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Abstract. This paper finds the unique maximum likelihood estimator of, and conservative
confidence intervals for, the unknown number of different coupons in the coupon collector’s
problem. This problem is also known as the problem of estimating the abundance of wildlife.
The techniques developed here can be easily implemented, are valid without regard to sample
size, and validate previous methods based on large sample theory when those methods apply.

Introduction

An infected organism is being studied. A sample of n pathogens (viruses, bacteria, etc.)
of a single species from the organism is examined, and the strain of each is determined.
The number of different strains observed among the n pathogens is c. Knowing only n
and c, the number k of different strains of this pathogen present in the organism is to be
estimated.

In a national park in India, an automatic camera photographed the number n of tigers
passing by the camera over a 12 month period. According to The New York Times, from
the photographs it was determined that the number of different tigers observed was c.
From n and c, the total number k of tigers in the park is to be estimated.

In general, can a simple random sample of size n from a population of unknown size k
be used to estimate k? The answer is in the affirmative if the sampling can be done with
replacement, and the number c of distinct units in the sample can be determined.

These problems are related to the coupon collector’s problem where one observes the
number c of distinct coupons collected out of n coupons and wishes to estimate the un-
known total number k of different coupons. The coupons are assumed to be selected either
without replacement from an infinite population containing equal numbers of the k differ-
ent coupons, or with replacement from a finite population containing equal numbers of the
k different coupons. These problems are also related to the classical occupancy problem
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in which the number k of boxes is to be estimated when the number n of balls which have
been dropped at random into the k boxes and the number c of occupied boxes is known.

This paper is concerned with the problem of finding an estimator of, and confidence
intervals for, the unknown parameter k in the settings described above. The conceptual
model underlying the analysis is that an urn contains k coupons, each of a different color.
Coupons are drawn from the urn one at a time with replacement and the color of each
coupon drawn is noted. The value of k is unknown and is to be estimated using the number
Cn of different colors that have appeared in n draws from the urn with replacement.

The first result established here is that when the maximum likelihood estimator of k ex-
ists, it is unique. Moreover, there is a simple, computationally effective way of determining
this maximum likelihood estimator using only Cn and n. The problem of determining the
maximum likelihood estimator of k has been studied extensively, especially in the context
of estimating wildlife abundance. The maximum likelihood estimator has been previously
derived, but the uniqueness of the estimator has apparently not been noticed. A simple
computational method for obtaining the maximum likelihood estimator is also absent from
the existing literature.

The second result obtained here is a procedure for finding conservative 100(1−α)% one
and two sided confidence intervals for k. Confidence intervals obtained previously have
depended on asymptotic theory in order to justify their validity. This means that for any
finite sample size the coverage probability may be either more or less than the nominal
level. The conservative confidence intervals here always have at least the specified nominal
coverage probability. In limited testing, the intervals found here secure this advantage
without sacrificing length.

The sufficiency of the statistic Cn for k is also established here, as is the strong asymp-
totic convergence of both Cn and the maximum likelihood estimator k̂n to k. These results
round out the theoretical developments connected with this problem.

The case of not equally likely colors presents complications which apparently cannot be
treated by the methods presented here.

Basic Formula

The theorems and procedures contained here depend on a single basic formula. This
formula was also obtained by Driml and Ullrich (1967).

Before establishing the basic formula, note that the actual colors used play no important
role in the problem. The colors serve only as convenient labels to refer to the observed
outcomes. For this reason it is useful to refer to a pattern determined by the observations.
The pattern determined by the observations consists of the positions at which new colors
are observed together with information about the positions which are occupied by the same
color. Thus the two observations (red, green, red) and (blue, yellow, blue) correspond to
the same pattern which will be denoted (1,2,1).

To establish the basic formula, note that each configuration of n coupons has probability
of k−n of being selected. The event Cn = c occurs by first selecting a sequence of c colors
from the k available colors, and then using this sequence of colors, in order, to color a
pattern of length n containing exactly the integers 1, 2, . . . , c. Denote by f(c, n) the
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number of such patterns. It is clear that f(c, n) does not depend on k. (In fact, it can be

shown that f(c, n) =
∑{

n!
r1!···rc!

: r1 ≥ 1, . . . , rc ≥ 1,
∑c
i=1 ri = n

}
.) For 1 ≤ c ≤ k,

Pk[Cn = c] = c!

(
k

c

)
f(c, n)k−n,

which is our basic formula. Here and throughout, the notation Pk[E] denotes the proba-
bility of the event E computed assuming there are k colors.

Sufficiency of Cn

As a consequence of the basic formula, the statistic Cn will be shown to be a sufficient
statistic for k. Practically speaking, this means that Cn is the correct statistic to use when
estimating k or finding confidence intervals for k. In particular, the pattern contains no
additional information about k, other than the number of observed colors.

As remarked above, the actual colors observed are only considered as arbitrary labels
used to make it easier to refer to the outcomes. The actual observation consists only of the
pattern. Sufficiency of Cn will be established by showing that Pk[observed pattern|Cn = c]
does not depend on k.

Clearly, if the observed pattern does not contain exactly c distinct colors the conditional
probability Pk[observed pattern|Cn = c] = 0. If the pattern does contain exactly c distinct

colors then by the discussion above, Pk[observed pattern, Cn = c] = c!
(
k
c

)
k−n. It follows

that Pk[observed pattern|Cn = c] = Pk[observed pattern, Cn = c]/Pk[Cn = c] = 1/f(c, n),
which does not depend on k. The sufficiency of Cn is therefore established.

The Maximum Likelihood Estimator of k

The maximum likelihood estimator of k can be found by using the basic formula above.
A derivation similar to that given here (except for the uniqueness assertion) can be found
in Driml and Ullrich (1967). Denote by c the observed value of Cn. The objective is to
show that when c < n there is a unique finite value of k which maximizes Pk[Cn = c]. In
the case in which c = n this probability is a strictly increasing function of k, as is easily
seen. Therefore when c = n the maximum likelihood estimator of k does not exist.

Suppose 1 ≤ c < n is fixed. Simple algebra and the basic formula show that

Pk+1[Cn = c]

Pk[Cn = c]
=
k + 1

k + 1− c

(
k

k + 1

)n
.

Notice that these formulas only hold for k ≥ c, which will henceforth be assumed. The
maximum likelihood estimator is determined by studying when this ratio is less than and
greater than 1. In the special case c = 1, this last ratio is clearly < 1 for all k and therefore
the unique maximum likelihood estimator of k is c. In the remainder of this discussion
it is assumed that 1 < c < n. Define g(x) = 1

1−cx(1 − x)
n for 0 ≤ x < 1/c and observe

that g(1/(k+1)) = k+1
k+1−c

(
k
k+1

)n
. Elementary calculus shows that g has a unique critical
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point in the interval (0, 1/c) and this critical point corresponds to a minimum of g. Also
g(0) = 1 and g(1/c−) = +∞. Hence there is a point 0 < x0 < 1/c so that g(x) ≤ 1 for
0 ≤ x ≤ x0 and g(x) > 1 for x > x0. This implies the existence of an integer k0 with

the property that Pk+1[Cn=c]
Pk[Cn=c]

≥ 1 for c ≤ k ≤ k0 and Pk+1[Cn=c]
Pk [Cn=c]

≤ 1 for k ≥ k0. Hence

there is at least one value of k at which Pk[Cn = c] attains its maximum value. This
establishes the existence of at least one maximum likelihood estimator of k. Uniqueness

will be established by showing that there is no integer k for which Pk+1[Cn=c]
Pk[Cn=c]

= 1. From

the above discussion, this last equality is possible if and only if kn = (k+1)n−1(k+1− c).
Since k and k+1 are relatively prime, this equation could hold only if k divides k+1− c.
This would imply c = 1 and then n = 1 too. But the case c = n has been excluded. Thus
there is no such integer k. The uniqueness of the maximum likelihood estimator has been
established.

The discussion is summarized in the following theorem.

Theorem. If Cn < n the maximum likelihood estimator k̂n(Cn) of k is unique, and is the

smallest integer j ≥ Cn which satisfies
j+1

j+1−Cn

(
j
j+1

)n
< 1.

Here is a short table illustrating the behavior of the maximum likelihood estimator k̂.
The endpoints of a two sided 95% confidence interval for k, computed using the method
below, are also included.

Maximum Likelihood Estimator of k
and Two Sided 95% Confidence Interval Endpoints

n Cn k̂n(Cn) Ln(Cn) Un(Cn)
20 5 5 5 7
20 10 12 10 22
20 15 31 17 92
20 19 183 38 7512

Large Sample Behavior

The behavior of the maximum likelihood estimator as the sample size n → ∞ can be
obtained from the following result about the asymptotic behavior of Cn.

Theorem. The sequence Cn → k almost surely as n→∞.

proof. Since 1 ≤ Cn ≤ k for all n and Cn is non-decreasing in n, Pk[Cn 	→ k] =
Pk[
⋂∞
i=1[Ci < k]] ≤ limi→∞ Pk[Ci < k] ≤ limi→∞ k(1 − 1/k)i = 0, which proves the

theorem. �
Theorem. The maximum likelihood estimator k̂n(Cn)→ k almost surely as n→∞.

proof. Because of the preceding theorem it is enough to show that limn→∞ k̂n(Cn)−Cn = 0

almost surely. From the earlier discussion of k̂ it follows first that k̂n(Cn) ≥ Cn. An elemen-

tary computation using the criterion for k̂ shows that if n ≥ − ln(Cn+1)/ ln(Cn/(Cn+1))

then k̂n(Cn) = Cn. �



NUMBER OF UNSEEN TYPES 5

Confidence Intervals for k

Finding the distribution of the maximum likelihood estimator, or some function of the
estimator, is clearly a difficult task. In order to find confidence intervals for k the so-called
statistical method will be used. This method is described in Bickel and Doksum (pp.
180-182), as well as in Kendall and Stuart (pp. 114-116, Example 20.2).

As motivation for the method, suppose the null hypothesis H0 : k = k0 is to be tested
against the alternative H1 : k > k0 at level of significance α. The hypothesis is clearly
rejected if Cn is too large. Suppose c is the (fixed) observed value of Cn. One concludes
that Cn was too large if Pk0 [Cn ≥ c] ≤ α.

This hypothesis testing technique suggests the following method of finding a one sided
confidence interval for k. Let k0 be the largest value of i so that Pi[Cn ≥ c] ≤ α. Then
the interval [k0,∞) is an intuitively reasonable choice of a confidence interval for k. Note
that k0 depends on the observed value c of Cn and therefore is a random variable. The
notes following justify this procedure.

To apply the method it will be helpful to know that each of the probabilities Pk[Cn ≤ j]
and Pk[Cn ≥ j] are monotone functions of k for each fixed j.

Lemma. In the notation above, Pk[Cn ≥ j] is a non-decreasing function of k for each
fixed integer j ≥ 1. Moreover, limk→∞ Pk[Cn ≥ j] = 1, for 1 ≤ j ≤ n.

proof. While this result is intuitively reasonable, a proof will be given by using a coupling
argument. Suppose the number of colors is fixed. Denote by Gi the number of draws
required to see a new color after i − 1 colors have already been observed. The random
variable Gi will be defined to be +∞ if i exceeds the number of available colors. Then
G1 = 1 and the G’s form a sequence of independent random variables. It is also clear that

[Cn ≥ j] = [
∑j
i=1Gi ≤ n].

A specific realization of the random variables Gi for two different number of colors, k
and k′, will now be constructed on a single underlying probability space. Suppose that
k < k′ are given. Let {Ui,m : i ≥ 1,m ≥ 1} be a collection of independent random variables
each of which is uniformly distributed on the interval (0, 1). Define Gi = min{m : Ui,m ≤
(k − i + 1)/k} for 1 ≤ i ≤ k and set Gi = +∞ for i > k. Define G′i = min{m : Ui,m ≤
(k′ − i+ 1)/k′} for 1 ≤ i ≤ k′ and set G′i = +∞ for i > k′. It is easily verified that since
k < k′, then (k − i + 1)/k < (k′ − i + 1)/k′ and so Gi ≥ G′i for all i. The equality of the
two events in the previous paragraph leads to the computation

Pk[Cn ≥ j] = P [

j∑
i=1

Gi ≤ n]

≤ P [

j∑
i=1

G′i ≤ n]

= Pk′ [Cn ≥ j]

which proves the first assertion of the lemma. The second assertion follows by noting that
each of the random variables Gi converges to 1 in probability as k→∞. �



6 FINKELSTEIN, TUCKER, AND VEEH

A similar computation proves the following result.

Lemma. In the notation above, Pk[Cn ≤ j] is a non-increasing function of k for each
fixed integer j ≥ 1. Moreover, limk→∞ Pk[Cn ≤ j] = 0 for 1 ≤ j < n.

A one sided confidence interval for k will now be found. To be precise, a statistic Ln(Cn)
will be defined with the property that Pk[Ln(Cn) ≤ k] ≥ 1− α for all k ≥ 1.

Define a function Ln with domain {1, . . . , n} by first setting Ln(1) = 1. For 2 ≤ j ≤ n
let Ln(j) be the largest integer i satisfying Pi[Cn ≥ j] ≤ α. This inequality has a unique
maximal solution since Pi[Cn ≥ j] is a non-decreasing function of i which has the value 0
at i = 1 and limit 1 as i→∞. Notice that 1 = Ln(1) ≤ Ln(2) ≤ · · · ≤ Ln(n).

Theorem. In the notation above, Pk[Ln(Cn) ≤ k] ≥ 1− α for each k ≥ 1.

proof. The theorem will be proved by showing that Pk[k < Ln(Cn)] ≤ α for each k ≥ 1.
The proof proceeds by considering various cases. First suppose 1 = Ln(1) ≤ k < Ln(2).
It is clear that for such k

[k < Ln(Cn)] = [Cn ≥ 2].

Thus

Pk[k < Ln(Cn)] = Pk[Cn ≥ 2] ≤ PLn(2)[Cn ≥ 2] ≤ α

where the next to last inequality follows from the fact that Pk[Cn ≥ 2] is an increasing
function of k with PLn(2)[Cn ≥ 2] ≤ α. Next consider the case Ln(2) ≤ k < Ln(3). For
k in this interval [k < Ln(Cn)] = [Cn ≥ 3], so Pk[k < Ln(Cn)] = Pk[Cn ≥ 3] ≤ α since
Pk[Cn ≥ 3] is an increasing function of k with PLn(3)[Cn ≥ 3] ≤ α. A similar argument
holds for Ln(j − 1) ≤ k < Ln(j) for 4 ≤ j ≤ n. Finally consider the case in which
Ln(n) ≤ k. For such k, [k < Ln(Cn)] = ∅ and Pk[k < Ln(Cn)] = 0 ≤ α. This concludes
the proof of the theorem. �

The problem of finding a two sided confidence interval will now be examined. Let Ln be
defined as above. Define a function Un with domain {1, . . . , n} by first setting Un(n) =∞.
For 1 ≤ j ≤ n − 1 let Un(j) be the smallest integer i satisfying Pi[Cn ≤ j] ≤ α. This
inequality has a smallest solution since Pi[Cn ≤ j] is a non-increasing function of i which
has the value 1 at i = min{j, n} and limit 0 as i → ∞. Notice that Un(1) ≤ · · · ≤
Un(n − 1) < Un(n) = ∞. An argument parallel to that above can be used to prove the
following theorem.

Theorem. In the notation above, Pk[k ≤ Un(Cn)] ≥ 1− α for each k ≥ 1.

The only difference in the proof of this theorem is that the cases are determined by the
inequalities Un(j − 1) < k ≤ Un(j).

In order to obtain two sided confidence intervals it is important to establish an order
relation between Ln(j) and Un(j). It is clear that Ln(1) = 1 ≤ Un(1) and Ln(n) < ∞ =
Un(n). For 2 ≤ j ≤ n−1 note that Pi[Cn ≤ j−1] = 1−Pi[Cn ≥ j] for all i. Replacing i by
Ln(j) gives PLn(j)[Cn ≤ j−1] ≥ 1−α > α for α < 1/2. This shows that Ln(j) < Un(j−1)
and hence that Ln(j) < Un(j).
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Theorem. In the notation above, Pk[Ln(Cn) ≤ k ≤ Un(Cn)] ≥ 1− 2α for each k ≥ 1.

proof. The theorem is proved by noting that 1 − Pk[Ln(Cn) ≤ k ≤ Un(Cn)] = Pk[k <
Ln(Cn)] + Pk[Un(Cn) < k] ≤ α+ α = 2α by the preceding two theorems. �

It is worth noting that these 3 theorems are optimal in a certain sense. The following
theorem and its proof have immediate analogs in the case of upper and two sided confidence
intervals.

Theorem. There is no statistic S(Cn) with the property that Pk[S(Cn) ≤ k] = 1− α for
each k ≥ 1.

proof. The proof of the theorem is obtained by considering 2 cases. In the first case suppose
S(1) ≤ 1. Then when k = 1, Pk[S(Cn) ≤ k] = P1[S(Cn) ≤ 1] = 1 > 1− α. In the second
case suppose S(1) > 1. Then when k = 1, Pk[S(Cn) ≤ k] = 0 < 1 − α. This proves the
theorem. �

In connection with the confidence interval problem, it would have been nice to show
that the confidence intervals obtained always contained the maximum likelihood estimator.
This would be the case if Pk[Ln(Cn) ≤ k̂n(Cn) ≤ Un(Cn)] = 1 for all 0 < α < 1/2
and all k. Unfortunately, this property fails to hold. To see this, first observe from the
definitions that this property is equivalent to the two assertions Pk̂n(c)[Cn ≤ c] ≥ 1/2

and Pk̂n(c)[Cn ≥ c] ≥ 1/2 for all c and n. Numerical computation shows that this second

inequality fails for n = 16 and c = 7.

Comparisons

Numerical comparison of the confidence intervals found by the method described here
and previous methods based on asymptotic theory show that the present method has the
advantage of maintaining the nominal coverage probability without suffering the drawback
of producing overly long intervals. Additionally, the present method applies in all circum-
stances, while the asymptotic methods depend on the size and relative magnitude of n,
Cn, and k for their (approximate) validity.

As an example, the method of Ivchenko and Timonina (1983) will be examined. The
validity of their method depends on the asymptotic normality of a statistic which is closely
related to k̂n. This asymptotic normality should approximately hold if n and k are large
and the ratio k/n is not close to 0 or ∞. Applying their method to the cases considered
earlier yields the following intervals with endpoints denoted L∗n and U∗n.

Comparison with Ivchenko and Timonina
Two Sided 95% Confidence Interval Endpoints

n Cn k̂n(Cn) Ln(Cn) Un(Cn) L∗n U∗n
20 5 5 5 7 5 5
20 10 12 10 22 10 19
20 15 31 17 92 20 116
20 19 183 38 7512 67 fails
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This demonstrates the favorable comparison of the two methods under circumstances in
which both should work well, and the failure of the asymptotic method in certain situations.

Using the Craig (1953) butterfly data and the Darroch (1958) asymptotic variance
estimates, Seber (1982) obtains, for c = 341 and n = 435, an (approximate) 95% confidence
interval of [729,1026]. Our algorithm yields a conservative 95% confidence interval of [722,
1029].

Implementation Details

Some simple functions were written in C++ to perform the computations necessary to
find the maximum likelihood estimator as well as the upper and lower endpoints of the
confidence intervals discussed above. The source code is available from Howard Tucker’s
home page at http://www.math.uci.edu/∼htucker.

In order to find the confidence intervals, an effective way of computing the distribution
function of Cn is needed. Feller (1957) presents a formula which in the notation above
reads

Pk[Cn ≤ c] =

(
k

c

) c∑
i=0

(−1)i
(
c

i

)(
c− i

k

)n (
k − c

k − c+ i

)
.

This formula is difficult to work with, due to the relative sizes of the terms and the
alternating signs. By conditioning on the outcome of the

final draw the recursive formula

Pk[Cn = c] =

(
k − c+ 1

k

)
Pk[Cn−1 = c− 1] +

( c
k

)
Pk[Cn−1 = c]

is obtained. This formula is numerically stable and was used to compute the distribution
function of Cn.
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