗+1

[︁(︀
H−1

𝑗+1,𝑗+1

)︀−1
H−1

𝑗+1,𝑗

]︁
, (2.133)

and
[︁(︀
H−1

𝑗−1,𝑗−1

)︀−1
H−1

𝑗−1,𝑗

]︁
H−1

𝑗−1,𝑗 = H−1
𝑗,𝑗 + C−1

𝑗−1

[︁(︀
H−1

𝑗−1,𝑗−1

)︀−1
H−1

𝑗−1,𝑗

]︁
. (2.134)

Proof. From Eq. 2.132 we have
(︀
H−1

𝑗+1,𝑗+1

)︀−1
H−1

𝑗+1,𝑗 = D−1
𝑗+1D𝑖. (2.135)

Then we can compute
[︁(︀
H−1

𝑗+1,𝑗+1

)︀−1
H−1

𝑗+1,𝑗

]︁
H−1

𝑗+1,𝑗 = −D−1
𝑗+1D𝑗E𝑗+1R

−1D𝑗, (2.136)

= −E𝑗R
−1D𝑗 −D−1

𝑗+1D𝑗

(︀
E𝑗+1 −D−1

𝑗 D𝑗+1E𝑗

)︀
R−1D𝑗,

(2.137)
= −E𝑗R

−1D𝑗 −D−1
𝑗+1D𝑗D

−1
𝑗 (D𝑗E𝑗+1 −D𝑗+1E𝑗)R

−1D𝑗,

(2.138)
= −E𝑗R

−1D𝑗 + D−1
𝑗+1D𝑗D

−1
𝑗 C−1

𝑗 R𝑗+1R
−1D𝑗, (2.139)

= −E𝑗R
−1D𝑗 + C−1

𝑗 D−1
𝑗+1D𝑗, (2.140)

= H−1
𝑗,𝑗 + C−1

𝑗

[︁(︀
H−1

𝑗+1,𝑗+1

)︀−1
H−1

𝑗+1,𝑗

]︁
, (2.141)

in which we used the fact that the generalized Casorati determinand is constant.

2.C Properties of the Discrete Green’s representa-
tion formula

Proof of Lemma 1

Proof. We carry out the proof in 1D. The extension to the 2D case is trivial because of
the Eq. 2.109, which is the discrete Green’s representation formula in 2D, that takes
in account the boundary conditions of u and Gℓ. Let 𝐻 be the discrete Helmholtz
operator in 1D, and let 𝑢 be the solution of

(𝐻𝑢)𝑖 = 𝑓𝑖, for 𝑖 ∈ Z,

Let Ω = {1, ..., 𝑛}. We define the discrete inner product as

⟨𝑢, 𝑣⟩Ω =
𝑛∑︁

𝑖=1

𝑢𝑖𝑣𝑖,

76

and the Green’s function 𝐺𝑘
𝑖 , such that
(︀
𝐻𝐺𝑘

)︀
𝑖

= 𝛿𝑘𝑖 , for 𝑖 ∈ Z.

Following the discretization given in Eq 2.102, we can write

⟨𝑢,𝐻𝐺𝑘⟩Ω − ⟨𝐺𝑘, 𝐻𝑢⟩Ω = 𝒢↓𝑘(𝑢0, 𝑢1) + 𝒢↑𝑘(𝑢𝑛, 𝑢𝑛+1), if 𝑘 ∈ Z. (2.142)

Applying the properties of 𝐺𝑘 and the fact that 𝑢 is the solution, we have

⟨𝑢, 𝛿𝑘⟩Ω − ⟨𝐺𝑘, 𝑓⟩Ω = 𝒢↓𝑘(𝑢0, 𝑢1) + 𝒢↑𝑘(𝑢𝑛, 𝑢𝑛+1), if 𝑘 ∈ Z. (2.143)

Following Def. 3 and Def. 2, we have

𝑢𝑘 = 𝒢↓𝑘(𝑢0, 𝑢1) + 𝒢↑𝑘(𝑢𝑛, 𝑢𝑛+1) +𝒩𝑘𝑓, if 1 ≤ 𝑘 ≤ 𝑛. (2.144)

If 𝑘 < 1 or 𝑘 > 𝑛, the formula given by Eq. 2.144 is still valid. However, we have

⟨𝑢, 𝛿𝑘⟩Ω = 0,

because the support of the Dirac’s delta is outside the integration domain. We obtain

− ⟨𝐺𝑘, 𝑓⟩Ω = 𝒢↑𝑘(𝑢𝑛, 𝑢𝑛+1) + 𝒢↓𝑘(𝑢0, 𝑢1), if 𝑘 < 1 or 𝑘 > 𝑛, (2.145)

thus,

0 = 𝒢↑𝑘(𝑢𝑛, 𝑢𝑛+1) + 𝒢↓𝑘(𝑢0, 𝑢1) +𝒩𝑘𝑓, if 𝑘 < 1 or 𝑘 > 𝑛. (2.146)

Finally, the only property that we used from 𝐺𝑘 is that is should satisfy
(︀
𝐻𝐺𝑘

)︀
𝑖

= 𝛿𝑘𝑖 , for 0 ≤ 𝑙 ≤ 𝑛+ 1.

We can then replace the global Green’s function by local ones, and the results still
hold, i.e.,

𝑢𝑘 = 𝒢↑,1𝑘 (𝑢𝑛, 𝑢𝑛+1) + 𝒢↓,1𝑘 (𝑢0, 𝑢1) +𝒩𝑘𝑓, if 1 ≤ 𝑘 ≤ 𝑛, (2.147)

0 = 𝒢↑,1𝑘 (𝑢𝑛, 𝑢𝑛+1) + 𝒢↓,1𝑘 (𝑢0, 𝑢1) +𝒩𝑘𝑓, if 𝑘 < 1 or 𝑘 > 𝑛, (2.148)

which finishes the proof.

Proof of Lemma 2

Proof. We carry out the proof for 𝑘 = 0, the case for 𝑘 = 𝑛ℓ + 1 is analogous. Let us
fix ℓ. By definition

𝒢↓,ℓ1 (uℓ
0,u

ℓ
1) + 𝒢↑,ℓ1 (uℓ

𝑛ℓ ,u
ℓ
𝑛ℓ+1) +𝒩 ℓ

1 f
ℓ = uℓ

1, (2.149)

77

to which we apply the extrapolator, obtaining

ℰ↑ℓ−1,ℓ𝒢↓,ℓ1 (uℓ
0,u

ℓ
1) + ℰ↑ℓ−1,ℓ𝒢↑,ℓ1 (uℓ

𝑛ℓ ,u
ℓ
𝑛ℓ+1) + ℰ↑ℓ−1,ℓ𝒩 ℓ

1 f
ℓ = ℰ↑ℓ−1,ℓu

ℓ
1. (2.150)

We compute each component of the last equation to show that it is equivalent to Eq.
2.42. Indeed, we use the definition of the extrapolator (Def. 6) and Lemma 4 to show
that,

ℰ↑ℓ−1,ℓ𝒢↑,ℓ1 (uℓ
𝑛ℓ ,u

ℓ
𝑛ℓ+1) = 𝒢↑,ℓ0 (uℓ

𝑛ℓ ,u
ℓ
𝑛ℓ+1), and ℰ↑ℓ−1,ℓ𝒩 ℓ

1 f
ℓ = 𝒩 ℓ

0 f
ℓ. (2.151)

We compute the last term left using the matrix form of 𝒢ℓ (Eq. 2.24) which results
in

ℰ↑ℓ−1,ℓ𝒢↓,ℓ1 (uℓ
0,u

ℓ
1) =

ℰ↑ℓ−1,ℓ

ℎ

[︀
Gℓ(𝑧1, 𝑧1) −Gℓ(𝑧1, 𝑧0)

]︀(︂ uℓ
0

uℓ
1

)︂
. (2.152)

Moreover, by direct application of Lemma 4 we have that

ℰ↑ℓ−1,ℓG
ℓ(𝑧1, 𝑧1) = Gℓ(𝑧0, 𝑧1), ℰ↑ℓ−1,ℓG

ℓ(𝑧1, 𝑧0) = Gℓ(𝑧0, 𝑧0)− ℎℰ↑ℓ−1,ℓ; (2.153)

thus
ℰ↑ℓ−1,ℓ𝒢↓,ℓ1 (uℓ

0,u
ℓ
1) = 𝒢↓,ℓ0 (uℓ

0,u
ℓ
1)− ℰ↑ℓ−1,ℓu

ℓ
1. (2.154)

Putting everything together we have that

𝒢↓,ℓ0 (uℓ
0,u

ℓ
1) + 𝒢↑,ℓ0 (uℓ

𝑛ℓ ,u
ℓ
𝑛ℓ+1) + ℰ↑ℓ−1,ℓu

ℓ
1 +𝒩 ℓ

0 f
ℓ = ℰ↑ℓ−1,ℓu

ℓ
1, (2.155)

or
𝒢↓,ℓ0 (uℓ

0,u
ℓ
1) + 𝒢↑,ℓ0 (uℓ

𝑛ℓ ,u
ℓ
𝑛ℓ+1) +𝒩 ℓ

0 f
ℓ = 0, (2.156)

which concludes the proof.

Proof of Lemma 3

Proof. The proof is a direct application of the nullity theorem [132]. If u↑ and v↑

are in the kernel of 𝒜↑
𝑗,𝑗+1, then the proof is reduced to showing that Gℓ+1(𝑧1, 𝑧1) is

invertible. Without loss of generality we can reorder the entries of the matrix Gℓ+1

such that Gℓ+1(𝑧1, 𝑧1) is a square diagonal block located at the left upper corner of
Gℓ+1. Then the nullity of Gℓ+1(𝑧1, 𝑧1) is equal to the nullity of the complementary
block of the inverse, but the inverse is just the Helmholtz matrix reordered with some
entries out. Such block is trivially full rank, i.e. nullity equals to zero. Then the
nullity of Gℓ+1(𝑧1, 𝑧1) is zero; therefore, Gℓ+1(𝑧1, 𝑧1) is an invertible matrix.

Proof of Lemma 4

Proof. We note that by the definition of the local Green’s functions in Eq. 2.17, we
have that

Gℓ
𝑖,𝑗,𝑖′,𝑗′ =

1

ℎ2
(︀
Hℓ
)︀−1

𝑖,𝑗,𝑖′,𝑗′
. (2.157)

78

Then by Def. 1 and Eq. 2.121 we have that

Gℓ
𝑗,𝑘 =

1

ℎ

(︀
Hℓ
)︀−1

𝑗,𝑘
, (2.158)

where Gℓ
𝑗,𝑘 is the layer to layer Green’s function. Using the definition of the ex-

trapolator (Def. 6) and Proposition 4, in particular Eq. 2.126 applied to 𝑗 = 0 we
obtain

Gℓ(𝑧0, 𝑧𝑘) = ℰ↑ℓ−1,ℓG
ℓ(𝑧1, 𝑧𝑘), for 0 < 𝑘, (2.159)

and Eq. 2.125 applied to 𝑗 = 𝑛ℓ + 1

Gℓ(𝑧𝑛ℓ+1, 𝑧𝑘) = ℰ↓ℓ,ℓ+1G
ℓ(𝑧𝑛ℓ , 𝑧𝑘), for 𝑘 < 𝑛ℓ + 1. (2.160)

We can divide Eq. 2.134 by ℎ, and we use the definitions of the extrapolator (Def.
6) and the Green’s functions (Eq. 2.158) to obtain

Gℓ+1(𝑧0, 𝑧0) +
C−1

2 ℰ↑ℓ,ℓ+1

ℎ
= ℰ↑ℓ,ℓ+1G

ℓ+1(𝑧1, 𝑧0). (2.161)

However, following the notation of Eq. 2.121, we note that if 𝑘 is such that it corre-
sponds to a 𝑧𝑘 that is in the physical domain, then C𝑘 is just −𝐼/ℎ2. This observation
is independent of the formulation, and it is due to the particular ordering of the un-
knowns that Eq. 2.121 assumes. Then we can further simplify Eq. 2.161 and obtain

Gℓ+1(𝑧0, 𝑧0)− ℎℰ↑ℓ,ℓ+1 = ℰ↑ℓ,ℓ+1G
ℓ+1(𝑧1, 𝑧0). (2.162)

We can follow the same reasoning to obtain from Eq. 2.133 that

Gℓ(𝑧𝑛ℓ+1, 𝑧𝑛ℓ+1)− ℎℰ↓ℓ,ℓ+1 = ℰ↓ℓ,ℓ+1G
ℓ(𝑧𝑛ℓ , 𝑧𝑛ℓ+1), (2.163)

which concludes the proof.

Proof of Lemma 5

Proof. We have that
𝒢↓,ℓ+1
1 (u↑

0,u
↑
1) = 0 (2.164)

is, by definition, equivalent to

Gℓ+1(𝑧1, 𝑧1)u
↑
0 = Gℓ+1(𝑧1, 𝑧0)u

↑. (2.165)

The proof is by induction, at each stage we use the extrapolator to shift the evaluation
index. We left multiply Eq. 2.165 by

[︀
Gℓ+1(𝑧1, 𝑧1)

]︀−1
Gℓ+1(𝑧1, 𝑧2) and follow Remark

2, to obtain
Gℓ+1(𝑧2, 𝑧1)u

↑
0 = Gℓ+1(𝑧2, 𝑧0)u

↑, (2.166)

79

which can be left multiplied by the matrix
[︀
Gℓ+1(𝑧2, 𝑧2)

]︀−1
Gℓ+1(𝑧2, 𝑧3) to obtain

Gℓ+1(𝑧3, 𝑧1)u
↑
0 = Gℓ+1(𝑧3, 𝑧0)u

↑. (2.167)

Then by induction we obtain the result.

Proof of Lemma 6

Proof. We give the proof for the case when 𝑗 = 0 – for 𝑗 = 𝑛ℓ + 1 the proof is
analogous.

Given that u is solution of the system in Def. 8, we have

𝒢↑,ℓ1 (uℓ,↑
𝑛ℓ ,u

ℓ,↑
𝑛ℓ+1

) + 𝒢↓,ℓ1 (uℓ,↓
0 ,uℓ,↓

1) + 𝒢↑,ℓ1 (uℓ,↓
𝑛ℓ ,u

ℓ,↓
𝑛ℓ+1

) +𝒩 ℓ
1 f

ℓ = uℓ,↑
1 + uℓ,↓

1 , (2.168)

which can be left-multiplied by the extrapolator ℰ↑ℓ,ℓ+1. Using Lemma 4 we have

𝒢↑,ℓ0 (uℓ,↑
𝑛ℓ ,u

ℓ,↑
𝑛ℓ+1

)+ℰ↑ℓ,ℓ+1𝒢↓,ℓ1 (uℓ,↓
0 ,uℓ,↓

1)+𝒢↑,ℓ0 (uℓ,↓
𝑛ℓ ,u

ℓ,↓
𝑛ℓ+1

)+𝒩 ℓ
1 f

ℓ = ℰ↑ℓ,ℓ+1u
ℓ,↑
1 +ℰ↑ℓ,ℓ+1u

ℓ,↓
1 ,

(2.169)
and following the same computation performed in Lemma 2 (Eq. 2.154) we have

𝒢↑,ℓ0 (uℓ,↑
𝑛ℓ ,u

ℓ,↑
𝑛ℓ+1

)+𝒢↓,ℓ0 (uℓ,↓
0 ,uℓ,↓

1)+ℰ↑ℓ,ℓ+1u
ℓ,↓
1 +𝒢↑,ℓ0 (uℓ,↓

𝑛ℓ ,u
ℓ,↓
𝑛ℓ+1

)+𝒩 ℓ
0 f

ℓ = ℰ↑ℓ,ℓ+1u
ℓ,↑
1 +ℰ↑ℓ,ℓ+1u

ℓ,↓
1 .

(2.170)
Finally, from the fact that ℰ↑ℓ,ℓ+1u

ℓ,↑
1 = uℓ,↑

0 we obtain that

𝒢↑,ℓ0 (uℓ,↑
𝑛ℓ ,u

ℓ,↑
𝑛ℓ+1

) + 𝒢↓,ℓ0 (uℓ,↓
0 ,uℓ,↓

1) + 𝒢↑,ℓ0 (uℓ,↓
𝑛ℓ ,u

ℓ,↓
𝑛ℓ+1

) +𝒩 ℓ
0 f

ℓ = uℓ,↑
0 . (2.171)

Proof of Proposition 1

Proof. The sufficient condition is given by Lemma 6, so we focus on the necessary
condition. The proof can be reduced to showing that

𝒢↑,ℓ0 (uℓ,↑
𝑛ℓ ,u

ℓ,↑
𝑛ℓ+1

) + 𝒢↓,ℓ0 (uℓ,↓
0 ,uℓ,↓

1) + 𝒢↑,ℓ0 (uℓ,↓
𝑛ℓ ,u

ℓ,↓
𝑛ℓ+1

) +𝒩 ℓ
0 f

ℓ = uℓ,↑
0 , (2.172)

implies ℰ↑ℓ,ℓ+1u
ℓ,↑
1 = uℓ,↑

0 . Indeed, we have

𝒢↑,ℓ0 (uℓ,↑
𝑛ℓ ,u

ℓ,↑
𝑛ℓ+1

)+𝒢↓,ℓ0 (uℓ,↓
0 ,uℓ,↓

1)+ℰ↑ℓ,ℓ+1u
ℓ,↓
1 +𝒢↑,ℓ0 (uℓ,↓

𝑛ℓ ,u
ℓ,↓
𝑛ℓ+1

)+𝒩 ℓ
0 f

ℓ = uℓ,↑
0 +ℰ↑ℓ,ℓ+1u

ℓ,↓
1 .

(2.173)
Given that the extrapolator is invertible (Proposition 7 and Remark 3) we can mul-

tiply the equation above on the left by
(︁
ℰ↑ℓ,ℓ+1

)︁−1

. Using the same computations

80

performed in Lemma 2 we have that

𝒢↑,ℓ1 (uℓ,↑
𝑛ℓ ,u

ℓ,↑
𝑛ℓ+1

) + 𝒢↓,ℓ1 (uℓ,↓
0 ,uℓ,↓

1) + 𝒢↑,ℓ1 (uℓ,↓
𝑛ℓ ,u

ℓ,↓
𝑛ℓ+1

) +𝒩 ℓ
1 f

ℓ =
(︁
ℰ↑ℓ,ℓ+1

)︁−1

uℓ,↑
0 + uℓ,↓

1 .

(2.174)
Moreover, by hypothesis u satisfies

𝒢↑,ℓ1 (uℓ,↑
𝑛ℓ ,u

ℓ,↑
𝑛ℓ+1

) + 𝒢↓,ℓ1 (uℓ,↓
0 ,uℓ,↓

1) + 𝒢↑,ℓ1 (uℓ,↓
𝑛ℓ ,u

ℓ,↓
𝑛ℓ+1

) +𝒩 ℓ
1 f

ℓ = uℓ,↑
1 + uℓ,↓

1 , (2.175)

which simplifies to

uℓ,↑
1 =

(︁
ℰ↑ℓ,ℓ+1

)︁−1

uℓ,↑
0 . (2.176)

Finally, using the fact that the extrapolator is invertible, we obtain the desired
result. The proof for 𝑖 = 𝑛ℓ is analogous.

Proof of Theorem 1

Proof. Once again we start by proving the statement in 1D. One side of the equiv-
alence is already given by Lemma 1. To show the other side, we need to show that
the concatenated solution satisfy the solution at every point.

Let u be the solution to the discrete integral equation. We can then reconstruct
the local solution at each subdomain by

𝑢ℓ𝑘 = 𝒢↑,ℓ𝑘 (𝑢ℓ𝑛ℓ , 𝑢
ℓ
𝑛ℓ+1) + 𝒢↓,ℓ𝑘 (𝑢ℓ0, 𝑢

ℓ
1) +𝒩 ℓ

𝑘𝑓
ℓ. (2.177)

We have (︀
𝐻𝑢ℓ

)︀
𝑖

= 𝑓 ℓ
𝑖 ,

for 1 < 𝑙 < 𝑁 ℓ. To conclude we need to prove that the difference equation is satisfied
at 𝑖 = 1 and at 𝑖 = 𝑛ℓ with the information coming from the neighboring sub-domains.
We remark that Eq. 2.177 is equivalent to solving
(︀
𝐻𝑢ℓ

)︀
𝑖

= 𝑓 ℓ
𝑖 − 𝛿0,𝑙(𝜕+𝑥 𝑢ℓ0) + (𝜕+𝑥 𝛿0,𝑙)𝑢

ℓ
0 + 𝛿𝑛ℓ+1,𝑖(𝜕

+
𝑥 𝑢

ℓ
𝑛ℓ+1)− (𝜕−𝑥 𝛿𝑁ℓ+1,𝑖)𝑢

ℓ
𝑛ℓ+1 (2.178)

where
𝛿𝑖,𝑗 =

{︂
1
ℎ

if 𝑖 = 𝑗
0 if 𝑖 ̸= 𝑗

(2.179)

and the up and down-wind derivatives were defined earlier. Using the fact that 𝑢ℓ𝑖 = 0
if 𝑖 = 0 or 𝑖 = 𝑛ℓ (Eq. 2.42), and the equivalence between the Green’s representation
formula and the problem stated in Eq. 2.178, we can apply 𝐻 to 𝑢ℓ and evaluate it
at 𝑖 = 1 obtaining,

(︀
𝐻𝑢ℓ

)︀
1

=
2𝑢ℓ1 − 𝑢ℓ2

ℎ2
−𝑚ℓ

1𝜔
2𝑢ℓ1 = 𝑓 ℓ

1 +
𝛿1,𝑙
ℎ
𝑢ℓ0 = 𝑓 ℓ

1 +
𝑢ℓ0
ℎ2
. (2.180)

81

In other words,
−𝑢ℓ0 + 2𝑢ℓ1 − 𝑢ℓ2

ℎ2
−𝑚ℓ

1𝜔
2𝑢ℓ1 = 𝑓 ℓ

1 , (2.181)

and by construction 𝑢ℓ0 = 𝑢ℓ−1
𝑛ℓ−1 . This procedure can be replicated for 𝑖 = 𝑛ℓ, yielding

−𝑢ℓ
𝑛ℓ−1

+ 2𝑢ℓ
𝑛ℓ − 𝑢ℓ𝑛ℓ+1

ℎ2
−𝑚ℓ

𝑛ℓ𝜔
2𝑢ℓ𝑛ℓ = 𝑓 ℓ

𝑛ℓ , (2.182)

in which we have 𝑢ℓ
𝑛ℓ+1

= 𝑢ℓ+1
1 . This means that the concatenated solution satisfies the

equation at the interfaces; therefore, it satisfies the difference equation everywhere.
By construction it satisfies the boundary conditions; therefore, by uniqueness it is the
solution to the difference equation.

In 2D, we need to be especially careful with the PML. Using the same proof
method as before, we have that

uℓ
𝑘 = 𝒢↑,ℓ𝑘 (uℓ

𝑛ℓ ,u
ℓ
𝑛ℓ+1) + 𝒢↓,ℓ𝑘 (uℓ

0,u
ℓ
1) +𝒩 ℓ

𝑘 f
ℓ, (2.183)

satisfies the equation
(︀
Huℓ

)︀
𝑖,𝑗

= f ℓ𝑖,𝑗, for 1 < 𝑗 < 𝑛ℓ and− 𝑛pml + 1 < 𝑖 < 𝑛ℓ + 𝑛pml

where 𝑖 and 𝑗 are local indices. Following the same reasoning as in the 1D case we
have

(︀
Huℓ

)︀
𝑖,1

= f ℓ𝑖,1 −
1

ℎ2
uℓ
𝑖,0, for and− 𝑛pml + 1 < 𝑖 < 𝑛ℓ + 𝑛pml. (2.184)

To prove Eq. 2.184 we use the fact that uℓ
𝑘 is defined by Eq. 2.183, and by Lemma

2, uℓ
𝑘 = 0 for 𝑘 = 0 and 𝑘 = 𝑛ℓ + 1. Then, if we apply the global finite differences

operator, H, to the local uℓ
𝑘, and to evaluate it at 𝑘 = 1, we obtain

(︀
Huℓ

)︀
𝑖,1

=− 𝛼𝑥(x𝑖,1)
𝛼𝑥(x𝑖+1/2,1)(u

ℓ
𝑖+1,1 − uℓ

𝑖,1)− 𝛼𝑥(x𝑖−1/2,1)(u
ℓ
𝑖,1 − uℓ

𝑖−1,1)

ℎ2

+
1

ℎ2
(︀
2uℓ

𝑖,1 − uℓ
𝑖,2

)︀
− 𝜔2𝑚(x𝑖,1) (2.185)

= f ℓ𝑖,1 +
1

ℎ2
uℓ
𝑖,0. (2.186)

It is clear that the right-hand side has a similar form as in the 1D case. The con-
catenated solution satisfies the discretized PDE at the interfaces. Moreover, we can
observe that by construction uℓ satisfies the homogeneous Dirichlet boundary con-
ditions, because the Green’s functions satisfy the same boundary conditions. Fur-
thermore, the traces at the interface also satisfy the zero boundary conditions at the
endpoints. Then, the concatenated solution satisfy the finite difference equation in-
side the domain and the boundary conditions; therefore, by uniqueness it is solution
to the discrete PDE.

82

Chapter 3

Extensions

The method of polarized traces introduced in Chapter 2 is an efficient and scalable
iterative solver for the Helmholtz equation, and constitutes a new approach to domain
decomposition for high-frequency wave propagation. Its online runtime is 𝒪(𝑁/𝑃),
provided that 𝑃 = 𝒪(𝑁1/8), where N is the number of degrees of freedom and P the
number of processors in a distributed memory environment. However, it has its own
limitations, in particular:

∙ the complexity degrades greatly when the medium exhibits internal cavities and
sharp contrasts,

∙ the offline precomputation, which involves computing, storing and compressing
interface-to-interface Green’s functions, can become prohibitively computation-
ally expensive for large problems.

In this chapter we introduce new ideas to mitigate these issues at some extent.
The main results are

∙ a compressed-block LU solver based on the discrete boundary integral formu-
lation coupled with ℋ-matrices, whose online runtimes are not degraded by
the presence of internal cavities or sharp contrasts, at the expense of a more
thorough precomputation;

∙ a nested domain decomposition approach that allows us to reduce the offline and
online costs. At the inner level of the nested decomposition an efficient solver is
needed, the best choice seems to be the compressed-block LU solver, even in the
absence of resonant cavities. In this case the cost of the precomputation for the
compressed-block LU solver remains acceptable. The resulting algorithm has
an asymptotic online runtime of 𝒪(𝑁/𝑃) provided that 𝑃 = 𝒪(𝑁1/5), which
results in a lower online runtime in a distributed memory environment.

In addition, we propose a few improvements to the original scheme presented in
Chapter 2 to obtain better accuracy, and to accelerate the convergence rate. We
provide :

83

∙ an equivalent formulation of the method of polarized traces that involves dis-
cretizations using Q1 finite elements, which is second order accurate despite
the roughness of the model, provided that a suitable quadrature rule is used
to compute the mass matrix. This formulation can be easily generalized for
high-order finite differences and high-order finite elements;

∙ and, a variant of the preconditioner introduced in Chapter 2, in which we used
a block Gauss-Seidel iteration instead of a block Jacobi iteration, that improves
the convergence rate.

Organization

The present chapter is organized as follows :

∙ we review briefly the formulation of the Helmholtz problem and the reduction
to a boundary integral equation in Section 3.1;

∙ in Section 3.2 we present the compressed-block LU solver, and provide the
empirical complexities;

∙ in Section 3.3 we present the nested solver, we introduce the two variants, one
of which relies on the compressed-block LU solver at the inner level, and we
provide the empirical complexity observed;

∙ finally, in Section 3.4 we present numerical experiments that corroborate the
complexity claims.

3.1 Formulation

As in Chapter 2, let Ω be a rectangle in R2, and consider a layered partition of Ω into
𝐿 slabs, or layers {Ωℓ}𝐿ℓ=1. Define the squared slowness as 𝑚(x) = 1/𝑐(x)2, x = (𝑥, 𝑧).
Define the global Helmholtz operator at frequency 𝜔 as

ℋ𝑢 =
(︀
−△−𝑚𝜔2

)︀
𝑢 in Ω, (3.1)

with an absorbing boundary condition on 𝜕Ω.
Let us define 𝑓 ℓ as the restriction of 𝑓 to Ωℓ, i.e., 𝑓 ℓ = 𝑓𝜒Ωℓ . Define the local

Helmholtz operators as

ℋℓ𝑢 =
(︀
−△−𝑚𝜔2

)︀
𝑢 in Ωℓ, (3.2)

with an absorbing boundary condition on 𝜕Ωℓ. Let 𝑢 be the solution to ℋ𝑢 = 𝑓 .
Following Section 2.2, after discretization we solve the linear system

Hu = f , (3.3)

84

for the global solution, and
Hℓuℓ = f ℓ, (3.4)

for the local ones. In this case we use a slightly different strategy to build the ab-
sorbing boundary conditions at the interfaces; instead of using a normal extension as
in Section 2.2 to build the absorbing layer, we use the true wave speed.

We perform the same reduction to a discrete boundary integral system as in
Chapter 2. Solving the problem in the volume is equivalent to solving

Mu = f , (3.5)

at the interfaces between slabs. Once the trace of the solution at the interfaces, u, is
known, we reconstruct locally the solution at each layer using the Green’s represen-
tation formula, operation that is completely parallel.

We point out that the number of layers 𝐿 is different for each solver, for the layered
partition inherent to the compressed-block LU we assume that 𝐿 = 𝑃 ; whereas for
the nested solve we suppose that 𝐿 ∼ 𝑃 1/2, and each slab is subdivided in 𝐿𝑐 ∼ 𝑃 1/2

cells such that 𝐿𝐿𝑐 = 𝑃 .

3.2 A compressed-block LU solver

The method of polarized traces presented in Chapter 2 is a highly efficient solver for
the Helmholtz equation; however, its performance often degrades when dealing with
media featuring resonant cavities and sharp contrasts. This adverse effect is common
to all iterative methods, and is mainly due to the underlying physics of the problem.
Iterative methods can handle waves propagating through the domain efficiently, but
they can only capture waves that were scattered 𝑘 times during the first 𝑘 iterations.
Physically, the scattered waves are converted into waves propagating in a different
direction, which are handled in a posterior iteration. In the case of a large cavity, the
solution of the Helmholtz equation is composed of the superposition of several waves
reflecting from the internal interfaces of the cavity, which dramatically increases the
number of iterations needed for convergence.

In general, for the case of large resonant cavities, direct methods are used [88].
We explore a variant of the method of polarized traces, using a layered domain

decomposition, that yields, surprisingly, an identical empirical online parallel com-
plexity than the one observed for the method of polarized traces in Chapter 2. As
stated before, its online complexity does not seem to deteriorate in the presence of
large resonant cavities and sharp interfaces; however, the method has a more thorough
offline precomputation.

The method may be called “compressed-block LU solver”. Its ingredients (such
as adaptive ℋ-matrices) are not particularly novel by themselves, but the documen-
tation of the online complexity claim seems to be new in the case of large resonant
cavities. The method is potentially attractive in situations where the precomputation
is amortized over many right-hand sides. Such applications range from optimizing the
shape of waveguides and ring resonators in nanophotonics, to optimal survey design

85

for seismic prospection, and to optimal focusing for intra-craneal treatments using
high intensity ultrasound.

The method consists in a block LU factorization without pivoting of M, and a
compression of the blocks of the LU factors in PLR form1. The compression of the
blocks is unexpectedly good in the high-frequency regime, provided that an accurate
discretization is used. There is no known theory, to the author’s knowledge, that
can fully explain this surprising behavior. We only provide numerical evidence of the
scalings.

3.2.1 Method

Instead of solving Mu = f (Eq. 3.5) using the method of polarized traces, i.e., using
a iterative method, we perform a direct solve. Given the banded structure of M (see
Fig. 3-1) a LU factorization without pivoting will preserve its sparsity pattern.

Figure 3-1: Sparsity pattern of Eq. 3.5.

Given that M is distributed among different processors, we perform a block LU
decomposition

L U = M. (3.6)

The sparsity pattern of the LU factors are depicted in Fig. 3-2. Furthermore, the
diagonal blocks of the LU factors are inverted explicitly so that the forward and
backward substitutions are reduced to a series of matrix-vector products.

Finally, the blocks are compressed in PLR form, yielding a fast solve.

1 PLR matrices are ℋ-matrices with a dyadic partitioning and a fully adaptive admissibility
condition based on the 𝜖-rank of its blocks, for further details see Section 2.5.

86

Figure 3-2: Sparsity pattern of the LU factorization in Eq 3.6.

We solve Eq. 2.15 using,
u = (U)−1 (L)−1 f . (3.7)

This method is suitable to solve multi-right-hand sides simultaneously, using
BLAS-3 operations (or sparse BLAS), which are highly efficient.

The resulting algorithm is presented in Alg. 7.

Algorithm 7. Online computation for the compressed-block LU solver
1: function u = Helmholtz solver(f)
2: for ℓ = 1 : 𝐿 do
3: f ℓ = f𝜒Ωℓ ◁ partition the source
4: end for
5: for ℓ = 1 : 𝐿 do
6: 𝒩 ℓf ℓ = (Hℓ)−1f ℓ ◁ solve local problems
7: end for
8: f =

(︀
𝒩 1

𝑛1f1,𝒩 2
1 f

2,𝒩 2
𝑛2f2, . . . ,𝒩 𝐿

1 f
𝐿
)︀𝑡

◁ form r.h.s. for the integral system
9: u = (U)−1 (L)−1 f ◁ solve for the traces (Eq. 3.7)

10: for ℓ = 1 : 𝐿 do
11: uℓ

𝑗 = 𝒢↑,ℓ𝑗 (uℓ
𝑛ℓ ,u

ℓ
𝑛ℓ+1

) + 𝒢↓,ℓ𝑗 (uℓ
0,u

ℓ
1) +𝒩 ℓ

𝑗 f
ℓ ◁ reconstruct local solutions

(Eq. 2.28)
12: end for
13: u = (u1,u2, . . . ,u𝐿−1,u𝐿)𝑡 ◁ concatenate the local solutions
14: end function

3.2.2 Complexity

We summarize the complexity of the compressed-block LU in Table 3.1, in which we
suppose that 𝐿 = 𝑃 , i.e., we have one processor per layer. We suppose that each node
has access to the wave speed 𝑐(x) in the corresponding subdomain at the beginning
of the precomputation. For the online stage, we assume that the source is known
locally at each node at the beginning of the computation, and we suppose that solver
has finished when the solution is reconstructed locally at each node.

87

The offline stage of the compressed direct solver is comprised of the LU factoriza-
tion of the local problems, the computation of the local Green’s functions to assemble
M, its factorization, the inversion of the diagonal blocks of the LU factors of M, and
the compression in PLR form of the blocks of the modified LU factors. The over-
all offline time complexity is dominated by the factorization of the discrete integral
system, which is 𝒪(𝐿𝑁3/2).

In the cost analysis, we suppose that the LU factorization, the computation of
the Green’s functions, the inversion of the diagonal blocks and the compression of the
blocks are performed locally at each layer, incurring no communication cost. The only
communication cost arises from the block LU factorization, which needs to transfer
a full block of size 𝑛2, for each step of the block LU. This implies a communication
cost of 𝒪(𝐿𝑁).

The online stage has an embarrassingly parallel stage, which is comprised of local
solves at each layer (𝒪(𝑁/𝐿)) and the local reconstruction in the volume (𝒪(𝑁/𝐿));
and a sequential stage, which involves solving of Eq. 3.5 using Eq. 3.7. To solve Eq.
3.5 we perform 𝒪(𝐿) compressed matrix-vector product sequentially. The complexity
of the compressed matrix-vector product depends on the scaling of the frequency with
respect to 𝑛 and the accuracy of the discretization. For example, if the medium is
smooth, second order finite differences are known to be accurate provided that the
frequency scales as 𝜔 ∼ √𝑛. However, in the presence of sharp interfaces, the accuracy
is greatly degraded, which makes it difficult to obtain an asymptotic estimate for the
compression in PLR form of the blocks of the LU factors. We circumvent this problem
by discretizing Eq. 3.1 using Q1 finite elements with an adaptive quadrature. For
further details see Appendices 3.A and 3.B.

For the communication cost of the online stage, there is no difference between this
method and the method of polarized traces. The communication cost is 𝒪(𝐿𝑁1/2) or
better.

If the frequency scales as 𝜔 ∼ √𝑛, the regime in which second order Q1 finite
elements are expected to be accurate (see [83]), we obtain empirically that 𝛼 = 5/8;
however, we assume the more conservative value of 𝛼 = 3/4. The latter is in better
agreement with a theoretical analysis of the rank of the off-diagonal blocks of the
Green’s functions for smooth wave speed. We point that the scaling obtained are
surprisingly good, and there is no theory that fully explains the results obtained.

The total cost of solving the boundary integral system is 𝒪(𝐿𝑁3/4), which implies
that the online cost is 𝒪(𝑁/𝐿 + 𝐿𝑁3/4). As in [148], the observed empirical online
runtime is 𝒪(𝑁/𝐿) provided that 𝐿 = 𝒪(𝑁1/8).

3.3 Nested solver

The other main drawback of the method of polarized traces, as well as the compressed-
block LU strategy presented earlier, is its offline precomputation that involves com-
puting and storing the interface-to-interface Green’s functions. In 3D this approach
would become impractical given the sheer size of the resulting matrices. To alleviate
this issue we present an equivalent matrix-free approach that relies on local solves

88

Step 𝑁nodes Complexity per node
LU factorizations 𝒪(𝑃) 𝒪

(︀
(𝑁/𝑃)3/2

)︀

Green’s functions 𝒪(𝑃) 𝒪
(︀
(𝑁/𝑃)3/2

)︀

Block LU factorization 𝒪(𝑃) 𝒪
(︀
𝑃𝑁3/2

)︀

Local solves 𝒪(𝑃) 𝒪 (𝑁/𝑃)
Sweeps 1 𝒪(𝑃𝑁𝛼)

Recombination 𝒪(𝑃) 𝒪 (𝑁/𝑃)

Table 3.1: Complexity of the different steps of the compressed-block LU. We suppose
that we have one processor per layer, 𝐿 = 𝑃 . Typically 𝛼 = 3/4.

Step 𝑁nodes Communication
LU factorizations 𝒪(𝑃) 𝒪 (1)
Green’s functions 𝒪(𝑃) 𝒪 (1)

Block LU factorization 1 𝒪 (𝑃𝑁)

Local solves 𝒪(𝑃) 𝒪
(︀
𝑁1/2

)︀

Sweeps 2 𝒪(𝑃𝑁1/2)
Recombination 𝒪(𝑃) 𝒪

(︀
𝑁1/2

)︀

Table 3.2: Communication cost of the different steps of the compressed-block LU. We
suppose that we have one processor per layer, 𝐿 = 𝑃 .

with sources at the interfaces between layers.
In particular, the method of polarized traces relies on solving the polarized integral

system (the default formulation, which relies on the jump conditions)

M u = f , u =

(︂
u↓

u↑

)︂
. (3.8)

The matrix M takes the form

M =

[︂
D↓ U
L D↑

]︂
, (3.9)

where D↓ and D↑ are, respectively, block lower and upper diagonal matrices with
identity diagonal blocks, thus easily invertible, using a block back-substitution. In
the method of polarized traces, Eq. 3.8 is solved iteratively, using an efficient precon-
ditioner that relies on the application of

(︀
D↓)︀−1 and

(︀
D↑)︀−1.

As it will be explained in the sequel, the matrix-free approach relies on the fact
that the blocks of M (as well as the blocks of D↓ and D↑) are a restriction of local
Green’s functions. Thus they can be applied via a local solve (using, for example, a
direct solver) with sources at the interfaces, which is the same argument we used in
Chapter 2 to reconstruct the solution in the volume using Eq. 2.27. However, given

89

the iterative nature of the preconditioner (that relies on inverting D↓ and D↑ by block-
backsubstitution) solving the local problems naively would incur a deterioration of
the online complexity. This deterioration can be circumvented if we solve the local
problems inside the layer via the same boundary integral strategy as in the method of
polarized traces, in a nested fashion. This procedure can be written as a factorization
of the Green’s integral in block-sparse factors.

Let 𝑃 be the number of nodes in a distributed memory environment. If we suppose
that each layer is associated with one node, then the method of polarized traces’ online
runtime is 𝒪(𝑁/𝑃) as long as 𝑃 = 𝒪(𝑁1/8). In this chapter we present a variant
of the method of the polarized traces with improved complexity and lower memory
footprint, with an online runtime 𝒪(𝑁/𝑃) provided that 𝑃 = 𝒪(𝑁1/5).

The nested domain decomposition involves a layered decomposition in 𝐿 ∼
√
𝑃

layers, such that each layer is further decomposed in 𝐿𝑐 ∼
√
𝑃 cells, as shown in Fig.

3-3.

Figure 3-3: Nested Decomposition in cells. The orange grid-points represent the PML
for the original problem, the light-blue represent the artificial PML between layers,
and the pink grid-points represent the artificial PML between cells in the same layer.

Finally, the offline complexity is much reduced; instead of computing large Green’s
functions for each layer, we compute much smaller interface-to-interface operators
between the interfaces of adjacent cells within each layer, resulting in a lower memory
requirement.

The nested approach consists of two levels:

∙ the outer solver, which solves the global Helmholtz problem (Eq. 3.3), using
the method of polarized traces to solve Eq. 3.5 at the interfaces between layers;

90

∙ and the inner solver, which solves the local Helmholtz problems at each layer
(Eq. 3.4), using an integral boundary equation to solve for the degrees of
freedom a the interfaces between cells within a layer.

3.3.1 Gauss-Seidel preconditioner

In this chapter, we use the block Gauss-Seidel iteration as a preconditioner to solve
the outer polarized system in Eq. 2.41.

We define the Gauss-Seidel iteration in Alg. 8 following the notation in Chapter 2,
and we give the expression of the preconditioner used later for the outer solver in Eq.
3.10. For the sake of clarity, we present the matrix version of the preconditioner in
this Section; the algorithms for the matrix-free version are provided later in Section
3.3.2

Algorithm 8. Gauss-Seidel iteration
1: function u = Gauss-Seidel(f , 𝜖tol)
2: u0 = (u↓,u↑)𝑡 = 0
3: while ‖u𝑛+1 − u𝑛‖/‖u𝑛‖ > 𝜖tol do

4:

(︂
v↓

v↑

)︂
= f −

[︂
0 U
0 0

]︂
u𝑛

5: u𝑛+1 =

(︂
(D↓)−1v↓

(D↑)−1
(︀
v↑ − L(D↓)−1v↓)︀

)︂

6: end while
7: u = u↑,𝑛 + u↓,𝑛

8: end function

The Gauss-Seidel iteration yields faster convergence than the block Jacobi iter-
ation in Chapter 2. In our experiments, using GMRES preconditioned with one
Gauss-Seidel iteration converged twice as fast as using one Jacobi iteration as a
preconditioner, at the expense of loosing some parallelism in the sweeps. Other
standard preconditioners were studied in this context, such as symmetric successive
over-relaxation (SSOR) (see section 10.2 in [117]), but they failed to yield faster
convergence, while being more computationally expensive to apply.

Fig. 3-4 depicts the eigenvalues for M preconditioned with one block Jacobi
iteration and one block Gauss-Seidel iteration. We can observe that for the Gauss-
Seidel iteration the eigenvalues are more clustered and there exist fewer outliers. This
would explain the fewer number of iteration needed to convergence.

Given the better performance of the Gauss-Seidel iteration we used it as a pre-
conditioner with only one iteration, leading to the preconditioner

𝑃GS
(︂

v↓

v↑

)︂
=

(︂
(D↓)−1v↓

(D↑)−1
(︀
v↑ − L(D↓)−1v↓)︀

)︂
. (3.10)

The system in Eq. 3.8 is solved using GMRES preconditioned with 𝑃GS. Moreover,
as in Chapter 2 one can use an adaptive ℋ-matrix fast algorithm for the application
of integral kernels, in expressions such as the one above.

91

0.85 0.9 0.95 1 1.05 1.1 1.15
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

block Jacobi

0.98 0.99 1 1.01 1.02

×10
-3

-6

-4

-2

0

2

4

6

8

10

12

14

block Gauss-Seidel

0.85 0.9 0.95 1 1.05 1.1 1.15
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

block Jacobi

0.98 0.99 1 1.01 1.02 1.03
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

block Gauss-Seidel

Figure 3-4: Eigenvalues for the preconditioned polarized systems using the block
Jacobi (left) and the block Gauss-Seidel (right) preconditioner, using the Marmousi
model with 𝐿 = 5, npml = 10, and 𝜔 = 34𝜋 (top row) and 𝜔 = 70𝜋 (bottom row).

Figure 3-5: Sparsity pattern of the polarized matrix in Eq. 3.9.

92

Remark 4. Although the block Gauss-Seidel gives faster convergence; we loose some
parallelism. In the case of the block Jacobi iteration, we can apply the sweeps in
parallel ((D↑)−1 and (D↓)−1), in the block Gauss-Seidel iteration we need to perform
then sequentially. In terms of number of floating point operations, the Gauss-Seidel
iteration is twice as cheap as the Jacobi iteration; however, in terms of runtime is
not clear which will be faster, and it will depend heavily on the implementation.

Remark 5. From numerical experiments the convergence rate for the Gauss-Seidel
preconditioner seems to have a weaker dependence on the frequency than the Jacobi
preconditioner in Chapter 2.

3.3.2 Matrix-free approach

We proceed to explain the application of M and the preconditioner 𝑃GS in a matrix-
free fashion. The application relies on solving a local problem at each layer with a
modified right-hand side. We start with a high-level explanation, then we present
the algorithms to apply the preconditioner, and finally, we summarize the matrix-free
solver in the form of an algorithm.

One key observation is that the polarized matrix M (and M) can be applied
to a vector in a matrix-free fashion, addressing the offline bottleneck and memory
footprint. Each block of M is a Green’s integral, and its application to a vector
is equivalent to sampling a wavefield generated by sources at the boundaries. The
application of the Green’s integral to a vector v, in matrix-free approach, consists in
three steps: from v we form the sources at the interfaces, we perform a local direct
solve inside the layer, and we sample the solution at the interfaces.

The precise algorithm to apply M in a matrix-free fashion is provided in Alg. 9.
We use the same notation as in Chapter 2, namely we write

u =
(︀
u1
𝑛1 ,u2

1,u
2
𝑛2 , ...,u𝐿−1

𝑛𝐿−1 ,u
𝐿
1

)︀𝑡
, (3.11)

v =
(︀
u1
𝑛1 ,u2

1,u
2
𝑛2 , ...,u𝐿−1

𝑛𝐿−1 ,u
𝐿
1

)︀𝑡
. (3.12)

Algorithm 9. Application of the boundary integral matrix M

1: function u = Boundary Integral(v)
2: ̃︀f1 = −𝛿(𝑧𝑛1+1 − 𝑧)v1

𝑛ℓ + 𝛿(𝑧𝑛1 − 𝑧)v2
𝑛1

3: w1 = (H1)−1̃︀f1
4: uℓ

𝑛ℓ = wℓ
𝑛ℓ − vℓ

𝑛ℓ

5: for ℓ = 2 : 𝐿− 1 do

6:
̃︀f ℓ = 𝛿(𝑧1 − 𝑧)vℓ−1

𝑛ℓ−1 − 𝛿(𝑧0 − 𝑧)vℓ
1

−𝛿(𝑧𝑛ℓ+1 − 𝑧)vℓ
𝑛ℓ + 𝛿(𝑧𝑛ℓ − 𝑧)vℓ+1

𝑛ℓ+1

7: wℓ = (Hℓ)−1̃︀f ℓ ◁ inner solve
8: uℓ

1 = wℓ
1 − vℓ

1

9: uℓ
𝑛ℓ = wℓ

𝑛ℓ − vℓ
𝑛ℓ

10: end for
11: ̃︀f𝐿 = 𝛿(𝑧1 − 𝑧)u𝐿−1

𝑛𝐿−1 − 𝛿(𝑧0 − 𝑧)u𝐿
1

93

12: w𝐿 = (H𝐿)−1̃︀f𝐿
13: u𝐿

1 = w𝐿
1 − v𝐿

1

14: end function

Alg. 9 can be easily generalized for M. We observe that there is no data depen-
dency within the for loop, which yields an embarrassingly parallel algorithm.

Matrix-free preconditioner

For the sake of clarity we present a high level description of the implementation of
the Gauss-Seidel preconditioner in Eq. 3.10 using the matrix free version. We write

u↓ =
(︁
u↓,1
𝑛1 ,u

↓,1
𝑛1+1,u

↓,2
𝑛2 , ...,u

↓,𝐿−1
𝑛𝐿−1 ,u

↓,𝐿−1
𝑛𝐿−1+1

)︁𝑡
, (3.13)

u↑ =
(︁
u↑,2
0 ,u↑,2

1 ,u↑,3
0 , ...,u↑,𝐿

0 ,u↑,𝐿
1

)︁𝑡
, (3.14)

to define the components of the polarized wavefields.
The indexes and the arrows are chosen such that they reflect the propagation

direction with respect to the superscript. For example, u↓,ℓ
𝑛1 represents the wavefield

leaving the layer ℓ at the bottom of the layer, i.e propagating downwards and sampled
at the bottom of the layer.

We use the notation introduced above to write explicitly the matrix-free operations
for the block Gauss-Seidel preconditioner in Eq. 3.10.

(︀
D↓)︀−1 is implemented in Alg.

10,
(︀
D↑)︀−1 is implemented in Alg. 11, and L is implemented in Alg. 12.

Algorithm 10. Downward sweep
1: function u↓ = Downward Sweep(v↓)
2: u↓,1

𝑛1 = −v↓,1
𝑛1 ◁ invert the diagonal block

3: u↓,1
𝑛1+1 = −v↓,1

𝑛1+1

4: for ℓ = 2 : 𝐿− 1 do
5: wℓ = (Hℓ)−1

[︁
𝛿(𝑧0 − 𝑧)u↓,ℓ−1

𝑛ℓ−1+1
− 𝛿(𝑧1 − 𝑧)u↓,ℓ−1

𝑛ℓ−1

]︁
◁ inner solve

6: u↓,ℓ
𝑛ℓ = w𝑛ℓ − v↓,ℓ

𝑛ℓ ◁ sample the wavefield and subtract the r.h.s.
7: u↓,ℓ

𝑛ℓ+1
= w𝑛ℓ+1 − v↓,ℓ

𝑛ℓ+1
◁ sample the wavefield and subtract the r.h.s.

8: end for

9: u↓ =
(︁
u↓,1
𝑛1 ,u

↓,1
𝑛1+1,u

↓,2
0 , ...,u↓,𝐿−1

0 ,u↓,𝐿−1
1

)︁𝑡

10: end function

Algorithm 11. Upward sweep
1: function u↑ = Upward sweep(v↑)
2: u↑,𝐿

0 = −v↑,𝐿
0 ◁ invert the diagonal block

3: u↑,𝐿
1 = −v↑,𝐿

1

4: for ℓ = 𝐿− 1 : 2 do
5: wℓ = (Hℓ)−1

[︁
−𝛿(𝑧𝑛ℓ+1 − 𝑧)u↑,ℓ−1

1 + 𝛿(𝑧𝑛ℓ − 𝑧)u↑,ℓ−1
0

]︁
◁ inner solve

6: u↑,ℓ
1 = wℓ

1 − v↑,ℓ
1 ◁ sample the wavefield and subtract the r.h.s.

94

7: u↑,ℓ
0 = wℓ

0 − v↑,ℓ
0 ◁ sample the wavefield and subtract the r.h.s.

8: end for

9: u↑ =
(︁
u↑,1
0 ,u↑,1

1 ,u↑,2
𝑛2 , ...,u

↑,𝐿−1
𝑛𝐿−1 ,u

↑,𝐿−1
𝑛𝐿−1+1

)︁𝑡

10: end function

We observe that in Alg. 10 and 11, the data dependency in the for loop forces
the algorithm to be run sequentially. The most expensive operation is the inner solve
performed locally at each layer. We will argue in the next section that using a nested
approach, with an appropriate reduction of the degrees of freedom, we can obtain a
highly efficient inner solve, which yields a fast application of the preconditioner.

Algorithm 12. Upward Reflections
1: function u↑ = Upward Reflections(v↑)
2: for ℓ = 2 : 𝐿− 1 do

3:
f ℓ = 𝛿(𝑧1 − 𝑧)u↑,ℓ

0 − 𝛿(𝑧0 − 𝑧)u↑,ℓ
1

−𝛿(𝑧𝑛ℓ+1 − 𝑧)u↑,ℓ+1
1 + 𝛿(𝑧𝑛ℓ − 𝑧)u↑,ℓ+1

0

4: wℓ = (Hℓ)−1f ℓ ◁ inner solve
5: u↑,ℓ

1 = wℓ
1 − v↑,ℓ

1 ◁ sample the wavefield and subtract the identity
6: u↑,ℓ

0 = wℓ
0 ◁ sample the wavefield

7: end for
8: f𝐿 = 𝛿(𝑧1 − 𝑧)u↑,𝐿

0 − 𝛿(𝑧0 − 𝑧)u↑,𝐿
1

9: w𝐿 = (H𝐿)−1f𝐿 ◁ local solve
10: u↑,𝐿

1 = w𝐿
1 − v↑,𝐿

1 ◁ sample the wavefield and subtract the identity
11: u↑,𝐿

0 = w𝐿
0 ◁ sample the wavefield

12: u↑ =
(︁
u↑,2
0 ,u↑,2

1 ,u↑,3
𝑛2 , ...,u

↑,𝐿−1
𝑛𝐿−1 ,u

↑,𝐿
𝑛𝐿+1

)︁𝑡

13: end function

We observe that the for loop in line 2-7 in Alg. 12 is completely parallel.
The preconditioner in Eq. 3.10 is implemented using these functions, in which the

whole block inside the for loop is performed using the reduction depicted in Eq. 3.16,
which is detailed in Section 3.3.3.

Matrix-free solver

We provide the full algorithm of the matrix-free solver using the method of polarized
traces coupled with the Gauss-Seidel preconditioner. The main difference with the
original method of polarized traces in Chapter 2 is the we use Algs. 11, 10, 12
and 9 to perform the GMRES iteration (line 11 of Alg. 13) instead of compressed
matrix-vector multiplications.

Algorithm 13. Matrix-free solver
1: function u = Matrix-free solver(f)
2: for ℓ = 1 : 𝐿 do
3: f ℓ = f𝜒Ωℓ ◁ partition the source
4: end for

95

5: for ℓ = 1 : 𝐿 do
6: wℓ =

(︀
Hℓ
)︀−1

(f ℓ) ◁ solve local problems
7: end for
8: f =

(︀
w1

𝑛1 ,w2
1, ...,w

𝐿
1

)︀𝑡

9: f0 =
(︀
w1

𝑛1+1,w
2
0, ...,w

𝐿
0

)︀𝑡

10: f =

(︂
f
f0

)︂
◁ form the r.h.s. for the polarized integral system

11:

(︂
u↓

u↑

)︂
= u =

(︀
𝑃GSM

)︀−1
𝑃GSf ◁ solve using GMRES

12: u = u↑ + u↓ ◁ add the polarized components
13: ̃︀f1 = f1 − 𝛿(𝑧𝑛1+1 − 𝑧)u1

𝑛1 + 𝛿(𝑧𝑛1 − 𝑧)u2
1 ◁ reconstruct local solutions

14: u1 = (H1)
−1

(̃︀f1)
15: for ℓ = 2 : 𝐿− 1 do

16:
̃︀f ℓ = f ℓ + 𝛿(𝑧1 − 𝑧)uℓ−1

𝑛ℓ−1 − 𝛿(𝑧0 − 𝑧)uℓ
1

−𝛿(𝑧𝑛ℓ+1 − 𝑧)uℓ
𝑛ℓ + 𝛿(𝑧𝑛ℓ − 𝑧)uℓ+1

1

17: uℓ =
(︀
Hℓ
)︀−1

(̃︀f ℓ)
18: end for
19: ̃︀f𝐿 = f𝐿 + 𝛿(𝑧1 − 𝑧)u𝐿−1

𝑛𝐿−1 − 𝛿(𝑧0 − 𝑧)u𝐿
1

20: u𝐿 =
(︀
H𝐿
)︀−1

(̃︀f𝐿)
21: u = (u1,u2, . . . ,u𝐿−1,u𝐿)𝑡 ◁ concatenate the local solutions
22: end function

3.3.3 Nested inner and outer solver

In the presentation of the matrix free solver (Alg. 13), we have extensively relied on
the assumption that the inner systems Hℓ can be solved efficiently in order to apply
the Green’s integrals fast. Moreover, as seen before, the nested solver in composed of
two levels:

∙ an inner solve, in which a local system is solved at each layer,

∙ and an outer solve, in which the global system in the whole domain is solved
using the method of polarized traces.

In this section we describe the algorithms to compute the solutions to the inner
systems efficiently, and then we describe how the outer solve calls the inner solver.

From the analysis of the rank of the off-diagonal blocks of the Green’s functions
we know that the Green’s integrals can be compressed in a way that results in a fast
application in 𝒪(𝑛3/2) time, but this approach requires precomputation and storage of
the Green’s functions. The matrix-free approach in Alg. 13 does not need expensive
precomputations, but it would naively perform a direct solve in the volume (inverting
Hℓ), resulting in an application of the Green’s integral in 𝒪(𝑁/𝐿) complexity (as-
suming that a good direct method is used at each layer). This becomes problematic
when applying the preconditioner, which involves 𝒪(𝐿) sequential applications of the
Green’s integrals as Algs. 10 and 11 show. This means that the careless application

96

of the preconditioner using the matrix-free approach would result in an algorithm
with linear online complexity. The nested strategy (that we present below) mitigates
this effect resulting in a lower 𝒪(𝐿𝑐(𝑛/𝐿)3/2) (up to logarithmic factors) complexity
for the application of each Green’s integral.

We follow the matrix-free approach of Alg. 13, but instead of a direct solve to
invert Hℓ we use a nested solver, i.e., we use the same reduction used in the whole
Ω to each layer Ωℓ. We reduce the local problem at each layer to solving a discrete
integral system analog to Eq. 3.45 with a layered decomposition in the transverse
direction given by

Mℓuℓ = f ℓ, for ℓ = 1, .., 𝐿𝑐; (3.15)

we suppose that we have 𝐿𝑐 ∼ 𝐿 ∼
√
𝑃 cells in each layer.

The nested solver uses the inner boundaries, or interfaces between cells, as proxies
to perform the local solve inside the layer efficiently. This efficiency can be improved
when the inner solver is used in the applications of the Green’s integral within the pre-
conditioner. In that case, the application of the Green’s integral can be decomposed
in three steps:

∙ using precomputed Green’s functions at each cell we evaluate the wavefield
generated from the sources to form f ℓ (from red to pink in Fig. 3-6 left); this
operation can be represented by a sparse block matrix Mℓ

𝑓 ;

∙ we solve Eq 3.15 to obtain uℓ (from pink to blue in Fig. 3-6 right);

∙ finally, we use the Green’s representation formula to sample the wavefield at
the interfaces (from blue to green in Fig. 3-6), this operation is represented by
another sparse-block matrix Mℓ

𝑢.

Using the definition of the incomplete integrals in Section 2.2 the algorithm de-
scribed above leads to the factorization

⎡
⎢⎢⎢⎣

𝒢↓,ℓ0 (v0,v1) + 𝒢↑,ℓ0 (v𝑛ℓ ,v𝑛ℓ+1)

𝒢↓,ℓ1 (v0,v1) + 𝒢↑,ℓ0 (v𝑛ℓ ,v𝑛ℓ+1)

𝒢↓,ℓ
𝑛ℓ (v0,v1) + 𝒢↑,ℓ

𝑛ℓ (v𝑛ℓ ,v𝑛ℓ+1)

𝒢↓,ℓ
𝑛ℓ+1

(v0,v1) + 𝒢↑,ℓ
𝑛ℓ+1

(v𝑛ℓ ,v𝑛ℓ+1)

⎤
⎥⎥⎥⎦ = Mℓ

𝑓

(︀
Mℓ
)︀−1

Mℓ
𝑢 ·

⎡
⎢⎢⎣

v0

v1

v𝑛ℓ

v𝑛ℓ+1

⎤
⎥⎥⎦ , (3.16)

in which the blocks of Mℓ
𝑓 and Mℓ

𝑢 are dense, but highly compressible in PLR form.

97

f ` u`

Figure 3-6: Sketch of the application of the Green’s functions using a nested approach.
The sources are in red (left) and the sampled field in green (right). The application
uses the inner boundaries as proxies to perform the solve.

Algorithms

We provide the algorithms in pseudo-code for the two different levels of the nested
solver, the inner and outer solvers, Algs. 14 and 15 respectively. In addition, we pro-
vide a variant of the inner solver that is crucial to obtain the advertised online com-
plexity at the beginning of the Chapter (i.e. 𝒪(𝑁/𝑃) provided that 𝑃 = 𝒪(𝑁1/5)).

If the support of the source is the whole layer and the wavefield is required in
the volume, we use the inner solve as prescribed in Alg. 14 without modifications.
If the source term is concentrated at the interfaces between layers, and the wavefield
is needed only at the interfaces, we reduce the computational cost by using a slight
modification of Alg. 14. In this variant, the local solves in line 7 of Alg. 14 (which is
performed via a LU back-substitution) and the reconstruction (lines 11 to 15 in Alg.
14), are replaced by precomputed operators that are explained in the sequel.

In order to reduce the notational burden, we define the inner solve using the same
notation as before. We suppose that each layer Ωℓ is decomposed in 𝐿𝑐 cells, noted
{Ωℓ,𝑐}𝐿𝑐

𝑐=1. We extend all the definitions from the matrix-free solver to the inner solver,
by indexing the operations by ℓ and 𝑐. In which, ℓ stands for the layer and 𝑐 for the
cell within the layer.

For each Ωℓ, we apply the variable swap ̃︀x = (𝑧, 𝑥), which is noted by ℛ such that
ℛ2 = 𝐼 (idempotent). Under the variable swap, we can decompose Ωℓ in 𝐿𝑐 layers
{Ωℓ,𝑐}𝐿𝑐

𝑐=1 to which we can apply the machinery of the boundary integral reduction
at the interfaces between cells. The resulting algorithm has the same structure as
before. The variable swap is a suitable tool that allows us to reuse to great extent the
notation introduced in Chapter 2. Numerically, the variable swap just introduced is
implemented by transposing the matrices that represent the different wavefields.

A high-level description of the algorithm is given by Alg. 14

Algorithm 14. Inner Solve for inverting Hℓ in Algs. 10, 11 and 12
1: function w = Inner Solverℓ(f ℓ)

98

2: gℓ = ℛ ∘ f ℓ ◁ variable swap
3: for 𝑐 = 1 : 𝐿𝑐 do
4: gℓ,𝑐 = g𝜒Ωℓ,𝑐 ◁ partition the source
5: end for
6: for 𝑐 = 1 : 𝐿𝑐 do
7: 𝒩 ℓ,𝑐gℓ,𝑐 = (Hℓ,𝑐)−1gℓ,𝑐 ◁ solve local problems
8: end for

9: gℓ =
(︁
𝒩 ℓ,1

𝑛1 g
ℓ,1,𝒩 ℓ,2

1 gℓ,2,𝒩 ℓ,2
𝑛2 g

ℓ,2, . . . ,𝒩 ℓ,𝐿𝑐

1 gℓ,𝐿𝑐

)︁𝑡
◁ form r.h.s.

10: vℓ =
(︀
Mℓ
)︀−1

gℓ ◁ solve for the traces (Eq. 3.15)
11: for 𝑐 = 1 : 𝐿𝑐 do
12: vℓ,𝑐

𝑗 = 𝒢↑,ℓ,𝑐𝑗 (vℓ,𝑐
𝑛ℓ ,v

ℓ,𝑐
𝑛ℓ+1

) + 𝒢↓,ℓ,𝑐𝑗 (vℓ,𝑐
0 ,v

ℓ,𝑐
1) +𝒩 ℓ,𝑐

𝑗 gℓ,𝑐 ◁ local reconstruction
13: end for
14: vℓ = (vℓ,1,vℓ,2, . . . ,vℓ,𝐿𝑐−1,vℓ,𝐿𝑐)𝑡 ◁ concatenate the local solutions
15: w = ℛ ∘ vℓ ◁ variable swap
16: end function

Using the inner solve defined in Alg. 14 we can provide a high level description of
the online stage of the nested solver in Alg. 15.

Algorithm 15. Outer solver, or online computation for the nested solver
1: function u = Nested solver(f)
2: for ℓ = 1 : 𝐿 do
3: f ℓ = f𝜒Ωℓ ◁ partition the source
4: end for
5: for ℓ = 1 : 𝐿 do
6: wℓ = InnerSolveℓ(f ℓ) ◁ solve local problems
7: end for
8: f =

(︀
w1

𝑛1 ,w2
1, ...,w

𝐿
1

)︀𝑡

9: f0 =
(︀
w1

𝑛1+1,w
2
0, ...,w

𝐿
0

)︀𝑡

10: f =

(︂
f
f0

)︂
◁ form the r.h.s. for the polarized integral system

11:

(︂
u↓

u↑

)︂
= u =

(︀
𝑃GSM

)︀−1
𝑃GSf ◁ solve using GMRES

12: u = u↑ + u↓ ◁ add the polarized components
13: ̃︀f1 = f1 − 𝛿(𝑧𝑛1+1 − 𝑧)u1

𝑛1 + 𝛿(𝑧𝑛1 − 𝑧)u2
1 ◁ reconstruct local solutions

14: u1 = InnerSolve1(̃︀f1)
15: for ℓ = 2 : 𝐿− 1 do

16:
̃︀f ℓ = f ℓ + 𝛿(𝑧1 − 𝑧)uℓ−1

𝑛ℓ−1 − 𝛿(𝑧0 − 𝑧)uℓ
1

−𝛿(𝑧𝑛ℓ+1 − 𝑧)uℓ
𝑛ℓ + 𝛿(𝑧𝑛ℓ − 𝑧)uℓ+1

1

17: uℓ = InnerSolveℓ(̃︀f ℓ)
18: end for
19: ̃︀f𝐿 = f𝐿 + 𝛿(𝑧1 − 𝑧)u𝐿−1

𝑛𝐿−1 − 𝛿(𝑧0 − 𝑧)u𝐿
1

20: u𝐿 = InnerSolve1(̃︀f𝐿)
21: u = (u1,u2, . . . ,u𝐿−1,u𝐿)𝑡 ◁ concatenate the local solutions

99

22: end function

For the sake of clarity, we decompose the outer solve in Alg. 15 in three stages :

∙ lines 2-10: preparation of the r.h.s. for the outer polarized integral system,
using an inner solve in each layer concurrently;

∙ lines 11-12: solving for the traces at the interfaces between layers, using precon-
ditioned GMRES, and applying M and the preconditioner via the matrix-free
approach;

∙ lines 13-21: reconstruction of the solution inside the volume at each node, using
an inner solve in each layer concurrently.

The computational cost incurred using the implementation of Alg. 14 is acceptable
if f ℓ has no a priori structure, or if the wavefield is needed the in volume. This is the
case in the preparation of the r.h.s. and the reconstruction of the solution. However,
within the GMRES loop that solves for the traces using the matrix-free approach
(line 11 in Alg. 15), we have that the support of the source term is concentrated on
the boundaries between layers (see line 5 in Algs. 11, 10; lines 3, 6 and 12 in Alg. 9
and lines 3 and 8 in Alg. 12).

When the inner solve is used in the preconditioner (when applying the Green’s
integrals), we use the localization of the support to replace the solve inside each cell
by the direct application of the Green’s function to the source term. We use the
Green’s functions 𝐺ℓ,𝑐(x,y), where y lies on the support of the sources and x on the
boundary between cells, to build gℓ (line 9 in Alg. 14). We precompute the matrix
that encodes this operation; the resulting matrix can be easily compressed in PLR
form to obtain a fast matrix-vector product.

Simultaneously, we can observe that the output of Algs. 11, 10 and 12 consists
of the traces of the solution at the interfaces between layers; all the degrees of free-
dom at the interior are unnecessary. We use this fact to further reduce the amount
of operations to the strictly necessary. We only sample the Green’s representation
formula at the boundaries between layers when reconstructing the solution (line 12
of Alg. 14). The matrix that encodes this operation can be precomputed, and once
again the resulting matrices are highly compressible in PLR form.

The matrices Mℓ
𝑓 and Mℓ

𝑢 are block matrices whose blocks are the matrices de-
scribed above.

The choice of algorithm to solve Eq. 3.15 and to apply the Green’s integrals
dictates the scaling of the offline complexity and the constant of the online complexity.
We can either use the method of polarized traces or the compressed-block LU solver,
which are explained below.

Nested polarized traces

To efficiently apply the Green’s integrals using Alg. 14, we need to solve Eq. 3.15
efficiently. One alternative is to use the method of polarized traces to solve the
system at each layer, this approach will be called the method of nested polarized

100

traces. Following Chapter 2 this approach has the same empirical scalings, at the
inner level, as those found it [148] when the blocks are compressed in (PLR) form.
Each layer solve has 𝒪(𝐿𝑐(𝑛/𝐿+ log(𝑛))3/2) online complexity when 𝜔 ∼ √𝑛.

Given that 𝐿𝑐 ∼ 𝐿 ∼
√
𝑃 , we have that each solve is done in 𝒪(𝑁3/4/𝐿 +

𝐿 log(𝑛)3/2) time, which has an extra factor 1/𝐿 when compared with the direct
compressed matrix-vector multiplication for the application of the Green’s integral in
Chapter 2. Although in this case the complexity is lower, we have to iterate inside
each layer to solve each system, which produces large constants for the application of
the Green’s integrals in the online stage.

Inner compressed-block LU

An alternative to efficiently apply the Green’s integrals via Alg. 14, is to use the
compressed-block LU to solve Eq. 3.15. Given the banded structure of Mℓ (see
Fig. 3-5), we perform a block LU decomposition without pivoting. The resulting LU
factors are block sparse and tightly banded (see Fig. 3-2). We have the factorization

Mℓ = Lℓ Uℓ, (3.17)

which leads to
𝒢ℓ = Mℓ

𝑓

(︀
Uℓ
)︀−1 (︀

Lℓ
)︀−1

Mℓ
𝑢, (3.18)

in which 𝒢ℓ represents the linear operator at the left-hand-side of Eq.3.16. Follow-
ing Section 3.2.2 we have that solving

(︀
Uℓ
)︀−1 (︀

Lℓ
)︀−1 can be done in 𝒪(𝐿𝑐(𝑛/𝐿 +

log(𝑛))3/2) online time. The main advantage with respect to using the method of
polarized traces in the layer solve, is that we do not need to iterate and the system
to solve is half the size. Therefore, the online constants are much lower than using
the method of polarized traces as a layer solve.

3.3.4 Complexity

Table 3.3 summarizes the complexities and number of processors at each stage for
both methods. For simplicity we do not count the logarithmic factors from the nested
dissection; however, we consider the logarithmic factors coming from the extra degrees
of freedom in the PML.

If the frequency scales as 𝜔 ∼ √𝑛, the regime in which second order finite-
differences are expected to be accurate, we obtain 𝛼 = 5/8; however, we assume
the more conservative value 𝛼 = 3/4. The latter is in better agreement with a theo-
retical analysis of the rank of the off-diagonal blocks of the Green’s functions. In such
scenario we have that the blocks of Mℓ

𝑢 and Mℓ
𝑓 can be compressed in PLR form,

resulting in a fast application in 𝒪(𝐿𝑐(𝑛/𝐿 + log(𝑛))3/2) time, easily parallelizable
among 𝐿𝑐 nodes. Solving Eq. 3.15 can be solved using either the direct compressed
or the nested polarized traces in 𝒪(𝐿𝑐(𝑛/𝐿+ log(𝑛))3/2) time. This yields a runtime
of 𝒪(𝐿𝑐(𝑛/𝐿+ log(𝑛))3/2) for each application of the Green’s integral.

101

Step 𝑁nodes Complexity per node
LU factorizations 𝒪(𝑃) 𝒪

(︀
(𝑁/𝑃 + log(𝑁))3/2

)︀

Green’s functions 𝒪(𝑃) 𝒪
(︀
(𝑁/𝑃 + log(𝑁))3/2

)︀

Local solves 𝒪(𝑃) 𝒪 (𝑁/𝑃 + log(𝑁)2)
Sweeps 1 𝒪(𝑃 (𝑁/𝑃 + log(𝑁)2)𝛼)

Recombination 𝒪(𝑃) 𝒪 (𝑁/𝑃 + log(𝑁)2)

Table 3.3: Complexity of the different steps of the preconditioner, in which 𝛼 depends
on the compression of the local matrices, thus on the scaling of the frequency with
respect to the number of unknowns. Typically 𝛼 = 3/4.

𝑁 𝜔/2𝜋[𝐻𝑧] 10× 2 40× 8 100× 20
88× 425 7.71 (3) 0.89 (3) 15.6 (4) 97.9
175× 850 11.1 (3) 1.48 (3) 17.7 (3) 105
350× 1700 15.9 (3) 2.90 (3) 22.1 (4) 106
700× 3400 22.3 (3) 5.58 (3) 31.3 (4) 126
1400× 6800 31.7 (3) 10.5 (3) 47.9 (4) 176

Table 3.4: Number of GMRES iterations (bold) required to reduce the relative resid-
ual to 10−5, along with average execution time (in seconds) of one GMRES iteration
using the compressed direct method, for different 𝑁 and 𝑃 = 𝐿×𝐿𝑐. The frequency
is scaled such that 𝑓 = 𝜔/2𝜋 ∼ √𝑛, the number of points in the PML scales as
log(𝑁), and the sound speed is given by the Marmousi2 model (see [95]).

𝑁 𝜔/2𝜋 [Hz] 6× 2 24× 8 42× 14 60× 20
120× 338 2.50 (4) 0.42 (4) 8.30 (4) 24.8 (4) 51.7
239× 675 3.56 (4) 0.74 (5) 9.15 (5) 26.1 (5) 52.8
478× 1349 5.11 (4) 1.52 (5) 11.6 (5) 30.8 (5) 59.9
955× 2697 7.25 (5) 3.32 (5) 17.9 (6) 38.5 (6) 68.8
1910× 5394 10.3 (5) 6.79 (6) 29.6 (6) 58.7 (6) 98.3

Table 3.5: Number of GMRES iterations (bold) required to reduce the relative resid-
ual to 10−5, along with average execution time (in seconds) of one GMRES iteration
using the compressed direct method, for different 𝑁 and 𝑃 = 𝐿×𝐿𝑐. The frequency
is scaled such that 𝑓 = 𝜔/2𝜋 ∼ √𝑛, the number of points in the PML scales as
log(𝑁), and the sound speed is given by the BP 2004 model (see [19]).

To apply the Gauss-Seidel preconditioner we need𝒪(𝐿) applications of the Green’s
integral, resulting in a runtime of 𝒪(𝐿 · 𝐿𝑐(𝑛/𝐿+ log(𝑛))3/2) to solve Eq. 3.8. Using
the fact that 𝐿 ∼

√
𝑃 and 𝐿𝑐 ∼

√
𝑃 and adding the contribution of the other steps

of the online stage; we have that the overall online runtime is given by 𝒪(𝑃 1/4𝑁3/4 +

102

𝑃 log(𝑁)3/4 +𝑁/𝑃 +log(𝑁)2), which is 𝒪(𝑁/𝑃) (up to logarithmic factors) provided
that 𝑃 . 𝑁1/5.

0 0.5 1 1.5 2 2.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0 0.5 1 1.5 2 2.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0 0.5 1 1.5 2 2.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0 0.5 1 1.5 2 2.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

Figure 3-7: Two iteration of the preconditioner, from top to bottom: initial guess
with only local solve; first iteration, second iteration, final solution. The background
model is given by the BP 2004 model [19].

103

Finally, the memory footprint is 𝒪(𝑃 1/4𝑁3/4 +𝑃 log(𝑁)3/4 +𝑁/𝑃 + log(𝑁)2) and
the communication cost for the online part is 𝒪(𝑛

√
𝑃), which represents an asymp-

totic improvement with respect to [148], in which the storage and communication cost
are 𝒪(𝑃𝑁3/4 +𝑁/𝑃 + log(𝑁)2) and 𝒪(𝑛𝑃), respectively.

3.4 Numerical results

3.4.1 Compressed-block LU

We present some numerical examples for the inner boundary reduction for media
featuring large resonant cavities with sharp contrasts, and we provide some numerical
examples to illustrate the suboptimal behavior of the Chapter 2’s polarized traces
formulation, as well as the nested polarized traces formulation in this Chapter, for
this particular problem.

4000

3000

2000

1000

0

0 1000 2000 3000 4000

Figure 3-8: Left: Resonant wave-guide inspired in the Comedy Central logo; right:
typical solution.

The model in Fig. 3-8 (left) is used for the numerical experiments. The shape is
kept constant, with an adjustable 𝑐red and with a smooth background speed 𝑐blue(𝑥, 𝑦) =
1 + 0.1𝑥 + 0.1𝑦 for (𝑥, 𝑦) ∈ [0, 1]2, such that the problem can not be reduced to an
integral equations posed on the boundaries. The model in Fig. 3-8 (left) was pro-
vided as a function handle, to allow an arbitrarily fine sampling close to its sharp
interfaces, which are not aligned with a regular equispaced grid. Discretizing the
Helmholtz equation with finite difference would incur in a severe reduction of the
accuracy. In practice, a good accuracy is crucial to obtain the reported compression
scalings for the Green’s integrals, given that we compress a numerical approxima-
tion of the Green’s functions. In general, an incorrect discretization will deteriorate
greatly the compression of the Green’s integrals in PLR form in the high-frequency
regime, for a fixed compression accuracy 𝜖.

104

To improve the accuracy, we use a Q1 discretization of Eq. 2.3, with a symmetric
formulation and an adaptive quadrature at the sharp interfaces as explained in Ap-
pendix 3.A. This different discretization leads to a different Green’s representation
formula, which is derived in Appendix 3.B. Fortunately, all the machinery developed
in Chapter 2 extends naturally to Q1 finite elements.

0 0.5 1 1.5 2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

block Jacobi
block Gauss-Seidel

0 0.5 1 1.5 2
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

block Jacobi
block Gauss-Seidel

Figure 3-9: Eigenvalues in the complex plane for the preconditioned polarized system
using the model in Fig. 3-8 for different contrasts left: 𝑐red = 10; right: 𝑐red = 2.

Fig 3-9 shows the eigenvalues of the preconditioned polarized system, using 𝐿 = 4
layers, 𝜔 = 40𝜋 for different contrasts. We can observe that the eigenvalues are
spread in the unit disk centered at one. Moreover, as the contrast is increased, more
eigenvalues live near the circle of radius 1 centered at one, and we can observe some
eigenvalues close to zero. In such circumstances, GMRES is known to have a hard
time converging to the solution. We point out the radically different behavior from
the spectra shown in Fig. 3-4, in which all the eigenvalues are tightly clustered around
1, far from zero.

The results for 𝐿 = 10 layers, different contrasts, frequencies, and problem sizes,
are shown in Fig.3-10. We observe that the runtimes are independent of the contrast
at high-frequency. The complexity of the method of polarized traces would severely
deteriorate with high contrasts as Fig 3-9 shows, given the large amount of iterations
needed for convergence.

Fig. 3-11 shows the runtime for a fixed constrast (𝑐red = 100) and shows the
scaling for the fast solve of Eq. 3.5. We obtain the same scaling as in [148] for the
cavity-free problem.

To compare against other methods, we apply the same compressed block LU
technique to solve a Schur complement system associated to a layered partitioning,
which is explained Appendix 3.C, rather than the GRF-based Eq. 3.5, we empirically
obtain the same asymptotic scalings, albeit with smaller constants given that the
Schur complement system is roughly half the size of the boundary integral system
given by the GRF.

105

As mentioned before, in principle, the cost of the of offline computation of the
boundary-reduced LU factors and their compression can be decreased by using ℋ-
matrix algebra to perform the elimination.

Remark 6. Each local problem for the Schur complement is, generally speaking, a
waveguide in the longitudinal direction. This results on the blocks of S to have off
diagonal blocks of higher rank than the ones in M as noted in [61]. However, once the
LU factors are computed and compressed, both methods have comparable asymptotic
runtimes.

Constrast c
red

/ c
blue

0 500 1000 1500 2000 2500 3000

ru
n
ti
m

e
 [
s
]

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

N = 200 × 200, ω = 20
N = 400 × 400, ω = 28
N = 800 × 800, ω = 40

Figure 3-10: Online runtime for different constrasts and problem sizes. 𝐿 is fixed
throughout.

degrees of freedom N
10

3
10

4
10

5
10

6
10

7

ru
n
ti
m

e
 [
s
]

10
-3

10
-2

10
-1

empirical
O(N5/8)

Figure 3-11: Runtime for a fixed constrast. 𝐿 is fixed throughout.

3.4.2 Nested Solver

Fig. 3-7 depicts the fast convergence of the method. After a couple of iterations the
exact and approximated solution are indistinguishable to the naked eye.

106

Tables 3.4 and 3.5 show the sublinear scaling for one GMRES iteration, with
respect to the degrees of freedom in the volume. We can observe that the num-
ber of iterations to converge depends weakly on the frequency and the number of
subdomains. Fig. 3-12 shows the empirical scaling for one global GMRES itera-
tion, in which the maximum rank 𝜖-rank in the adaptive PLR compression scales as
maxrank ∼

√
𝜔 and 𝜖 = 10−8. Moreover, for the nested polarized traces, the accuracy

for the GMRES inner solve is fixed to 10−6. We can observe that both methods have
the same asymptotic runtime, but with different constants.

104 105 106 107

N=n2

10-1

100

101

102

103

t[
s]

Nested polarized traces

Direct compressed

O(N5/8)

O(N5/8)

Figure 3-12: Runtime for one GMRES iteration using the two different nested solves,
for 𝐿 = 9 and 𝐿𝑐 = 3, and 𝜔 ∼ √𝑛.

We point out that some gains can be made by using different compressed op-
erators, one highly accurate to apply M, an operation that is easily parallelizable,
and another with low accuracy to apply the preconditioner, an operation that is
completely sequential.

3.5 Conclusion
We presented an extension to the method of polarized traces introduced in Chapter
2, with improved asymptotic runtimes in a distributed memory environment. The
method has sublinear runtime even in the presence of rough media of geophysical
interests. Moreover, its performance is completely agnostic to the source.

This algorithm is of especial interest in the context of time-lapse full-waveform
inversion, continuum reservoir monitoring, and local inversion. If the update to the
model is localized, most of precomputations can be reused. The only extra cost is
the refactorization and computation of the Green’s functions in the cells with a non
null intersection with the support of the update, reducing sharply the computational
cost.

We point out that this approach can be further parallelized using distributed
algebra libraries. Moreover, the sweeps can be pipelined to maintain a constant load
among all the nodes.

107

108

Appendix

3.A Discretization using Q1 finite elements
We pose Eq. 3.1 with absorbing boundary conditions on 𝜕Ω, realized as a perfectly
matched layer (PML) [13, 85].

Let Ωext = (−𝛿pml, 𝐿𝑥 + 𝛿pml) × (−𝛿pml, 𝐿𝑧 + 𝛿pml) be the extended rectangular
domain containing Ω and its absorbing layer. The symmetric formulation of the
Helmholtz equation takes the form

−
(︂
∇ · Λ∇+

𝜔2𝑚(x)

𝛼𝑥(x)𝛼𝑧(x)

)︂
𝑢(x) =

𝑓(x)

𝛼𝑥(x)𝛼𝑧(x)
, (3.19)

where
Λ(x) =

[︂
𝑠𝑥(x) 0

0 𝑠𝑧(x)

]︂
, (3.20)

𝑠𝑥 = 𝛼𝑥/𝛼𝑧, 𝑠𝑧 = 𝛼𝑧/𝛼𝑥, where 𝛼𝑥 and 𝛼𝑧 are defined in Eq. 2.13 and similarly for
𝜎𝑧(x).

In the case of a medium with sharp interfaces, finite differences approximations
give inaccurate results due to the lack of differentiability of the velocity profile. In
such cases, highly sophisticated quadratures and adaptive meshes have to be imple-
mented to properly approximate the finite difference operator [145, 4]. We opted for
a low order Q1 finite element discretization, with an adaptive quadrature rule at the
discontinuities.

Eq. 3.19 is discretized using Q1 elements leading to a discretized matrix

H = S−M, (3.21)

where the stiffness matrix S is computed using a Gauss quadrature. On the other
hand the mass matrix, M, is computed using a quadrature adapted to each element
depending on the local smoothness of the velocity profile:

∙ if the medium is locally smooth; a fixed Gauss quadrature is used to approximate
the integral over the square;

∙ if the medium is discontinuous; and adaptive trapezoidal rule is used, until a
preset accuracy is achieved.

To discriminate if the medium is discontinuous, the velocity is sampled at the

109

Gauss-points, and the ratio between maximum and minimum velocity is computed. If
the ratio is smaller than a fixed threshold, the medium is considered smooth otherwise
is is considered discontinuous.

Using a nodal basis we can write the system to solve as

Hu = f , (3.22)

where u is the point-wise value of the solution at the corners of the mesh and f is the
projection of 𝑓 onto the Q1 elements, using a high order gauss quadrature rule.

The discretization is second order accurate even in the case of discontinuous inter-
faces with sharp contrasts, as long as the adaptive quadrature rule is used to ensure
a small error on the numerical integration.

Finally, we can apply the same Q1 discretization to every local problem given by
Eq. 3.2 obtaining

Hℓuℓ = f ℓ. (3.23)

We point out that for the local problems we do not use the normal extension of the
slowness in the PML, instead we use the neighboring values on the wave speed in the
damping layer.

In the sequel, we will perform extensive manipulations on the matrix H. In order
to minimize the burden of the notations, we assume the same ordering as in Appendix
2.A, i.e.

u = (𝑢1,1, 𝑢2,1, ..., 𝑢𝑛𝑥,1, 𝑢1,2, ..., 𝑢𝑛𝑥,2, ..., 𝑢𝑛𝑥,𝑛𝑧), (3.24)

and we use the notation
u𝑛 = (𝑢1,𝑛, 𝑢2,𝑛, ..., 𝑢𝑛𝑥,𝑛), (3.25)

i.e. u sampled at constant depth.

Following that ordering we write H as a block matrix in the form

H =

⎡
⎢⎢⎢⎢⎢⎣

H1,1 H1,2

H2,1 H2,2 H2,3

.
. H𝑛𝑧−1,𝑛𝑧

H𝑛𝑧 ,𝑛𝑧−1 H𝑛𝑧 ,𝑛𝑧

⎤
⎥⎥⎥⎥⎥⎦
, (3.26)

in which each block correspond to a fixed 𝑧.

We can generalized the boundary integral system in Chapter 3.1 using the Green’s
representation formula in Appendix 3.B resulting in the equivalent problem

Mu = f . (3.27)

110

Where

M =
1

ℎ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−G1
𝑛,𝑛+1 − I G1

𝑛,𝑛 0 0 0 0

G2
1,1 −G2

1,0 − I −G1
1,𝑛+1 G1

1,𝑛 0 0

G2
𝑛,1 −G2

𝑛,0 −G2
𝑛,𝑛+1 − I G2

𝑛,𝑛 0 0

0
. . .

. . .
. . . 0 0

0 0 G𝐿−1
1,1 −G𝐿−1

1,0 − I −G𝐿−1
1,𝑛+1 G𝐿−1

1,𝑛

0 0 G𝐿−1
𝑛,1 −G𝐿−1

𝑛,0 −G𝐿−1
𝑛,𝑛+1 − I G𝐿−1

𝑛,𝑛

0 0 0 0 G𝐿
1,1 −G𝐿

1,0 − I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (3.28)

and the Green’s integral are defined as follows:

Gℓ
1,0 = −𝛿1

(︀
(Hℓ)−1𝛿0H

ℓ
1,0

)︀
, (3.29)

Gℓ
1,1 = −𝛿1

(︀
(Hℓ)−1𝛿1H

ℓ
0,1

)︀
, (3.30)

Gℓ
𝑛,𝑛 = −𝛿𝑛

(︀
(Hℓ)−1𝛿𝑛+1H

ℓ
𝑛+1,𝑛

)︀
, (3.31)

Gℓ
𝑛,𝑛+1 = −𝛿𝑛

(︀
(H)−1𝛿𝑛H𝑛,𝑛+1

)︀
. (3.32)

Moreover,
I = 𝐼/ℎ (3.33)

is a rescaled identity to reduce the notational burden.

Remark 7. The Green’s functions are still computed by inverting Hℓ using a Dirac
delta as a point source. However, given that we are dealing with finite elements a point
source is defined differently. Using the formulas above we recover the same Green’s
functions in the case of a finite difference discretization.

3.B Green’s representation formula
We present a generalization of the domain decomposition framework developed in
Chapter 2 to Q1 regular finite elements.

We start by providing the algebraic formula for the discrete Green’s representa-
tion formula, and we propose a technique to derive such formulas without the time
consuming computations performed in Appendix 2.A. We point out that there are
clear parallels between this derivation and the reduction to an interface problem using
interior Schur complements.

We want to derive the algebraic formula for the Green’s representation formula.
From Theorem 1 we know that using the Green’s representation formula locally in
a subdomain would produce a discontinuous solution, such that the exact solution
is recovered inside the domain, and it is zero outside it. The rationale behind the
formalism presented in this section is to find the form of the forcing terms necessary
to force the discontinuity of the local representation.

An easy manner to deduce the Green’s representation formulas is to let

vℓ = u𝜒Ωℓ , (3.34)

which is discontinuous, and apply the local differential operator to vℓ. Finding the

111

discrete Green’s representation formula can be re-casted as finding the expression of
a system of the form

Hℓvℓ = f ℓ + ℱ ℓ(u), (3.35)

such that its solution vℓ satisfies vℓ = u𝜒Ωℓ , and ℱ depends on the global wavefield
u. In Eq. 3.35 we suppose that f ℓ = f𝜒ℓ and that H and Hℓ coincide exactly inside
the layer. Within this context the problem of finding the formula for the Green’s
representation formula can be reduced to finding the expression of ℱ ℓ(u) such that
vℓ satisfies Eq 3.34.

For ℓ fixed we can obtain the expression of ℱ ℓ by evaluating Eq. 3.35 and imposing
that vℓ = u𝜒Ωℓ . In particular, we need to evaluate Eq. 3.35 at the interior of the
slab, at its boundaries and at the exterior.

At the interior of the slab ℱ ℓ(u) is zero, because vℓ satisfies Hℓvℓ = Hu = f = f ℓ.

At the boundaries, the situation is slightly more complex. If we evaluate Eq. 3.35
at 𝑘 = 1, we have that

Hℓ
1,1v

ℓ
1 + Hℓ

1,2v
ℓ
2 = f ℓ1 + ℱ1(u). (3.36)

Moreover, evaluating Hu = f at the same index yields

H1,0u0 + H1,1u1 + H1,2u2 = f ℓ1. (3.37)

By imposing that vℓ = u𝜒Ωℓ and subtracting Eqs 3.36 and 3.37, we have that

ℱ ℓ
1(u) = −H1,0u0 = −Hℓ

1,0u0. (3.38)

We can observe that the role of ℱ ℓ is to complete Eq. 3.35 a the boundary with
exterior data, such that vℓ satisfies the same equation that u inside the whole layer
and not only in the interior.

Analogously Eq. 3.35 can be evaluated at 𝑘 = 0 obtaining

Hℓ
0,1v

ℓ
1 = ℱ ℓ

0(u), (3.39)

and imposing that vℓ = u𝜒Ωℓ we obtain that

ℱ ℓ
0(u) = H0,1u1 = Hℓ

0,1u1. (3.40)

Finally, for 𝑘 < 0, the same argument leads to

ℱ ℓ
𝑘(u) = 0. (3.41)

We can easily generalize this argument for the other side of a layer obtaining a
generic formula for ℱ ℓ

ℱ ℓ(u) =− 𝛿𝑛ℓHℓ
𝑛ℓ,𝑛ℓ+1u𝑛ℓ+1 + 𝛿𝑛ℓ+1H

ℓ
𝑛ℓ+1,𝑛ℓu𝑛ℓ

− 𝛿1Hℓ
1,0u0 + 𝛿0H

ℓ
0,1u1,

112

which can be replaced on Eq. 3.35 leading to

Hℓvℓ =− 𝛿𝑛ℓHℓ
𝑛ℓ,𝑛ℓ+1u𝑛ℓ+1 + 𝛿𝑛ℓ+1H

ℓ
𝑛ℓ+1,𝑛ℓu𝑛ℓ

− 𝛿1Hℓ
1,0u0 + 𝛿0H

ℓ
0,1u1 + f ℓ. (3.42)

Eq. 3.42 can be transformed to the discrete expression of the Green’s representation
formula by applying the inverse of Hℓ, Gℓ. We can then reformulate the Green’s
integral in Eq. 2.24 in the form

𝒢↓,ℓ𝑗 (v0,v1) = ℎ
[︀
Gℓ(𝑧𝑗, 𝑧1) Gℓ(𝑧𝑗, 𝑧0)

]︀(︂ −Hℓ
1,0v0

Hℓ
0,1v1

)︂
, (3.43)

𝒢↑,ℓ𝑗 (v𝑛ℓ ,v𝑛ℓ+1) = ℎ
[︀
Gℓ(𝑧𝑗, 𝑧𝑛ℓ+1) Gℓ(𝑧𝑗, 𝑧𝑛ℓ)

]︀(︂ Hℓ
𝑛ℓ+1,𝑛ℓv𝑛ℓ

−Hℓ
𝑛ℓ,𝑛ℓ+1

v𝑛ℓ+1

)︂
.(3.44)

Finally, if we redefine Gℓ(𝑧𝑗, 𝑧𝑘) for 𝑘 = 0, 1, 𝑛ℓ, 𝑛ℓ + 1, so they absorb all the extra
factors in Eqs. 3.43 and 3.44, we can use all the machinery introduced in Chapter 2
to define the boundary integral system and the polarized systems.

We build the boundary integral system

Mu = f , (3.45)

although we do not provide a rigorous proof that solving the equation above is equiv-
alent to solving Eq. 3.1, we have exhaustive numerical evidence that the later is
true.

Remark 8. As an example, in the case of the unsymmetric finite difference dis-
cretization, the upper and lower diagonal blocks of H are diagonal matrices rescaled
by −1/ℎ2. Then the formula presented here reduces exactly to the formulas computed
by summation by parts in Appendix 2.A.

3.C Schur Complement

We decompose the system Hu = f in 𝐿 different layers {Ωℓ}𝐿ℓ=1, using 𝐿−1 separators
{Γℓ,ℓ+1

Schur}𝐿−1
ℓ=1 as depicted in Fig. 3.13.

Using standard linear algebra we reduce the discrete PDE to solving the Schur
complements on the separators. Leading to a problem of the form

Su = f schur, (3.46)

in which S is a block tridiagonal matrix, with dense blocks; and u are the stacked
traces of u at the separators. Moreover, f schur is the source, which contains elements
from the local solves, to solve the Schur complement system. Once u is computed
we solve the local problems with the correct Dirichlet data to recover the solution at
each layer.

113

⌦ ⌦ext ⌦3

⌦2

⌦1

�Schur
1,2

�Schur
2,3

Figure 3.13: Sketch of the domain decomposition for the Schur complement.

We point out that in this case the local problems are essentially different from
the ones solved for the Green’s representation formula. Instead of solving a local
Helmholtz equation with artificial absorbing boundary conditions at the interfaces
between layers, we solve a local Hemholtz problem with a Dirichelet boundary con-
dition. The latter problem can be ill-posed if the frequency is such that we are in
presence of a resonant mode. Fortunately, we have absorbing boundary conditions
in the longitudinal direction, which prevent us to having a local resonant mode as
pictured in Fig. 3.13.

114

115

116

Chapter 4

Harmonic Extrapolation

This Chapter is concerned with the problem of extension, or “extrapolation” of har-
monic wavefields, i.e., finding solutions of the two-dimensional Helmholtz equation
△𝑢 + 𝜅2𝑢 = 0 in the half-space (𝑥, 𝑦) ∈ R × R+

0 from boundary data at 𝑦 = 0. We
study the problem of stability of such extensions in the presence of partial data in a
finite interval of {𝑦 = 0}.

This Chapter provides a theoretical rationale to the method of polarized traces,
which can be seen as an algebraic extrapolation technique. Within the scope of
domain decomposition used in Chapters 2 and 3 the extrapolation can be seen as
follows: given a Dirichlet and Neumann trace of the solution at one of the interfaces
of a slab, we seek the minimum conditions needed to be able to extrapolate, or to
guess the value of the solution at the opposite interface. Algebraically, the elimination
of unknowns provides an answer for the discretized system. Indeed, the elimination
can be done by running the recurrence relation given by the discrete system as is
done in the proofs in Appendix 2.C. However, the elimination of unknowns has to be
constructed following the physics of the wave equation that hinges on the propagation
of singularities, in particular, on the causality of waves. This physical intuition is
exploited in most of the highly efficient Helmholtz preconditioners, such as [58, 59,
143, 37, 128, 148], using absorbing boundary conditions to enforce some kind of local
directionality, hence causality to the waves.

In this Chapter we study the analytical properties and limitations of the extrap-
olation procedure. We provide some asymptotic geometrical conditions necessary for
an accurate extrapolation, followed by numerical experiments that corroborate the
asymptotics. Finally, we present a sweeping-like solver of a different nature compared
to the others solvers in this thesis. The solver uses the extrapolation to compute the
solution to the Helmholtz equation in homogeneous medium very accurate in a single
sweep.

4.1 Harmonic extension: the Laplace equation

The 𝜅 = 0 case corresponds to the problem of extending an analytic – or classically
harmonic – function from its knowledge on a line or curve, a fundamental question

117

linked to the genesis of Fourier analysis in the first half of the 19th century. Siméon
Poisson [110] wrote the general solution of the Laplace equation when the domain is
either a disk, or a half-space with decay conditions. In the latter case, he found that
the solution of

△𝑢 = 0 x = (𝑥, 𝑦) ∈ R× R+
0 , (4.1)

𝑢(𝑥, 0) = 𝑢0(𝑥) 𝑥 ∈ R, (4.2)

𝑢 = 𝒪
(︂

1

𝑥2 + 𝑦2

)︂
as 𝑥2 + 𝑦2 →∞, (4.3)

when 𝑢0 decays sufficiently fast, is the convolution integral

𝑢(𝑥, 𝑦) =
1

𝜋

∫︁

R
𝑃𝑦(𝑥− 𝑥′)𝑢0(𝑥′)𝑑𝑥′, (4.4)

with the (Poisson) kernel
𝑃𝑦(𝑥) =

𝑦

𝑥2 + 𝑦2
. (4.5)

This map from 𝑢0 to 𝑢 is manifestly stable and smoothing1 for any 𝑦 > 0, but this
behavior is fragile. For instance, the extension problem becomes highly ill-posed for
all 𝑦 > 0 when the match with 𝑢0 is only required in any finite segment 𝛾 of {𝑦 = 0},
i.e., when the knowledge of 𝑢0 is partial.

Indeed, any real-analytic 𝑢0(𝑥) admits real-analytic approximations ̃︀𝑢0(𝑥) which
are arbitrarily close on 𝛾, but arbitrarily far outside of it — it suffices for instance
to add to 𝑢0 a high-amplitude gaussian centered well away from 𝛾. The Poisson
kernel integrates constructively with the perturbation, and the predictions 𝑢(𝑥, 𝑦)
and ̃︀𝑢(𝑥, 𝑦) can be arbitrarily far from one another even for very small 𝑦 > 0. This
behavior is typical: boundary-value elliptic equations cannot in general be solved by
marching from incomplete boundary data.

4.2 Generalized harmonic extension: the Helmholtz
equation

The situation is different when the frequency parameter 𝜅 becomes large. We now
consider the Helmholtz equation in the upper half plane with outgoing (Sommerfeld)
radiating boundary conditions, namely

△𝑢+ 𝜅2𝑢 = 0 x = (𝑥, 𝑦) ∈ R× R+
0 , (4.6)

𝑢(𝑥, 0) = 𝑢0(𝑥) 𝑥 ∈ R, (4.7)
lim
√
𝑟 (𝜕𝑟 − 𝑖𝑘)𝑢 = 0 as 𝑟 = |x| → ∞. (4.8)

1Bounded in 𝐿2(R) for any fixed 𝑦, or between any pairs of Sobolev spaces 𝐻𝑠1(R) and 𝐻𝑠2(R)
as Fourier analysis would show.

118

for 𝜅 > 0. The solution of this problem is expressed via Fourier analysis as

𝑢(𝑥, 𝑦) =
1

(2𝜋)2

∫︁

R
𝑒𝑖𝑥𝜉𝑒𝑖𝑦

√
𝜅2−𝜉2 ̂︀𝑢0(𝜉) 𝑑𝜉, (4.9)

where the branch cuts of the square root respectively extend to ±𝑖∞ at 𝜉 = ±𝜅, so
as to respect the outgoing boundary condition [?]. The expression of the resulting
distributional Poisson kernel is of no concern, but let us continue to call it 𝑃𝑦(𝑥).

The oscillatory content of 𝑢0 determines the type of waves that result from solving
the Helmholtz equation, namely:

∙ when |𝜉| < 𝜅, the waves are propagating or traveling, with horizontal wave
vector 𝜉𝑥 = 𝜉 and vertical wave vector 𝜉𝑦 =

√︀
𝜅2 − 𝜉2;

∙ when |𝜉| > 𝜅, the waves are evanescent, and decay exponentially in 𝑦 > 0. The
limiting case |𝜉| = 𝜅 corresponds to grazing waves.

The interesting situation for stable extension from data in an interval is when 𝑢0
is a priori known to only generate propagating waves, i.e., when the integral in (4.9)
is restricted to [−𝜅, 𝜅]. Additionally, the waves of interest will be further restricted
to propagate in directions well away from those of the grazing waves (𝜉 = ±𝜅), by
means of an extra number 𝑐 that indicates the bandlimit of the boundary data 𝑢0.

Definition 12. We call cone-directed wave with aperture 𝑐/𝜅 any solution of the
Helmholtz equation in R× R+

0 of the form (4.9), with the restriction that

supp ̂︀𝑢0 ⊂ [−𝑐, 𝑐]

for some 𝑐 ≤ 𝜅.

For notational convenience, it is advantageous to let 𝜉 = 𝑐𝑡, with −1 ≤ 𝑡 ≤ 1, and
write (4.9) as a so-called Herlgotz wave

𝑢(𝑥, 𝑦) = 𝐻[ℎ](𝑥, 𝑦) =

∫︁ 1

−1

𝑒𝑖𝑐𝑥𝑡𝑒𝑖𝑦
√
𝜅2−𝑐2𝑡2 ℎ(𝑡) 𝑑𝑡, (4.10)

with ℎ(𝑡) the Herglotz density. Note that for 𝑐 = 𝜅, Herglotz waves are dense in the
space of solutions of the Helmholtz equation in any finite set [42]. In the half-space,
equation (4.10) defines waves that satisfy the Sommerfeld radiation condition when
ℎ(𝑡) has a bounded 𝐿2 norm, or may not when ℎ is distributional (e.g. plane waves).
In the sequel, we assume 𝑐 < 𝜅.

The bicharacteristics (rays) emanating from points on the segment 𝛾, and oriented
with wave vectors admissible in the sense of the definition above, form a cone of
influence opening up, with angle 2 arcsin(𝑐/𝜅). See figure 4-1. If 𝑢0 were essentially
compactly supported inside 𝛾, then the solution of the Helmholtz equation would be
essentially compactly supported inside the cone of influence — an assumption that we
do not make in this paper. More important for us is the cone of dependence, defined
as the complement of the cone of influence for the complement of 𝛾.

119

Definition 13. Let 𝛾 = [−𝑥*, 𝑥*]. We call cone of dependence with aperture 𝑐/𝜅, and
denote by Γ(𝑐/𝜅), or simply Γ, the set

{︃
(𝑥, 𝑦) ∈ R× R+

0 : |𝑥| ≤ 𝑥* − 𝑦√︀
(𝜅/𝑐)2 − 1

}︃
.

�

2 arcsin
c

arctan

 p
2 � c2

c

!

Figure 4-1: Dependence cone (light blue) and influence cone (yellow) of 𝛾 (red), for
a given aperture 𝑐/𝜅.

In this Chapter we plan to argue that the extrapolation is stable in the cone of
influence. Theorem 3 is part of the answer in which we can observe the importance
of the cone of influence.

4.3 Stability with respect to the Herglotz density
The stability theory is very favorable if 𝑢(𝑥, 𝑦) is seen as determined by the Herglotz
density ℎ, even when ℎ is a distribution in a negative Sobolev space. Since ℎ is a
rescaled version of the Fourier transform ̂︀𝑢0(𝜉), its knowledge is equivalent to the
whole of 𝑢0(𝑥) without restriction on 𝑥 ∈ R.

Theorem 3. Let 𝑢 be given by (4.10), interpreted as a duality pairing of the expo-
nential kernel with ℎ ∈ 𝑊−𝑠,𝑝(−1, 1) for some 𝑠 ≥ 0 and some 1 < 𝑝 ≤ ∞. Then

|𝑢(𝑥, 𝑦)| ≤ 𝐶𝑝,𝑠

(︃
1 + |𝑥|+ 𝑦√︀

𝜅2/𝑐2 − 1

)︃𝑠

‖ℎ‖𝑊−𝑠,𝑝 . (4.11)

Theorem 3 is proved in Appendix 4.A. We would have wished to have a proof that
involves a weighted Sobolev norm of 𝑢0(𝑥) in the right-hand side of Eq. 4.11, but we
were unable to obtain such result.

120

The geometry of the cone of dependence Γ supported by 𝛾 = [−𝑥*, 𝑥*] is apparent
in Thm. 3. In the region of the half-plane where 𝑦 ≤ 𝑥*

√︀
𝜅2/𝑐2 − 1 (i.e., when 𝑦 is

smaller than the height of the cone Γ), and when (𝑥, 𝑦) is outside Γ, then

|𝑥|+ 𝑦√︀
𝜅2/𝑐2 − 1

= 𝑥* + dist ((𝑥, 𝑦),Γ) ,

where dist denotes the horizontal distance of a point to a set.
The result indicates that extension is not only possible, but completely stable, as

a function of ℎ. The region of stability is either the whole half-plane when ℎ is an
𝐿𝑝 function, or is reduced to a (soft) neighborhood of the dependence cone in the
case when ℎ is a distribution. Finally, we point out that Thm. 3 is easy to extend to
𝑠 < 0.

4.3.1 Truncation in the PSWF domain

In practice, extrapolation needs to be robust in the presence of truncation to a finite-
size problem. This level of robustness in not directly accessible from Thm. 3, since a
truncation error on 𝑢|𝛾 can not easily be modeled through the density ℎ. In the next
3 Sections, we aim to provide quantitative arguments that support the robustness
under truncation in a specific system, the prolate spheroidal wave functions (PSWF),
which are the eigenfunction of the operator linking the Herglotz density ℎ to the
partial data 𝑢|𝛾.

In this section, we first establish convergence of the truncation for finite 𝑁 of
the boundary data 𝑢|𝛾 using the PSWF (Eq. 4.39),then we show the convergence of
the truncated Herglotz density, when the later possesses some degree of smoothness
(Lemma 9), and, finally, we provide a formula to extrapolate the truncated boundary
data (Eq. 4.21). The details can be found in the proof of Lemma 9 in the Ap-
pendix 4.A. The proof highlights the physics of wave extrapolation by transforming
the extrapolation problem using a projection onto a truncated PSWF expansion.

It is possible to build a tight truncated inverse using the PSWF, whose theory
was developed in the 1970’s when Slepian, Pollack and Landau were investigating the
concentration problem of band-limited functions. They studied the operator 𝐹 *

𝑐 𝐹𝑐,
where 𝐹𝑐 is a bandlimited Fourier transform. Their most striking observation was that
the Laplacian written in prolate spheroidal coordinates commutes with this operator.
This observation led to the series of seminal papers [123, 89, 90, 121, 122].

The prolate spheroidal wave functions (PSWF) are defined as the eigenvalues of
a band-limited Fourier transform, or alternatively as the eigenvalues of a Sturm-
Liouville operator; furthermore, they solve an optimization problem.

Definition 14. Let 𝑐 > 0. Define the operator 𝐹𝑐 : 𝐿2([−1, 1])→ 𝐿2([−1, 1]) by

𝐹𝑐[𝜙](𝑥) =

∫︁ 1

−1

𝑒𝑖𝑐𝑥𝑡𝜙(𝑡)𝑑𝑡.

The operator 𝐹𝑐 is compact and its eigenfunctions form an orthonormal basis

121

{𝜓𝑐
𝑛}∞𝑛=1 of 𝐿2([−1, 1]) with associated eigenvalues {𝜆𝑐𝑛}∞𝑛=0 decaying to zero and

{𝜆𝑐𝑘𝜓𝑐
𝑛}∞𝑛=1 form an orthonormal basis of 𝐿2(R) (see Theorem 2.4 in [146]).

By definition, 𝐻[ℎ](𝑥, 0) = 𝐹𝑐[ℎ](𝑥), which allows us to build a truncated inverse
by

𝐻−1
𝑁 𝑢(𝑡) =

𝑁∑︁

𝑘=0

𝛼𝑘

𝜆𝑘
𝜓𝑐
𝑘(𝑡), 𝛼𝑘 =

∫︁ 1

−1

𝑢(𝑥)𝜓𝑐
𝑘(𝑥)𝑑𝑥. (4.12)

Using the approximated inverse and the smoothness of the Herglotz density we
can recover the density, and extrapolate the wavefield to the whole half-plane.

Lemma 9. Let 𝜅 > 𝑐, 𝑠 > 3/2, 𝛾 = [−1, 1] × {0}, and let 𝑢 = 𝐻[ℎ] with ℎ ∈
𝐻𝑠([−1, 1]), then it is possible to recover ℎ from Dirichlet data on 𝛾, i.e.,

⃦⃦
ℎ−𝐻−1

0,𝑁𝑢|𝛾
⃦⃦
𝐿2([−1,1])

≤ 1

2

∞∑︁

𝑘=𝑁+1

𝐶
(︁
𝑘−

2
3
𝑠‖ℎ‖𝐻𝑠[−1,1] + 𝑞𝛿𝑘𝑘 ‖ℎ‖𝐿2[−1,1]

)︁
, (4.13)

where 𝐶 > 0 and 𝛿 > 0 are constants independent of 𝑘, and 𝑞𝑘 =
√︁

𝑐2

𝜒2
𝑘
< 1 for 𝑘

large.

As a consequence, if we combine Lemma 9 with Thm. 3, then we have that

‖𝐻[ℎ]−𝐻[𝐻−1
0,𝑁𝑢|𝛾]‖𝐿∞(R2

+) < 𝜖‖ℎ‖𝐻𝑠[−1,1], (4.14)

provided that 𝑠 > 3/2.

Algorithmically, using the proof of Lemma 9 and the properties of the PSWF, we
can write the extrapolation in the truncated setting as

𝐻[𝐻−1
0,𝑁𝑢|𝛾](𝑥, 𝑦) =

∫︁ 1

−1

𝑁∑︁

𝑘=0

𝛼𝑘

𝜆𝑐𝑘
𝑒𝑖𝑐𝑥𝑡𝑒𝑖𝑦

√
𝜅2−𝑐2𝑡2𝜓𝑐

𝑘(𝑡)𝑑𝑡, (4.15)

=
𝑁∑︁

𝑘=0

𝛼𝑘

𝜆𝑐𝑘

∫︁ 1

−1

𝑒𝑖𝑐𝑥𝑡𝑒𝑖𝑦
√
𝜅2−𝑐2𝑡2𝜓𝑐

𝑘(𝑡)𝑑𝑡, (4.16)

=
𝑁∑︁

𝑘=0

𝛼𝑘

𝜆𝑐𝑘

∫︁ 1

−1

𝑒𝑖𝑐𝑥𝑡𝑒𝑖𝑦
√
𝜅2−𝑐2𝑡2

∫︁

R
𝑒−𝑖𝑐𝑡𝑧𝜆𝑐𝑘𝜓

𝑐
𝑘(𝑧)𝑑𝑧𝑑𝑡, (4.17)

using the definition of the PSWF and its extension to the real axis via the Fourier

122

transform (see [123]). In addition, formally we have that

𝐻[𝐻−1
0,𝑁𝑢|𝛾](𝑥, 𝑦) =

𝑁∑︁

𝑘=0

𝛼𝑘

𝜆𝑐𝑘

∫︁

R

∫︁ 1

−1

𝑒𝑖𝑐(𝑥−𝑧)𝑡𝑒𝑖𝑦
√
𝜅2−𝑐2𝑡2𝜆𝑐𝑘𝜓

𝑐
𝑘(𝑧)𝑑𝑧𝑑𝑡, (4.18)

=
𝑁∑︁

𝑘=0

𝛼𝑘

𝜆𝑐𝑘

∫︁

R

(︂∫︁ 1

−1

𝑒𝑖𝑐(𝑥−𝑧)𝑡𝑒𝑖𝑦
√
𝜅2−𝑐2𝑡2𝑑𝑡

)︂
𝜆𝑐𝑘𝜓

𝑐
𝑘(𝑧)𝑑𝑧, (4.19)

=
𝑁∑︁

𝑘=0

𝛼𝑘

𝜆𝑐𝑘

∫︁

R
𝐾𝑐

𝑦(𝑥− 𝑧)𝜆𝑐𝑘𝜓
𝑐
𝑘(𝑧)𝑑𝑧, (4.20)

=
𝑁∑︁

𝑘=0

𝛼𝑘

𝜆𝑐𝑘
𝐾𝑐

𝑦 * 𝜆𝑐𝑘𝜓𝑐
𝑘(𝑥). (4.21)

This expression allows to decouple the extrapolation kernel 𝐾𝑐
𝑦 from the projection

of 𝑢0 onto the PSWF.

4.3.2 Size properties of the PSWF and the extrapolation ker-
nel

Although we would have liked to have a stability result with respect to the partial
data, as would be implied by a weighted Sobolev norm of 𝑢0 in the right-hand side
of Eq 4.11, we were unable to obtain such a result. However, we have quantitative
(non-rigorous) arguments and extensive numerical experiments that seem to confirm
that the extrapolation can be performed in a stable manner with respect to 𝑢0, even
for ℎ rougher than 𝑊−𝑠,𝑝. We explain this behavior by the decoupling between the
regularity of ℎ, which is characterized by the decay rate of 𝛼𝑘 = ⟨𝑢|𝛾, 𝜓𝑐

𝑘⟩, and the
extrapolation of the PSWF, which is given by the convolution with the extrapolation
kernel 𝐾𝑐

𝑦(𝑥) (see Eq. 4.21) defined in Lemma 12.

Lemma 12 shows that this convolution kernel is concentrated at the origin in a
length scale that depends linearly on 𝑦; this observation leads to the dependency
cone and the influence cone as presented in Fig. 4-1. The influence cone is the region
of the space in which most of the energy present on 𝛾 is radiated to, whereas the
dependence (or extrapolation) cone is the region in which most of the energy present
is radiated only from 𝛾.

123

Figure 4-2: Extrapolation of two different PSWF, for 𝜅 = 60𝜋, 𝜅/𝑐 = 3/2, left: 𝜓𝑐
10,

right: 𝜓𝑐
100.

From an analytical point of view, the influence cone arises from the fact that the
bandwidth of the PSWF is included in [−𝑐, 𝑐] and 𝑐 < 𝜅, which removes the singu-
larity in the phase of 𝑒𝑖𝑐𝑡𝑒

√
(𝜅/𝑐)2−𝑡2 , converting it in a smooth kernel (via a Fourier

transform) with fast decay (up to a smooth cut-off). The decay of the convolution
kernel is characterized by a length-scale that is linear in 𝑦, for 𝑦 larger than the
characteristic wave-length of the data. The extrapolation cone is due primarily to
the combination of the growth properties of the PSWF and the concentration of the
convolution kernel at the origin.

The convergence of the truncated sum in Eq. 4.21 depends on the growth prop-
erties of 𝛼𝑘. It can be shown that if the associated Herglotz density is a distribution,
then the ratio 𝛼𝑘

𝜆𝑐
𝑘

may not decay. However, numerically, we observe that (𝐾𝑐
𝑦*𝜆𝑐𝑘𝜓𝑐

𝑘)(𝑥)

decays fast when (𝑥, 𝑦) lies in the extrapolation cone, then providing local convergence
inside the cone.

Intuitively, for small 𝑛, the PSWF are concentrated inside [−1, 1], hence when
extrapolated (i.e. convolved with the extrapolation kernel for different 𝑦) they will
radiate from there as in Fig 4-2 (left). However, as 𝑛 increases the PSWF will have
less energy in this segment; henceforth, their extrapolation will radiate from outside
this interval as depicted in Fig. 4-2 (right). It is possible to prove that for large 𝑛,
𝜆𝑐𝑛𝜓

𝑐
𝑛 are bounded in 𝐿∞(R) and are factorially small in [−1, 1] (see Theorem 33 in

[105]), then it experiments an exponential grow, and finally, it decays as 1/|𝑥| as |𝑥|
tends to infinity (see Lemma 10).

Lemma 10. It exists 𝑛* > 2𝑐/𝜋, such that ∀𝑛 > 𝑛* the following properties hold,

1. |𝜓𝑐
𝑛(𝑥)| ≤ 2

√
𝑛 for |𝑥| < 1,

2. 𝜓𝑐
𝑛(𝑥) . 1

𝜆𝑐
𝑛𝑐𝑥

,

3. ‖𝜆𝑐𝑛𝜓𝑐
𝑛‖𝐿∞(R) . 𝑐, independently of 𝑛.

124

Numerically, we have that PSWF exhibits two “humps”, one in the R+ and another
in R−, which move away from zero as 𝑛 increases. As stated before, the extrapolation
kernel has most of its mass concentrated at zero. For 𝑛 large the fast decaying tail
of the kernel hits the hump that is far away from the origin; on the other hand, the
hump of the kernel hits a factorially small PSWF close to the origin. This implies that
the extrapolated PSWF becomes small inside the extrapolation cone as 𝑛 increases.

Lemma 11. Let 𝜅/2𝑐 > 𝛼 > 1, and let 𝜂𝛼 ∈ 𝒞∞𝑐 (R) such that

𝜂𝛼(𝑡) =

{︂
1 if |𝑡| < 1
0 if |𝑡| > 𝛼

. (4.22)

Then
⃒⃒
⃒𝜕𝑛𝑡 𝑒𝑖𝑐𝑦

√
(𝜅/𝑐)2−𝑡2𝜂𝛼(𝑡)

⃒⃒
⃒ ≤ 𝐶𝛼,𝑛𝑐

𝑛
𝑦 , with 𝑐𝑦 = max

(︂
𝑐2𝑦√
𝜅2 − 𝑐2

, 1

)︂
. (4.23)

Lemma 12. Let 𝜅/𝑐 > 2, 𝜅/2𝑐 > 𝛼 > 1, 𝜂𝛼(𝑡) be the smooth-cut off in Eq. 4.22, and
let

𝐾𝑦(𝑥) =

∫︁ 𝛼

−𝛼

𝑒𝑖𝑥𝑡𝑒𝑖𝑦
√
𝜅2−𝑐2𝑡2𝜂𝛼(𝑡)𝑑𝑡, (4.24)

be the extrapolation convolution kernel. Then,

|𝐾𝑐
𝑦(𝑥)| = |𝐾𝑦(𝑐𝑥)| ≤ 𝐶𝑛

(︂
1 +

𝑐|𝑥|
𝑐𝑦

)︂−𝑛

∀𝑛 ∈ N, with 𝑐𝑦 = max

(︂
𝑐2𝑦√
𝜅2 − 𝑐2

, 1

)︂
.

(4.25)

4.3.3 Extrapolation Error

In this section we use the observations and results from earlier Sections in this Chapter
to provide a formal analysis of the extrapolation error in an idealized situation.

Fix an error 𝜖, a band-limit 𝑐, and a frequency 𝜅, such that 𝜅 > 𝑐. Let 𝑢|𝛾 be the
restriction to 𝛾 of 𝑢0(𝑥), where 𝑢0(𝑥) = 𝑢(𝑥, 0) = 𝐻[ℎ](𝑥, 0), with aperture 𝑐.

Suppose that we are only able to measure the noisy data

𝑣|𝛾 = 𝑢|𝛾 + 𝛿𝑢|𝛾, (4.26)

in which we suppose that

𝛿𝛼𝑘 = ⟨𝛿𝑢|𝛾, 𝜓𝑐
𝑘⟩ = 𝒪(𝜖2) (4.27)

Let 𝑁 > 2𝑐/𝜋 + 10 be large enough, such that 𝜆𝑐𝑁+1 ∼ 𝜖. In general, we have that
𝑁 = 𝒪(log(1/𝜖)) (Thm. 2.5 in [146]).

125

Using Eq. 4.21 we have that

𝑣extrp(𝑥, 𝑦) = 𝐻[𝐻−1
𝑁 𝑣|𝛾](𝑥, 𝑦) =

𝑁∑︁

𝑘=0

𝛼𝑘 + 𝛿𝛼𝑘

𝜆𝑐𝑘
𝐾𝑐

𝑦 * 𝜆𝑐𝑘𝜓𝑐
𝑘(𝑥) (4.28)

Then the extrapolation error is given by

(𝑣extrp − 𝑢)(𝑥, 𝑦) =
𝑁∑︁

𝑘=0

𝛿𝛼𝑘

𝜆𝑐𝑘
𝐾𝑐

𝑦 * 𝜆𝑐𝑘𝜓𝑐
𝑘(𝑥)−

∞∑︁

𝑘=𝑁+1

𝛼𝑘

𝜆𝑐𝑘
𝐾𝑐

𝑦 * 𝜆𝑐𝑘𝜓𝑐
𝑘(𝑥). (4.29)

Now, using ‖𝜆𝑐𝑘𝜓𝑐
𝑘‖ = 𝒪(𝑐) and |𝐾𝑐

𝑦(𝑥)| = 𝒪(1), we can bound
⃒⃒
⃒⃒
⃒

𝑁∑︁

𝑘=0

𝛿𝛼𝑘

𝜆𝑐𝑘
𝐾𝑐

𝑦 * 𝜆𝑐𝑘𝜓𝑐
𝑘(𝑥)

⃒⃒
⃒⃒
⃒ < 𝐶𝑁𝜖 = 𝒪(𝜖 log(1/𝜖)) (4.30)

For the remaining term, we have that 𝛼𝑘

𝜆𝑐
𝑘

= 𝒪(1) if ℎ is rough (for example, a Dirac
delta).

Using the arguments explained in the Section 4.3.2, in which we argued that the
for large 𝑛 we have that 𝐾𝑐

𝑦 * 𝜆𝑐𝑘𝜓𝑐
𝑘(𝑥) = 𝒪(𝑐𝜆𝑐𝑘) within the cone of influence. This is

because the absolute value of extrapolated PSWF within the cone of influence only
depends on the energy contained in 𝛾, which in this case is given by the norm of
𝜆𝑐𝑘𝜓

𝑐
𝑘(𝑥) when 𝑥 ∈ [−1, 1] that is 𝒪(𝑐𝜆𝑐𝑘) (from Lemma 10).
Moreover, given that we supposed that 𝑁 is already in the factorially decaying

regime (Thm. 2.5 in [146]) we have that
⃒⃒
⃒⃒
⃒

∞∑︁

𝑘=𝑁+1

𝛼𝑘

𝜆𝑐𝑘
𝐾𝑐

𝑦 * 𝜆𝑐𝑘𝜓𝑐
𝑘(𝑥)

⃒⃒
⃒⃒
⃒ < 𝐶

⃒⃒
𝐾𝑐

𝑦 * 𝜆𝑐𝑁+1𝜓
𝑐
𝑁+1(𝑥)

⃒⃒
< 𝐶𝜖 (4.31)

for 𝑥 and 𝑦 within the cone of influence.
Finally, we have that

⃒⃒
(𝑣extrp − 𝑢)(𝑥, 𝑦)

⃒⃒
= 𝒪(𝜖 log(1/𝜖)) (4.32)

provided that (𝑥, 𝑦) lies inside the influence cone.

4.4 Numerical Examples
In this section, we illustrate our observations with numerical examples. We start by
showing the extrapolated PSWF in the cases when 𝑛 < 2𝑐/𝜋 and 𝑛 > 2𝑐/𝜋. Next, we
depict the behavior of the extrapolation of a Herglotz wave with a smooth density. We
point out that it is not compulsory to use the PSWF to ensure an accurate extrapola-
tion; other cheaper and faster procedures are available to perform a, seemingly, stable
extrapolation. Finally, we show examples of some simple but high frequency solutions
for the Helmholtz equation obtained using this stable extrapolation technique.

126

4.4.1 Extrapolation

To illustrate the theoretical results, we present some numerical experiments, in which
we discretized the operators 𝐻 and 𝐻0 using an ad-hoc quadrature. The quadrature
used is adapted to the PSWF and it was developed by Boyd [22]. Let {𝑤ℓ}𝑁𝑠

ℓ=0 be the
Gauss-Lobatto quadrature weights and {𝑡ℓ}𝑁𝑠

ℓ=0 the quadrature points. Thus

⟨𝜓𝑐
𝑛,𝜓

𝑐
𝑚⟩𝑤 :=

𝑁𝑠∑︁

ℓ=0

𝜓𝑐
𝑛(𝑥ℓ)𝑤ℓ𝜓

𝑐
𝑚(𝑥ℓ) = ⟨𝜓𝑐

𝑛, 𝜓
𝑐
𝑚⟩[−1,1], (4.33)

up to machine precision for 𝑛 and 𝑚 < 𝑁𝑠, where the number of samples 𝑁𝑠 is greater
than the number of samples given by the Shannon-Nyquist sampling rate, but of the
same order of magnitude.

The extrapolation operator, 𝐻 is factorized as 𝐻0 ∘ 𝑚𝑦, where 𝐻0 is a band-
limited Fourier Transform and 𝑚𝑦 is just a function multiplication. 𝐻 is defined
on 𝐿2[−1, 1] → 𝒞(R) ⊂ 𝐿2(R). To discretize it, we define the set of evaluation
points that are given by {𝑥𝑗}𝑁𝑒

𝑗=0. The other operators are defined using their discrete
counterparts given by the quadrature in Eq. 4.33,

𝑢ℓ = 𝑢(𝑡ℓ), (𝐻0)𝑘,ℓ = 𝑤ℓ𝑒
𝑖𝑐𝑥𝑘𝑡ℓ , (𝑚𝑦)𝑘,ℓ = 𝛿ℓ,𝑘𝑒

𝑖𝑐𝑦
√

(𝜅/𝑐)2−𝑐2𝑡2ℓ . (4.34)

To compute𝐻−1
0,𝑁 , we use the SVD regularized inverse of𝐻0, tuned for a precision

of 12 digits, i.e.,

H−1
0,N = diag

(︃{︂
1

𝜆𝑘

}︂𝑁

𝑘=0

)︃
·
[︀
𝜓𝑐

0,𝜓
𝑐
1, . . . ,𝜓

𝑐
𝑁−1,𝜓

𝑐
𝑁

]︀
· diag({𝑤ℓ}𝑁𝑠

ℓ=0). (4.35)

Therefore, given the trace 𝑢|𝛾 = 𝑣, the extrapolation at the points {𝑥𝑗}𝑁𝑗=0 × {𝑦} is
given by

{𝑢(𝑥𝑗, 𝑦)} = u𝑦 = H0 ·my ·H−1
0,N · v. (4.36)

The waves generated by extrapolating the PSWF are illustrated in Fig. 4-2. The
extrapolation of a PSWF with 𝑛 < 2𝑐/𝜋 is depicted in Fig. 4-2 (left); in which
the wave radiates from the interior of the segment [−1, 1]. Fig. 4-2 (right) shows a
typical example of an extrapolated wave when 𝑛 > 2𝑐/𝜋, in which the energy is being
radiated from outside the segment [−1, 1], resulting in a cone in which the absolute
value of the extrapolated wave is small. Fig. 4-3 depicts the cone in which the solution
is small for different ratios 𝜅/𝑐. In addition, Fig. 4-3 shows the theoretical scaling for
the cone and its slope which is given by 𝑐√

𝜅2−𝑐2
. The theoretical slope given by Thm.

3 coincides with the slope provided by the numerical experiments.

Fig. 4-4 presents the extrapolation of a Gaussian beam, which is smooth and
essentially band-limited. The figure shows that the extrapolation is valid in more
than 2000 wavelengths from the origin.

127

x

y

−2 −1.5 −1 −0.5 0 0.5 1 1.5

0

0.5

1

1.5

2

2.5

3

3.5

4

−35

−30

−25

−20

−15

−10

−5

0

x

y

−2 −1.5 −1 −0.5 0 0.5 1 1.5

0

0.5

1

1.5

2

2.5

3

3.5

4
−40

−35

−30

−25

−20

−15

−10

−5

0

x

y

−2 −1.5 −1 −0.5 0 0.5 1 1.5

0

0.5

1

1.5

2

2.5

3

3.5

4 −40

−35

−30

−25

−20

−15

−10

−5

0

x

y

−2 −1.5 −1 −0.5 0 0.5 1 1.5

0

0.5

1

1.5

2

2.5

3

3.5

4

−35

−30

−25

−20

−15

−10

−5

0

Figure 4-3: Absolute value of the extrapolation of PSWF for different ratios 𝜅/𝑐,
𝜅 = 60𝜋. Top left : 𝜅/𝑐 = 6/5; top right : 𝜅/𝑐 = 5/3; bottom left : 𝜅/𝑐 = 5/2; bottom
right : 𝜅/𝑐 = 6. The boundaries of the extrapolation cone from Thm. 3 are drawn in
each picture (in purple).

128

x

y

−1 −0.5 0 0.5 1

0

2

4

6

8

10

12

14

16

18

20

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x

y

−1 −0.5 0 0.5 1

0

2

4

6

8

10

12

14

16

18

20

−17

−16.5

−16

−15.5

−15

−14.5

−14

−13.5

−13

Figure 4-4: Extrapolation of a Gaussian beam. Left : analytical solution; right : error
in log scale (base 10) of the error of the extrapolation 𝜅 = 50𝜋.

Fig. 4-5 shows the same procedure with a Herglotz density that is a sum of
random plane waves. The error is shown in Fig. 4-5 (left) that depicts the cone of
extrapolation given by the theory, which is supported on [−1, 1].

129

x

y

−1 −0.5 0 0.5 1

0

0.5

1

1.5

2

2.5

3

3.5

4 −15

−10

−5

0

x

y

−1 −0.5 0 0.5 1

0

0.5

1

1.5

2

2.5

3

3.5

4

−20

−15

−10

−5

0

5

10

15

20

 20

 40

 60

 80

 100

30

210

60

240

90

270

120

300

150

330

180 0

Figure 4-5: Extrapolation of 70 random complex exponentials for 𝜅 = 60𝜋 and 𝜅/𝑐 =
3. Top left : analytical solution; top right : error in log scale (base 10) for the error
of the extrapolation; bottom the direction and magnitude of the 70 different plane
waves.

4.4.2 Pivoted QR and broken lines

The numerical experiments presented in the previous subsection provide strong evi-
dence that the extrapolation technique using PWSF is stable and accurate; however,
building the quadrature points and weights is computationally expensive. It uses a
recurrence relation via Legendre polynomial to obtain the PSWF and then an opti-

130

mization routine based on a Newton iteration to get a very precise quadrature rule.
We found that using a regular discretization on a segment plus a naive discretization
of the integral leads to the same qualitative results, which is, in addition, trivially
extended to broken lines.

We discretize the Herglotz operator using the simplest quadrature rule possible.
Let 𝛾 be a straight line and {(𝑥𝑖, 𝑦𝑖)}𝑁𝑠

𝑗=1 ⊂ 𝛾 be a set of equidistant points contained
in 𝛾. In addition, let {𝜃𝑗}𝑁𝜃

𝑗=1 ⊂ [− arccos(𝜅/𝑐), arccos(𝜅/𝑐)] be a regular angular
discretization for 𝜃. We discretize the Herglotz operator by

(H0,𝛾)𝑖,𝑗 =
1

∆𝜃
𝑒𝑖𝑘(𝑥𝑖 sin 𝜃𝑗+𝑦𝑖 cos 𝜃𝑗). (4.37)

Even though the error obtained using the naive quadrature is slightly larger than
the error given by constructing the PSWF, the overall computational cost is greatly
reduced. Moreover, using this simple quadrature, this extrapolation method can be
easily generalized to work with broken lines. Given different connected segments
{𝛾ℓ}𝐿ℓ=1, we define the operators 𝐻0,𝛾ℓ : 𝑔(S1) → 𝐿2(𝛾ℓ). For given Dirichlet data
on several segments, it is possible to recast the problem of estimating the Herglotz
density as a linear algebra problem:

[𝑢|𝛾1 , 𝑢|𝛾2 , . . . , 𝑢|𝛾𝐿−1
, 𝑢|𝛾𝐿]𝑡 = [𝐻0,𝛾1 , 𝐻0,𝛾2 , . . . , 𝐻0,𝛾𝐿−1

, 𝐻0,𝛾𝐿]𝑡𝑔. (4.38)

Algorithm 16. Broken line
1: procedure Density Estimation({𝛾ℓ}𝑁ℓ

ℓ=1, {𝑢|𝛾ℓ
}𝑁ℓ
ℓ=1)

2: for 𝑗 < 𝑁ℓ do ◁ Build the operator for each 𝛾ℓ
3: (H0,𝛾ℓ)𝑖,𝑗 = 1

Δ𝜃
𝑒𝑖𝑘(𝑥𝑖 sin 𝜃𝑗+𝑦𝑖 cos 𝜃𝑗) ◁ (𝑥𝑗, 𝑦𝑗) ∈ 𝛾ℓ

4: end for
5: H = [H0,𝛾1 ;H0,𝛾2 ; . . . ;H0,𝛾Nℓ

] ◁ Concatenate the operators
6: u = [𝑢|𝑡𝛾1

,𝑢|𝑡𝛾2
, . . . ,𝑢|𝛾𝑁ℓ

]𝑡 ◁ Concatenate the data
7: g = H∖u ◁ Use MATLAB’s backslash
8: return g
9: end procedure

In which Eq. 4.38 is discretized using Eq. 4.37. To solve this exponentially-ill
conditioned discretized system, we found that MATLAB’s backslash operator, which
relies on a pivoted QR factorization (see Lecture 4 in [137]), was the fastest and most
accurate option to solve the linear system given by Eq. 4.38. In normal circumstances
we would need to compute the pseudo-inverse; however, the pseudo-inverse is limited
by the conditioning number of the matrix that is very large because the continuum
operator is compact. In fact, as the solution is not unique (numerically), we have the
freedom of choosing the most convenient one. In this specific case, the solution given
by the pivoted QR factorization in MATLAB’s backlash operator had the smallest
residual. Alg. 16 summarizes the extrapolation procedure. Moreover, Fig. 4-6
presents some examples in which the solution is accurate inside a cone supported on
the broken line.

Remark 9. We point out that using a naive quadrature has the same qualitative

131

behavior for the extrapolation of singular Herglotz densities. The extrapolation of a
Herglotz wave with a smooth density using the naive quadrature will no longer result
in a global extrapolation. In fact, the extrapolation will be accurate only in a cone
with the same slope as that in the singular case.

x

y

−1.5 −1 −0.5 0 0.5 1

−0.5

0

0.5

1

1.5

2

−16

−14

−12

−10

−8

−6

−4

−2

0

x
y

−1.5 −1 −0.5 0 0.5 1

−0.5

0

0.5

1

1.5

2

−16

−14

−12

−10

−8

−6

−4

−2

0

x

y

−1.5 −1 −0.5 0 0.5 1

−0.5

0

0.5

1

1.5

2

−16

−14

−12

−10

−8

−6

−4

−2

0

Figure 4-6: Error of the extrapolation of 70 random complex exponentials from a
broken line, for 𝜅 = 60𝜋 and 𝜅/𝑐 = 2. We show different configurations of 𝛾1, 𝛾2 (in
purple.)

4.4.3 Towards an efficient Helmholtz solver

Based on the results of the previous sections, we developed a simple yet accurate
sweeping-like solver for the Helmholtz equation in a homogeneous medium. Using
the extrapolation for broken lines, it is possible to sweep the domain, with some
geometrical constraints, building the solution from the boundary towards the interior
of the domain. It is trivial to adapt the method from broken lines to the edges of
a triangular mesh. The method is analogous to solving a discontinuous Galerkin or
Trefftz formulation, using plane waves as basis functions; however, instead of inverting
a large ill-conditioned linear system, we solve the unknowns starting from the the
Dirichlet boundary towards the interior of the domain in an ordered manner. This

132

Tj

Extrapolation cone

E i1
k(i1)

E i2
k(i2)

E i3
k(i3)

Figure 4-7: Broken line configuration to ensure accuracy for the extrapolation.

process can be seen as the analytical counterpart of the sweeping methods (see [59]),
in which the elimination of unknowns is replaced by the extrapolation procedure.
This extrapolation procedure uses only the degrees of freedom on the edges of the
triangles.

Let {𝒯𝑗}𝑁𝑇
𝑗=1 be a set of triangles of a triangular mesh of a bounded domain Ω. We

define an approximate Herglotz density, 𝑔𝑗, in each triangle. For each triangle 𝒯𝑗, we
note its edges as {ℰ 𝑖𝑗}3𝑖=1, which are discretized with equispaced points.

The sweeping method consists of several passes; for each one of those, we need to
choose a sweeping direction and an aperture. Each sweep consists in updating the
Herglotz density in a particular triangle using upwind information, i.e., information
from the already updated triangles. The new Herglotz density is then used to update
the Herglotz densities of the triangles not yet updated.

To update a particular triangle, we need a set of edges that forms a broken line,
such that its dependence, or extrapolation, cone (defined in Def. 13) contains the
triangle to be updated (see Fig. 4-7.) The set of edges must be contained in the
triangles already updated. We sample the local information from the triangles to
their edges using Alg. 17. Then we use the information on the edges to estimate the
Herglotz density and update it. This procedure is written in pseudo code in Alg. 18.

A sweep is defined by its direction d𝑠 and its aperture 𝑎. A sweep can be seen as
solving a large linear system using Gaussian elimination, in which some unknowns are
solved first and their values are used to solve the later ones, in an ordered manner.
The order is given by the direction of the sweep, and the dependence of the unknowns
is given by the aperture. Large apertures imply obtuse extrapolation cones, which
imply the need for wide broken lines to ensure that their extrapolation cones will
contain the triangle to update. On the other hand, small apertures are equivalent to
acute extrapolation cones; this equivalence reduces the width of the broken line to
ensure an accurate approximation.

133

Algorithm 17. Sampling (Triangle to Edge)
1: procedure Sampling(𝒯𝑗, ℰ 𝑖𝑗)
2: gj ← 𝒯𝑗 ◁ extracting the local Herglotz density
3: (H𝑖,𝑗) = 1

Δ𝜃
𝑒𝑖𝑘(𝑥𝑖 sin 𝜃𝑗+𝑦𝑖 cos 𝜃𝑗) ◁ (𝑥𝑗, 𝑦𝑗) ∈ ℰ 𝑖𝑗

4: u = Hg ◁ sampling
5: return u
6: end procedure

Algorithm 18. Extrapolation .
1: procedure Extrapolate(𝒯𝑗, {ℰ 𝑖𝑘(𝑖)}𝑁𝑖

𝑖=0)
2: for 1 < 𝑖 ≤ 𝑁𝑖 do ◁ we have the answer if r is 0
3: ui = Sampling(𝒯𝑖, ℰ 𝑖𝑘(𝑖))
4: end for
5: gj = Density Estimation({ℰ 𝑖𝑘(𝑖)}𝑁𝑖

𝑖=0, {ui}𝑁𝑖
𝑖=0)

6: 𝒯𝑗 ← gj ◁ update of the local Herglotz density
7: end procedure

The first step of a sweep consists in building a buffer layer of triangles at the
starting boundary and update their Herglotz density using the boundary data. These
triangles must have an edge on the boundary 𝜕Ω with an interior normal in the same
direction as d𝑠. Given that the boundary conditions are known, we can use Alg. 16
to update the Herglotz densities of the triangles in the buffer layer. This layer of
updated triangles is used as a starting condition for the sweep. If, for example, the
buffered triangles already have a non-zero density, we sample the local density on the
boundary and we impose the boundary conditions using linearity.

Once the buffer layer of triangles has been updated, we proceed with the inner
loop of the sweep, which can be summarized in the following steps:

1. Choose the triangle that has not been updated with the smallest center of
gravity with respect to the direction of sweeping, 𝒯 ′

𝑗 ;

2. Choose a broken line among the updated edges such that its extrapolation cone
includes 𝒯 ′

𝑗 , {ℰ 𝑖𝑘(𝑖)}𝑁𝑖
𝑖=0;

3. Update the local Herglotz density using Alg. 18 with uj′ = Extrapolate(𝒯 ′
𝑗 , {ℰ 𝑖𝑘(𝑖)}𝑁𝑖

𝑖=0);
and

4. If there exist an outdated triangle, go back to step 1, otherwise, select another
direction and aperture and perform another sweep.

In practice, step 2 is precomputed. As the conditions are only geometric, a sub-
routine is used to set up the order in which the triangles will be visited, as well as
the dependency between them. This information can be written as a directed graph.
Therefore, each sweep can be easily parallelizable; a routine can be used to split the
directed graph in several sub-graphs, minimizing communication.

The implementation of absorbing boundary conditions is trivial, the algorithm
needs to stop at the boundary. In order to improve accuracy, we use a single extra

134

layer of triangles to constraint the wave to escape the domain. We improve stability
defining directional filters, in order to separate separate the out-going and in-going
sections of the approximated Herglotz densities. The in-going part of the density
is likely to be numerical noise, so filtering it out improves accuracy by improving
stability when the system is inverted. We show an example of this procedure for a
simple case. Fig. 4-8 depicts a Gaussian beam, which is reflected from the walls
twice. The wave number is 𝜅 = 50𝜋, in other words, we are able to keep an accuracy
of 9 digits up to 2000 wavelengths away from the data.

x

y

−5 0 5

0

5

10

15

20

25

−1

−0.5

0

0.5

1

x

y

−5 0 5

0

5

10

15

20

25

−16

−15

−14

−13

−12

−11

−10

−9

Figure 4-8: Solution of the Helmholtz equation for a Gaussian beam, with homoge-
neous Dirichlet boundary conditions at the left and right boundary and absorbing
boundary condition at the bottom, for 𝜅 = 200𝜋; left : real part of the solution
wavefield; right : error between real and computed solution.

135

136

Appendix

4.A Proofs

Proof of Theorem 3

Proof. Introduce multi-indices 𝛼 of length at most 𝑠, and let𝑀 =
∑︀

|𝛼|≤𝑠 1. The space
𝑊−𝑠,𝑝 is identified with the dual space (𝑊 𝑠,𝑝′)′, and endowed with the corresponding
induced norm. Here 1

𝑝
+ 1

𝑝′
= 1. As a consequence of the Hahn-Banach theorem

with underlying space 𝑊 𝑠,𝑝′ , there exists a unique norm-preserving representation of
ℎ ∈ (𝑊 𝑠,𝑝′)′ as a vector-valued function (ℎ𝛼) ∈ 𝐿𝑝(R𝑀), i.e.,

⟨ℎ, 𝑔⟩ =
∑︁

|𝛼|≤𝑠

∫︁ 1

−1

ℎ𝛼𝜕
𝛼𝑔, ‖ℎ‖𝑊−𝑠,𝑝 = ‖(ℎ𝛼)‖𝐿𝑝(R𝑀).

As a result,

𝑢(𝑥, 𝑦) =
∑︁

|𝛼|≤𝑠

∫︁ 1

−1

𝜕𝛼𝑡

[︃
exp 𝑖𝑐

(︃
𝑥𝑡+ 𝑦

√︂
𝜅2

𝑐2
− 𝑡2

)︃]︃
ℎ𝛼(𝑡) 𝑑𝑡.

The successive derivatives bring down factors that can easily been seen to be bounded

uniformly in 𝑡 ∈ (−1, 1) by 𝐶𝑠

(︂
1 + |𝑥|+ 𝑦√

𝜅2/𝑐2−1

)︂𝑠

for some constant 𝐶𝑠. The proof

is completed by pulling a factor ‖ℎ𝛼‖𝑝 out of each integral. The sum over 𝛼 only
increases the overall constant 𝐶𝑝,𝑠.

Proof of Lemma 9

Proof. Let 𝑣 ∈ 𝐻𝑠([−1, 1]). Given that the PSWF form an orthonormal basis in
𝐿2([−1, 1]) we have that for any 𝑣 ∈ 𝐿2[−1, 2],

𝑣(𝑥) =
∞∑︁

𝑙=1

⟨𝑣, 𝜓𝑐
ℓ⟩𝜓𝑐

ℓ(𝑥), ⟨𝑣, 𝜓𝑐
ℓ⟩ =

∫︁ 1

−1

𝑣(𝑡)𝜓𝑐
ℓ(𝑡)𝑑𝑡.

137

Therefore, following Thm. 3.1 of [34]

|⟨𝑣, 𝜓𝑐
ℓ⟩| ≤ 𝐶

(︁
ℓ−

2
3
𝑠‖𝑣‖𝐻𝑠([−1,1) + 𝑞𝛿ℓℓ ‖𝑣‖𝐿2([−1,1])

)︁
, (4.39)

where 𝐶 > 0 and 𝛿 > 0 are constants independent of ℓ, and 𝑞ℓ =
√︁

𝑐2

𝜒2
ℓ
< 1 for ℓ large

enough. Now pick, 𝑣 = 𝑢|𝛾 such that,

𝑣(𝑥) = 𝑢|𝛾(𝑥) = 𝐻0[ℎ] =

∫︁ 1

−1

𝑒𝑖𝑐𝑡𝑥ℎ(𝑡)𝑑𝑡.

Then ⟨𝑣, 𝜓𝑐
ℓ⟩ can be rewritten as

⟨𝑣, 𝜓𝑐
ℓ⟩ =

∫︁ 1

−1

𝑣(𝑥)𝜓𝑐
ℓ(𝑥) =

∫︁ 1

−1

[︂∫︁ 1

−1

𝑒𝑖𝑐𝑡𝑥ℎ(𝑡)𝑑𝑡

]︂
𝜓𝑐
ℓ(𝑥)𝑑𝑥 (4.40)

=

∫︁ 1

−1

[︂∫︁ 1

−1

𝑒𝑖𝑐𝑡𝑥𝜓𝑐
ℓ(𝑥)𝑑𝑥

]︂
ℎ(𝑡)𝑑𝑡 (4.41)

=

∫︁ 1

−1

𝜆𝑐ℓ𝜓
𝑐
ℓ(𝑡)ℎ(𝑡)𝑑𝑡 (4.42)

= 𝜆𝑐ℓ⟨ℎ, 𝜓𝑐
ℓ⟩. (4.43)

By assumption, 𝑔 ∈ 𝐻𝑠[−1, 1], thus by combining Eq. 4.39 and Eq. 4.43 we have

|⟨𝑣, 𝜓𝑐
ℓ⟩| ≤ 𝐶|𝜆ℓ|

(︁
ℓ−

2
3
𝑠‖ℎ‖𝐻𝑠([−1,1) + 𝑞𝛿ℓℓ ‖ℎ‖𝐿2([−1,1])

)︁
, (4.44)

which has a geometrically faster decay than the decay of the eigenvalues.
Given that we picked 𝑣 = 𝑢|𝛾 and following the definition of the truncated inverse

we have that

‖ℎ(𝑡)− (𝐻−1
0,𝑁𝑢|𝛾)(𝑡)‖𝐿2 ≤

∞∑︁

𝑘=𝑁+1

⃒⃒
⃒⃒⟨𝑢|𝛾, 𝜓

𝑐
𝑘⟩

𝜆𝑘

⃒⃒
⃒⃒ ‖𝜓𝑐

𝑘‖ =
∞∑︁

𝑘=𝑁+1

|⟨ℎ, 𝜓𝑐
𝑘⟩| .

Moreover, using the bound given by Eq. 4.44 we obtain that

‖ℎ(𝑡)−(𝐻−1
0,𝑁𝑢|𝛾)(𝑡)‖𝐿2([−1,1]) ≤

∞∑︁

𝑘=𝑁+1

𝐶
(︁
𝑘−

2
3
𝑠‖ℎ‖𝐻𝑠([−1,1) + 𝑞𝛿𝑘𝑘 ‖ℎ‖𝐿2([−1,1])

)︁
. (4.45)

Thus, it is possible to recover the Herglotz density in the limit 𝑁 → ∞. The
precision of the truncation for a fixed 𝑁 is given by the regularity of the Herglotz
density.

Proof of Lemma 10

Proof. 1. This in Thm. 14 in [106].

138

2. By definition,

𝜓𝑐
𝑛(𝑥) =

∫︁ 1

−1

𝑒𝑖𝑐𝑥𝑡
𝜓𝑐
𝑛(𝑡)

𝜆𝑐𝑛
𝑑𝑡,

and integrating by parts, we have that

|𝜓𝑐
𝑛(𝑥)| ≤ |𝜓

𝑐
𝑛(−1)|+ |𝜓𝑐

𝑛(1)|
|𝑐𝑥| − 1

|𝜆𝑐𝑛𝑐𝑥|

∫︁ 1

−1

⃒⃒
⃒⃒ 𝑑
𝑑𝑡
𝜓𝑐
𝑛(𝑡)

⃒⃒
⃒⃒ 𝑑𝑡,

which implies 𝜓𝑐
𝑛(𝑥) ∼ 1

|𝑥| as |𝑥| → ∞.

3. Since 𝜓𝑐
𝑛 is continuous and vanishing at infinity we can form a sequence {𝑧𝑛}∞𝑛=1

where 𝑧𝑛 is such that max𝑥∈R |𝜆𝑐𝑛𝜓𝑐
𝑛(𝑥)| = |𝜆𝑐𝑛𝜓𝑐

𝑛(𝑧𝑛)|. For each 𝑛, 𝑧𝑛 may not
be unique but it always exits and is finite by the by the argument above.

We define 𝜙𝑛(𝑥) = (𝜆𝑐𝑛𝜓
𝑐
𝑛𝜂2)(𝑥− 𝑧𝑛), where 𝜂2 ∈ 𝒞∞𝑐 (R) a smooth cut-off such

that
𝜂2(𝑥) =

{︂
1 if 𝑥 < 1
0 if 𝑥 > 2

. (4.46)

By definition, 𝜙𝑛 is supported on [−2, 2] and continuous, hence we can write

|𝜙𝑛(𝑥)| =
⃒⃒
⃒⃒
∫︁ 𝑥

−2

𝜙′
𝑛(𝑦)𝑑𝑦

⃒⃒
⃒⃒ ≤

∫︁ 2

−2

|𝜙′
𝑛(𝑦)|𝑑𝑦 ≤ 2|𝜙𝑛|𝐻1(−2,2) = 2|𝜙𝑛|𝐻1(R). (4.47)

Moreover, using the Bernstein inequality on 𝜆𝑐𝑛𝜓𝑐
𝑛 we have that

|𝜙|𝐻1(R) =

(︂∫︁

R
|𝜙′|2

)︂1/2

=

(︃∫︁

R

⃒⃒
⃒⃒𝑑𝜂
𝑑𝑦
𝜆𝑐𝑛𝜓

𝑐
𝑛 + 𝜂𝜆𝑐𝑛

𝜓𝑐
𝑛

𝑑𝑦

⃒⃒
⃒⃒
2
)︃1/2

≤ ̃︀𝐶𝑐‖𝜆𝑐𝑛𝜓𝑐
𝑛‖𝐿2(R) ≤ ̃︀𝐶𝑐.

(4.48)
Combining Eq. 4.48 and Eq. 4.47 and taking the maximum, we have

‖𝜆𝑐𝑛𝜓𝑐
𝑛‖𝐿∞(R) = ‖𝜙𝑛‖𝐿∞(R) ≤ ̃︀𝐶𝑐. (4.49)

which concludes the proof.

Proof of Lemma 11

Proof. Let 𝜅/𝑐 > 2 and fix 𝑦𝑐2 >
√
𝜅2 − 𝑐2. For clarity let

𝑓(𝑡) = 𝑒𝑖𝑦
√
𝜅2−𝑐2𝑡2 , 𝜑(𝑡) =

√
𝜅2 − 𝑐2𝑡2.

Let fix 𝛼 in a small neighborhood of 1, the proof of this Lemma is based on
successive expansions of the derivatives, in addition to the fact that 𝛼 lies in a small
neighborhood of 1. In that regime, the derivatives of

√
𝜅2 − 𝑐2𝑡2 in 1 < |𝑡| < 𝛼 are

controlled by the derivatives at 𝑡 = 1 times an amplification factor in the form of a

139

constant. Using the Leibniz formula, the derivatives of 𝑒𝑖𝑦
√
𝜅2−𝑐2𝑡2𝜂𝛼(𝑡) are

𝜕𝑛𝑡

(︁
𝑒𝑖𝑐𝑦
√

(𝜅/𝑐)2−𝑡2𝜂𝛼(𝑡)
)︁

=
𝑛∑︁

𝑘=0

(︂
𝑛

𝑘

)︂
𝜕𝑘𝑡 𝑓(𝑡)𝜕𝑛−𝑘

𝑡 𝜂𝛼(𝑡).

This formula can be simplified in some cases, for example, if |𝑡| < 1, thus 𝜂𝛼 is
constant and all of its derivatives vanish. However, if 1 < |𝑡| < 𝛼, we need to analyze
the derivatives of each function and, in particular, consider the leading terms, i.e.,

𝜕𝑛𝑡 𝑓(𝑡) = 𝜕𝑛𝑡
(︀
𝑒𝑖𝑦𝜑(𝑡)

)︀
, (4.50)

=
∑︁ 𝑛!

𝑚1!𝑚2!...𝑚𝑛!
(𝑖𝑦)

∑︀𝑛
𝑗=1 𝑚𝑗𝑒𝑖𝑦𝜑(𝑡)

𝑛∏︁

𝑗=1

(︂
𝜑(𝑗)

𝑗!

)︂𝑚𝑗

, (4.51)

with the constraint that
∑︀𝑛

𝑗=1 𝑗𝑚𝑗 = 𝑛. We want to prove that the leading term
in Eq. 4.51 is the monomial. In order to obtain this intermediate result, we need
to control the other coefficients of the right-hand side of Eq. 4.51. To obtain the
necessarily bound we compute the higher order derivatives of 𝜑 using the Faà di
Bruno’s formula resulting in,

𝜑(𝑛) (𝑠) =
∑︁ 𝑛!

𝑚1!𝑚2!...𝑚𝑛!

⎛
⎝

∑︀
𝑚𝑗∏︁

𝑘=1

−2𝑘 + 3

2

⎞
⎠(︀𝜅2 − 𝑐2𝑡2

)︀−∑︀
𝑚𝑗+1/2

2∏︁

𝑗=1

(︂−(𝑐2𝑡2)(𝑗)

𝑗!

)︂𝑚𝑗

,

(4.52)
with the constraint that

∑︀
𝑗 𝑚𝑗𝑗 = 𝑛. We observe that (𝑡2)(𝑗) = 0 ∀𝑗 > 2, which

simplifies the constraint to 𝑚1 + 2𝑚2 = 𝑛 and henceforth Eq. 4.52 to

𝜑(𝑛) (𝑡) =
𝑐2√

𝜅2 − 𝑐2𝑡2

(︃ ∑︁

𝑚1,𝑚2

𝐶𝑛,𝑚1

(︂
𝑐√

𝜅2 − 𝑐2𝑡2
)︂2(𝑚1+𝑚2−1)

𝑡𝑚1

)︃
, (4.53)

which can be bounded for 𝑡 ∈ [−𝛼, 𝛼] by

|𝜑(𝑛) (𝑡) | ≤ 𝐶𝛼,𝑛
𝑐2√

𝜅2 − 𝑐2
(︂

𝑐√
𝜅2 − 𝑐2

)︂𝑛−1

, (4.54)

where we used the hypothesis 2𝑐 < 𝜅 that implies that 𝑐/
√
𝜅2 − 𝑐2 < 1/

√
3, and the

fact that 𝛼 is in a neighborhood of 1. Moreover, Eq. 4.54 can be used to bound
𝜕𝑛𝑡 𝑓(𝑡) in Eq. 4.51 obtaining that

|𝜕𝑛𝑡 𝑓(𝑡)| ≤
∑︁

𝐶𝛼,𝑛

(︂
𝑐2𝑦√
𝜅2 − 𝑐2

)︂∑︀𝑛
𝑗=1 𝑚𝑗 𝑛∏︁

𝑗=1

(︃(︂
𝑐√

𝜅2 − 𝑐2
)︂𝑗−1

)︃𝑚𝑗

, (4.55)

≤
∑︁

𝐶𝛼,𝑛

(︂
𝑐2𝑦√
𝜅2 − 𝑐2

)︂∑︀𝑛
𝑗=1 𝑚𝑗

(︂
𝑐√

𝜅2 − 𝑐2
)︂𝑛−

∑︀𝑛
𝑗=1 𝑚𝑗

. (4.56)

140

Finally, given that 𝑐/
√
𝜅2 − 𝑐2 < 1/

√
3, 𝑐2𝑦/

√
𝜅2 − 𝑐2 > 1 and 𝑛 −∑︀𝑛

𝑗=1𝑚𝑗 > 0
unless 𝑚1 = 𝑛, we obtain than

|𝜕𝑛𝑡 𝑓(𝑡)| ≤ 𝐶𝑛,𝛼

(︂
𝑐2𝑦√
𝜅2 − 𝑐2

)︂𝑛

. (4.57)

If 𝑐2𝑦 <
√
𝜅2 − 𝑐2 a slight modification of the argument showed above can be used to

prove that |𝜕𝑛𝑡 𝑓(𝑡)| < 𝐶𝛼,𝑛

The function 𝜂𝛼(𝑡) is independent of 𝑘, 𝑐 and 𝑦, hence its derivatives are 𝒪(1) and

|𝜕𝑛𝑡 𝜂𝛼(𝑡)| ≤ 𝐶𝑛,𝛼. (4.58)

Substituting Eq. 4.57 and Eq. 4.58 in the Leibniz formula, we obtain the bound

|𝜕𝑛𝑡
(︁
𝑒𝑖𝑐𝑦
√

(𝜅/𝑐)2−𝑡2𝜂𝛼(𝑡)
)︁
| ≤

∑︁(︂
𝑛

𝑘

)︂
𝐶𝑘,𝛼

(︂
𝑐2𝑦√
𝜅2 − 𝑐2

)︂𝑘

. (4.59)

Therefore, keeping the leading term and using that 𝑐2𝑦/
√
𝜅2 − 𝑐2 > 1, the last bound

can be simplified resulting in in

|𝜕𝑛𝑡
(︁
𝑒𝑖𝑐𝑦
√

(𝜅/𝑐)2−𝑡2𝜂𝛼(𝑡)
)︁
| ≤ 𝐶𝑛,𝛼

(︂
𝑐2𝑦√
𝜅2 − 𝑐2

)︂𝑛

, (4.60)

which can be slightly modified when 𝑐2𝑦 <
√
𝜅2 − 𝑐2 to yield the desired result.

Proof of Lemma 12 . Define the self-adjoint operator :

ℒ =
(𝐼 − 1

𝑐2𝑦
△𝑡)

1 + 𝑥2

𝑐2𝑦

,

such that ℒ𝑒𝑖𝑥𝑡 = 𝑒𝑖𝑥𝑡. This implies that

𝐾𝑦(𝑥) =

∫︁ 𝜅/𝑐

−𝜅/𝑐

ℒ𝑚
(︀
𝑒𝑖𝑥𝑡
)︀
𝑒𝑖𝑐𝑦
√

(𝜅/𝑐)2−𝑡2𝜂𝛼(𝑡)𝑑𝑡.

Using integration by parts, the convolution kernel can be rewritten as

𝐾𝑦(𝑥) =

∫︁ 𝜅/𝑐

−𝜅/𝑐

𝑒𝑖𝑥𝑡ℒ𝑚
(︁
𝑒𝑖𝑐𝑦
√

(𝜅/𝑐)2−𝑡2𝜂𝛼(𝑡)
)︁
𝑑𝑡,

because, by construction, 𝜕𝑚𝑡 𝜂𝛼(𝑘/𝑐) = 0 for all 𝑚 ∈ N. Hence,

|𝐾𝑦(𝑥)| ≤ 𝐶𝑚

(︂
1 +

𝑥2

𝑐2𝑦

)︂−𝑚 ∫︁ 𝜅/𝑐

−𝜅/𝑐

(︂
𝐼 − △

𝑐2𝑦

)︂𝑚 (︁
𝑒𝑖𝑐𝑦
√

(𝜅/𝑐)2−𝑡2𝜂𝛼(𝑡)
)︁
𝑑𝑡.

141

In addition, using the bound in Eq. 4.23 we have that
⃒⃒
⃒⃒
(︂
𝐼 − △

𝑐2𝑦

)︂𝑚 (︁
𝑒𝑖𝑐𝑦
√

(𝜅/𝑐)2−𝑡2𝜂𝛼(𝑡)
)︁⃒⃒
⃒⃒ ≤ 𝐶𝑚,𝛼,

which leads to

|𝐾𝑦(𝑥)| ≤ 𝐶𝑚,𝛼

(︂
1 +

𝑥2

𝑐2𝑦

)︂−𝑚

≤ 𝐶𝑚,𝛼

(︂
1 +
|𝑥|
𝑐𝑦

)︂−2𝑚

, (4.61)

which concludes the proof. The argument for odd 𝑛 is essentially the same.

142

Bibliography

[1] S. Ambikasaran and E. Darve. An 𝒪(𝑛 log 𝑛) fast direct solver for partial hier-
archically semi-separable matrices. Journal of Scientific Computing, 57(3):477–
501, December 2013.

[2] A. Aminfar, S. Ambikasaram, and E. Darve. A fast block low-rank dense
solver with applications to finite-element matrices. ArXiv e-prints, [cs.NA]
arXiv:1403.5337, 2015.

[3] A. Aminfar and E. Darve. A fast sparse solver for finite-element matrices. ArXiv
e-prints, [cs.NA] arXiv:1410.2697, 2014.

[4] I. Babuska, F. Ihlenburg, E. T. Paik, and S. A. Sauter. A generalized finite
element method for solving the H elmholtz equation in two dimensions with
minimal pollution. Computer Methods in Applied Mechanics and Engineering,
128(3-4):325–359, 1995.

[5] I. Babuska and J. M. Melenk. The partition of unity method. International
Journal for Numerical Methods in Engineering, 40(4):727–758, 1997.

[6] G. Ballard, J. Demmel, O. Holtz, and O. Schwartz. Minimizing communication
in numerical linear algebra. SIAM Journal on Matrix Analysis and Applications,
32(3):866–901, 2011.

[7] A. H. Barnett and T. Betcke. An exponentially convergent nonpolynomial finite
element method for time-harmonic scattering from polygons. SIAM Journal on
Scientific Computing, 32(3):1417–1441, 2010.

[8] A. H. Barnett, B. J. Nelson, and J. M. Mahoney. High-order boundary inte-
gral equation solution of high frequency wave scattering from obstacles in an
unbounded linearly stratified medium. ArXiv e-prints, 2014.

[9] M. Bebendorf. Hierarchical Matrices: A Means to Efficiently Solve Elliptic
Boundary Value Problems, volume 63 of Lecture Notes in Computational Science
and Engineering (LNCSE). Springer-Verlag, 2008. ISBN 978-3-540-77146-3.

[10] R. Bélanger-Rioux and L. Demanet. Compressed absorbing boundary condi-
tions via matrix probing. ArXiv e-prints, [math.NA] 1401.4421, 2014.

143

[11] J.-D. Benamou and B. Després. A domain decomposition method for the
Helmholtz equation and related optimal control problems. Journal of Com-
putational Physics, 136(1):68–82, 1997.

[12] M. Benzi, J. C. Haws, and M. Tuma. Preconditioning highly indefinite and
nonsymmetric matrices. SIAM Journal on Scientific Computing, 22(4):1333–
1353, 2000.

[13] J.-P. Bérenger. A perfectly matched layer for the absorption of electromagnetic
waves. Journal of Computational Physics, 114(2):185–200, 1994.

[14] A. J. Berkhout. Seismic Migration: Imaging of Acoustic Energy by Wave Field
Extrapolation. Elsevier, 1980.

[15] T. Betcke, S. N. Chandler-Wilde, I. G. Graham, S. Langdon, and M. Lindner.
A fast sparse solver for finite-element matrices. ArXiv e-prints, [math.NA]
arXiv:1007.3074, 2010.

[16] T. Betcke and E. A. Spence. Numerical estimation of coercivity constants for
boundary integral operators in acoustic scattering. SIAM Journal on Numerical
Analysis, 49(4):1572–1601, 2011.

[17] R. Bevilacqua, B. Codenotti, and F. Romani. Parallel solution of block tridi-
agonal linear systems. Linear Algebra and its Applications, 104(0):39–57, 1988.

[18] G. Beylkin and K. Sandberg. Wave propagation using bases for bandlimited
functions. Wave Motion, 41(3):263–291, 2005. Special Issue in Honor of the
75th Birthday of A.T.de Hoop.

[19] F. Billette and S. Brandsberg-Dahl. The 2004 BP velocity benchmark. EAGE,
2005.

[20] S. Boerm, L. Grasedyck, and W. Hackbusch. Hierarchical matrices. Max-
Planck- Institute Lecture Notes, 2006.

[21] M. Bollhöfer, M. Grote, and O. Schenk. Algebraic multilevel preconditioner for
the Helmholtz equation in heterogeneous media. SIAM Journal on Scientific
Computing, 31(5):3781–3805, 2009.

[22] J. P. Boyd. Algorithm 840: Computation of grid points, quadrature weights
and derivatives for spectral element methods using prolate spheroidal wave
functions—prolate elements. ACM Trans. Math. Softw., 31(1):149–165, March
2005.

[23] A. Brandt and I. Livshits. Wave-ray multigrid method for standing wave equa-
tions. Electronic Transactions on Numerical Analysis, 6:162–181, 1997.

[24] J. Bremer, A. Gillman, and P.-G. Martinsson. A high-order accurate accelerated
direct solver for acoustic scattering from surfaces. BIT Numerical Mathematics,
pages 1–31, 2014.

144

[25] O. Bruno, T. Elling, R. Paffenroth, and C. Turc. Electromagnetic integral
equations requiring small numbers of Krylov-subspace iterations. Journal of
Computational Physics, 228(17):6169–6183, September 2009.

[26] M. Byckling and M. Huhtanen. Preconditioning with direct approximate fac-
toring of the inverse. SIAM Journal on Scientific Computing, 36(1):A88–A104,
2014.

[27] H. Calandra, S. Gratton, X. Pinel, and X. Vasseur. An improved two-grid
preconditioner for the solution of three-dimensional Helmholtz problems in het-
erogeneous media. Numerical Linear Algebra with Applications, 20(4):663–688,
2013.

[28] E. Candès, L. Demanet, and L. Ying. A fast butterfly algorithm for the
computation of fourier integral operators. Multiscale Modeling & Simulation,
7(4):1727–1750, 2009.

[29] O. Cessenat. Application d’une nouvelle formulation variationnelle aux équa-
tions d’ondes harmoniques. PhD thesis, Université Paris IX Dauphine, Paris,
France, 1996.

[30] O. Cessenat and B. Després. Application of an ultra weak variational formula-
tion of elliptic pdes to the two-dimensional Helmholtz problem. SIAM Journal
on Numerical Analysis, 35(1):255–299, 1998.

[31] O. Cessenat and B. Després. Using plane waves as base functions for solving
time harmonic equations with the ultra weak variational formulation. Journal
of Computational Acoustics, 11(02):227–238, 2003.

[32] S. N. Chandler-Wilde. Boundary value problems for the Helmholtz equation in a
half-plane. In Proceedings of the 3rd International Conference on Mathematical
and Numerical Aspects of Wave Propagation, page 188âĂŞ197, 1995.

[33] S. N. Chandler-Wilde, I. G. Graham, S. Langdon, and E. A. Spence. Numerical-
asymptotic boundary integral methods in high-frequency acoustic scattering.
Acta Numerica, 21:89–305, 5 2012.

[34] Q. Y. Chen, D. Gottlieb, and J. S. Hesthaven. Spectral methods based on
prolate spheroidal wave functions for hyperbolic PDEs. SIAM Journal on Nu-
merical Analysis, 43(5):1912–1933, 2005.

[35] Y. Chen. Inverse scattering via Heisenberg’s uncertainty principle. Inverse
Problems, 13(2):253, 1997.

[36] Z. Chen, D. Cheng, and T. Wu. A dispersion minimizing finite difference scheme
and preconditioned solver for the 3D Helmholtz equation. Journal of Compu-
tational Physics, 231(24):8152–8175, 2012.

145

[37] Z. Chen and X. Xiang. A source transfer domain decomposition method for
Helmholtz equations in unbounded domain. SIAM Journal on Numerical Anal-
ysis, 51(4):2331–2356, 2013.

[38] Z. Chen and X. Xiang. A source transfer domain decomposition method for
Helmholtz equations in unbounded domain part II: Extensions. Numerical
Mathematics: Theory, Methods and Applications, 6:538–555, 2013.

[39] H. Cheng, W. Y. Crutchfield, Z. Gimbutas, L. F. Greengard, J. F. Ethridge,
J. Huang, V. Rokhlin, N. Yarvin, and J. Zhao. A wideband fast multipole
method for the helmholtz equation in three dimensions. Journal of Computa-
tional Physics, 216(1):300 – 325, 2006.

[40] M. H. Cho and A. H. Barnett. Robust fast direct integral equation solver for
quasi-periodic scattering problems with a large number of layers. Opt. Express,
23(2):1775–1799, Jan 2015.

[41] E. Chow and Y. Saad. Approximate inverse preconditioners via sparse-sparse
iterations. SIAM Journal on Scientific Computing, 19(3):995–1023, 1998.

[42] D. Colton and R. Kress. On the denseness of herglotz wave functions and
electromagnetic herglotz pairs in sobolev spaces. Mathematical Methods in the
Applied Sciences, 24(16):1289–1303, 2001.

[43] D. Colton and R. Kress. Integral Equation Methods in Scattering Theory. So-
ciety for Industrial and Applied Mathematics, Philadelphia, PA, 2013.

[44] L. Conen, V. Dolean, Krause R., and F. Nataf. A coarse space for heterogeneous
helmholtz problems based on the dirichlet-to-neumann operator. Journal of
Computational and Applied Mathematics, 271(0):83 – 99, 2014.

[45] S. Cools, B. Reps, and W. Vanroose. A new level-dependent coarse grid correc-
tion scheme for indefinite Helmholtz problems. Numerical Linear Algebra with
Applications, 21(4):513–533, 2014.

[46] S. Cools and W. Vanroose. Local Fourier analysis of the complex shifted Lapla-
cian preconditioner for Helmholtz problems. Numerical Linear Algebra with
Applications, 20(4):575–597, 2013.

[47] S. Cools and W. Vanroose. Generalization of the complex shifted Laplacian: on
the class of expansion preconditioners for Helmholtz problems. ArXiv e-prints,
2015.

[48] M. Darbas, E. Darrigrand, and Y. Lafranche. Combining analytic precondi-
tioner and fast multipole method for the 3-D Helmholtz equation. Journal of
Computational Physics, 236(0):289 – 316, 2013.

146

[49] T. A. Davis. Algorithm 832: UMFPACK v4.3—an unsymmetric-pattern multi-
frontal method. ACM Transactions on Mathematical Software, 30(2):196–199,
June 2004.

[50] M. V. de Hoop, S. Wang, and J. Xia. On 3D modeling of seismic wave propaga-
tion via a structured parallel multifrontal direct Helmholtz solver. Geophysical
Prospecting, 59(5):857–873, 2011.

[51] M.V. de Hoop, J. H. Le Rousseau, and R-S. Wu. Generalization of the
phase-screen approximation for the scattering of acoustic waves. Wave Motion,
31(1):43–70, 2000.

[52] L. Demanet and L. Ying. Fast wave computation via Fourier integral operators.
Mathematics of Computation, 81(279):1455–1486, 2012.

[53] J. Demmel, L. Grigori, M. Gu, and H. Xiang. Communication avoiding rank
revealing qr factorization with column pivoting. Technical Report UCB/EECS-
2013-46, EECS Department, University of California, Berkeley, May 2013.

[54] B. Després. Décomposition de domaine et problème de Helmholtz. Comptes
rendus de l’Académie des sciences. Série 1, Mathématique, 311:313–316, 1990.

[55] I. S. Duff and J. K. Reid. The multifrontal solution of indefinite sparse sym-
metric linear. ACM Trans. Math. Softw., 9(3):302–325, September 1983.

[56] H. Elman, O. Ernst, and D. O’Leary. A multigrid method enhanced by Krylov
subspace iteration for discrete Helmholtz equations. SIAM Journal on Scientific
Computing, 23(4):1291–1315, 2001.

[57] B. Engquist and L. Ying. Fast directional algorithms for the Helmholtz kernel.
Journal of Computational and Applied Mathematics, 234(6):1851 – 1859, 2010.
Eighth International Conference on Mathematical and Numerical Aspects of
Waves (Waves 2007).

[58] B. Engquist and L. Ying. Sweeping preconditioner for the Helmholtz equa-
tion: Hierarchical matrix representation. Communications on Pure and Applied
Mathematics, 64(5):697–735, 2011.

[59] B. Engquist and L. Ying. Sweeping preconditioner for the Helmholtz equation:
moving perfectly matched layers. Multiscale Modeling & Simulation, 9(2):686–
710, 2011.

[60] B. Engquist and H.-K. Zhao. Absorbing boundary conditions for domain de-
composition. Applied Numerical Mathematics, 27(4):341 – 365, 1998. Special
Issue on Absorbing Boundary Conditions.

[61] B. Engquist and H.-K. Zhao. Approximate separability of Green’s function for
high frequency Helmholtz equations, March 2014.

147

[62] Y. A. Erlangga. Advances in iterative methods and preconditioners for the
Helmholtz equation. Archives of Computational Methods in Engineering,
15(1):37–66, 2008.

[63] Y. A. Erlangga, C. W. Oosterlee, and C. Vuik. A novel multigrid based pre-
conditioner for heterogeneous Helmholtz problems. SIAM Journal on Scientific
Computing, 27(4):1471–1492, 2006.

[64] O. G. Ernst and M. J. Gander. Why it is difficult to solve Helmholtz problems
with classical iterative methods. In Ivan G. Graham, Thomas Y. Hou, Omar
Lakkis, and Robert Scheichl, editors, Numerical Analysis of Multiscale Prob-
lems, volume 83 of Lecture Notes in Computational Science and Engineering,
pages 325–363. Springer Berlin Heidelberg, 2012.

[65] C. Farhat, P. Avery, R. Tezaur, and J. Li. FETI-DPH: A dual-primal do-
main decomposition method for acoustic scattering. Journal of Computational
Acoustics, 13(03):499–524, 2005.

[66] C. Farhat, I. Harari, and L. P. Franca. The discontinuous enrichment method.
Computer Methods in Applied Mechanics and Engineering, 190(48):6455–6479,
2001.

[67] C. Farhat, A. Macedo, and M. Lesoinne. A two-level domain decomposition
method for the iterative solution of high frequency exterior Helmholtz problems.
Numerische Mathematik, 85(2):283–308, 2000.

[68] L. Fishman, M. V. de Hoop, and M. J. N. van Stralen. Exact constructions
of square-root Helmholtz operator symbols: The focusing quadratic profile.
Journal of Mathematical Physics, 41(7):4881–4938, 2000.

[69] M. Gander and F. Nataf. AILU for Helmholtz problems: a new preconditioner
based on an analytic factorization. Comptes Rendus de l’Académie des Sciences-
Series I-Mathematics, 331(3):261–266, 2000.

[70] M. J. Gander and F. Kwok. Optimal interface conditions for an arbitrary de-
composition into subdomains. In Yunqing Huang, Ralf Kornhuber, Olof Wid-
lund, and Jinchao Xu, editors, Domain Decomposition Methods in Science and
Engineering XIX, volume 78 of Lecture Notes in Computational Science and
Engineering, pages 101–108. Springer Berlin Heidelberg, 2011.

[71] M. J. Gander and F. Nataf. AILU for Helmholtz problems: A new precondi-
tioner based on the analytic parabolic factorization. Journal of Computational
Acoustics, 09(04):1499–1506, 2001.

[72] M. J. Gander and H. Zhang. Domain decomposition methods for the Helmholtz
equation: A numerical investigation. In Randolph Bank, Michael Holst, Olof
Widlund, and Jinchao Xu, editors, Domain Decomposition Methods in Science
and Engineering XX, volume 91 of Lecture Notes in Computational Science and
Engineering, pages 215–222. Springer Berlin Heidelberg, 2013.

148

[73] M.J. Gander, I.G. Graham, and E.A. Spence. Applying GMRES to the
Helmholtz equation with shifted Laplacian preconditioning: what is the largest
shift for which wavenumber-independent convergence is guaranteed? Nu-
merische Mathematik, pages 1–48, 2015.

[74] A. George. Nested dissection of a regular finite element mesh. SIAM Journal
on Numerical Analysis, 10:345–363, 1973.

[75] A. Gillman, A.H. Barnett, and P.G. Martinsson. A spectrally accurate direct so-
lution technique for frequency-domain scattering problems with variable media.
BIT Numerical Mathematics, pages 1–30, 2014.

[76] C. J. Gittelson, R. Hiptmair, and I. Perugia. Plane wave discontinuous Galerkin
methods: Analysis of the h-version. ESAIM: Mathematical Modelling and Nu-
merical Analysis, 43:297–331, 3 2009.

[77] I.G. Graham, M. Löhndorf, J.M. Melenk, and E.A. Spence. When is the error
in the h-BEM for solving the Helmholtz equation bounded independently of k?
BIT Numerical Mathematics, 55(1):171–214, 2015.

[78] E. Haber and S. MacLachlan. A fast method for the solution of the Helmholtz
equation. Journal of Computational Physics, 230(12):4403–4418, 2011.

[79] R. Hiptmair and C. Jerez-Hanckes. Multiple traces boundary integral formula-
tion for Helmholtz transmission problems. Advances in Computational Mathe-
matics, 37(1):39–91, 2012.

[80] R. Hiptmair, A. Moiola, and I. Perugia. Plane wave discontinuous Galerkin
methods for the 2d Helmholtz equation: Analysis of the p-version. SIAM Jour-
nal on Numerical Analysis, 49(1):264–284, 2011.

[81] A. Hoffman, M. Martin, and D. Rose. Complexity bounds for regular finite
difference and finite element grids. SIAM Journal on Numerical Analysis,
10(2):364–369, 1973.

[82] L. Hörmander. The Analysis of Linear Partial Differential Operators. IV:
Fourier Integral Operators, volume 63 of Classics in Mathematics. Springer,
Berlin, 2009.

[83] F. Ihlenburg and I. Babuska. Finite element solution of the Helmholtz equa-
tion with high wave number part I: The h-version of the FEM. Computers &
Mathematics with Applications, 30(9):9 – 37, 1995.

[84] L.-M. Imbert-Gérard. Interpolation properties of generalized plane waves. Nu-
merische Mathematik, pages 1–29, 2015.

[85] S. Johnson. Notes on perfectly matched layers (PMLs), March 2010.

149

[86] P. Jones, J. Ma, and V. Rokhlin. A fast direct algorithm for the solution of the
Laplace equation on regions with fractal boundaries. Journal of Computational
Physics, 113(1):35–51, 1994.

[87] R. Kress. Linear integral equations. In Applied Mathematical Sciences. Springer,
1999.

[88] J. Lai, S. Ambikasaran, and L Greengard. A fast direct solver for high frequency
scattering from a large cavity in two dimensions. ArXiv e-prints, 2014.

[89] H. J. Landau and H. O. Pollak. Prolate spheroidal wave functions, Fourier
analysis and uncertainty - II. Bell System Technical Journal, 40:65–85, 1961.

[90] H. J. Landau and H. O. Pollak. Prolate spheroidal wave functions, Fourier
analysis and uncertainty - III. the dimension of the space of essentially time-
and band-limited signals. Bell System Technical Journal, 41:1295–1336, 1962.

[91] L. Lin, J. Lu, and L. Ying. Fast construction of hierarchical matrix represen-
tation from matrix-vector multiplication. Journal of Computational Physics,
230(10):4071–4087, May 2011.

[92] J. L. Lions and E. Magenes. Non-Homogeneous Boundary Value Problems and
Applications, volume 1 of Grundlehren der mathematischen Wissenschaften.
Springer-Verlag, 1972. ISBN 978-3-642-65161-8.

[93] F. Liu and L. Ying. Recursive sweeping preconditioner for the 3D Helmholtz
equation. ArXiv e-prints, 2015.

[94] S. Luo, J. Qian, and R. Burridge. Fast Huygens sweeping methods for Helmholtz
equations in inhomogeneous media in the high frequency regime. Journal of
Computational Physics, 270(0):378–401, 2014.

[95] G. Martin, R. Wiley, and K. Marfurt. An elastic upgrade for Marmousi. The
Leading Edge, Society for Exploration Geophysics, 25, 2006.

[96] P.G. Martinsson and V. Rokhlin. A fast direct solver for scattering problems
involving elongated structures. Journal of Computational Physics, 221(1):288–
302, 2007.

[97] P.G. Martinsson, V. Rokhlin, and M Tygert. A randomized algorithm for the
decomposition of matrices. Applied and Computational Harmonic Analysis,
30(1):47–68, 2011.

[98] W. McLean. Strongly Elliptic Systems and Boundary Integral Equations. Cam-
bridge University Press, 2000.

[99] G. Meurant. A review on the inverse of symmetric tridiagonal and block tridiag-
onal matrices. SIAM Journal on Matrix Analysis and Applications, 13(3):707–
728, July 1992.

150

[100] A. Moiola, R. Hiptmair, and I. Perugia. Plane wave approximation of homoge-
neous Helmholtz solutions. Zeitschrift für angewandte Mathematik und Physik,
62(5):809–837, 2011.

[101] A. Moiola, R. Hiptmair, and I. Perugia. Vekua theory for the Helmholtz op-
erator. Zeitschrift fÃĳr angewandte Mathematik und Physik, 62(5):779–807,
2011.

[102] A. Moiola and E. Spence. Is the Helmholtz equation really sign-indefinite?
SIAM Review, 56(2):274–312, 2014.

[103] P. Monk and D.-Q. Wang. A least-squares method for the Helmholtz equation.
Computer Methods in Applied Mechanics and Engineering, 175(1âĂŞ2):121–
136, 1999.

[104] D. Osei-Kuffuor, R. Li, and Y. Saad. Matrix reordering using multilevel graph
coarsening for ILU preconditioning. SIAM Journal on Scientific Computing,
37(1):A391–A419, 2015.

[105] A. Osipov. Certain upper bounds on the eigenvalues associated with prolate
spheroidal wave functions. Applied and Computational Harmonic Analysis,
35(2):309 – 340, 2013.

[106] A. Osipov and V. Rokhlin. Detailed analysis of prolate quadratures and inter-
polation formulas. ArXiv e-prints, 2012.

[107] C. S. Peskin. Numerical analysis of blood flow in the heart. Journal of Com-
putational Physics, 25(3):220 – 252, 1977.

[108] R.-E. Plessix. A Helmholtz iterative solver for 3D seismic-imaging problems.
Geophysics, 72(5):SM185–SM194, 2007.

[109] R.-E. Plessix and W. A. Mulder. Separation-of-variables as a preconditioner for
an iterative Helmholtz solver. Applied Numerical Mathematics, 44(3):385–400,
2003.

[110] S. D. Poisson. Théorie mathématique de la chaleur. Bachelier, Paris, 1835.

[111] J. Poulson, L. Demanet, N. Maxwell, and L. Ying. A parallel butterfly algo-
rithm. SIAM Journal on Scientific Computing, 36(1):C49–C65, 2014.

[112] J. Poulson, B. Engquist, S. Li, and L. Ying. A parallel sweeping precondi-
tioner for heterogeneous 3D Helmholtz equations. SIAM Journal on Scientific
Computing, 35(3):C194–C212, 2013.

[113] R. G. Pratt. Seismic waveform inversion in the frequency domain; part 1:
Theory and verification in a physical scale model. Geophysics, 64(3):888–901,
1999.

151

[114] J. Qian, S. Luo, and R. Burridge. Fast Huygens’ sweeping methods for multi-
arrival Green’s functions of Helmholtz equations in the high-frequency regime.
Geophysics, 80(2):T91–T100, 2015.

[115] C. D. Riyanti, A. Kononov, Y. A. Erlangga, C. Vuik, C. W. Oosterlee, R.-E.
Plessix, and W. A. Mulder. A parallel multigrid-based preconditioner for the
3D heterogeneous high-frequency Helmholtz equation. Journal of Computa-
tional Physics, 224(1):431–448, 2007. Special Issue Dedicated to Professor Piet
Wesseling on the occasion of his retirement from Delft University of Technology.

[116] V. Rokhlin. Rapid solution of integral equations of classical potential theory.
Journal of Computational Physics, 60(2):187–207, 1985.

[117] Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial
and Applied Mathematics, second edition, 2003.

[118] K. Sandberg and G. Beylkin. Full-wave-equation depth extrapolation for mi-
gration. Geophysics, 74(6):WCA121–CA128, 2009.

[119] A. H. Sheikh, D. Lahaye, and C. Vuik. On the convergence of shifted Laplace
preconditioner combined with multilevel deflation. Numerical Linear Algebra
with Applications, 20(4):645–662, 2013.

[120] M. Sini and N. T. Thành. Inverse acoustic obstacle scattering problems using
multifrequency measurements. Inverse Problems and Imaging, 6(4):749–773,
2012.

[121] D. Slepian. Prolate spheroidal wave functions, fourier analysis and uncertainity
- IV. extensions to many dimensions; generalized prolate spheroidal functions.
Bell System Technical Journal, 43:3009–3057, 1964.

[122] D. Slepian. Some comments on fourier analysis, uncertainty and modeling.
SIAM Review, 25(3):379–393, 1983.

[123] D. Slepian and H. O. Pollak. Prolate spheroidal wave functions, Fourier analysis
and uncertainty - I. Bell System Technical Journal, 40:43–63, 1961.

[124] E. A. Spence. Wavenumber-explicit bounds in time-harmonic acoustic scatter-
ing. SIAM Journal on Mathematical Analysis, 46(4):2987–3024, 2014.

[125] E. A. Spence. Bounding acoustic layer potentials via oscillatory integral tech-
niques. BIT Numerical Mathematics, 55(1):279–318, 2015.

[126] E. A. Spence, S. N. Chandler-Wilde, I. G. Graham, and V. P. Smyshlyaev. A
new frequency-uniform coercive boundary integral equation for acoustic scat-
tering. Communications on Pure and Applied Mathematics, 64(10):1384–1415,
2011.

152

[127] P. L. Stoffa, J. T. Fokkema, R. M. de Luna Freire, and W. P. Kessinger. Split-
step fourier migration. Geophysics, 55(4):410–421, 1990.

[128] C. Stolk. A rapidly converging domain decomposition method for the Helmholtz
equation. Journal of Computational Physics, 241(0):240–252, 2013.

[129] C. Stolk and M. de Hoop. Modeling of seismic data in the downward con-
tinuation approach. SIAM Journal on Applied Mathematics, 65(4):1388–1406,
2005.

[130] C. C. Stolk. A dispersion minimizing scheme for the 3-D Helmholtz equation
with applications in multigrid based solvers. ArXiv e-prints, 2015.

[131] C. C. Stolk, M. Ahmed, and S. K. Bhowmik. A multigrid method for the
Helmholtz equation with optimized coarse grid corrections. ArXiv e-prints,
[math.NA] 1304.4103, April 2013.

[132] G. Strang and T. Nguyen. The interplay of ranks of submatrices. SIAM Review,
46(4):637–646, 2004.

[133] W. W. Symes and J. J. Carazzone. Velocity inversion by differential semblance
optimization. GEOPHYSICS, 56(5):654–663, 1991.

[134] A. Tarantola. Inversion of seismic reflection data in the acoustic approximation.
Geophysics, 49(8):1259–1266, 1984.

[135] M. E. Taylor. Grazing rays and reflection of singularities of solutions to wave
equations. Communications on Pure and Applied Mathematics, 29(1):1–38,
1976.

[136] R. Thakur, R. Rabenseifner, and W. Gropp. Optimization of collective com-
munication operations in mpich. International Journal of High Performance
Computing Applications, 19(1):49–66, 2005.

[137] L. N. Trefethen and D. Bau. Numerical linear algebra. Society for Industrial
and Applied Mathematics (SIAM), Philadelphia, PA, 1997.

[138] P. Tsuji, B. Engquist, and L. Ying. A sweeping preconditioner for time-harmonic
Maxwell’s equations with finite elements. Journal of Computational Physics,
231(9):3770 – 3783, 2012.

[139] P. Tsuji, J. Poulson, B. Engquist, and L. Ying. Sweeping preconditioners for
elastic wave propagation with spectral element methods. ESAIM: Mathematical
Modelling and Numerical Analysis, 48:433–447, 3 2014.

[140] P. Tsuji and L. Ying. A sweeping preconditioner for Yee’s finite difference
approximation of time-harmonic Maxwell’s equations. Frontiers of Mathematics
in China, 7(2):347–363, 2012.

153

[141] R. A. Usmani. Inversion of Jacobi’s tridiagonal matrix. Computers & Mathe-
matics with Applications, 27(8):59–66, 1994.

[142] A. Vion, R. Bélanger-Rioux, L. Demanet, and C. Geuzaine. A DDM double
sweep preconditioner for the Helmholtz equation with matrix probing of the dtn
map. In Mathematical and Numerical Aspects of Wave Propagation WAVES
2013, 2013.

[143] A. Vion and C. Geuzaine. Double sweep preconditioner for optimized Schwarz
methods applied to the Helmholtz problem. Journal of Computational Physics,
266(0):171–190, 2014.

[144] S. Wang, X. S. Li, Xia J., Y. Situ, and M. V. de Hoop. Efficient scalable
algorithms for solving dense linear systems with hierarchically semiseparable
structures. SIAM Journal on Scientific Computing, 35(6):C519–C544, 2013.

[145] X. Wang and W. W. Symes. Harmonic coordinate finite element method for
acoustic waves. In SEG Technical Program Expanded Abstracts 2012, pages 1–5.

[146] H. Xiao, V. Rokhlin, and N. Yarvin. Prolate spheroidal wavefunctions, quadra-
ture and interpolation. Inverse Problems, 17(4):805, 2001.

[147] P. Ylä-Oijala, M. Taskinen, and S Järvenpää. Analysis of surface integral equa-
tions in electromagnetic scattering and radiation problems. Engineering Anal-
ysis with Boundary Elements, 32(3):196 – 209, 2008.

[148] L. Zepeda-Núñez and L. Demanet. The method of polarized traces for the 2D
Helmholtz equation. ArXiv e-prints, 2014.

154

	Introduction
	The Helmholtz equation
	Applications
	Inverse problems
	Optimal design

	Results
	Sublinear Helmholtz solver
	Extensions
	Harmonic Extrapolation

	Related work

	The method of polarized traces
	Rationale and results
	Polarization
	Algorithm
	Complexity scalings

	Discrete Formulation
	Discretization
	Domain Decomposition
	Discrete Green's Representation Formula
	Discrete Integral Equation

	Polarization
	Polarized Wavefields
	Polarized Traces
	Annihilation relations
	Extrapolation conditions
	Jump condition

	Preconditioners
	Jacobi Iteration
	GMRES

	Partitioned low-rank matrices
	Compression
	Compression scalings

	Computational Complexity
	Computational cost
	Communication cost

	Numerical Experiments
	Precomputation
	Smooth Velocity Model
	Rough Velocity Model

	Appendices
	Discretization
	Triangular and block triangular matrices
	Properties of the Discrete Green's representation formula

	Extensions
	Formulation
	A compressed-block LU solver
	Method
	Complexity

	Nested solver
	Gauss-Seidel preconditioner
	Matrix-free approach
	Nested inner and outer solver
	Complexity

	Numerical results
	Compressed-block LU
	Nested Solver

	Conclusion

	Appendices
	Discretization using Q1 finite elements
	Green's representation formula
	Schur Complement

	Harmonic Extrapolation
	Harmonic extension: the Laplace equation
	Generalized harmonic extension: the Helmholtz equation
	Stability with respect to the Herglotz density
	Truncation in the PSWF domain
	Size properties of the PSWF and the extrapolation kernel
	Extrapolation Error

	Numerical Examples
	Extrapolation
	Pivoted QR and broken lines
	Towards an efficient Helmholtz solver

	Appendices
	Proofs

